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Quasinormal-mode theory of elastic Purcell factors and Fano resonances of optomechanical beams
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We introduce a quasinormal-mode theory of mechanical open-cavity modes for optomechanical resonators,
and demonstrate the importance of using a complex effective mode volume and the phase of the quasinormal
mode. We first generalize and fix the normal-mode theories of the elastic Purcell factor, and then show a striking
example of coupled quasinormal modes yielding a pronounced Fano resonance. Our theory is exemplified and
confirmed by full three-dimensional calculations of optomechanical beams, but the general findings apply to
a wide range of mechanical cavity modes. This quasinormal mechanical mode formalism, when also coupled
with a quasinormal theory of optical cavities, offers a unified framework for describing a wide range of
optomechanical structures where dissipation is an inherent part of the resonator modes.
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I. INTRODUCTION

The ability to describe optical cavities in terms of nor-
malized modes and cavity figures of merit has played a
significant role in laser optics and cavity quantum electro-
dynamics (cavity-QED). Mode theories not only quantify the
underlying physics, but they simplify the numerical modeling
requirements and are essential for defining quantized modes in
quantum field theory. A striking example is the Purcell factor
[1], which elegantly describes the enhanced emission rate of a
dipole emitter:

FP = 3

4π2

(
λ0

n

)2 Q

Veff
, (1)

where λ0 is the free space wavelength, n is the refractive
index, Q is the quality factor, and Veff is the effective mode
volume. Purcell’s theory was originally derived for closed
cavity systems, though loss is partly accounted for in the
definition of Q. The above formula assumes perfect spatial
and polarization alignment of the emitter, which is typically
achieved at a field antinode.

Recently, a corrected form for Purcell’s formula has been
derived in terms of quasinormal modes (QNMs) [2,3], which
are the modes of open cavity resonators with complex eigen-
frequencies; the QNMs yield a generalized (or complex) mode
volume [2,4], Ṽeff , and only the real part is used in Purcell’s
formula. This subtle “fix” can have profound consequences,
and it applies to a wide range of lossy cavity structures,
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including plasmonic resonators [5,6] and hybrid structures of
metals and dielectric parts [7]. Moreover, very recently, it
was also shown how to quantize these QNMs [8,9], where
the dissipation becomes an essential component in explaining
the breakdown of the Jaynes-Cummings model for coupled
modes, causing intrinsic quantum-mechanical coupling be-
tween classically orthogonal modes.

There are significant analogies between optics and acous-
tics/mechanics, where the wave equations for acoustics is
given in terms of the pressure and velocity fields [10], instead
of the electromagnetic fields for optics. In typical resonator
structures, both systems yield open cavity modes with com-
plex eigenfrequencies. Moreover, optomechanical structures
can support coupling between mechanical and optical modes
[11], offering a wide range of applications in optomechanics
[12–17]. Despite these similarities, the common use of cavity
mode theories in optics is far less developed in elastics, and,
for example, one rarely talks about “mechanical” effective
mode volumes.

In optomechanical systems, the radiation forces exerted
by photons are exploited to induce, control, and/or measure
mechanical motion in resonators over a wide range of length
scales. The applications of optomechanics vary widely [12],
from the transduction [18] and storage [19,20] of quantum
information, to ultrasensitive mass sensing [21,22]. Other ap-
plications include ground-state cooling [23] and nonlinear
optomechanics [24]. The stereotypical optomechanical sys-
tem consists of a laser-driven cavity whose electromagnetic
fields exert a radiation pressure force on a mechanical res-
onator, which then acts back on the cavity mode, causing the
two modes to interact. Modern optomechanical systems can
take the form of ultrathin membranes, microring resonators,
and nanostructures acting as a photonic crystal [25,26] and a
phononic crystal [27–29] simultaneously [30–34], which have
been shown to have direct applications in on-chip quantum in-
formation processing [35–40]. Superconducting circuits have
also recently been shown to exhibit optomechanical-like
coupling [41].
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FIG. 1. Visualization of a mechanical QNM on a three-hole op-
tomechanical nanobeam cavity, which will spatially diverge because
of the outgoing boundary conditions.

In most optomechanical-mode theories to date, the op-
tomechanical coupling rate g0 is rarely taken from a first-
principles model, which is in contrast to modal methods in
optics where it is more common to adopt an analytical ap-
proach based on the optical modes of the structure. Yet there
is clearly a need to describe emerging effects such as mode-to-
mode transcription and reservoir engineering in terms of the
underlying mode properties of the mechanical cavity modes,
both in classical and quantum-mechanical problems. A recent
theory paper introduced the interesting idea of an elastic Pur-
cell factor [42], which, like its optical counterpart, describes
an enhancement of a dipole emitter (but now a force dipole)
in terms of Q and Veff ; similar to earlier works on optical
cavities, the authors used a “normal mode theory,” which is
in general incorrect for open cavity modes [2]; however, for
high Q cavities, the normal mode approach can be a very good
approximation, but the theory is still ambiguous. Experimen-
tal measurements have also recently been performed on the
acoustic Purcell factor [43].

