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Electron pairing induced by repulsive interactions in tunable one-dimensional platforms
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We present a scheme comprising a one-dimensional system with repulsive interactions, in which the formation
of bound pairs can take place in an easily tunable fashion. By capacitively coupling a primary electronic quantum
wire of interest to a secondary strongly correlated fermionic system, the intrinsic electron-electron repulsion
may be overcome, promoting the formation of bound electron pairs in the primary wire. The intrinsic repulsive
interactions tend to favor the formation of charge density waves of these pairs, yet we find that superconducting
correlations are dominant in a limited parameter regime. Our analysis shows that the paired phase is stabilized
in an intermediate region of phase space, encompassed by two additional phases: a decoupled phase, where the
primary wire remains gapless, and a trion phase, where a primary electron pair binds a charge carrier from the
secondary system. Tuning the strength of the primary-secondary interaction, as well as the chemical potential
of the secondary system, one can control the different phase transitions. Our approach takes into account the
interactions among the secondary degrees of freedom and strongly relies on their highly correlated nature.
Extension of our proposal to two dimensions is discussed, and the conditions for a long-range superconducting
order from repulsion only are found. Our physical description, given by a simple model with a minimal amount
of ingredients, may help to shed some light on pairing mechanism in various low-dimensional strongly correlated
materials.
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I. INTRODUCTION

Ever since Bardeen, Cooper, and Schrieffer (BCS) put
forward their theory of superconductivity [1], the means by
which lattice electrons may form pairs despite their bare
Coulomb repulsion [2,3] has been an issue of significant
interest in condensed matter physics. Whereas conventional
superconductors are fairly well described by BCS theory, with
lattice phonons mediating the retarded electron-electron at-
tractive interactions, high-Tc superconductors are most likely
the result of a different electron pairing mechanisms. These
are usually related to the strongly correlated nature of the
system charge carriers [4] and are possibly related to strong
spin fluctuations [5], or to coupling of the carriers to degrees
of freedom which are in close vicinity to a quantum critical
point [6,7].

The concept of short range attraction mediated by purely
electronic degrees of freedom has been around for some time
[8–16]. The pioneering work by Little [8] discussed the pos-
sibility of an organic superconductor, where pairing occurred
due to the coupling of electrons in a one-dimensional (1D)
molecule to polarizable side chains. This idea was imple-
mented in a recent experiment [17], where a sizable pairing
gap in a two-site system was indeed induced by Coulomb
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interactions with a nearby two-level quantum dot. Whether
or not this effective attractive interaction gives rise to super-
conductivity, especially in the context of 1D systems (where
long-ranged order superconductivity is inevitably absent [18])
is contemplated in the literature [19].

The importance of this concept is twofold. First, since
electron-electron repulsion is responsible for the pairing
mechanism, the size of the gap can potentially be much higher
as compared to conventional electron-phonon superconduc-
tors. Hopefully, the magnitude of the Coulomb interactions
in low-dimensional strongly correlated materials may even be
large enough as to plausibly enable engineering superconduc-
tivity at room temperature and ambient pressure. Second, as
the condensed matter community still investigates the role of
strong correlation effects on the origin of high-Tc supercon-
ductors, as well as their phase diagram, models with so-called
“excitonic” pairing, as we study here, may shed some light on
such materials, and lead to new physical insights.

In this work, we present (Sec. II A) a model for a “primary”
system of a spinful 1D wire with strong repulsive electron-
electron interactions, in which pairing can be externally
induced and readily controlled. Our RG analysis (Sec. II B)
shows that the existence of the electron pairs heavily relies
on coupling of the primary system to a strongly correlated
“secondary” system, which possesses a high degree of tunabil-
ity; see Fig. 1. More concretely, we propose that a 1D system
with strongly interacting spinless (or spin-polarized) electrons
(e.g., a suspended magnetic-field-tuned carbon nanotube [20])
is suitable to play this secondary role. We use the RG approach
to characterize the different interaction strengths and Fermi
momenta incommensurabilities which determine the fate of
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FIG. 1. Schematic description of our proposed setup. The spinful
electrons in the 1D primary system (purple) interact via the Coulomb
force with an itinerant many-body excitation (indicated by the orange
charge distribution) in a strongly correlated secondary wire (brown),
such as a spinless 1D system with strong repulsive interactions. By
carefully tuning the secondary wire, using experimentally accessible
knobs, e.g., gates and magnetic fields, one can control the phase of
the system and tune it between the decoupled Luttinger liquid phase
(where the primary wire is gapless), the paired phase (with primary
spin-singlet electron pairs), and the trion phase (where a primary
electron pair is bound to a secondary quasiparticle). This is indicated
in the bottom panel, where as a function of some tunable parameter
p the phase of the system is modified. Whether the charge-density
wave (CDW) or superconducting (SC) tendencies prevail within the
paired and trion phases typically depends on intrinsic nontunable
parameters, e.g., the strength of interactions within the primary wire.

the overall system. The strong correlations between the sec-
ondary degrees of freedom themselves become essential in our
scheme, and allows one to manipulate the phase of the primary
system of interest with much ease. The proposed setup can be
realized in available 1D experimental platforms, e.g., carbon
nanotubes [21].

In contrast to previous works, which studied setups in-
volving the engineering of coupled interacting nanowires
for the purpose of implementing topological superconduc-
tivity or parafermions [22–32], our model relies solely on
(1) capacitive coupling between the wires, i.e., no tunneling
of electrons between them and (2) strong purely repulsive
electron-electron interactions.

We find that our theoretical model may lead to three
distinct phases of the overall system, which we discuss in
Sec. II C. One, almost trivial, is the “decoupled” phase, in
which the primary and secondary systems are decoupled
and the primary system is gapless. It is the consequence
of either weak primary-secondary interactions, or a large
enough mismatch of the two parts’ Fermi momenta. In the
opposite extreme, strong interactions between the primary
and secondary systems and commensurability result in a
“locked” trion phase, where a primary electron pair is bound
to a secondary quasiparticle. This is manifested by open-
ing of a partial gap in the total system, akin to those in
Refs. [26,33,34]. In between the decoupled and trion phases

an “electron-paired” phase is established by detuning the
Fermi momenta. The detuning effectively breaks the com-
posite particles of the trion phase, while keeping the primary
electron pair intact. Depending on the interactions details
the trion phase and the electron-paired phase can be domi-
nated by charge density wave or superconducting correlations.
We would like to emphasize that, surprisingly, we find that
strong interactions among the electrons in the secondary
system enlarge the regions of both the trion and electron
pair phases. Unique experimental signatures for each phase,
including single-particle tunneling gaps and fractional two-
terminal electrical conductance, are also discussed.

In addition, we consider two important extensions of our
model. In Sec. III A we explore the relation between this
work and the side-chains polarizers model proposed by Little.
In a certain extreme limit of our setup, namely a gapped
nonitinerant secondary system, a clear connection can indeed
be made. However, we emphasize that the high degree of
tunability, the mobile nature of the secondary quasiparticles,
and the role of strong repulsive interactions in the secondary
system are essential ingredients which are accounted for in the
model considered in this work. In Sec. III B, by employing
a coupled-wires approach, we elucidate under what circum-
stances an anisotropic two-dimensional (2D) variant of our
setup may lead to superconductivity. Conceptually, this bears
some resemblance to the discussion of interstripe coherence
in the cuprates [35], with the main role of our work being the
introduction of a mechanism by which the primary electrons
form bound pairs within each 1D sector.

We conclude this work in Sec. IV and discuss the main
implication of this work: experimentally feasible, highly tun-
able electron pairing in 1D “primary” systems can be realized
by Coulomb interactions with strongly correlated fermions
hosted in an externally tunable “secondary” system.

II. PAIRING FROM REPULSION

The pairing mechanism we propose in this work is of
extrinsic origin. It is the consequence of capacitively coupling
a primary system of interest, e.g., a quantum nanowire or a
1D constriction in a 2D electron gas, to a tunable strongly
interacting secondary platform, such as a carbon nanotube
[36]. Modifying some properties of the secondary portion,
one is able to enhance or suppress pairing and to manipulate
the overall phase diagram. In this section, we give a detailed
analysis of such a minimal setup giving rise to controlled,
tunable electron pairing. The various phases of the overall
system, the decoupled, electron-paired, and trion phases, are
explored, and their properties are analyzed.

