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Wrinkles, folds, and ripplocations: Unusual deformation structures of confined elastic
sheets at nonzero temperatures
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We study the deformation of a fluctuating crystalline sheet confined between two flat rigid walls as a simple
model for layered solids where bonds among atoms within the same layer are much stronger than those between
layers. When subjected to sufficiently high loads in an appropriate geometry, these solids deform and fail in
unconventional ways. Recent experiments suggest that configurations named ripplocations, where a layer folds
backwards over itself, are involved. These structures are distinct and separated by large free-energy barriers
from smooth ripples of the atomic layers that are always present at any nonzero temperature. We use Monte
Carlo simulation in combination with an umbrella sampling technique to obtain conditions under which such
structures form and study their specific experimental signatures.
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I. INTRODUCTION

The current understanding of the mechanical response of
materials to large external stress [1–3] is mostly based on
ideas applicable to simple close-packed solids [1]. Prevalent
theories of irreversible deformation, therefore, invariably in-
volve the nucleation and motion of lattice defects such as
dislocations [4,5]. Recently, it has been observed that spatially
confined flexible membranes deform by reorganizing their
morphology to form hierarchical structures of great complex-
ity [6]. Wrinkles, ripples, folds [7–11], as well as higher-order
structures like pleats [12,13] are ubiquitous both in nature
and in emergent technology. They have been observed in
biological tissues [14,15], polymer sheets [16], insoluble,
amphiphilic films [17], and many other low-dimensional
materials involving flexible sheets and membranes [18–28].
Similar structures, named ripplocations, have been introduced
to describe new kinklike deformation mechanisms [29] that
resemble arrays of screw dislocations in smectics [1]. These
are associated with the buckling of surface layers in response
to mechanical loading of van der Waals-layered solids such
as MoS2 or the MAX family of solids like Ti3SiC2, graphene,
etc. [30–39]. Ripplocations are structurally distinct from con-
ventional dislocations in bulk crystals [3–5]. Such patterns are
prevalent in many types of deformed layered materials span-
ning more than 13 orders of magnitude in scale [40], including
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massive geological formations such as phyllosilicates in the
lithosphere [41].

Small compressive strains in layered materials result in
the formation of smooth undulations, known as ripples or
wrinkles. These undulations are associated with a broad dis-
tribution of strain energy. At larger compression, the strain
energy can be localized, leading to structures with sharp folds.
Thus, there can be a wrinkle-to-fold transition with increasing
compressive strain. At zero temperature, T = 0, this behavior
can be described by the Föppl-von Kármán equations [2]
that in general cannot be solved analytically. Nevertheless,
approximate theories of the wrinkle-to-fold instability have
been derived [8]. Further compression leads to higher-order
deformation patterns where atomic layers glide relative to
each other without breaking the in-plane bonds and producing
a ripplocation (see Fig. 1) or ripplocation. These structures
involve large and singular deformations of flat sheets and are
intractable within existing elasticity theory.

Although the T = 0 energetics of system-spanning rip-
plocation has been studied [36,39], many questions remain
unanswered. A completely open issue is the mechanism for
the formation of ripplocations at finite temperatures, T �= 0.
Also the following questions about the emergence of ripplo-
cations are not well understood: What are the microscopic
precursors and intermediate states that give rise to these higher
order structures? How are such incipient structures to be
distinguished from thermally driven random height fluctu-
ations? What is the typical free-energy barrier involved in
their formation? What are the typical mechanical signatures
of ripplocation formation?

In this paper, we address these issues in the context of
a thin fluctuating sheet modeled as a network of connected
vertices ordered in a triangular lattice and confined between
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FIG. 1. Schematic figure showing a ripple (a) and a ripplocation
(b) in a layered solid. The red circles around the point O with arrows
show Burgers circuits on the layer. In a ripple, such a circuit returns to
the same point on the layer, whereas if a ripplocation is present, then
the circuit returns to a point displaced in the direction perpendicular
to the layer. Assuming that the boundary of the sheet is single valued,
every point, O, for a ripplocation is associated with a corresponding
point O′ (not shown for clarity) where an identical circuit produces
an equal displacement of opposite sign.

two rigid layers. Our model system does not correspond to any
particular material. Rather, we provide answers to some of the
many questions raised above depending on physical param-
eters such as the temperature, the stiffness of the layers, the
intralayer mechanical coupling etc., which vary from material
to material. Our calculations explicitly take into account the
effect of finite temperature T > 0 and therefore represent a
definite advance on earlier work. We show that ripplocation-
like structures, which are the generalization of the purely
two-dimensional (2D) pleats studied earlier [12,13], readily
form following a phase transition from an essentially flat sheet
containing at most thermally generated ripples. These phases
co-exist at a first-order boundary. The free-energy barrier
between these phases at co-existence is large but reduces as
the sheet is deformed. For certain choices of parameters the
ripplocated phase remains metastable at all values of strain.