To account for mode dissipation in optical resonators, the
modeling of the dominant cavity mode is usually calculated by
implementing outgoing boundary conditions (otherwise it has
an infinite lifetime, assuming there is no material absorption).
Often this problem is treated with closed boundary conditions
or as a Hermitian eigenvalue problem, but this is inconsistent
with a finite cavity loss. In fact, open cavity modes yield
spatially divergent modes, which are the QNMs described
earlier. Figure 1 shows a schematic representation of an elastic
QNM from an optomechanical photonic crystal beam (calcu-
lated in detail later), and we note that the mode diverges for
spatial positions far down the open beam. Optical QNMs have
recently proven to be very powerful in photonics design and
simulations [3,4,44,45]. For the purpose of field normalization
and developing mode theories, both optical and mechanical
modes are usually assumed to be lossless, and then dissipa-
tion is added later through system-bath coupling theory, or
phenomenologically; in contrast, the QNM approach includes
losses from the beginning since the eigenfrequencies are com-
plex, unlike normal modes. The QNMs also quantify coupling
parameters in a more complete way, an example of which
has been shown for two coupled QNMs of dielectric-cavity
systems [7], resulting in striking interference effects that
demonstrate how the phase of the mode must be maintained.

In this work, we introduce an intuitive and accurate QNM
description for mechanical modes q̃m, which have complex
eigenfrequencies, �̃m = �m − iγm, with Qm = �m/2�m. For
single mode resonators, this QNM formalism allows a rig-
orous definition of the effective mode volume Veff,m [1,2,4]
for mechanical modes [35], or, equivalently in mechan-
ics, the effective motional mass meff,m = ρVeff,m [35,46,47],
which is commonly used in the optomechanics literature
[33,34,36,37,48,49]. We first present a generalized elastic ef-
fective mode volume Ṽeff,m(r) using a QNM normalization,
and we show the problems with using a normal-mode volume
Veff . We subsequently use this complex, position-dependent
Ṽeff,m(r) to carry out an analytical Green function expansion
[6], which can be used to quickly solve a wide range of
force-displacement problems in an analogous way to how the
photon Green function is used to carry out light-matter inves-
tigations in optics [50]. Then, using the case of two coupled
modes, we demonstrate the accuracy of the QNM theory in
explaining complex Fano resonances, and we demonstrate the
clear failure of using a normal-mode theory.

A Fano resonance is a well-known scattering phenomenon
that results in asymmetric spectral line shapes. They have been
shown to exist in various physical systems, finding applica-
tions in photonics [51], plasmonic metamaterials [52,53], and
optomechanics [54,55]. In optics, systems that exhibit these
phase-dependent interference effects may provide new meth-
ods of manipulating light propagation. Applications include
sensing, lasing, and optical switching [51,56–58]. Experimen-
tal evidence of Fano resonances in coupled nanomechanical
resonators has also been demonstrated [59]. Fano resonance
phenomena in optomechanical systems can potentially be
used for processing classical and quantum information, where
the hybridized mechanical modes exhibiting Fano excitation
line shapes allow for an on-chip platform for storage and
photonic-phononic quantum state transfer, demonstrated ex-
perimentally by studying the coherent mixing of mechanical
excitations within optomechanical cavities [60]. Often Fano-
resonances are associated with the interference between a
bound resonance and a continuum, such as through a cavity
and waveguide, but two coupled resonators can also yield
a Fano resonance. For example, hybrid plasmonic-dielectric
systems can show a significant Fano resonance [7,61,62],
which can be explained using optical QNM theory [7] with
only two coupled QNMs, and also gives rise to new regimes
in quantum optics [8,9]. The investigation of coupled me-
chanical modes in optomechanical systems often relies on
computing the power spectral density with finite element
methods; these are typically used for initial rudimentary de-
scriptions, so there is significant motivation to be able to
describe such effects as the level of an intuitive and accurate
mechanical mode theory.

The rest of our paper is organized as follows: In Sec. II,
we present the main theory details and important formulas,
introducing the elastic wave equations, QNMs, general-
ized effective mode volume, and elastic Purcell formula. In
Sec. III, we present numerical calculations for a fully three-
dimensional (3D) optomechanical beam, first for a single
QNM design, and then for coupled QNMs that show a striking
Fano resonance. In both cases, we highlight the failure of
using a normal-mode theory, which is shown to be drastic in
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the case of two coupled modes. Finally, in Sec. IV, we present
closing discussions and our main conclusions.

II. THEORY

A. Wave equations, normal modes, quasinormal
modes, and Green functions

Vibrational modes of solids can be calculated using the lin-
ear theory of elasticity [63], where one assumes infinitesimal
deformations and stress forces that do not result in “yielding”
(deformation point of no elastic return).

We first express Newton’s second law in terms of the dis-
placement vector u(r, t ):

∇ · σ(r, t ) − ρ(r)ü(r, t ) = −f (r, t ), (2)

where ρ is the mass per unit volume, f (r, t ) is the force vector
or force per unit volume, and σ is the stress tensor. Assuming
a harmonic solution of the form u(r, t ) = u(r,�)e−i�t , and in
the absence of a force excitation, we obtain the wave equation
in an analogous form to the Helmholtz equation in optics:

∇ · σ(r,�) + �2ρ(r)u(r,�) = 0. (3)

The stress tensor can be expressed as [64]

σi j (r,�) = ci jkl∂kul (r,�), (4)

where ci jkl is the fourth-order elasticity tensor (where one
sums over repeated indices as with Einstein summation con-
vention), and ∂k ≡ ∂/∂xk is the partial derivative with respect
to the xk direction. Subjecting Eq. (3) to periodic or hard-wall
boundary conditions would yield “normal modes” qm from
the following eigenvalue problem:

ρ(r)�2
mqmi(r)+∂ j (ci jkl∂kqml (r)) = 0, (5)

where the eigenfrequencies are real and do not account for
dissipation, and the second index on the mode represents the
component.