A. Minimal model

The setup we suggest comprises three important ingredi-
ents: (1) a spinful interacting semiconducting quantum wire,
or any other 1D system with two electron species; (2) a
secondary 1D system which is either gapless or has an ex-
perimentally controllable gap; and (3) interactions between
electrons in the primary wire and the (quasi-) particles of the
secondary part.
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Overall, the setup we propose is described by a
Hamiltonian of the form

H =
∫

dx[Hpri + Hsec + Hint]. (1)

The primary wire degrees of freedom are described by

Hpri = H0
pri + Hg

pri. (2)

H0
pri, the noninteracting part, is given by the continuum de-

scription

H0
pri = ivF

∑
σ

(ψ†
Rσ ∂xψRσ − ψ

†
Lσ ∂xψLσ )

− μ
∑

σ

(ψ†
RσψRσ + ψ

†
LσψLσ ), (3)

where ψR/Lσ = ψR/Lσ (x) annihilates a right- or left-moving
electron with spin σ at position x. The parameters, vF , μ

are the Fermi velocity and chemical potential, respectively.
Interactions can be accounted for in the general form

Hg
pri = gαβ

γ δψ
†
αψ

†
βψγ ψδ, (4)

with Greek indices generalizing chirality and spin, and
repeated indices are summed over. The elements of the in-
teraction matrix gαβ

γ δ determines the nature of interactions in
the system, and we assumed that the system is away from
half-filling so we do not include Umklapp processes. Notice
that for simplicity we have also implicitly assumed the exis-
tence of short-range interactions only, which will not have an
important effect on our results.

The Hamiltonian term Hsec describes the physics of the
secondary system. In this work, we consider a 1D system
hosting strongly interacting spinless fermions, with chiral an-
nihilation operators cR/L(x) at position x,

Hsec = ivsec(c†
R∂xcR − c†

L∂xcL ) − μsecρsec

+ msec(c†
RcL + H.c.) +

∫
dx′ρsec(x)U (|x − x′|)

× ρsec(x′), (5)

where vsec, μsec, msec are the secondary Fermi velocity, chem-
ical potential, and mass, respectively. We have explicitly
allowed here for finite-range interactions, (so that the corre-
sponding Luttinger liquid parameter that we introduce later
can be smaller than 1/2), with the charge density in the sec-
ondary wire ρsec ≡ c†

RcR + c†
LcL, and the interaction strength

determined by the function U . An experimentally accessible
platform to implement such a strongly correlated effectively
spinless 1D system is a carbon nanotube (CNT), tuned by
gates and magnetic flux. Details for such an implementation
are given in Appendix A.

We now include the most crucial part in our model, capaci-
tive coupling between the primary electrons and the secondary
fermions,

Hint = ρsecV (ρ↑ + ρ↓), (6)

with V > 0 the interaction strength, and ρσ ≡ ψ
†
Rσ ψRσ +

ψ
†
LσψLσ . Again, we assume short-range interactions, which

we find a posteriori to be sufficient in order to capture the most

important consequences of this term and the way it determines
the phases of the system.

The model (1) is best treated in the framework of Abelian
bosonization [37–39]. This is achieved by expressing the chi-
ral fermionic operators in terms of bosonic variables,

ψrσ = ηrσ

2πα
ei(θσ −rφσ +rkF x), cr = η̃r

2πα
ei(θ−rφ+rkx), (7)

with r = ± corresponding to R/L, α is the short-distance cut-
off of our continuum model, kF , k are the Fermi momenta of
the electrons (with spin up and down) in the primary system,
and the fermions in the secondary system, respectively, η, η̃

are Klein factors ensuring fermionic commutation relations,
and the bosonic fields obey the algebra

[φi(x), ∂xθ j (x
′)] = iπδ(x − x′)δi, j, (8)

with the indices i, j specifying one of the two primary ↑/↓
sectors or the secondary sector. In terms of bosons, we may
write Hpri = Hc + Hs, accounting for the charge and spin part
(c, s) of the Hamiltonian,

Hc = uc

2π

[
1

Kc
(∂xφc)2 + Kc(∂xθc)2

]
, (9)

Hs = us

2π

[
1

Ks
(∂xφs)2 + Ks(∂xθs)2

]

+ gs

2π2α2
cos(

√
8φs), (10)

where the charge and spin sectors were defined by φc/s =
φ↑±φ↓√

2
(and similarly for θc/s). Equations (9) and (10) feature

the famous spin-charge separation. For repulsive electron-
electron interactions one usually finds [40] Kc < 1, Ks > 1,
and gs > 0. For the secondary sector we have

Hsec = u

2π

[
1

K
(∂xφ)2 + K (∂xθ )2

]
+ msec

2πα
cos (2φ − 2kx),

(11)

where u, K are determined by vsec and U . In this work we will
mostly assume strong (or sufficiently long-range) repulsive U ,
such that K may be much smaller than 1. If msec �= 0, changing
μsec (and as a consequence k) leads to a commensurate-
incommensurate transition, where the gap induced by the
mass term is opened or closed.

Finally, the potentially relevant parts of (6) may be written
in the general form

Hint = Vφ

π2
∂xφc∂xφ + Vθ

π2
∂xθc∂xθ

+ g1

2π2α2
cos(

√
2φs) cos(

√
2φc + 2φ − 2k+x)

+ g2

2π2α2
cos(

√
2φs) cos(

√
2φc − 2φ − 2k−x), (12)

with k± = kF ± k. The first line of Eq. (12) is the so-called
forward-scattering interactions, whereas the last two terms
involve the momentum transfer of 2kF and 2k. We note that
for the kind of interaction shown in Eq. (6), which is of
a pure density-density type, one finds Vφ = √

2V , Vθ = 0,
g1 = g2 = V

2 .
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We proceed with a short qualitative discussion of our
model, Eqs. (1) and (9)–(12) and the possible phases that may
be obtained in limiting cases.

If kF and k are grossly mismatched, such that k± times
a typical correlation length are much larger than 1, or if
the secondary sector has a gap, the g1, g2 terms are irrele-
vant as they oscillate rapidly in space. Then, the spin sector
decouples from the other two, and for generic repulsive in-
teractions it will also be gapless (gs is marginally irrelevant).
The remaining bilinear interaction terms between the charge
of the primary wire and secondary degrees of freedom cannot
open any gaps, yet they cause some mixing of these sectors,
changing the relevant Luttinger liquid (LL) susceptibilities
power laws (see, e.g., Ref. [41]). We refer to this phase as
the decoupled LL phase.

What happens when either g1 or g2 are relevant? From a
semiclassical point of view, one sees that since gs > 0, the g1,2

term competes with the gs one. The minima of cos (
√

8φs) at√
8φs = π (2n + 1), with n an integer, lead to cos (

√
2φs) = 0.

Thus, there is no simple φs configuration which minimizes
the classical energy of both such terms. As will be shown,
this is a signature of the competition between the pairing
tendency in the primary system and the intrinsic electron-
electron repulsion within it. In the limit g1/2 → ∞ the terms
in the corresponding cosines are pinned. The spin sector is
gapped, as well as an additional sector combining the charge
and secondary degrees of freedom. More concretely, if it is g1

that is at the strong coupling fixed point, the only remaining
gapless sector is ∝ φ↑ + φ↓ − φ. We refer to this phase as the
“trion” phase, since the gapless sector may be interpreted as
a Luttinger liquid of composite particles comprising a pair of
electrons bound to a secondary hole. This is to be contrasted
with bound electrons composite particles induced by attrac-
tion in other 1D platforms [42].