The difference between normal, smooth fluctuations of the
height of a sheet, which has been variously called a wrin-
kle, ripple or fold, and one that comprises a ripplocation
is explained schematically in Fig. 1. A smooth wrinkle [cf.
Fig. 1(a)] is always representable as a single valued function
z(x, y). Traveling along any closed loop on the surface always
ends in a return to the starting point anywhere on this surface.
The scale of these smooth ripples may vary. We denote small
random fluctuations of height as wrinkles and large collective
height fluctuations are called folds.

In contrast, a ripplocation [see Fig. 1(b)] involves a mul-
tivalued height function z(x, y) and there is the existence of
points O for which closed loops enclosing them are finally
always displaced by an amount �z from the starting point per-
pendicular to the plane. Now imagine a pair of such singular
points O and O′ adjacent to one another with displacements
±�z, of opposite signs. These can be viewed as the analogs
of a dislocation dipole in a 2D solid [1,3]. However, in disloca-
tion dipoles, the displacement, known as the Burgers vector, is
within the plane and along the line joining O and O′. We show
later that system spanning ripplocations form when O and O′
separate in the presence of external loads.

To study the statistical mechanics of ripplocations, we need
to construct an appropriate collective variable to be used as a
reaction coordinate to obtain the free-energy surface as well as

FIG. 2. Schematic of the model network confined by two rigid
walls. (a) Top view showing the initial triangular lattice in the xy
plane. The red colored beads indicate the initial positions of the
particles. (b) Lateral view showing the springs (blue) connecting the
particles with the confining walls.

free-energy barriers. To this end, we employ a quantity for the
measure of nonaffine displacements that was first introduced
in the study of mechanical deformations in glasses [42]. Sub-
sequently, this quantity has been generalized [43] and used
to investigate defects in crystals [44], pleats in permanently
bonded networks [12,13], the origin of rigidity of crystalline
solids [45], and biologically important conformation changes
in proteins [46].

The rest of the paper is organized as follows. In Sec. II,
we introduce our model for the fluctuating, confined two-
dimensional sheet, define the collective variable to measure
nonaffine displacements and give the details of our simulation
method. In Sec. III, we discuss our results starting with a
re-examination of the ripple-to-fold instability in our model,
followed by a description of the equilibrium transition from
ripple to ripplocation at nonzero temperatures and the pre-
sentation of the computed equilibrium phase diagram. Then,
intermediate structures that arise during nucleation of the rip-
plocated phase are analyzed. Finally, we conclude the paper in
Sec. IV by discussing the possible experimental implications
and future directions of research.

II. MODEL AND METHODS

A. The fluctuating sheet as a model network

We model the fluctuating sheet as a network of vertices
connected by elastic bonds. The model consists of N parti-
cles, interacting via a harmonic potential with respect to a
2D reference network structure (see below) and a repulsive
Weeks-Chandler-Andersen (WCA) [1] potential uWCA(r). The
latter potential is defined by

uWCA(r) =
{

4e
[(

σ0
r

)12 − (
σ0
r

)6] + e if r � rc

0 otherwise,
(1)

with r the distance between a pair of particles. The radius rc

is set to rc = 21/6σ0. So the potential, defined by Eq. (1), is a
Lennard-Jones potential that is cut off and shifted to zero at
its minimum.