It is also useful to define the corresponding Green function
G, obtained from [64],

∂ j (ci jkl∂kGln(r, r′; �)) + ρ(r)�2Gin(r, r′; �)

= −δinδ(r − r′), (6)

where the ith component of a unit force in the n direction at
location r′ is given by δinδ(r − r′). The displacement can be
written in terms of G as [64]

ui(r) =
∫

V
Gin(r, r′) · fn(r)dr′

+
∮

S
{Gin(r, r′)ŝ jcn jkl∂

′
kul (r′)

− un(r′)ŝ jcn jkl∂
′
kGil (r, r′)}dr′, (7)

where ŝ j is the normal vector of S, the surface forming the
outer boundary of the elastic body. For an elastic body sur-
rounded by empty space, the second term vanishes as there is
no stress at the surface. In the case of a point force excitation,
f (r, t ) = fdδ(r − r0)δ(t ), then

u(r,�) = G(r, r0; �) · fd(r0), (8)

where fd is a point force at position r0.

Using the completeness relation for normal modes,

Iδ(r − r′) =
∑

m=1,2,...

ρ(r)qm(r)q†
m(r′) (9)

[where I is a unit dyadic of a 3 × 3 matrix, the dagger de-
notes the complex conjugate of the transpose: q† = (qT )∗, and
m = 1, 2, . . . ], the Green function can be obtained from an
expansion over the normal modes [64],

G(r, r′; �) =
∑

m=1,2,...

qm(r)q†
m(r′)

�2
m − �2

. (10)

For problems in cavity physics with a few modes of in-
terest, the above theory is not that useful or practical, since
one needs a continuum of modes. Instead, similar to open-
cavity problems in optics, one desires to describe the main
physics in terms of just a few discrete resonator modes. In an
elastic resonator medium with open boundary conditions, the
resonator open-cavity modes q̃m are obtained from

ρ(r)�̃2
mq̃mi(r)+∂ j (ci jkl∂kq̃ml (r)) = 0, (11)

where �̃m is the complex eigenfrequency and q̃m(r) are the
mechanical QNMs.

We can now exploit techniques that have been recently
developed for obtaining QNMs and QNM Green functions in
optics [3,4,45,65]. We adopt a modified completeness relation
for QNMs [65],

Iδ(r − r′) =
∑

m=±1,±2,...

1

2
ρ(r)q̃m(r)[q̃m(r′)]T , (12)

where now m = ±1,±2, . . . , superscript T denotes the
transpose, and we assume this condition is satisfied for
spatial positions within or near the cavity [4,45]. Note that
the tensor product in Eq. (12) is also frequently written as
q̃m(r) ⊗ q̃m(r′). We can now expand G in terms of QNMs,
through (alternative expansion forms, for optical QNMs, are
discussed in [3])

G(r, r′; �) =
∑

m=±1,±2,...

q̃m(r)[q̃m(r′)]T

2�(�̃m − �)
. (13)

To have quantities that better relate to an effective mode
volume in optics, which is also a key quantity in Purcell’s
formula, we next define an alternative QNM function through

Q̃m(r) =
√

ρ(r) q̃m(r), (14)

so that Q̃2
m has units of inverse volume. There have been

various approaches to obtain normalized QNMs in optics
[2,4,5,45,66–69], and in this work we use the simple form

〈〈Q̃m|Q̃n〉〉 = lim
V →∞

∫
V

Q̃m(r) · Q̃n(r)dr

+ i
vb

s

4π�̃m

∫
A

Q̃m(r) · Q̃n(r)dr = δm,n, (15)

which is analogous to the optical QNM normalization intro-
duced by Lai et al. [70], and was used to introduce the idea
of a “generalized mode volume” with optical cavities [2].
Compared to its optical counterpart, we note the following
substitutions: (i) speed of light, c → shear speed of sound
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in bulk material vb
s (as we are only considering transverse

modes); and (ii), refractive index nB → material density ρ.
Note that Eq. (15) needs a careful regularization if evaluated
over a large simulation volume [66], though in practice this is
not necessary, and all calculations below are verified with full
numerical solutions (i.e., without any approximations).

In terms of these new elastic QNMs, the Green function
expansion can now be written as

G(r, r′; �) =
∑

m=±1,±2,...

Q̃m(r)[Q̃m(r′)]T

ρ(r)2�(�̃m − �)
, (16)

where we now only need to perform a sum over just a few
dominate modes of interest. We stress that not only does this
theory give a rigorous definition of Purcell’s formula for me-
chanical modes (as we show below), but it fully accounts for
phase effects and non-Lorentzian features from the complex
QNMs.

B. Complex mode volumes and the elastic Purcell formula
in terms of QNMs

The common approach to obtaining mode volumes in the
literature [33–35,42] is to define the effective mode volume,
using a normal mode normalization:

V NM
eff,m =

∫
dr|Q̃m(r)|2

max[|Q̃m(r)|2]
, (17)

where Q̃m is actually the QNM spatial profile (solution with
outgoing boundary conditions), but without the normalization
of Eq. (15). Thus, Eq. (17) is problematic as the value diverges
as a function of space for any dissipative modes (unless they
are lossless).

To fix this problem, the QNM normalization condition in
Eq. (15) allows one to obtain a complex (or generalized)
effective mode volume for a mechanical mode:

Ṽeff,m(r) = 1

Q̃2
m(r)

, (18)

where Ṽeff,m = Veff,m + iV Im
eff,m for a specific mode m. Note

also that we allow the effective mode volume to be a function
of space here as it formally characterizes the mode strength
squared at those positions, and it is not directly related to the
integrated mode volume (which diverges). For closed cavities,
the field squared happens to be related to the total volume of
the mode if evaluated at the field maximum. In QNM theory,
the total mode volume is ill-defined, as it diverges for any
open cavity resonator. Thus one can refer to this quantity as
a “localized mode volume,” where the volume is a useful
figure of merit for certain applications of interest. As we will
show later, the phase of the QNM can also have profound
consequences, and is essential to the general theory.