In our analysis below we will establish an additional in-
termediate phase, where electrons with opposite spins indeed
form bound pairs, yet g1,2 are irrelevant at low enough en-
ergy scales, leaving the secondary sector essentially unaltered.
The spin-gapped “paired” phase that develops in the primary
wire is reminiscent of the Luther-Emery liquid [43], which
is generic in spinful systems with attractive interactions, e.g.,
in the negative-U 1D Hubbard model; however, here it is
established for repulsive interaction only.

B. RG analysis

It turns out to be useful to introduce a unitary transfor-
mation to our Hamiltonian H = Hpri + Hsec + Hint in their
bosonized form. To do so consider

ŨQ = exp

[
−iQ

∫
dx∂xθcφ

]
,

where Q parameterizes the transformation. Applying this
transformation to the Hamiltonian Ũ †

QHŨQ has the effect (cf.,
Ref. [44])

φc → φc − Qφ, ∂xθ → ∂xθ + Q∂xθc

and modifies the Hamiltonian accordingly. We now specialize
our theory to a specific form of the repulsive interac-
tions between the primary and the secondary system and

assume

Vθ = −Vφ

u

uc
KcK. (13)

Along this line in the Vφ Vθ plane, we choose Q = VφKc

πuc
, allow-

ing us to completely eliminate the forward-scattering part of
Hint. This will simplify our analysis significantly, and enable
a nonperturbative treatment of Vφ . Generic repulsive interac-
tions that somewhat deviate from Eq. (13) will influence the
phase diagram only quantitatively and not qualitatively. Defin-
ing the dimensionless interaction parameter υ ≡ KcK

π
√

ucuVφ , we
can sum up the changes to the Hamiltonian as

Kc → K̃c =
√

1 −
( u

uc

)2
υ2Kc, (14a)

K → K̃ =
√

1

1 − υ2
K, (14b)

cos(
√

2φc ± 2φ) → cos

[√
2φc ± 2

(
1 ∓ Q√

2

)
φ

]
, (14c)

where in the last cosine terms the k± dependence is implicit.
We analyze our model using perturbative renormalization

group (RG), up to second order in all couplings. Before deriv-
ing the full RG equations, we should address the issue of the
oscillating cosines which appear throughout the theory. A fair
approximation is to treat the momenta k± (and k for the mass
term, if it exists) as the inverse of the length scale at which
the corresponding cosine is cut off, and the overall system
“realizes” it. This is supported by the results of the rigorous
RG equations describing the commensurate-incommensurate
transition [45]. If we parametrize the short-distance cutoff as
α = α0e�, where in each RG step � increases incrementally,
one may approximate the threshold at which the g1,2 cosines
are cut off as

�∗
1,2 = ln

1

(kF ± k)α0
. (15)

Generically, α0 ∼ O(k−1
F ), and one of the cosine terms, de-

pending on the sign of k, will have a small �∗, influencing
the RG flow in only a negligible way. The important conse-
quences of our theoretical model can be well understood even
for msec = 0, and we leave the discussion on the role of the
mass term in the RG flow to Appendix B.

Finally, we derive the RG equations using operator product
expansion (OPE) [46]. We define the dimensionless coupling
constants ys = gs

πus
, y1,2 = g1,2

π ū , with ū = uc+u
2 . In the follow-

ing we also neglect the flow due to velocity differences of the
different sectors, which impact the flow only in higher orders.
Our equations are thus

d

d�
ys = (2 − 2Ks)ys − c1(�)y2

1 + c2(�)y2
2

4
, (16a)

d

d�
K−1

s = 1

2
y2

s + c1(�)y2
1 + c2(�)y2

2

8
, (16b)

d

d�
y1 =

[
2 − K̃c

2
− Ks

2
−

(
1 − Q√

2

)2

K̃ − ys

2

]
y1, (16c)

d

d�
y2 =

[
2 − K̃c

2
− Ks

2
−

(
1 + Q√

2

)2

K̃ − ys

2

]
y2, (16d)
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FIG. 2. The role of repulsive forward-scattering interactions be-
tween the primary electrons (highlighted by purple frame) and the
secondary fermions (in the brown frame). (a) If the secondary sector
is “hole-like,” a secondary quasiparticle tends to bind two electrons
to itself, thus the primary-secondary forward-scattering interaction
Q enhances the g1 term [Eq. (12)]. (b) For a “particle-like” sector,
secondary fermions and electrons repel, leading to suppression of g2

by Q. (g1 and g2 are coupling constants of backscattering interactions
between the primary and secondary wires.) Conversely, if the inter-
actions between the primary and secondary wires are attractive, the
opposite of this scenario occurs, as can be inferred from the sign of
Q in Eqs. (16c)–(16d).

d

d�
K̃−1 = c1(�)y2

1 + c2(�)y2
2

4
, (16e)

d

d�
K̃c

−1 = c1(�)y2
1 + c2(�)y2

2

8
. (16f)

The scale-dependent factors c1 and c2 impose a smooth
cutoff of scale χ for the incommensurate cosines, where we
use c1,2(�) = 1

2 [1 − tanh (
�−�∗

1,2

χ
)]. We note that we do not

include in the RG flow generated bilinear cross terms such as
∂xφ∂xφc, as feeding these back into the RG equations results in
higher (third) order corrections for y1,2. We stress once more
that such modifications will not lead to a qualitative alteration
of the phase diagram.

We proceed to make some observations regarding the de-
rived RG equations. It is apparent from these equations that
the forward-scattering primary-secondary interactions, em-
bodied entirely by Q, “favor” y1 over y2, or vice versa. An
intuitive understanding of this may be obtained by consider-
ing the secondary sector as comprising either electrons with
k > 0 or holes with effectively k < 0 [47]; see Fig. 2. The
fugacity y1 for example, describes the interaction between
a secondary hole and an electron pair. It is thus clear why
repulsive electron-electron interaction (Q > 0) would favor it
and decrease its scaling dimension (and why they would have
the opposite effect on y2). Without loss of generality, we shall
henceforth assume the secondary part was tuned such that k
is negative and in the vicinity of −kF , so we neglect y2 and
denote y = y1, �∗ = �∗

1. The analysis for a setup with positive
k (“particle-like”) can thus be extracted from the “hole-like”
case by simply taking Q → −Q.

1. Pairing and the competition between inter- and intrawire
repulsion

The interplay between ys and y1,2 reflects the competition
between intrawire repulsion and induced pairing due to inter-
wire repulsion leading to polarization of the secondary wire.

FIG. 3. Pairing and the competition between inter and intra wire
repulsion, and its dependence on the commensurability cutoff. The
RG equations (16a)–(16f) are integrated up to a point where ys =
−1 (indicated by �̄), or to an infrared cutoff �max. (a) A plot of
min{�̄, �max} as a function of the bare y0, y0

s . �̄ < �max signals the
opening of a gap in the spin sector, which grows larger as �̄ becomes
smaller. In the opposite case, ys flows to weak coupling and the spin
sector is gapless. �̄ = �max then marks the phase boundary between
the gapped and gapless spin phases. Here we have set the cutoff
due to the incommensurability to �∗ = 2. (b) Representative RG
flow of ys (red) for bare values of y0

s = 0.15, y0 = 0.12, indicated
by the red dot in (a). The dashed line marks �∗. (c–d) The same as
(a)–(b), with �∗ = 3. In all the plots we have K0

c = 0.85, K0 = 0.6,
υ = 0.15, χ = 1. We enforce Ks, ys to follow the SU(2) symmetric
line, Ks = 1 + ys

2 .

Examining the RG equations we observe that the fugacity ys

starts out positive due the repulsive interaction and is dimin-
ished by the secondary-mediated backscattering [the y2

1 and y2
2

terms in Eq. (16a)]. If it crosses over to a negative value, the
competition transforms into cooperation, as the two kinds of
coupling grow (in their absolute value) together.