The initial positions of the network are at Ri (i =
1, . . . , N), corresponding to an ideal triangular reference lat-
tice in the xy plane [Fig. 2(a)]. The particles are connected
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by harmonic bonds of stiffness k and length R0 = |Ri − R j |
(with Ri and R j being reference lattice vectors of two adjacent
particles i and j, respectively). In the z direction, the network
is confined by two parallel walls that are at a distance ±Zw on
either side of the triangular lattice plane. So the Hamiltonian
of the harmonic network model is given by

H = H0 + HWCA + Hwall. (2)

Here, H0 consists of the kinetic energy and the potential
energy due to the harmonic bonds,

H0 =
N∑

i=1

p2
i

2m
+ k

2

N∑
i=1

∑
j∈�, j>i

(|r j − ri| − |R j − Ri|)2, (3)

with m the mass of a particle, pi the momentum of particle
i, and ri its instantaneous position. � signifies the interaction
volume, which for each node i comprises all its nearest neigh-
bors j on the triangular lattice. The term HWCA in Eq. (2) is
the potential energy due to the repulsive WCA interactions,

HWCA =
N∑

i=1

∑
j>i

uWCA(ri j ), (4)

where ri j = |r j − r j | and
∑N

i=1

∑
j>i denotes the double sum

over all 1
2 N (N − 1) particle pairs.

The term Hwall describes the interaction of the particles
with the confining flat walls. The particles are connected in z
direction to both the walls by harmonic springs of unstretched
length ZO and stiffness kz. In addition, there are repulsive
WCA interactions between the particles and the walls in z
direction. Thus, the particle-wall interactions are given by

Hwall = Hwall
0 + Hwall

WCA,

Hwall
0 =

∑
i

kz

2
{(|Zi − Zw| − Z0)2 + (|Zi + Zw| − Z0)2},

Hwall
WCA =

∑
i

[
uw

WCA(Zw − Zi ) + uw
WCA(Zi + Zw )

]
,

uw
WCA(r) =

{
4ew

[(
σw
r

)12 − (
σw
r

)6] + ew if r � Zc,

0 otherwise,

with Zc = 21/6σw. That the particles cannot overlap with each
other or with the walls is ensured by finite values of σ0 and
σw. We chose the unit of length as R0 and the unit of energy as
e. For large values of σ0(� R0), slip dislocations can occur on
application of compression. These are not of interest here so
we present results for σ0 = 0.1R0 and e = 1.0. The qualitative
results seem to be largely insensitive to the value of σ0 as long
as σ0 � R0. For our calculations, we choose Z0 = 2.4, R0 =
1.0 so that the ratio R0/Z0 is similar to the ratio of the typical
in-plane interparticle distance to the distance between layers
in a solid such as graphite [1]. We have set the parameters
m = 1, k = 1, σw = σ0, and ew = e.

The parameters, especially those related to confinement in
the z direction direction [i.e., Hwall(r)], are chosen such that
local fluctuations do not cause a “crumpling transition” [1]
in line with the phenomenology of layered solids. Deviations
from the flatness are never so large that a flat T = 0 reference
configuration ceases to be relevant. Finally, in our model we

have neglected bending rigidity for computational simplicity
and hence there is no energy cost for changes in the bond
angle. Including bond angle rigidity is not expected to make
qualitative changes in our results for this system.

B. The collective order parameter for ripplocations

The primary ingredient for our analysis is contained in a
paper by Ganguly et al. [43], which shows that any displace-
ment of atoms away from a reference position can be classified
into two mutually orthogonal subspaces using a projection
operator P({R}) which depends only on the set of lattice vec-
tors {R} defining a suitably chosen reference configuration.
These subspaces may be classified as “affine” and “nonaffine”
depending on whether or not the instantaneous particle posi-
tions, {r}, of the displaced structures can be represented as
an affine deformation (homogeneous strain) of the reference
configuration. The affine subspace may be parameterized by
the local deformation tensor D while the nonaffine part of the
displacements is parameterized by a local scalar χ . The latter
is the least square error made by fitting {r} to a “best fit” D.

Before we are able to use this formalism for our system,
we have to address the following technical issue. The flat
network, which is the natural choice for a reference config-
uration, and the network with out-of-plane fluctuations, have
different dimensionality. We found that a computationally ef-
ficient way to resolve this issue is to use the two-dimensional
projections of the instantaneous particle coordinates onto the
reference plane. In this case, the problem of computing χ

becomes formally identical to that used in Refs. [12,13].
Various thermodynamic quantities such as the ensemble

average 〈χ〉 and the spatio-temporal correlation functions
〈χ (0, 0)χ (R, t )〉 can be obtained analytically [43,47]. The
spatial average X = N−1 ∑

i χ (Ri ) behaves as a thermody-
namic variable with a conjugate field hX [47].