As explained in the Introduction, this modal Purcell factor
theory has been well exploited in optical cavity physics and
cavity-QED for decades, and the underlying physical insight
in terms of cavity mode properties would be hard to underes-
timate as a design tool. Thus, next we derive an expression for
an elastic Purcell factor, similar to the work of Schmidt et al.
[42], but now in terms of the QNM Green functions.

The mechanical Purcell factor evaluated from an elastic
emitter (coupled to a QNM), fd = fdn, oriented along direc-
tion n, at some position r0 and at a frequency �, can be written
as

FP(r0,�) = P(r0)

P0(r0)
= Im[f†

d · G(r0, r0; �) · fd]

Im[f†
d · G0(r0, r0; �) · fd]

, (19)

where G0 is the Green function in a homogeneous medium.
Note that G0 includes both transverse and longitudinal modes,
whereas the QNM one (G) is for transverse modes only, which
completely dominate the response for resonant cavity struc-
tures. One can think of Eq. (19) as a generalized enhancement
factor or generalized Purcell factor, as no mode expansions
have been performed yet (which is necessary to connect to
the usual single mode Purcell formula). The terms P and
P0 are the radiated power from a dipole (at position r0) in
an inhomogeneous and homogeneous medium, respectively.
Using an analogous approach to Poynting’s theorem, P0 is
formally defined from [42,71]

P0(r0) = dW (r0)

dt
= �

2
Im[f∗

d · u(r0)], (20)

which can be derived analytically for an isotropic medium
[42]:

P0(r0) = �2|fd|2α
12πρ(r0)

, (21)

where

α = 1
2v−3

l + v−3
s , (22)

in which vl and vs are the scalar longitudinal and shear speed
of sound in the material, respectively. We can therefore write
Eq. (19) as

Fp(r0,�) = ηn
6πρ(r0)Im[f†

d · G(r0, r0; �) · fd]

�| fd|2α , (23)

where we have introduced a numerically determined constant
ηn (which depends on the dipole direction in general) to
account for elastic anisotropy of the medium; for relatively
isotropic crystals, ηn ≈ 1.

The medium Green function can now be used with our
generalized effective mode volume Ṽeff and Eq. (23) for a
multimode approximation of a cavity decay rate enhancement,
and for various other problems in optomechanics. We thus
obtain the multi-QNM Green function expansion evaluated at
a point r0 within the resonator:

Fp(r0,�) = ηn
6πρ(r0)

�| fd |2α

× Im

[
f†
d ·

∑
m

Q̃m(r0)[Q̃m(r0)]T

ρ(r0)2�(�̃m − �)
· fd

]
. (24)

For a slightly more familiar form, we can write this in terms
of the (complex) effective mode volume as

Fp(r0,�) = ηn
6πρ(r0)

�α

× Im

[∑
m

1

ρ(r0)2�(�̃m − �)Ṽm,eff (r0)

]
, (25)
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where we have assumed that the force direction is along the
dominant polarization component of the mode, which is the
usual assumption in Purcell’s formula.

Finally, using Eq. (23), we have the enhanced emission rate
for a single QNM:

Fp(r0) = ηn
6πQm

�3
mαVeff,m(r0)

, (26)

in which we assume that the Green function’s response is
dominated by a single mode, and the response is on-resonance
(� = �m). Equation (26) is the elastic Purcell factor evaluated
at the resonant mode �m at the source point, whereas Eq. (25)
is generalized for various positions and frequencies. Our ex-
pression is consistent with the expression recently presented
in [42], but with a generalized effective mode volume, consis-
tent for an open cavity mode with complex eigenfrequencies
and an unconjugated norm. Note also that our Green function
explicitly includes the QNM phase, which we show below
is essential for describing the response function of several
QNMs, and can yield highly non-Lorentzian line shapes. For
background media that are relatively isotopic, ηn ≈ 1 (as we
find for crystalline Si below), and one can simply drop this
factor from the elastic Purcell formula and main equations.

III. NUMERICAL RESULTS

A. Mechanical mode effective mode volumes and Purcell factors

We now corroborate our mechanical QNM theory against
rigorous numerical calculations, obtained for fully three-
dimensional mechanical cavities of practical interest in
optomechanics. Naturally, the above theory can easily be
applied to two-dimensional and one-dimensional systems as
well, with appropriate changes for the background Green
functions [2,3].

In this work, we are interested in modeling optomechanical
crystal (OMC) cavities on dielectric nanobeams. We consider
the impressive nanobeam structure developed by Painter and
collaborators [36], consisting of periodic holes with a lattice
taper region, in which the hole spacing and size changes.
The taper region causes a Fabry-Pérot-like effect, resulting in
spatially overlapping localized optical and mechanical modes.
We adapt the original structure to produce QNMs with more
loss by using only a small number of holes to form the OMC
cavity. This is to test our QNM normalization at low-Q, where
the normal-mode approximation breaks down more dramati-
cally.

The nanobeam is modeled as anisotropic silicon in
free space with elasticity matrix elements (C11,C12,C44) =
(166, 64, 80) GPa. We consider two OMC cavities, one con-
sisting of three holes (3H), and one of five holes (5H). Cavity
design parameters are specified in Fig. 2 along with the beam
dimensions. Each cavity design exhibits single mode behavior
over the frequency ranges shown in Fig. 3. We conduct our nu-
merical investigations using the finite element analysis (FEM)
commercial software within COMSOL. The beam is modeled to
be infinitely long by implementing perfectly matched layers
(PMLs), which simulate outgoing boundary conditions.

