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Black and white holes at material junctions
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Electrons in type II Weyl semimetals display one-way propagation, which supports totally reflecting behavior
at an endpoint, as one has for black hole horizons viewed from the inside. Junctions of type I and type II lead to
equations identical to what one has near black hole horizons, but the physical implications, we suggest, are quite
different from expectations which are conventional in that context. The time-reversed, “white hole” configuration
is also physically accessible.
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There has been much interest in the simulation of black
hole properties by laboratory systems [1–8]. Particularly in-
triguing, in this connection, is the possibility of realizing
essentially quantum phenomena, notably including Hawking
radiation [9] or the closely related Unruh effect [10]. In the
laboratory systems physical space is essentially flat, but the
equations of motion for some degrees of freedom resemble
those for particles near a black hole event horizon. Systems
under consideration include “sonic black holes” [11] embod-
ied in Bose-Einstein condensates [2,8,12], optical systems
[3,13,14] or classical fluids [15,16], and also inhomogeneous
magnets [17], polaritons [18], thin films of 3He-A [19,20]
and Weyl semimetals [21–25]. Here we will analyze different
Weyl semimetal configurations which can mimic both black
and white holes. We motivate idealized model Hamiltoni-
ans for these systems. Our models have interesting features,
which, however, do not correspond to conventional expecta-
tions for black holes. In particular, the horizon has distinctive
local properties, and there is no Hawking radiation.

Black and white hole geometries. A Weyl semimetal is
a material in which the low energy description of the elec-
tronic band structure is given by the Hamiltonian H = ±�σ · �p,
where �σ is the vector of Pauli matrices pertaining to a band
index, or spin, �p is the momentum. For simplicity we set
the Fermi velocity to unity. The two signs refer to two chi-
ralities, which generally are located in different places in
the Brillouin zone. Weyl semimetals were observed experi-
mentally in tantalum arsenide (TaAs) [26–28] and later in a
plethora of different materials [29]. Shortly after, “type II”
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Weyl semimetals [30], with over-tilted cones [31–34], were
experimentally observed in, e.g., in molybdenum ditelluride
(MoTe2) [35], tungsten ditelluride (WTe2) [36], and in TaIrTe4

[37]. Additional types were also considered [38]. Moreover,
similar dispersion relations feature in metamaterials such as
photonic crystals [39] and coupled waveguides [40].

Since condensed matter systems do not have Lorentz sym-
metry, an extra contribution to the Hamiltonian of the form
Htilt = �κ · �p can appear, where �κ is a parameter depending on
the details of the material [31]. These details might constrain �κ
to have some special form but here we consider a more general
�κ . This term “tilts” the Weyl cone. For |�κ| > 1 we have a type
II dispersion with an overtipped cone [30], and there is only
one direction of propagation. Space-dependent tilting of light
cones is of course suggestive of black hole space-times. κ can
become space-dependent, for example, around the interface
between Weyl semimetals of types I and II. To explore this
analogy mathematically, we consider the Lagrangian density

L = iψ̄ (γ μ∂μ + γ 0�κ (�x) · �∂ )ψ + c.c., (1)

where ψ is a Dirac spinor [41] and γ μ are the Dirac matrices.
We observe that indeed the Lagrangian density in Eq. (1),
which describes quasiparticles in a material, is the same as
the one for a massless Dirac field in a curved space-time with
the metric

ds2 = (|�κ|2 − 1)dt2 − 2�κ · �dxdt + �dx · �dx. (2)

In this sense, there is an event horizon at |�κ| = 1.
This suggests that a condensed matter system which is

described by the Lagrangian in Eq. (1) might supply an exper-
imentally accessible vehicle to explore behaviors suggested
for black holes, notably including Hawking radiation. On the
other hand, that possibility raises serious issues. For example,
there is no obvious energy source to power continued radia-
tion. Before suggesting how this dilemma can be resolved, let
us expand the context of the discussion, by considering the
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TABLE I. Interface configuration for type I and type II Weyl semimetal.

���������L
R →

←
→
→

←
←

→
← Normal Black hole (On the right) White hole (On the right)

→
→ White hole (On the left) Chiral matter Sink junction

←
← Black hole (On the left) Source junction Chiral matter

full range of possible “horizon” realizations. To keep things
simple, by default we will specialize to one spatial dimension
z. As will appear, the incorporation of other additional dimen-
sions can bring in new physical possibilities, which deserve
further investigation.