We study the network in the presence of both hX and an
externally imposed strain εd . Specifically, we have a rect-
angular box whose dimensions are commensurate with the
triangular lattice. The strain is implemented by expanding
the simulation box along the y direction and compressing it
along the x and z direction by the same fractional amount εd

while conserving volume to linear order. Tuning hX can either
suppress or enhance lattice defects and this can be used to
study the deformation of solids. Indeed, we have shown [45]
that an initially ideal (defect-free) 2D crystal when deformed
becomes metastable for infinitesimal deformation and tends to
decay into the stable state where stress is eliminated by slip-
ping of crystalline planes (lines in 2D). This is the dynamical
consequence of an underlying first-order phase transition as a
function of both hX and deformation. Although it is difficult
(though not entirely impossible, see Ref. [48]) to realize hX

experimentally, this expansion of parameter space provides
many physical insights, with experimentally realizable con-
sequences being recovered in the hX → 0 limit. We therefore
follow a strategy similar to that employed in Refs. [12,13,45].

C. Successive umbrella sampling

To study the ripple-to-ripplocation transition as a function
of hX and deformation at nonzero temperatures, an efficient
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computational scheme that is able to access structures with
ripplocations starting from a flat sheet is required. While rip-
ples are always present at nonzero temperatures, we show later
that transition probabilities between ripples and ripplocations
are exponentially small due to large barriers. One method that
produces satisfactory results in this case is successive um-
brella sampling Monte Carlo (SUS-MC) [49], which has been
used previously to study pleats in strictly two-dimensional
networks [12,13].

To implement SUS-MC for our system, we divide the range
of the reaction coordinate X into small windows and sample
configurations generated by Metropolis Monte Carlo [50,51]
in each window, keeping the system restricted to the chosen
window for a predefined number of MC cycles. Beginning
with X = 0, histograms are recorded to keep track of accepted
MC moves and how often the system tries to leave a window
via its left or right boundary. The probability distribution P(X )
can then be computed from these histograms. Further details
of the procedure can be found in our earlier work [12,13,45].
The computational effort needed for implementation of SUS-
MC is nonetheless substantial and grows with N . This restricts
the system size. By studying the finite-size effects at T >

0, conclusions can be drawn by extrapolating to the ther-
modynamic limit N → ∞. In this work, we present results
mostly for N = 900 vertices, mentioning consequences of fi-
nite size later wherever appropriate. We used β = 1/(kBT ) =
200 throughout; results at other temperatures are qualitatively
similar. We divide the range 0 < X < 0.4 into 800 windows
to obtain sufficient resolution. For sufficiently averaged P(X )
values, 2 × 108 trial moves are required in each window. Once
we obtain P(X ) for one particular combination of hX and
εd values, we use the histogram reweighting technique to
determine P(X ) at any other hX [52,53].

III. WRINKLE, FOLD, AND
RIPPLOCATION TRANSITIONS

When a flexible sheet is compressed, at T = 0, two spe-
cific kinds of transitions are observed. Firstly, small ripples
or wrinkles appear, which on further compression give rise
to folds [7–11]. As explained in the Introduction, the height
variable in both wrinkles and folds is single-valued and we
collectively call these configurations ripples. Under certain
circumstances, such rippled phases can produce multivalued
height fluctuations, which we will refer to as ripplocations.
We describe below first the wrinkle to fold transition at T > 0,
and then consider and analyze the transition to the ripplocated
phase.

A. Finite-temperature wrinkle-to-fold instability

The elastic instability that gives rise to the wrinkle-to-fold
transition persists at T > 0. However, due to the thermal
motion at T > 0, it becomes difficult to distinguish between
thermal height fluctuations and elastic buckling. Nevertheless,
we define the quantity � = max[|z̃(y)|]/�, where z̃(y) is the
x-averaged value of the height z at each position y along the
direction of compression. We define � as a typical width of
height fluctuations (see Fig. 3, inset). We calculate the thermal
and spatial average 〈�〉 from configurations obtained from

FIG. 3. (a) Plot of 〈�〉 vs. εd at R1 (see text) obtained from
SUS-MC of a 30 × 30 lattice with kz = 0.0, 0.01, 0.1. The inset
shows the definition of the length scale �. Note that 〈�〉 undergoes
a finite jump at εd ≈ 0.08 for kz = 0.0 and at εd ≈ 0.1 at kz = 0.01
signifying a wrinkle-to-fold transition. Note that for kz = 0.1, such
a transition is not observed. The green and blue circles indicate the
εd at the ripple-ripplocation transition for kz = 0.01 and kz = 0.1, re-
spectively. The x-averaged z value z̃(y) at each y is plotted before and
after the wrinkle-fold transition for (b) kz = 0.0 and (c) kz = 0.01.
(d) Plot of z̃(y) vs. y for kz = 0.1 and εd = 0.03, 0.12.