Employing the eigenfrequency solver, we obtain the domi-
nant QNMs of interest for each cavity at �̃3H/2π = 5.160 −
i0.016 GHz and �̃5H/2π = 5.168 − i0.002 GHz. The spatial

FIG. 2. Design specifications of the optomechanical nanobeam
cavity, with unit cell parameters a, hx , and hy. Dimensions: w =
0.53 μm and t = 0.22 μm. The beam is simulated to be infinitely
long using perfectly matched layers. The origin of this coordinate
system, (x, y, z) = (0, 0, 0), is placed at the center of hole-0 at half-
beam thickness. The three-hole cavity design uses the holes −1, 0,
and 1.

profile of each mode is shown in Figs. 3(a) and 3(c). We
evaluate the effective mode volume of the 3H and 5H QNMs
at r0 = (0.0, 235.5, 0.0) nm (where there is strong localiza-
tion). Using Eq. (18) with the QNM normalization in Eq. (15),
the real part of the generalized effective mode volume Ṽeff

is plotted as a function of simulation size against the more
commonly used normal mode V NM

eff [note that the surface
term in Eq. (15) is only applied outside of the hole region as
it assumes a constant outgoing medium]. The normal-mode
normalization in Eq. (17) assumes that the mode is localized
in space. Consequently, when applied to any cavity mode
with finite leakage, V NM

eff will diverge exponentially when
integrated over all space. For less leaky cavities (smaller
loss), this divergence is initially quite slow for a small sim-
ulation size, whereas the effect is more dramatic for low-Q
modes. The QNM normalization, in contrast, shows conver-
gent behavior as the calculation domain is increased, though
it may eventually oscillate around the correct value and re-
quire regularization [2,66]. Using a finite-size calculation
domain size, we obtain Ṽ 3H

eff (r0) = 0.064 87 + 0.009 43i μm3

and Ṽ 5H
eff (r0) = 0.061 55 − 0.003 55i μm3.

We now make use of the generalized effective mode vol-
ume to investigate the elastic Purcell effect. The numerically
exact Purcell factor is calculated from

F exact
P (r0) = Pinhom(r0)

P0
, (27)

where Pinhom is the power emission from a point load in the
inhomogeneous structure (in this case the beam cavity), and
P0 from a homogeneous sample. We employ the frequency
domain solver in COMSOL to obtain full numerical dipole
calculations [plotted in Figs. 3(b) and 3(d)]. See Appendix C
for details on the numerical simulations.

Figures 3(b) and 3(d) show the semianalytical enhance-
ment rate FP(�) calculated using Eq. (25) with Ṽ 3H

eff (r0) and
Ṽ 5H

eff (r0) for the dominant QNM modes of interest, �̃3H and
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(a) (b)

(c) (d)

FIG. 3. (a),(c) Real part of the complex effective mode volume Veff,m using the QNM mode normalization from Eq. (15) (solid line) and
normal-mode (NM) normalization from Eq. (17) (dashed) for a three-hole and five-hole nanobeam OMC cavity, respectively, evaluated at
r0 = (0.0, 235.5, 0.0) nm. Blue shading indicates hole positions with respect to the shown mode profile, which is symmetrical about the
y-axis at the cavity center. (b),(d) Enhancement rate FP calculated using the Green function expansion [Eq. (25)] (with an isotropic material
approximation ηn = 1) for the QNMs of interest (solid line). Numerical exact (e.g., with no approximations) Purcell factor Eq. (27) obtained
from averaged numerical point load simulation from COMSOL (see the text). Shaded lines show plus/minus one standard deviation of the
numerical solution with mesh sensitivity included.

�̃5H, respectively. To determine ηn, anisotropic material pa-
rameters are applied to a numerical model of a homogeneous
sample in which the simulation parameters produce a power
spectrum agreeing with the analytical expression in Eq. (21),
when isotropic material parameters are used. For our case,
we use (and have numerically verified) the isotropic approx-
imation of ηn = Piso

0 (�)/Paniso
0 (�) ≈ 1, where Piso

0 and Paniso
0

are the radiated power from a point load in an isotropic and
anisotropic homogeneous medium, respectively. Also plotted
in Figs. 3(b) and 3(d) is the numerically obtained Purcell
factor F exact

P calculated from full three-dimensional frequency
domain point load simulations. To account for numerical fluc-
tuations (see Appendix C), the average of multiple simulations
were conducted in which the mesh parameters are slightly
changed. Within this fluctuation, we find excellent agreement
between the full numerical simulations and the semianalytical
Green function expansion, with the single QNM approxima-
tion being sufficient in describing the dominant resonance
response of the system. It is worth mentioning that our modal
description provides the enhancement of an emitter at various
locations and frequencies given a sufficient number of QNMs
(and often just one QNM) which can be calculated in minutes
on a single computer. In contrast, usually one must perform a
frequency domain calculation at a single point load position,

which can take anywhere from hours to days for a sufficient
spectrum to be resolved.

B. Coupled mechanical quasinormal modes

Having demonstrated the validity of the generalized ef-
fective mode volume with the single mode approximation,
we now consider coupled QNMs. The optomechanical cavity
used above can support both high-Q and low-Q modes, de-
pending on the design and quantity of holes used. We consider
an OMC nanobeam structure with two cavities, one designed
for relatively high-Q modes (5H), and one for low-Q modes
(3H).