An interesting situation arises if y1,2 drives the system to a
point where ys < 0, and Ks < 1, and is subsequently cut off by
the incommensurability (or the mass term). Then the terms y2

1
and y2

2 will no longer be in the the flow equations, and ys will
flow to strong coupling according to the following formula:

ys(�) ≈ − |ys(�∗)|
1 − (� − �∗)|ys(�∗)| ,

and a spin gap will open (with the charge sector remaining in
a Luttinger liquid phase). The spin gap may be evaluated as
�s ≈ �e−�̄, with � ∼ vs/α0 a characteristic bandwidth and
ys(�̄) = −1. This is illustrated by Fig. 3, where the y, ys com-
petition and its dependence on �∗ is made clear. In particular,
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the phase boundary between the paired and gapless phases is
highly affected by the incommensurate cutoff. We note that
one may use Figs. 3(a) and 3(c) to extract an “effective attrac-
tion,” by following iso-lines of �s down to y0 = 0 ending on
a value y0

s < 0.

2. Highly correlated secondary electrons

The role of strong interactions in the secondary wire is
made clear by Eqs. (16c)–(16d). In the limit of vanishing inter-
actions, K̃c, Ks, K̃ → 1, Q → 0, positive ys will always render
the couplings y1,2 irrelevant. Thus, a sufficiently small value
of K , reflecting this strong repulsion of secondary fermions, is
crucial to establish any of the nontrivial phases we mentioned.
Notice that the same is true in principal for a small value of
K̃c. However, one should keep in mind that small bare Kc is
usually accompanied by large Ks (and ys), which counteracts
the pairing mechanism we aim to activate. This can perhaps
be circumvented by considering longer-range interactions in
the primary electronic system, which affect mainly the value
of Kc.

3. Nearly perfectly tuned densities

The final scenario we have yet to consider in the context of
the RG flow is the one where y reaches strong coupling before
� exceeds �∗. This signals the approximate position of the
commensurate-incommensurate transition (up to corrections
due to the flow of k+ [45,48]). As mentioned above, this is
the phase where a secondary hole is bound by the interactions
to a primary electron pair, whose formation originates in the
opening of the spin gap.

4. Pairing mechanism

Let us briefly discuss the essential physics behind the
pairing instability in the primary wire triggered by capacitive
coupling to the secondary wire. The enhanced correlations
between the two electron species in the primary system may
be understood as a result of constructive interference between
backscattering events of secondary quasiparticles with spin-↑
and spin-↓ primary electrons, which are in-phase with one
another.

To elucidate this point, consider two kinds of backscatter-
ing interactions contained within Hint [Eq. (6)]:

g↑c†
RcLψ

†
L↑ψR↑ + H.c., g↓c†

RcLψ
†
L↓ψR↓ + H.c. (17)

In the symmetric setup we analyze, g↑ = g↓. To illustrate the
importance of constructive interference between the terms,
consider a different scenario where the two coupling constants
have a relative phase of θ↑↓ and equal magnitude. In such
a scenario, the RG equations may be modified in quite a
drastic way. Most importantly, if we examine the flow of ys

[Eq. (16a)] we find the the term proportional to y2
1/2 acquires a

prefactor of cos θ↑↓. We reiterate that this term is responsible
for reducing the primary intrawire repulsion, eventually lead-
ing to attraction later in the RG flow. Thus, one finds that a
relative phase between the backscattering sectors may hinder
the pairing.

As a particularly useful extreme example, consider θ↑↓ =
π , i.e., ↑-electrons are repelled by the secondary quasiparti-
cles, while ↓-electrons are attracted to them (or vice versa).

The cosine will then reverse the trend we find in Eq. (16a) and
make the intrawire repulsion more significant at lower energy
scales.

Examining the effect of such a fictitious phase illustrates
how the interactions of primary electrons with an additional
mutual element (the secondary excitations) promote inter-
species correlations and eventually pairing, regardless of the
sign of the interwire interactions. Simply put, electrons tend to
backscatter simultaneously in both species, even if they repel
one another. The competition between their tendency to repel
and their backscattering-induced correlations will determine
the fate of the system.

It is worth emphasizing that the basic mechanism we
describe here, the in-phase backscattering, does not neces-
sarily require the secondary quasiparticles to be “hole-like.”
Though having secondary holes (instead of electrons) will
make the primary wire more susceptible to the pairing insta-
bility [through physically attracting the primary electrons and
modifying the scaling dimensions in Eqs. (16c)–(16d)], the
tendency towards interspecies correlations does not rely on it.

C. Phase diagram

We are now in the position to examine which of the three
possible phases is established as a function of experimen-
tally controllable parameters, namely, the incommensurability
cutoff �∗ (controlled by, e.g., a gate voltage applied to the
secondary wire), and the interwire bare interaction with high
momentum transfer y0 (typically tuned by the distance be-
tween the primary and secondary parts). This is explored
in Fig. 4, where the different phase boundaries are found.
We observe that moving towards the commensurate point
(increasing �∗) tends to favor the “locked” trion phase over
the paired one. The role of the Luttinger parameter K is also
apparent: as it gets smaller (reflecting stronger interaction
in the secondary system), the region in phase space where
one can easily tune between the nontrivial phases is greatly
enhanced.

The presented RG analysis allows us to deduce a schematic
finite temperature phase diagram; see Fig. 5. As a function of
a single parameter, e.g., the incommensurability cutoff �∗, we
calculate the RG scale at which ys reaches strong coupling
�̄, as well as the scale corresponding to the pinning of the
y term, ¯̄�. We estimate the gaps associated to these coupling
constants as ∝ �e−�̄, �e− ¯̄�, allowing us to determine an ap-
propriate energy scale for the transition. It can be seen that
for a certain range of the detuning parameter (depending on
interaction strength, etc.), as we lower the temperature the
system may experience a crossover from the Luttinger liquid
phase, through the paired Luther-Emery liquid, and finally to
a trion phase where the primary pairs are bound to secondary
fermions.

We now turn to discuss the properties of the system in its
three possible phases.

1. Decoupled phase

In the decoupled phase, where no spin gap is opened for
the primary electrons, the electronic system has the usual fea-
tures of a spinful Luttinger liquid, e.g., spin-charge separation
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FIG. 4. Zero temperature phase diagram calculated from integrating the RG equations, for different values of secondary fermions
interaction strength, K0 [indicated above each panel in (a)–(c)]. Notice that the x axis, exp(−�∗) ∝ (kF + k)α0, Eq. (15), for kF = −k the
densities in the wires are commensurate. The decoupled LL phase is defined by the flow of the spin fugacity of the primary wire, ys, to zero.
The trion phase is where y, the interwire back-scattering fugacity, reaches strong coupling for � < �∗. In the spin-gapped paired phase, ys

reaches strong coupling (and is negative). We set the bare spin fugacity y0
s = 0.1, the bare Luttinger parameter of the primary charge sector

K0
c = 0.9, the forward-scattering interaction between the wires υ = 0.12 [see before Eq. (14a)], and the scale determining the smoothness of

the incommensurability cutoff in the RG process χ = 1.5 [see following Eq. (16f)].

and a logarithmic tendency towards a 2kF spin-density-wave
(SDW) formation [39]. As mentioned before, its properties
are slightly modified by the bilinear interaction terms with the
secondary fermions. We focus our attention below on the two
primary-gapped phases.

2. Paired phase

When a finite spin gap occurs, but when the secondary sec-
tor φ is still gapless, we find generically a tendency towards a
charge-density-wave (CDW) phase in the primary wire, with
sub-dominant superconducting (SC) fluctuations. To see this
quantitatively, consider the susceptibilities of these two kinds
of order parameters,

χCDW ∼ ω(K̃c+Q2K̃+Ks−2),

FIG. 5. Schematic finite temperature phase diagram, as a func-
tion of �∗. The phase boundary of the decoupled-paired phases is
determined by e−�̄. The boundary for the trion phase is set by e− ¯̄�,
multiplied by c( ¯̄�), as to account for the incommensurate cutoff.
Parameters used for generating this plot: y0

s = y0
1 = 0.1, K0

c = 0.85,
K0 = 0.4, υ = 0.1, and χ = 1.5.