our SUS-MC simulations. We ensure that these configura-
tions contain only the ripple phase, i.e., the height function
is always single-valued on average. In Sec. III B we show
that the probability distribution P(X ) always has a maximum
(or the effective dimensionless free energy − ln P(X ) a min-
imum) at small X (denoted by R1), which corresponds to
the ripple phase. Here, we analyze configurations that belong
to this small X minimum as extracted from our SUS-MC
calculations.

Figure 3(a) shows the 〈�〉 vs. εd graph for different val-
ues of confinement. The value of 〈�〉 shows a finite jump
for kz = 0.0, 0.01 at εd = εw→ f signifying the well-known
“wrinkle-to-fold transition.” For kz = 0.0 [see Fig. 3(b)] and
at a strain value εd = 0.03 below εw→ f = 0.08, the network
is characterized by small z fluctuations from wrinkles. For
εd > εw→ f , large amplitude folds are visible. Upon increasing
confinement with kz = 0.01 [Fig. 3(c)], we observe that al-
though single, sharp, small wavelength peaks indicating folds
are prevalent at large strains εd > εw→ f ≈ 0.1, the amplitudes
of these folds are smaller in comparison to those at kz = 0.0.
Note that even for very large strains, folds remain single-
valued in the z-direction, and the value of X remains small.
For strong confinement, kz = 0.1, a wrinkle-to-fold transition
is not observed [Fig. 3(d)]: Large folds remain suppressed
even at large εd .

B. Equilibrium ripple-to-ripplocation transition

In this section, we describe the equilibrium thermodynamic
phase transition between the single-valued rippled phases and
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FIG. 4. (a) Plot of effective free energy − ln[P(X )] obtained
from SUS-MC of a 30 × 30 network with kz = 0.01 for εd =
0.02, 0.04, 0.10. (b) Configurations at R1, R2 for kz = 0.01. (c) Same
as panel (a) for kz = 0.1 for εd = 0.02, 0.04, 0.08. (d) Configurations
for kz = 0.1 at R1, R2. In each case, the first minimum is a ripple,
and the second corresponds to a configuration with a ripplocation. In
panels (b) and (d) the upper panel is the averaged 3D configuration
of the lattice and the lower panel shows the 2D projections colored
according to local χ values in the xy plane.

the multivalued ripplocated phase of the fluctuating confined
sheet at nonzero temperature.

In Fig. 4(a), we show − ln[P(X )] for a 30 × 30 network
and three different values of εd keeping hX = 0.0. Here, we
choose kz = 0.01. The qualitative features in each of the three
cases are similar. The first minimum R1 at small X corre-
sponds to the ripple state. The ripplocation phase R2 has a
large value of X . From Fig. 4(b) it is evident that the region
around the pleat has large local χ values. For larger values of
X , there exist higher order patterns corresponding to a sheet
with multiple ripplocations. Here, we concentrate only on the
transition from a ripple state to one with a single ripplocation.
On increasing the external strain, the barrier height between
the two minima of the dimensionless free energy, − ln[P(X )],
decreases. For εd = 0.10, where the system is very close
to the phase boundary, the barrier height is about ∼10 kBT .
Figure 4(c) shows − ln[P(C)] for a network with kz = 0.1.
The free energy at three different values of εd = 0.02, 0.04,
0.08 and at hX = 0 is qualitatively similar to the kz = 0.01
case. As before, the two minima at R1 and R2 represent the
ripple and ripplocation phases, respectively. However, coex-
istence is achieved at a smaller ε ∼ 0.08. The barrier height
near coexistence ∼80 kBT is significantly higher compared to
that at kz = 0.01.