Figure 4(a) shows the nanobeam structure, using the same
cavity design parameters outlined in Fig. 2 and a separa-
tion of 4 μm between the two cavities. We look at two
resonant QNMs of interest that are close in frequency with
spectral overlap. The first, QNM 1 with eigenfrequency
�̃1/2π = 5.172 − i0.012 GHz (Q1 = 216), is dominated
by the three-hole cavity [the mode profile is shown in
Fig. 4(d)]. The second, QNM 2 with �̃2/2π = 5.171 −
i0.002 GHz (Q2 = 1293), is dominated by the five-hole cavity
[Fig. 4(e)].
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(a)

(b)

(f)

(d)

(e)

(c)

FIG. 4. (a) Optomechanical crystal beam geometry, consisting of a three-hole and a five-hole cavity separated by 4 μm. Zoom-in box shows
the simulated point load orientation (aligned with the breathing mode’s dominant polarization) and position at r0 = (2300.0, 235.0, 0.0) nm.
(b) Purcell simulation with a three-mode approximation of the total decay rate at the same r0 (solid line) calculated using Eq. (25) (using an
isotropic material approximation ηn = 1). Contributions from each individual mode are shown with dashed lines. The inset shows a clearer
view of QNM 3, where the unshaded region indicates the frequency range of the main plot. Circles show averaged numerical FEM calculations
of F exact

P [Eq. (27)], with the shaded region showing +/− one standard deviation. (c) Total decay rate calculated using the normal-mode
approximation [where the effective mode volume is obtained from Eq. (17)], compared with FEM numerical solution. (d)–(f) Mode profiles of
QNM 1 (�̃1/2π = 5.172 − i0.012 GHz), QNM 2 (�̃2/2π = 5.171 − i0.002 GHz), and QNM 3 (�̃3/2π = 5.232 − i0.041 GHz), respectively.
The color bar indicates the minimum and maximum displacement relative to each individual mode. Note that these modes are not the original
modes, but hybrid modes including the dissipation-induced coupling.

We evaluate the generalized effective mode volume
near the antinode of the three-hole cavity at r0 =
(2300.0, 235.0, 0.0) nm, and we use the multi-QNM Green
function expansion to describe the frequency response at this
position in Fig. 4(b). Here we see the hybridization of the
individual modes studied earlier (�̃3H and �̃5H), where QNM
2 exhibits a Fano resonance that results in an interference
effect in the total decay rate. Note that we have used a third
mode in our Green function expansion, QNM 3 [�̃3/2π =
5.232 − i0.041 GHz, Ṽeff,3(r0) = −0.280 − 0.006 μm3], to
allow for a total decay rate that is positive and well behaved

in a large frequency range of interest (while the total decay
rate is physically meaningful, contributions from individual
modes may not always be); note, however, that this mode
has a negligible contribution to the main dominant response
(between 5.15 and 5.19 GHz), and the two-QNM description
sufficiently describes the system response. Once again we find
excellent agreement with FEM point load simulations [see
Fig. 4(b)].

For a more intuitive understanding of the role of the QNM
phase φm(r0) = arg(Q̃(r0)), with two QNMs, we can write
Eq. (25) in terms of the two dominant QNMs (QNM 1 and
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QNM 2) as

Fp(r0,�)|cos+sin = 3π2ηn

�2α

([
cos 2φ1(r0) + �1 − �

γ1
sin 2φ1(r0)

]
|Q̃1(r0)|2 L1(�)

+
[

cos 2φ2(r0) + �2 − �

γ2
sin 2φ2(r0)

]
|Q̃2(r0)|2 L2(�)

)
, (28)

where we use the normalized Lorentzian function,

Lm(�) = γm/π

(�m − �)2 + γ 2
m

, (29)

and we assume the force dipole is projected along the dominant field direction, namely |Q̃|2 = |Q̃ · n|2, though this can easily
be generalized. To better clarify the underlying physics of the various phase terms, we also define two other functions, one that
neglects the sin contributions:

Fp(r0,�)|cos = 3π2ηn

�2α

[
cos 2φ1(r0)|Q̃1(r0)|2 L1(�) + cos 2φ2(r0)|Q̃2(r0)|2 L2(�)

]
, (30)

and one that neglects the phase completely:

Fp(r0,�)|abs = 3π2ηn

�2α
(|Q̃1(r0)|2 L1(�) + |Q̃2(r0)|2 L2(�)). (31)

All three equations agree [Eqs. (28), (30), and (31)] only when cos(2φ1) = cos(2φ2) = 1 and sin(2φ1) = sin(2φ2) = 0. Note
also that Eq. (31) has the form of a normal-mode solution, though its effective mode volume is different, and the latter will in
general be overestimated (yielding a smaller Purcell factor value).

For our numerical example, the QNM phase values at the point of interest are 2φ1(r0) = 0.3204 and 2φ2(r0) = 2.4643 for
QNM 1 and QNM 2, respectively. While the QNM 1 phase shift φ1 is relatively small, the near 180◦ phase shift of Q̃2

2(r0) results
in the negative contribution to the overall enhancement. From these phase values, the cosine values are cos(2φ1) ≈ 0.95 and
cos(2φ1) ≈ −0.7, so the latter will contribute as a negative Lorentzian line shape. Figure 2 shows the Purcell factor predictions
from Eqs. (28), (30), and (31), which clearly demonstrate the role of the phase terms. We can also see that neglecting the phase
of the mode fails to describe the interference effect [Fig. 5(a)]. Considering only the cosine terms still provides a negative
contribution from QNM 2 (this is equivalent to only using the real part of Ṽeff,1), however the asymmetry of the line shape
requires the full phase. In fact, the sin terms are sin(2φ1) ≈ 0.31 and sin(2φ1) ≈ 0.36, which are significant and certainly cannot
be ignored in general. Indeed, the pronounced Fano feature can only be correctly described when the complete phase is used
[see Fig. 5(b)].