χSC ∼ ω(K̃−1
c +Ks−2),

with ω the energy scale. When the spin is gapped, we should
take Ks → 0. If we further assume that Q ≈ 0 it is clear
that repulsive interactions will favor CDW susceptibility, as
it has a negative exponent with a value that is larger than
the exponent of the SC susceptibility. Interestingly, strong
primary-secondary interaction (which increases the parameter
Q) can render the SC pairing fluctuation more dominant if

K̃c + Q2K̃ > K̃−1
c . (18)

Thus, for sufficiently weak interactions between the spinful
electrons (Kc → 1), Q drives the spin-gapped system to the
1D phase analogous to a superconductor, i.e., dominant quasi-
long-range order for pair-pair correlations (this also happens
for bare attractive interactions, but here it was obtained from
repulsion only). The discussion above ultimately reveals that
inducing a spin gap that pairs electrons in the primary 1D
system does not necessarily mean one has induced supercon-
ductivity. The details of the interactions will thus determine
the overall phase.

Several measurements can be experimentally performed in
order to study the properties of the system and distinguish
the different phases. While in the decoupled phase we expect
to observe power-law behavior in single-electron tunneling
experiments to the primary wire, the spin-gapped paired phase
should display a gap in the tunneling spectra [49].

As the charge mode remains gapless, two-terminal conduc-
tance measurement of such a clean system should still yield
G = 2 e2

h . We note that for the case of a single impurity in the
system, one may detect a conductance drop when entering the
paired phase. This is due to the effective Ks → 0, compared to
Ks → 1 in the gapless case. For an impurity of strength gimp,
the energy scales determining the scaling of the conductance
for the decoupled LL and paired phases are [50,51]

ELL ≈ �
(gimp

�

) 2
1−Kc

, EsG ≈ �
(gimp

�

) 2
2−Kc

,
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respectively. Since gimp < �, we find EsG > ELL and a lower
conductance for the paired phase is expected. We further
expect that in the presence of an impurity the difference in
conductance between the paired and decoupled phases should
be most pronounced at intermediate energy scales, i.e., around
ELL � ω � EsG.

3. Trion phase

Since this phase is not the main focus of our work, we dis-
cuss here only its important features, and relegate additional
technical details to Appendix C. We assume that the spin has
already been gapped out, such that 〈cos (

√
2φs)〉 is finite, and

change the basis to

φg = φc + √
2φ√

3
, φ f =

√
2φc − φ√

3
, (19)

and the same transformation for the dual variables θg, f is
implicit. The bosonic field φg is pinned by the interaction
term ∝ g1 cos (

√
6φg) [Eq. (12)], and the remaining sector

combining charge modes in the primary and secondary wires
is described by a LL Hamiltonian

H f = u f

2π

[
1

Kf
(∂xφ f )2 + Kf (∂xθ f )2

]
, (20)

with

Kf =
√√√√2ucKc + uK − √

8Vθ

π

2uc
Kc

+ u
K − √

8Vφ

π

,

where u f is given in Eq. (C2), and we relaxed the assumption
of Eq. (13) for this expression.

To gain physical insight as to this gapless sector, we con-
sider the operator �trion ≡ ∑

r,r′,r′′ ψr↑ψr′↓c†
r′′ , which creates

a trion of spin-singlet electron pair in the primary wire and a
hole in the secondary wire. Bosonizing this operator, one finds
that when φs, φg are pinned,

�trion(x) ∼ ei
√

3θ f cos

(
1√
3
φ f − kF x

)
. (21)

By comparing Eq. (21) to the operators of a sector of 1D
spinless fermions, we infer that the point Kf = 3 corre-
sponds to that of free noninteracting fermions (trions). This
implies that for Kf < 3 the system will be dominated by
CDW correlations of these trions, Otrion

CDW = �
†
trion(x)�trion(x),

whereas pairing correlations given by the operator Otrion
SC =

�trion(x)�trion(x + a) will dominate if Kf > 3. Addition-
ally, operators corresponding to local impurity backscattering
which impact the secondary or primary systems will be irrel-
evant for Kf > 3 in this phase.

We should point out that Kf � 3 corresponds to a rather
large attraction in the φ f sector, i.e., between nearby trions.
Physically, this would mean that Vφ , responsible for the attrac-
tion of secondary holes and primary electrons, overwhelms
the intrawire electron-electron and hole-hole repulsive inter-
actions. Thus, although this “superconducting-trions” phase
exists in the phase diagram of our model, it corresponds to a
somewhat extreme unphysical limit of realistic setups.

Similarly to the paired phase we discussed earlier, a
single-particle gap exists in the spectral function of the

TABLE I. Discerning the decoupled LL phase, spin-gapped
paired phase, and the trion phase. Single-electron tunneling into the
primary wire is expected to vanish with a power law at zero bias or to
have a finite gap. The two-terminal conductance of the primary wire
is measured with the secondary system grounded.

Decoupled Paired Trion

Single-electron tunneling Power law Gap Gap
Two-terminal conductance [ e2

h ] 2 2 4/3

primary electronic wire, but also in that of the secondary
system. Any single-particle tunneling operator to either of
the two 1D systems contains some exponent of the θg and/or
θs, which are completely disordered, and thus render the
tunneling irrelevant.

In order to distinguish these phases one may measure the
two-terminal electrical conductance of the primary wire while
keeping the secondary one grounded. Since the remaining
sector carries a fraction of the total charge, one should ex-
pect to find fractional conductance. From a straight-forward
calculation [34], one finds the “ideal” conductance of a clean
system measured in this setup is G = 4

3 e2/h. This contrasts
the predicted G = 2e2/h in the two other phases where φc

remains gapless. We emphasize that this fractional conduc-
tance is not due to current measurement in only one part of
the system. In such a setup there is a counterflow of current
in the secondary wire, yet it is also fractional, corresponding
to a cross-conductance of − 2

3 e2/h. Thus, the total current in
the system remains fractional (see Appendix D). We note that
unlike the scenarios considered in Ref. [34], the fractional
conductance here is expected to be a much more robust fea-
ture. This is because g1,2 are not generated by higher-order
backscattering processes, but rather they are first-order in the
interaction strength. A summary of experimentally detectable
quantities distinguishing the different phases is given in
Table I.

The measurement of the fractional conductance in this
phase of the system can provide an important experimental
tool for tuning the system into the (possibly more interesting)
paired phase. By monitoring the conductance of the primary
channel, one can modify the chemical potential of the sec-
ondary c-fermions to a point where the fractional conductance
emerges. Then, one can detune the chemical potential back,
right up to where the conductance returns to its integer value.
Per our phase diagram, the total system should generically
end up in the paired spin gap region, unless the interwire
interactions are too weak.

III. EXTENSIONS

A. Connection to Little’s model

Inducing attraction between electrons mediated by extrin-
sic repulsive interactions of these electrons and an auxiliary
system was originally proposed by Little [8]. Little considered
a 1D system coupled by Coulomb interactions with strength
V to local polarizable side chains along the system (that
was termed “spine”). Excitations of these so-called polarizers,
which cost a finite energy Ẽ , mediate attractive interac-
tions between system electrons, proportional to ∼V 2

Ẽ
. This
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FIG. 6. Schematic proposal of a Mott insulator as the secondary
pairing mediator. A primary wire (dashed purple frame) is capaci-
tively coupled to a two-leg Hubbard ladder (dashed brown frame) at
half filling (full circles mark electrons and empty ones are vacancies).
The pairing is mediated by coupling to the φρ− sector (presenting the
charge difference between the two legs) of the Mott insulator (see
text). A potential difference between the two legs may be induced by
a back-gate voltage VBG as an experimental knob which controls the
proliferation of solitons (the doublon-holon excitation highlighted in
a dotted green line in the figure) in this sector. This setup bears some
resemblance to the model by Little [14], where the two polarizer
states are replaced by the rung ground and excited state (the latter
being a doublon-holon excitation).

attraction then competes with the intrinsic electron-electron
repulsion in the chain hosting the electrons.