The results for the equilibrium transition can be summa-
rized in the phase diagram of Fig. 5, where we have shown
the equilibrium phase boundaries for a N = 30 × 30 system
at nonzero temperature for different confinement strengths kz.
With increasing confinement kz, the ripplocated phase at hX

is achieved at a smaller value of εd . At the same time, as kz

is reduced, we see that the εd vs. hX curve fails to intersect
the hX = 0 line, indicating that the ripplocated phase ceases
to exist at any strain for this case. Increasing N shifts the

FIG. 5. Phase diagram of a 30 × 30 network in the hX -εd plane
showing the evolution of the boundary between the rippled and
ripplocated phases as the strength of confinement kz is varied. The
numbers above the curves indicate the corresponding value for kz.
Note that as kz is reduced, the ripplocated phase ceases to exist
at hX = 0 for any strain. The inset shows the coexistence point
εd = εcoex

d vs. N−1 at hX = 0 for different values of kz as obtained
from SUS-MC simulations. The value of εcoex

d decreases gradually as
we approach N → ∞.

phase diagram downwards to smaller values of εd , and one
obtains ripplocated phase at hX = 0 where none existed at
smaller sizes. In the inset of Fig. 5, we show that as N → ∞,
the ripplocated phase appears even without confinement. Note
that the value of εd = εcoex

d at hX = 0 decreases as one ap-
proaches N → ∞. Similarly, the free-energy barrier between
the phases also has strong finite-size effects.

It is clear from Fig. 5(a) that ripplocations either form at
fixed εd by changing hX or at fixed hX by increasing εd . The
latter protocol is analogous to the standard yielding transition
of solids at constant strain rate [13,45].

C. Ripplocation precursors and intermediate structures

An advantage of our SUS-MC sampling method is appar-
ent from Fig. 6, where apart from the coexisting structures at
the two minima, we are also able to discover the intermediate

FIG. 6. Configurations at intermediate region C1 for a 30 × 30
network obtained from SUS-MC sampling for (a) kz = 0.01 [corre-
sponding to Fig. 4(a)] and (b) kz = 0.1 [corresponding to Fig. 4(c)].
The upper panels show the averaged 3D configuration of the lattice
and the lower panel the local χ maps.
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configurations along the transition path defined by the reaction
coordinate X . This is the least free-energy equilibrium path
connecting the two phases. In Fig. 6(a) the intermediate struc-
ture corresponding to C1 [Fig. 4(a)] is shown. The ripplocation
in this case is preceded by the formation of a system-spanning
fold. This is in sharp contrast with the formation of pleats in
2D [13]. In this case, the pleat forms by a local transformation
that produces a “lip” with two tips where the displacement
becomes singular.

The intermediate structure in Fig. 6(b) at C1 [see Fig. 4(c)],
however, reveals that indeed the ripplocation is established by
a local “pinching” where a lip with two tips is formed [cf.
the point O in Fig. 1(b)]. This pinching also results in the
formation of a small bulge just near the tip. The lip then ex-
tends all around the periodic boundary and finally annihilates
with itself once the ripplocation percolates throughout the
sheet. This similarity with pleat formation in a flat 2D network
can be explained by noting that with increasing confinement
strength kz, formation of a bulk system-spanning fold has a
large energy cost; hence the network tends to remain mostly
in the 2D plane.

The presence or absence of a preceding wrinkle-to-fold
transition determines the intermediate configurations as-
sociated with the ripple-to-ripplocation transition. This is
illustrated in Fig. 3(a). For systems with strong confinement
above a certain threshold, where the wrinkle-to-fold transition
is suppressed, formation of bulk system-spanning folds is
prohibited [blue dot in Fig. 3(a)]; the ripplocation formation
is preceded by local pinching. Below that threshold, system
spanning folds are the precursors to ripplocation formation
[green dot in Fig. 3(a)]. The free-energy barrier between a
ripple and a ripplocation is higher if an intermediate system
spanning fold does not exist.

D. Mechanical signatures of the
ripple-to-ripplocation transition

As mentioned earlier, ripples and ripplocations are sepa-
rated by high barriers. Signatures of such high barrier values
are apparent when we compute the stress for the ripple (R1)
and ripplocation (R2) phases. This is illustrated in Fig. 7,
where we have plotted curves of conjugate stress σ versus εd

for ripples and ripplocated phases at two different values of kz

as obtained from SUS-MC calculations. Since this is the value
of σ in a possibly metastable phase, the rate of deformation ε̇

plays an important role.
For large ε̇ the transition happens at the limit of metastabil-

ity of the rippled (wrinkled or folded) phase. For quasistatic
deformation, however, the transition occurs at the equilibrium
phase boundary. At any intermediate deformation rate, the
transition should occur somewhere in between these limits.
The ripplocation phase, which localizes stress within the rip-
plocation while relieving it elsewhere [13] has a relatively
lower value of average stress. The formation of the ripplocated
phase is therefore always expected to be associated with a
jump in the value of stress.