The overtilted cones imply modes that can propagate only
in one direction. Consider first an interface between a region
with two-way propagation and another where propagation is
only possible away from the interface, making the interface
totally repulsive. Since black holes are famous for their power
of attraction, at first sight it may seem odd to associate a
totally repulsive boundary with a black hole. But from the
point of view of causal structure, the defining characteristic
of a black hole horizon is that nothing escapes from the black
hole side, interior (whereas its exterior supports both escape
and capture). To achieve that feature, what is essential is that
the horizon, viewed from the interior, is totally repulsive.
Similarly, the defining feature of a white hole is that it is
impossible to throw anything in, and that is achieved through
total attraction, viewed from the inside. In Table I, we show
the different possible configurations and their interpretations.
It is also appropriate to note that the materials can terminate
at “end of the world” boundaries, e.g., boundaries with empty
space.

Wave packets and regularization. We can diagonalize γz

and analyze each component of ψ separately. This corre-
sponds to isolating definite chirality and spin. We have

L = iψ∗[∂t + f (z)∂z]ψ + c.c., (3)

where f (z) = κ (z) ± 1, with the sign depending on the partic-
ular component. The resulting Euler-Lagrange equation [42][

∂t + f (z)∂z + 1

2

∂ f

∂z

]
ψ = 0 (4)

can be solved by the method of characteristics. Thus, we
introduce a variable analogous to the tortoise coordinate of
general relativity,

r(z) =
∫ z

z0

du

f (u)
, (5)

with z0 �= 0 chosen arbitrarily. Then we have, formally, the
solution

ψ (t, r) = ψ0(r − t )

√
| f (r − t )|

| f (r)| (6)

in terms of a given wave form ψ0(r) at t = 0. The subtlety
here is that the coordinate r(z) does not necessarily cover all

values of z. Indeed, if f (z) is positive for z > 0 but approaches
z linearly for z → 0, then the entire line −∞ < r < ∞ cor-
responds to the half-line 0 < z < ∞. If we consider wave
packets ψ0 supported on the half-line 0 < z < ∞, then there
is no difficulty, and we find the simple qualitative behavior
displayed in Fig. 1. Wave packets supported on the half-line
−∞ < z < 0 evolve analogously. It appears that the two sides
behave independently. Note that we can also allow finite
amplitude or even 1/

√| f (z)| singularities at z = 0, so the
evolution of all reasonable initial wave forms is covered.

To quantize the system and construct an appropriate (static)
candidate ground state in a conventional way, we must work
with energy eigenmodes. Note in this context that there is
a preferred time for the electron field, which is set by the

FIG. 1. The evolution of wave packets according to Eq. (6).
Close to the horizon space is compressed, leading to distortion of
the wave form. The local amplitude increases, due to the factor√| f (z)| in the denominator, conserving the integrated density. The
decreasing velocity ensures that wave packets supported away from
z = 0 never reach there. As discussed in the text, with regulators
λ > 0 the decrease is less rapid and the solution must be modified.
The panel are labeled with timepoints to visualize a wave packet
approaching a white hole horizon while alternative labels t → −t
would correspond to a wave packet leaving a black hole horizon.
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external world and ultimately by the fact that after all our
solid resides in flat space-time. More specifically, despite the
metric’s formal resemblance to black hole solutions of gen-
eral relativity we need not consider alternative definitions of
space-time inspired by the geometry defined by Eq. (2) on an
equal footing, nor the “proper time” associated with electron
trajectories. The Lagrangian Eq. (1) from which that geometry
was derived is only an approximate model of highly restricted
physical situations, and the background material which sup-
ports it has no simple generally covariant description.

Solutions of the kind

ψω(t, z) ∝ e−iω(t−∫ z du
f (u) )

√| f (z)| , (7)

describe the eigenmodes. To use the modes in Eq. (7) in
field quantization, we want them to form an orthonormal
basis

∫
dωψω(z1)ψ∗

ω(z2) = δ(z1 − z2),
∫

dzψω(z)ψ∗
ω′ (z) =

δ(ω − ω′). When f (z) changes sign, say at z = 0, the integral∫ z1

z2

du
f (u) in the exponent can vanish for z1 �= z2 and modes

localized at different positions would not be orthogonal. We
resolve this issue by having separate modes in each region,
ψL

ω (z) = ψω(z < 0), ψR
ω (z) = ψω(z > 0). This separation

was to be anticipated, in light of our preceding discussion of
the initial value problem.

Another delicacy concerns normalization of the modes.
One typically normalizes by putting the system in a finite
sized box. Here, however, the effective horizon serves as one
side of our box, and it is not entirely clear how to regulate
logarithmically divergent normalization integral

∫
dz|ψ |2 ∝

dz| f (z)|−1 (with f (z) ∝ z). We can regulate this divergence,
and arrive at an unambiguous proposal, by choosing a differ-
ent form for f (z) near the horizon, viz.

f (z) ∝ z
(λ + |z|)α

|z|α , (8)

where λ � 0 and 0 < α < 1 are parameters. This represents a
steepening of the horizon onset. λ sets the length scale for the
regularization, while α determines the degree of steepening.
Of course, many other similar regulators could be consid-
ered, including regulators which are not (anti)symmetric in
z → −z.