The model Little put forward was studied more carefully
by Hirsch and Scalapino (HS) [19,52]. HS studied this model
by employing perturbation theory in the weak and strong
electron-polarizer coupling limits, as well as using numeri-
cal methods, namely, small-scale quantum Monte Carlo. HS
found certain regimes of parameters where superconductivity
occurs in such a system, yet concluded that 2kF CDW of pairs
generally has larger susceptibility, even when pairing occurs.
This is reminiscent of the conclusions we draw in Sec. II C
for the setup proposed here, which similarly has a SC order or
CDW of pairs in the spin gapped paired phase.

At first glance, our model might seem to have very little to
do with Little’s model. The pairing mechanism we discuss in
this work relies on interaction with secondary fermions, which
are either in a Luttinger liquid phase or gapped (such that the
gap does not overwhelm the interactions with the electronic
system). In fact, Little’s model presented in Ref. [8] can be
shown to coincide with a certain limit of the model we pre-
sented here. It corresponds to extremely localized fermions,
i.e., vsec → 0 in our description, which are gapped, with the
energy required to polarize/excite one of the side-chain po-
larizers being the gap. A solitonic excitation in our version of
secondary fermions Hamiltonian, Eq. (11), is the analog of an
excited polarizer (in a very nonitinerant limit).

To better illustrate the connection between Little’s proposal
and some particular sector of our model, we consider one
possible implementation of a secondary system that may be
employed: a two-leg Hubbard ladder exactly at half-filling,
illustrated in Fig. 6. For our purposes, it embodies a minimal
representation of a strongly correlated Mott insulator. Strong
interactions pin the system into a state of one electron per
site, with a charge gap proportional to the amplitude of the
on-site interactions. We assume that the Hubbard ladder is

in its arguably most generic phase, the so-called “D-Mott”
phase, or the rung singlet, appropriate when the on-site inter-
actions are large compared to the nearest-neighbor repulsion
and the exchange energy [53]. In this phase, all charge and
spin sectors of the system are gapped.

We now consider the “relative-charge” sector of the lad-
der, i.e., the one that measures the total difference in charge
between the different legs, φρ− ∝ φρ,1 − φρ,2, where φρ,i rep-
resents the charge sector of the ith leg, and argue that it
is the most important sector in terms of its effects on the
nearby electronic system we wish to induce pairing in. The
interaction-induced gap in this sector is considerably smaller
compared to that of the total charge sector, since it has a
smaller effective interaction parameter (Kρ− is much closer
to 1, whereas Kρ+ can be rather small, as it accounts for the
total charge sector).

Assuming the dominant interaction of the primary elec-
tronic system is with the leg closest to the system (the leg
with i = 1), the interactions between the primary spinful wire
(described by the sectors φc and φs) and the Hubbard ladder
secondary system are accounted for by

V

π2
∂xφc∂xφρ,1 + 2g̃1

π2a2
cos(

√
2φs) cos(

√
2φc +

√
2φρ,1

− 2kF − 2k1) + 2g̃2

π2a2
cos(

√
2φs) cos(

√
2φc −

√
2φρ,1

− 2kF + 2k1), (22)

with kF and k1 corresponding to the Fermi momenta of the pri-
mary wire and closest Hubbard leg, respectively. We have also
absorbed a factor of 〈cos (

√
2φσ,1)〉 into the definition of the

interaction coupling constants g̃1,2, with φσ,1 corresponding
to the spin sector of the leg interacting with the electron wire.
Assuming that the total charge sector is gapped, such that φρ+
is strongly pinned to its semiclassical strong-coupling value,
we arrive at an expression similar to Eq. (12). One impor-
tant difference is that the φρ− appears inside the cosine with
a smaller prefactor, for example, in g̃1 cos (

√
2φc + φρ,1) (1

instead of
√

2). This in turn makes the nonlinear perturbations
in Eq. (22) significantly more relevant as compared to those
in Eq. (12). (This is not surprising, as we have assumed that
some of the degrees of freedom in the secondary ladder are
already frozen by the interactions in the Mott insulator).

A chemical potential difference between the two legs of
the ladder can be generated, for example, with back gate
potential, leading to a term ∼μ∗∂xφρ−. This will allow one to
experimentally control �∗ (as it controls the commensurability
condition) as well as the mass gap in such a setup, and tune it
towards the desired phase for the overall system.

Let us briefly comment on the nature of the φρ− soli-
tons. As mentioned, in the D-Mott phase the density is one
electron per site, with the spins forming a rung-singlet. A
relative-charge particle (hole) would correspond to an electron
being displaced from leg 2 to leg 1 (or vice versa), without
perturbing the spin-singlet nature of the electrons on the rung.
Notice that such an excitation costs a finite amount of energy,
approximately proportional to the difference between the on-
site repulsion and interleg repulsion energies in the strong
coupling limit. The analogy to Little’s model now becomes
a bit more transparent: the ground state and excited state of
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FIG. 7. A 2D extension of the model presented in this work.
A quasi-1D lattice composed of an array of primary spinful wires
is proximitized to a secondary “pairing medium.” The latter may
consist of separate tunable 1D systems hosting spinless fermions, or
a strongly correlated Mott insulator; see the discussion in Sec. III A.
The wires are separated from the pairing medium by either an insulat-
ing layer (yellow) or by sufficient distance, as to not allow hopping of
particles between the two primary and secondary parts. The interwire
repulsive interaction U⊥ and hopping amplitude t⊥ are indicated.

the polarizers correspond to a rung with one electron per site
and a φρ− hole, respectively. A key difference in our proposed
setup is that we can account for interactions between these
secondary fermions, and that we allow for their excitations to
delocalize. These two effects, as can be inferred from our RG
analysis and results, can be quite important in determining and
manipulating the phase diagram.

On top of allowing us to make a concrete connection to
Little’s model, this specific realization of the secondary wire
has additional significance. The discussion above suggests
that under certain conditions, proximity of a spinful wire to
a Mott insulator may result in pairing of electrons in that
1D system. Realistically, this Mott insulator does not neces-
sarily have to be 1D: If its gaps are sufficiently larger than
the interaction with the primary wire, the physics may be
well described by that of the insulator sites nearest to (and
strongest interacting with) the electronic wire. Thus, our toy
model may be an appropriate effective description of a simple
experimentally accessible setup, namely placing a nanowire
on top of a strongly correlated Mott insulator.

B. Higher dimensions

The model we have presented here concerns the pair-
ing one may induce in a spinful 1D system, even when
it has non-negligible intrinsic repulsive interactions. Due to
the Mermin-Wagner theorem, “true” superconductivity cannot
occur in a 1D system. Moreover, we have discussed supercon-
ducting tendencies brought on by our setup and shown that
they were generically expected to be sub-dominant to CDW
order developing in the wire (whether for spin-singlet pairs or
the so-called trions). We would therefore like to consider the
extension of the setup presented here to a higher dimension.

Let us consider an array of spinful quantum wires, as
depicted in Fig. 7, each with its own secondary system, all
decoupled from one another. This is a very anisotropic limit
of a 2D system, ubiquitous in many coupled wires studies (cf.,
Ref. [54]). One can then tune each such individual primary-
secondary duo to the paired phase by changing the relevant
controllable parameters, and allow weak hopping between
neighboring primary wires, such that the tunneling amplitude

t⊥ is smaller than the induced spin gap �s. [We neglect the
tunneling between adjacent secondary wires, which is justified
if (1) strong interactions within them makes such tunneling
irrelevant, (2) each secondary system is individually tuned
such that there is a Fermi momentum mismatch between
neighboring secondary wires, or (3) the secondary wire has
a single particle gap rendering such hopping nonimportant
(such a case is discussed in Sec. III A)].

For the sake of completeness, the remainder of this section
mostly recapitulates results discussed in Refs. [35,44,55], in
the terminology used in Sec. II. Namely, we assume the spin-
gapped paired phase in the primary wires (induced solely by
repulsion) and discuss the conditions under which it leads to
long-range phase-coherent superconductivity.