The formation of ripplocation is an irreversible deforma-
tion; once the network attains a ripplocation state it is unable
to revert out of this due to high barriers. The jump in stress at
the transition follows the barrier height between two phases;

FIG. 7. Stress vs. strain curves for rippled and ripplocated phases
of a 30 × 30 network. The nucleation of a ripplocated phase is always
accompanied by a jump in stress as long as the strain is applied
sufficiently slowly.

as we increase the confinement kz, the magnitude of the jump
in stress increases. This offers a unique way of distinguishing
the formation of ripplocations from either system spanning
folds or localized wrinkles in realistic systems by subjecting
them to deformation experiments. Depending on whether a
large or small jump is seen when structures are deformed at
equal rates, one should be able to extract the barriers and
estimate the magnitude of the confining interlayer potential.
Small barriers point to a transition from a fold to a ripplocation
while large barriers are associated with the formation of rip-
plocations directly from wrinkles. The deformation behavior
of these materials is therefore highly nonlinear [30–39].

Unravelling the dynamics of this transition and predict-
ing the yield point, i.e., the deformation at which the stress
decreases, which is necessarily a function of the strain rate,
requires more intense study; work in this direction is planned
for the near future [45,54].

IV. SUMMARY AND OUTLOOK

In this paper, we have described in detail the T > 0 rip-
plocation transition and formation of a ripplocation in a
confined 2D sheet with out-of-plane fluctuations when de-
formed by a pure shear. Our motivation is to understand
how plastic deformation occurs in a system where defects
or atomic rearrangements are not possible. Similar to our
work on a “ghost network” [12,13], we show the existence
of the ripple-to-ripplocation transition when such a sheet is
confined by parallel walls but fluctuations in the perpendicular
direction are allowed. The ripple phase evolves from wrin-
kles characterized by small height fluctuations at small strain
to large amplitude folds at high strain values. While such
wrinkle-to-fold transitions have been reported for a variety of
situations in 2D membrane networks, ripplocations are a novel
type of structure not identified in any of these earlier works
[7–11] where the surface is taken to be always single-valued.
Establishing the existence of such multivalued deformation
structures as a consequence of a first-order ripplocation phase
transition is a primary contribution of our work. To describe
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the transition we define an external field conjugate to the
nonaffine displacements X . The thermodynamic variable X
behaves as a reaction coordinate to describe our ripple-to-
ripplocation transition.

The main conclusions of this work can be summarized as
follows:

(1) The response to deformation in our model is char-
acterized by a first-order phase transition. The ripple phase
and the ripplocation phase are separated by large free-
energy barriers. The free-energy barrier between ripple
and ripplocation strongly depends on the strength of the
confinement.

(2) Apart from this ripplocation transition, the wrinkle-to-
fold transition is also present in our model. This transition
influences the intermediate structures in the ripple-to-
ripplocation transition.

(3) The ripple-to-ripplocation transition occurs at smaller
strains for higher values of confinement.

(4) Two different types of ripplocation formation can be
seen in our calculations, depending on the strength of the con-
finement. For weak confinement, the ripplocation is preceded
by bulk system-spanning folds. In case of stronger confine-
ment, a lip with two tips is formed, which percolates through
the system to form ripplocations.

Finally, a word of caution. It should be pointed out that
throughout this work, we distinguish between the terms ripple
and ripplocation, depending on whether the height variable
is single- or multivalued, respectively. This may be con-

trasted with the term “ripplocation” used in recent literature
[36,37], which referred to any large localized variation of
height.

Our model for a confined crystalline sheet could be mod-
ified in many ways, such that it becomes more realistic. Real
confined membranes, e.g., do have an intrinsic curvature and
bending rigidity. This is also true for real layered solids.
Such effects have been neglected in our conceptual model.
However, regardless of the minute details, we believe that
essential qualitative aspects of the pleating transition like the
stress-strain curve, the finite-size effects and the intermediate
structures will be similar to those described in this paper. We
are in the process of extending our work to a realistic model of
graphene where some of these questions can be addressed and
the effect of ripplocation deformation on physical properties
can be explored [55].

The exact nature of the phases is also strongly dependent
on the dynamics of external loading. Dynamical effects have
been neglected in the present work and their incorporation will
be an interesting exercise once accurate experimental results
are available for comparison.
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