Inserting Eq. (8) into the metric of Eq. (2) with f (z) =
κ (z) ± 1, we obtain a space-time with a lightlike singularity
at z = 0. If Eq. (2) is a solution to Einstein’s equation a
nonvanishing derivative of κ (z) might imply a nonvanishing
stress-energy tensor and the divergence of ∂z f (z) for Eq. (8),
implies a diverging energy density. However, Einstein’s equa-
tion does not describe the physics in our system and any
related results or conjectures, such as the absence of naked
singularities, - are irrelevant. This divergence represents the
breakdown of the continuum limit at the horizon and does
not affect the physics at distant regions. For simplicity of the
presentation, we consider a continuous ∂t + f (z), but as since
we have separate modes for each region, this is not essential
to our result.

With f (z) of the form Eq. (8), the tortoise coordinate r(z)
converges at the horizon, i.e., the half-line in z maps onto a
half-line in r. Following the general (formal) solution Eq. (6),
we see that the wave packets now hit the horizon in a finite

FIG. 2. Interfaces of chiral matter. The Lagrangian in Eq. (3)
describes edge states of a chiral bulk, where the sign of f (z) de-
termines the chirality. The change of sign at the horizon is where
edge states of two materials with different chiralities meet, with the
interpretation given by Table I. The propagation along the interface
is the analog of a wormhole connecting a black hole to a white
one, while in the laboratory modes are simply moving in a different
direction/dimension.

time. This, we argue, is a physically reasonable extrapolation
of the suggested λ = 0 behavior. Indeed, recall that in that
limit we had wave packets accumulating at the horizon, yet
never quite reaching it. But our solid has a natural minimum
length scale, i.e., the lattice spacing, and once the packet is
predicted to be squeezed below that scale, it should have ar-
rived. That heuristic argument helps make the regulator appear
physically reasonable, but it also foretells the breakdown of
the formal solution Eq. (6), which is indeed valid only in the
continuum limit. It is thus reasonable to consider such regu-
lator when the naive continuum limit is invalid. To proceed
further, we must extend the solution in a way consistent with
physical requirements.

There are two possibilities which suggest themselves im-
mediately, but do not withstand scrutiny. We might try to
allow the wave packet to reflect back to where it came from.
But this is impossible, because the propagation is unidirec-
tional. Or, we might try to allow the wave packet to emerge
on the opposite side of the horizon. But solutions on the
other side propagate back toward the horizon, so no escape
is possible. Thus it appears we must allow the wave packet
to accumulate on the horizon, or to propagate elsewhere. The
latter possibility can arise for chiral edge modes that bound
higher-dimensional regions, as indicated in Fig. 2. The latter
case can certainly arise in the context of the quantum Hall
effect [43] and plausibly in other situations. Here, however,
we shall pursue the former.

Model Hamiltonian and qualitative behavior. Allowing the
wave packets to accumulate on the horizon suggest, in the
context of quantization, that we should add a degree of free-
dom localized on the horizon which couples to the excitations
described by the regularized eigenmodes. Let us consider how
this can work.

The Hamiltonian for the regularized eigenmodes is given
by

H0 =
∑

i=R,L

∫ ∞

0
dωω(a†

i,ωai,ω + b†
i,ωbi,ω ), (9)

where a(†)
i,ω a (creation) annihilation operator for the mode ψ i

ω

and we relabeled a†
i,ω<0 → bi,−ω, ai,ω<0 → b†

i,−ω. The cou-
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pling to the localized degree of freedom is given by

HI =
∑

i=R,L

∫ ∞

−∞
dωgi(ω)(Aa†

i,ω + A†ai,ω ), (10)

where A(†) is a (raising) lowering operator for the charge on
the horizon, Q = −A†A, and gi(ω) is a coupling function such
that gi(z) = ∫

dωψ i
ω(z)gi(ω) have significant support only

close to the horizon. The energetic cost of charge accumu-
lation is given by an onsite Hamiltonian Hc = EcQ2, with the
charging energy Ec depending on microscopic details.

Diagonalizing the complete Hamiltonian H = H0 + HI +
Hc, the regularized eigenmodes are slightly modified, or
dressed. Since the integral in Eq. (10) includes negative fre-
quencies, we have terms such as A†b†

i,ω and Abi,ω. Thus if
a particle reaching the horizon decreases the charge, a hole
increases it. The complete Hamiltonian has a definite ground
state, unlike the situation near a real black hole, which entail
an instability. The stability of our model implies that there is
no Hawking radiation.