Equation (28) provides a clear understanding of phase interactions between coupled modes. However, rather than work with
the complex phases, it can be convenient to work in the complex effective mode volume picture, i.e., Eq. (25), which is in the
spirit of Purcell’s formula. A simple way to do this is to write Eq. (28) in terms of the real and imaginary parts of the generalized
effective mode volume:

Fp(r0,�) ≈ 3π2ηn

�2α

{[
Re

(
1

Ṽeff,1(r0)

)
+ �1 − �

γ1
Im

(
1

Ṽeff,1(r0)

)]
L1(�) +

[
Re

(
1

Ṽeff,2(r0)

)
+ �2 − �

γ1
Im

(
1

Ṽeff,2(r0)

)]
L2(�)

}
,

(32)

where we have effectively replaced the sin and cos terms, as
well as |Q̃m|2, with the real and imaginary parts of 1/Ṽeff,m. It
is now easier to see that the normal-mode solution using the
entirely real V NM

eff,m [42] will always be a simple sum of two
Lorentzians:

F NM
p (r0,�) ≈ 3π2ηn

�2α

(
L1(�)

V NM
eff,1(r0)

+ L2(�)

V NM
eff,2(r0)

)
, (33)

as plotted in Fig. 4(c), which shows a drastic failure of the
normal-mode theory. Note that Eq. (33) for a single mode is
equivalent to the one used in the introduction to the elastic
Purcell effect [42].

At the dipole location of interest, the generalized effec-
tive mode volumes of the QNMs of interest are Ṽeff,1(r0) =
0.058 − 0.019i μm3 and Ṽeff,2(r0) = −0.399 − 0.321i μm3

for QNM 1 and QNM 2, respectively. The negative na-
ture of Ṽeff at r0 is simply a result of the phase shift
caused by the interaction between the two cavity reso-
nances. This is also seen with QNMs in optics [7,44],
where the QNM phase causes the Fano-like resonance. Us-
ing quantized QNMs in quantum optics gives essentially
the same result as classical QNM theory in the bad cavity
limit (within numerical precision), but where the interpre-
tation is now through off-diagonal mode coupling [8]; here
the dissipation-induced interference cannot be explained by
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(a)

(b)

FIG. 5. Two QNM expansions (a) and a single mode expansion
of QNM 2 (b) using all phase terms [Eq. (28)], the cos term only
[Eq. (30)], and without any phase dependence [Eq. (31)].

normal-mode quantum theories such as the dissipative Jaynes-
Cummings model. In this regard, it would be very interesting
to develop a quantized QNM theory for mechanical modes
as well.

IV. CONCLUSIONS

We have introduced a QNM formalism for mechanical cav-
ity modes and shown that the commonly used normal-mode
description is problematic for cavity resonances with finite
loss. Instead, we have presented and employed a complex,
position-dependent effective mode volume for mechanical
modes using a QNM normalization that can be used to solve
a range of force-displacement problems. For validation of the
theory, we carried out an analytical Green function expansion
using QNMs with the elastic Purcell factor expression, and
we found excellent agreement with rigorous numerical simu-
lations for 3D optomechanical beams.

We then demonstrated the accuracy of the QNM theory in
explaining interference effects of coupled cavity modes, and
we pointed out the drastic failure of the usual normal-mode
theory. Specifically, we explicitly showed the role of the QNM
phase in yielding a Fano-like resonance, and we explained
this analytically and numerically from interference effects that
are completely absent in a normal-mode theory. This QNM
approach should serve as a robust and valuable tool in the
understanding and development of emerging optomechanical
technologies.
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APPENDIX A: ANALYSIS OF QUASINORMAL MODE 3

The third mode included in the total decay rate in Fig. 4,
“QNM 3,” has no qualitative influence on the main Fano
feature we are modeling. In essence, it merely produces a
small background bump in the total decay rate far in frequency
from the hybridized modes of interest. However, without its
inclusion we have nonphysical negative enhancement, so it
is needed in general to quantitatively connect to the total
Purcell factor over a relatively broad frequency range. From
our calculations, QNM 3 is likely a modification of a (sec-
ond) mode that arises in the single cavity five-hole structure
at a slightly higher frequency than the primary mode of
interest, �̃5H.

Figure 6 shows (a) the two-mode approximation of the
total decay rate of the single five-hole cavity nanobeam at
r5H

0 , along with (b) the spatial profile of QNM 3. This is the
same structure used in Figs. 3(c) and 3(d), in which we used a
one-mode approximation using only the primary mode of in-
terest, �̃5H/2π = 5.168 − i0.002 GHz. Here we also include
the nearest resonant mode at �̃5H

s /2π = 5.210 − i0.051 GHz.
With a quality factor of 53 and Ṽ 5H,s

eff = 0.229 − 0.124i μm3,
its contribution to the total day rate over this frequency range
is overshadowed by �̃5H, showing that the single-mode ex-
pansion in Fig. 3(d) is a sufficient approximation. In addition
to having comparable quality factors and relative distances in
frequency from �̃5H and QNM 2, respectively, �̃5H

s and QNM
3 have similar mode profiles at the five-hole cavity region,
leading us to conclude that QNM 3 is simply �̃5H/2π =
5.168 − i0.002 GHz adapted to the addition of the three-hole
cavity on the same beam.