Since t⊥ � �s we can restrict our discussion to higher
order processes of O(t2

⊥/�s) between adjacent (primary) elec-
tron wires. The key points in this discussion will be best
illustrated by considering just two spinful spin-gapped wires,
with labels 1 and 2. We note that the results we outline below
are somewhat different than those discussed in Ref. [56] for
a similar setup, as large-momentum backscattering events (of
the kind that lead to the formation of the pairing spin gap)
were not considered in Ref. [56]. Defining the sectors φα± =
φα1±φα2√

2
, with α = c, s, the intrawire charge and spin sectors,

we write the Hamiltonian density of the two-particle hopping
processes as

HJ ∼ t2
⊥/�s cos(2θc−) cos(

√
2φ1s) cos(

√
2φ2s), (23)

Hp−h ∼ t2
⊥/�s cos (2θs−) cos (2φc−), (24)

which are the Josephson and particle-hole couplings, respec-
tively. The intrawire spin gaps render Hp−h irrelevant, as
it contains a cosine of variables dual to the gapped ones,
whereas HJ is relevant in the RG sense if the Luttinger
parameter corresponding to the relative charge sector is not
too small, i.e., Kc− > 1

2 . (This is because in the spin-gapped
regime we replace cosines of the individual φ1/2s by their
expectation values). Interestingly, this condition does not
exclude very strongly interacting systems, as long as electron-
electron interactions between wires is not too small compared
with the intrawire one. In other words, interwire repulsion ac-
tually makes HJ more relevant [44]. Presumably, HJ can now
flow to strong coupling, with the θc− term inducing interwire
phase coherence throughout the system, causing a Kosterlitz-
Thouless transition into the superconducting regime, similarly
to the studied phenomena in Refs. [35,55].

In fact, it is well established that in considering such setups
one should include an additional term, proportional to the
interwire interaction U⊥,

HπCDW ∼ U⊥ cos (2φc−) cos(
√

2φ1s) cos(
√

2φ2s). (25)

Comparing it to HJ , a clear competition between pinning of
the dual variables φc− and θc− is evident. The π -CDW inter-
action triumphs over the Josephson pair hopping, i.e., more
relevant in an RG sense, if Kc− < 1, facilitating a π -CDW
order in the higher dimensional system [35]. This term is
typically neglected when considering, e.g., stripes in high-
Tc superconductors, since it is assumed that each stripe can
effectively have different carrier densities compared to its
neighbors. This in turn causes spatial oscillation in the relative
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charge cosine term,

cos(
√

2φc−) → cos(
√

2φc− + δx),

with δ being proportional to the density difference between
neighboring primary wires. On length scales much larger than
δ−1, the π -CDW is thus rendered irrelevant.

In the absence of this kind of dephasing, superconductivity
would prevail only if U⊥ is sufficiently small as compared

to t2
⊥

�s
, or if Kc− is large enough. The latter requires that the

long-wavelength part of the interwire repulsive interaction be
rather large. Conversely, engineering a fully tunable quasi-1D
system, each having a separate spin gap, the CDW tendency
may be greatly diminished (dephased) by modulating the elec-
tronic densities between adjacent wires, effectively sending
HπCDW → 0 at low enough energy scales.

We note here that the discussion above, which centered
around coupling of two spinfull wires in the paired (spin gap)
phase, alludes to the fact that introducing further complexity
to the primary system may lead to dominant superconduct-
ing tendencies even in 1D setups. As an example, one may
consider CNTs, which host two spinfull sectors (one in each
“valley”) [57,58]. Manipulating the properties of such CNTs,
one may induce pairing and superconducting tendencies by
proximitizing them to a proper secondary system.

To conclude this section, the role of the scheme proposed
in this work and explored in Sec. II is essentially providing the
intrawire pairing (spin gap) mechanism, which in turn, under
the right conditions, can be used to construct the anisotropic
superconducting phase. Conventionally, this mechanism is
provided by effective attractive interactions due to interac-
tions with phonons or other degrees of freedom, and we
present here a feasibly controllable way of inducing this gap.
Then, manipulating additional experimental parameters, e.g.,
different gate voltages, one can achieve long-range coherent
superconductivity in a 2D system driven solely by repulsive
electron-electron interactions.

IV. DISCUSSION AND CONCLUSIONS

In this work we have presented a setup which allows induc-
ing a pairing instability for electrons in a spinfull 1D system
in a tunable manner. Our proposal utilizes strong repulsive in-
teractions with a highly correlated secondary system properly
tuned to a desired state. These so-called primary-secondary
interactions tend to bind electrons of opposite spin in the
primary wire and in certain cases overcome their intrinsic
repulsive interaction.

In the limit of weak interactions between the primary and
secondary wires (or large Fermi momenta mismatch), the
two are effectively decoupled (up to innocuous bilinear term
which do not open a gap), and the primary wire is in a LL
phase. In the opposite limit of strong interwire interactions
and near commensuration, we find a phase of bound trions,
involving a spin-singlet pair of primary electrons and one
secondary fermion. This trion phase displays a single-particle
gap in both the primary and secondary parts, and can lead to
fractional transport signatures. The trions tend to have CDW
order, yet in an extreme limit may also have superconducting
tendencies.

Using a perturbative RG analysis, we have established the
paired phase of spin-singlet primary electrons as the ground
state in an intermediate region of phase space, between the
trion and decoupled phases mentioned above. Similarly to
the trion phase, quasi-long-range CDW order generically has
the largest susceptibility in this paired phase, whereas the
superconducting tendencies are dominant in a narrow (though
sensible) range of parameters.

The RG treatment we employed revealed two key aspects
in the proposed setup. First, the competition between the
intrinsic electron repulsion in the primary wire and the ef-
fective attraction mediated by the secondary sector becomes
much more transparent. Eventually, at a later stage of the RG
“flow,” a crossover can occur where the competition becomes
cooperation, signaling the pairing instability.

Secondly, the importance of strong correlations in the sec-
ondary fermion sector becomes clear. The phase space for
the nontrivial (paired and trion) phases is enlarged by the
secondary repulsive interactions. This is because they allow
the effective attraction to effectively overcome the intrinsic
(primary) repulsion, even in scenarios where the bare value
of the former is somewhat smaller than the latter. (This is of
course the more generic scenario, if the interaction becomes
weaker with larger spatial separation).

Our conclusions regarding the nature of the electron paired
phase are not unlike those drawn from studies of previous
models of repulsion-mediated attraction in 1D systems. We
have demonstrated the relation between these models and a
certain limit of our proposal and discussed the key differences
between them. Our model provides a continuum description of
the pairing mechanism, which originates in (nearly) momen-
tum conserving backscattering processes involving mobile
charge carriers, instead of stationary two-level polarizers.
Moreover, the analysis presented in this work takes into ac-
count interactions between the secondary degrees of freedom
(previously not considered) and reveals their significance.

Extension of our proposal to an anisotropic 2D system was
shown to possibly facilitate long-range phase-coherent super-
conductivity. Remarkably, this can be achieved in a system
with only repulsive interactions. The role of our proposal is
supplying the mechanism for pairing from repulsion, whereas
the discussion on interwire phase coherence (brought on by
pairs hopping between neighboring primary wires) is mostly
already well established in the literature.

An accessible method by which pairing between elec-
trons in different bands can be engineered opens up new
and exciting possibilities for condensed matter research and
experiments. The model we study, while motivated by a desire
to manufacture and design effective attractive forces between
electrons, may also elucidate the manner by which electrons
pair in other low-dimensional strongly correlated materials,
and possibly further the pursuit of higher-Tc superconductors
and other unconventional superconductors, e.g., magic angle
twisted-bilayer graphene [59].

ACKNOWLEDGMENTS

This project was partially supported by grants from the
ERC under the European Union’s Horizon 2020 research
and innovation programme (Grant Agreement LEGOTOP No.

043283-11



GAL SHAVIT AND YUVAL OREG PHYSICAL REVIEW RESEARCH 2, 043283 (2020)

FIG. 8. Example of a CNT spectrum tuned to the single oc-
cupied band regime. The spectrum was calculated according to
Eq. (A2), with the parameters vF = 8 × 105 m/sec, �0 = 4 meV,
�so = 1 meV, �� = 0.5 meV, and μ = −3 meV. Different colors
and line styles correspond to different spin projections and valley
indices, respectively. The Fermi energy is marked by a solid black
line.