Let us now look on the response of the system to a few
types of external perturbations. First, consider applying a
voltage across the system, i.e., running a current. We start
with the case of a white hole. The external potential will
create positively charged excitations, i.e., holes, on one side
and negatively charged ones on the other. Both excitations
will propagate towards the interface, canceling each others
charge. To the experimentalist measuring the current it would
simply look as if charge has moved from one side to the
other. (Microscopic details might lead to a finite resistance or
to local intermediate charge accumulation, which is the case
in any inhomogeneous system). The case of a black hole is
analogous, but the excitations are created at the interface and
propagate to the two sides. This mechanism is reminiscent
of the picture of Hawking radiation, based on pair creation
[44,45], but the details are quite different.

We can consider another scenario of placing some charge
at the interface, say in a quenched way. In a type I Weyl
semimetal, particle-hole pairs created by the Schwinger mech-
anism will screen the charge. A similar process occurs for type
II as well. In contrast to the usual case, where the particle and
the hole move in opposite direction due to the electric field,
here both move in the same direction. However, as shown in
Fig. 3, this phenomenon still allows for screening to occur.

An interesting feature of the causal structure emerges if
we analyze the heat transfer in this system. Unlike charge for
which an excitation can be negative or positive, all excitations
imply adding energy to the system. In a system that has
only left moving modes, heating a particular location will not
affect anything to the right of that location. For any interface
configuration, it is straightforward to see which region can be
heated from any position and from which location one can
measure any region. This is shown in Fig. 4. We see that
the time-reversal exchange of black and white holes involves
interchange of the excitation and measurement processes.

Summary and discussion. We have demonstrated that mod-
els of fermion propagation which arise as simple idealizations
of behavior in type II Weyl semimetals and their junctions
map onto models of fermion propagation in space-times with
unusual causal structures: black holes, white holes, universal

FIG. 3. Screening in type II Weyl semimetals of charge Q placed
at the interface (horizon) denoted by the black thick line. The pairs
created by the Schwinger mechanism will propagate in one direction,
conversely to the standard scenario where the particles propagate to
opposite sides. As long as the electric field persist more pairs will be
created. The momentary field at some position z, denoted by the red
dashed line, is diminished by the number of pairs across that position.
The steady state is a polarized bulk with vanishing electric field.

sources and universal sinks. We analyzed the behavior of wave
packets and eigenmodes in those contexts, suggested how the
models can be quantized in a way that regulates the infinite
propagation delays at the horizon, at the cost of introducing an
explicit boundary degree of freedom. We analyzed some sim-
ple but characteristic situations qualitatively, to demonstrate
the physical consistency of this modeling.

In realistic Weyl semimetals there are always additional
states at the Fermi level, in addition to those described by the

FIG. 4. Casual structure of an type I–type II Weyl semimetals
interface. The colored region are accessible to the relevant operation,
heating or measuring. Time reversal interchanges those operations.
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linearized low energy theory with a tilted Weyl cone. Most
materials host parasitic bands that cross the Fermi level, and
usually the Weyl cones occur at finite doping. Those are, how-
ever, not fundamental problems, and there are materials where
they are avoided [46]. There are, however, also complications
of a more fundamental nature: (i) The Nielsen Ninomiya
theorem dictates that there are an even number of Weyl points
in the Brillouin zone; (ii) The Weyl points are connected by
Fermi arcs on the surface; (iii) The “light cones” are only
approximate; to recover periodicity in the BZ the bands must
curve back down (or up) away from the Weyl point. Those
complications do not necessarily render the physical picture
suggested by our linearized model of a single Weyl node with
varying tilt irrelevant, because: (i) different Weyl nodes are
essentially independent, at least in materials where they are
well separated in momentum space; (ii) for appropriate sur-
faces, the Fermi arcs can be made small; (iii) band curvature,
- e.g., adding mass introduces quantitative, but not qualitative
alteration of the model. Prospects for engineering materials
with the relevant properties as discussed in Ref. [47].

Although the starting equations were the same, the physical
picture we have arrived at for our material system is quite dif-
ferent from conventional expectations for black holes. Among
other things, our regularized horizon corresponds to a naked
singularity, there is no Hawking radiation, and other types of
exotic backgrounds (white holes, sources, sinks) appear on an
equal footing with black holes. How did this happen, and what

does it mean? The difference does not come from the micro-
scopic details. Indeed the model in Eq. (1) describe the low
energy, long wavelength physics and breaks at some scale (the
same might be true for the Lagrangian of electrons as well),
but this does not modify the arguments we have presented.
The key point is that the equations of motion for some chosen
degrees of freedom do not fully determine, independent of
context, which solutions are physically relevant, nor how they
should be interpreted. In our case, the existence of a preferred
time and of a locally identifiable horizon are salient features
of our material system which directly contradict standard,
well-motivated assumptions about black holes. More gener-
ally, all proposed material analogs of black hole behavior
require critical scrutiny, to determine how far the analogy can
be taken. That said, consideration of material systems with
unusual properties is valuable in itself, and might suggest new
possibilities for the material system we call space-time.
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