(a)

(b)

FIG. 6. (a) Two-mode approximation of the total decay rate
of the single 5-hole cavity nanobeam at r0 = (0.0, 235.5, 0.0) nm
calculated using Eq. (25). Dashed lines show the individual mode
contributions of the the primary mode �̃5H and secondary mode �̃5H

s .
(b) Mode profile near the 5 hole cavity of �̃5H

s (QNM 3 in the main
text).
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(a)

(b)

(c)

FIG. 7. Peak decay rate enhancement of the dominant QNM for
the (a) three-hole cavity (�̃3H) and (b) five-hole cavity (�̃5H) at a
range of x and y evaluation points in the center of the beam (z =
0 μm). Part (c) shows cross sections at y = 0.2355 μm [(a), blue
dashed] and x = 0 μm [(b), purple dashed].

APPENDIX B: PURCELL FACTOR AT
DIFFERENT POSITIONS

The choice of the evaluation point r0 = (0.0, 235.5, 0.0)
nm is strategic since the QNMs of interest for the single
cavity structures are relatively strong at this position. Figure 7
shows the peak Purcell factor of �̃3H and �̃5H modes on two
cross-sectional lines around this point. The evaluation point
for the coupled cavity structure in Fig. 4 was chosen simply
because it exhibited a pronounced Fano feature. However,
for completeness, we also include the total decay rate of the
coupled cavity structure evaluated near the five-hole cavity
region in Fig. 8.

APPENDIX C: COMSOL CALCULATIONS AND
NUMERICAL PURCELL FACTORS

The power emission spectrum is obtained numerically by
integrating the mechanical flux I over a small sphere around
the point load. The mechanical flux is given by

I = −σ · v, (C1)

where v is the velocity vector. Power flow calculations in
COMSOL were found to be sensitive to mesh geometry, with
Pinhomo (nanobeam cavity) and P0 (homogeneous bulk ma-
terial) fluctuating dramatically with small changes in mesh
parameters. However, Pinhom/P0 was found to be more con-
vergent provided that the mesh geometry in the simulation

(a)

(b)

(c)

FIG. 8. (a) Three-mode approximation of the total decay rate
near the five-hole cavity region of the coupled cavity structure [r0 =
(−2000.0, 235.5, 0.0) nm]. (b) Zoom-in of (a), with contributions
from each individual mode shown (dashed lines). (c) Zoom-in of
the beam geometry shown in Fig. 4(a). The red point indicates the
evaluation point at this r0. Note that we see QNM 1 exhibit a negative
contribution to the total decay at this position, but it is overwhelmed
by the relatively large enhancement of QNM 2.

of the beam is exactly identical to the simulation mesh of
the homogeneous medium. This was achieved by using the
same geometry and mesh points for both Pinhom and P0 simula-
tions, with the material parameters surrounding the beam [see
Fig. 9(a)] changed from silicon (homogeneous case) to a ficti-
tious material with elasticity (C11,C12,C44) = (0, 0, 0) GPa
and a density of 0.001 kg/m3 in order to approximate a
vacuum (inhomogeneous case). The fictitious material is nec-
essary as meshes in the COMSOL solid mechanics solver must
be assigned a material, and the chosen elasticity and density
for the vacuum approximation suffice. In fact, we found that
using any density less than 0.01 kg/m3 has a negligible effect
on the calculated Pinhom and the calculated eigenfrequencies
of the QNMs (which agree with the in-vacuum simulations).
Table I outlines the COMSOL mesh parameters used in our
simulations, which were found to give consistent (and com-
putationally feasible) solutions provided that an appropriate
mesh element size is used for the point load. For absorb-
ing boundary conditions, PMLs with polynomial coordinate
stretching are used with the scaling factor and curvature pa-
rameter set to 1.

Figures 9(b) and 9(c) outline the PML simulation domains
and their meshing type (see the figure caption). Figure 10
shows a parameter sweep of the maximum mesh element size
assigned to the point load, where we can see convergence
with small fluctuation for element sizes larger than 0.1 nm.
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FIG. 9. The COMSOL simulation geometry used for coupled modes consists of 30.5 μm long nanobeam [see Figs. 2 and 4(a) for beam
design] with a 2.25 μm PML in the x direction. The radial PML is 1.5 μm thick and is separated by a 1 μm buffer from the beam
center. (a) Domain highlighted in blue indicates the embedded nanobeam with silicon material parameters. The surrounding domains (gray)
use fictitious material parameters approximating a vacuum for inhomogeneous simulations, and use silicon material parameters for the
homogeneous simulation. (b) Regions highlighted in blue show the PML domain, where we have cut out a quadrant of the radial PML to
show the interior domains. (c) Domains highlighted in yellow show the radial PML regions, using a swept mesh with five layers. Remaining
domains (gray) use a free tetrahedral mesh (see Table I for mesh parameters).

For calculations in this work, a point load mesh element size
of around 0.2 nm is used. Small shifts in this parameter (in
the region of convergence) effectively change minutely the
simulation mesh, resulting in the fluctuations around the so-
lution. To account for this, we take the average solution of
simulations with slightly varied mesh sizes.

TABLE I. COMSOL simulation mesh parameters used.

Max. element size 1000 nm
Min. element size 0.1 nm
Max. element growth rate 1.5
Curvature factor 0.6
Resolution of narrow regions 0.5
Max. point load element size 0.2 nm

FIG. 10. COMSOL simulations of the numerical Purcell factor
[Eq. (27)] of a mechanical mode at a single arbitrary frequency and
dipole position for various maximum point load mesh element sizes.
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