788715), the DFG CRC SFB/TRR183, the BSF and NSF
(2018643), the ISF (1335/16), and the ISF Quantum Science
and Technology (2074/19).

APPENDIX A: CNT AS A SECONDARY SYSTEM

In this Appendix we demonstrate that with proper gating, a
combination of the intrinsic spin-orbit coupling in a CNT and
magnetic flux in the direction of the nanotube axis enables
one to tune the CNT to a point with a single conducting
spin-polarized band. This is most conveniently shown for the
case of a zig-zag nanotube, though other chiralities may also
suffice.

We write the continuum low-energy (single-particle)
Hamiltonian,

Hzz(k) = vF kρy + (�0 + �soσzνz + ��νz )ρx − μ, (A1)

with ρi, σi, νi Pauli matrices operating on the sublattice, spin,
and valley subspaces, respectively, k is the momentum along
the CNT axis, �so,�� are the energy gaps associated with
the spin-orbit coupling and the flux, respectively [60], �0

accounts for the gap in the CNT spectrum (in the absence of
spin-orbit and magnetic fields), due to either the curvature [61]
or the chirality of the nanotube, vF is the Fermi velocity, and
μ is the chemical potential.

In (A1) we have assumed �0 > �so, so that a Zeeman-
like spin-orbit term is effectively absorbed into �so. We note
that this Zeeman spin-orbit term, as well as the curvature gap,
vanish for armchair CNTs.

The spectrum decomposes into eight bands with well-
defined spin (σ = ±1) and valley (ν = ±1) labels,

Eσ,ν = −μ ±
√

(vF k)2 + (ν�0 + σ�so + ��)2. (A2)

As an example, Fig. 8 shows an example where the CNT is
tuned such that the Fermi energy crosses a single spin and
valley polarized hole-like band.

APPENDIX B: ROLE OF THE MASS IN THE SECONDARY
SECTOR

The possibility of the secondary sector having a bare gap
was mostly discussed in Sec. III A, where the connection to
the original setup proposed by Little was discussed. Clearly
if the mass term completely overwhelms the energy scales
associated with the interwire interactions, Vφ, g1,2, we may
effectively set Hint → 0, and we get none of the effects de-
scribed in this work. More accurately, one may integrate out
the auxiliary fermions completely, finding a correction to Kc

due to a term ∝ V 2
φ

msec
(∂xφc) generated.

However, when the mass term competes with Hint, one
may still recover most of the interesting physics we have
uncovered. This may be understood by considering the
simplest possible way msec affects the RG flow: an addi-
tional length scale Lm ≈ u

|msec−μsec| , above which the system
“realizes” that the secondary fermions are in fact gapped
(and therefore cannot induce backscattering), and g1,2 get
cut off. The appropriate RG-time cutoff for the mass
term is

�m,∗ = ln
�sec

|msec − μsec| , (B1)

with the effective secondary bandwidth �sec ≡ usec
α0

. Thus, the
presence of a sufficiently small (or tunable) gap for the sec-
ondary fermions provides an additional degree of freedom to
tune between the phases of the system.

We note that this simplified treatment of the mass
term, much like the way we handled the incommensu-
rability, is only approximate, as msec flows itself, and
affects some of the other coupling coefficients. However,
the qualitative picture, in terms of how the gap impacts
the low-energy behavior of the system, should remain
intact.

APPENDIX C: THE TRION PHASE

We begin by omitting the spin degree of freedom, assuming
it has been gapped out, and absorbing 〈cos (

√
2φs)〉 into the

definition of the relevant g term, to get a modified g∗ coupling.
Manipulating the Hamiltonian given by Eqs. (1), (9), and
(11)–(12), and writing in in terms of the sectors defined in
(19), we may write the effective Hamiltonian as

Hlock = H f + Hg + H×, (C1a)

H f = u f

2π

[
1

Kf
(∂xφ f )2 + Kf (∂xθ f )2

]
, (C1b)

Hg = ug

2π

[
1

Kg
(∂xφg)2 + Kg(∂xθg)2

]

+ g∗

2π2a2
cos[

√
6φg + 2(kF + ka)x], (C1c)
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H× = V×
π2

∂xφg∂xφ f + V ′
×

π2
∂xθg∂xθ f . (C1d)

Apart from the expression for Kf , mentioned in the main
text, the other coefficients going into this Hamiltonian are
given by

Kg =
√√√√ucKc + 2uK + √

8Vθ

π

uc
Kc

+ 2u
K + √

8Vφ

π

, (C2a)

u f = 1

3

√[
2uc

Kc

u

K
−

√
8

Vφ

π

][
2ucKc + uK −

√
8

Vθ

π

]
,

(C2b)

ug = 1

3

√[
uc

Kc
+ 2u

K
+

√
8

Vφ

π

][
ucKc + 2uK +

√
8

Vθ

π

]
,

(C2c)

V× = 1

3

[√
2π

( uc

Kc
− u

K

)
+ Vφ

]
, (C2d)

V ′
× = 1

3
[
√

2π (ucKc − uK ) + Vθ ]. (C2e)

The Hamiltonian Hlock can be used as a starting point to
more accurately capture the commensurate-incommensurate
transition the system goes through when transitioning from
the (spin-gapped) paired phase to the trion one.

Expanding the trion operator �trion in terms of the bosonic
variables, one finds

�trion = 1√
2

(
1

πα

) 3
2

ei
√

3θ f

{
cos

[√
8

3
φg +

√
1

3
φ f − (2kF + ksec)x

]
+ cos[

√
3φ f − (2kF − ksec)x]

}

+ 1√
2

(
1

πα

) 3
2

ei
√

3θ f [cos(
√

2φs)] cos

(√
2

3
φg −

√
1

3
φ f − ksecx

)
. (C3)

In the trion phase, taking also |ksec| = |kF |, one recovers the
most relevant contribution, Eq. (21).

Regarding backscattering impurity operators, one can dis-
tinguish three possible kinds: (1) impurities in the electronic
system, which backscatter both spins equally, of the bosonic
form cos (

√
2φs) cos (

√
2φc); (2) impurities which impact a

single spin channel σ , cos [
√

2(φc + σφs)]; and (3) impurities
in the secondary wire, cos (2φ). Deep in the trion phase, all
three are proportional to cos ( 2φ f√

3
). This makes the impurities

irrelevant in the RG sense once Kf > 3.

APPENDIX D: FRACTIONAL CONDUCTANCE

We briefly give here the derivation for the fractional con-
ductance, along the lines described in Ref. [34] and its
Supplementary Materials. We consider a setup where nonin-
teracting leads are adiabatically attached to both the primary
and secondary wires, and consider the scattering problem of
incoming and outgoing currents in this system. These currents
are related by(

OR

OL

)
=

(
T 1 − T

1 − T T

)(
IR

IL

)
, (D1)

where OR.L and IR,L are chiral outgoing and incoming current
vectors of length 3, corresponding to the total number of
modes in the system: primary spin-up (enumerated i = 1),
primary spin-down (i = 2), and the secondary spinless mode
(i = 3), whereas T is a 3 × 3 matrix. In terms of the φi

bosonic variables, the current elements are

IR,i = e

2π
∂t

θi − φi√
2

|x= L
2
, IL,i = e

2π
∂t

θi + φi√
2

|x=− L
2
, (D2)

OR,i = e

2π
∂t

θi − φi√
2

|x=− L
2
, OL,i = e

2π
∂t

θi + φi√
2

|x= L
2
.

(D3)

We move to a new basis spanning this 3D space, with
vectors ns = 1√

2
(1,−1, 0)T , ng = 1√

6
(1, 1, 2)T , and n f =

1√
3
(1, 1,−1)T , corresponding to the spin, gapped, and “free”

(LL) sectors, respectively. Notice that these three vectors form
an orthonormal set.

Deep in the so-called trion phase, the fields φs, φg are
pinned throughout the system, enforcing the boundary con-
ditions

∂tφ↑ − ∂tφ↓ = 0,

∂tφ↑ + ∂tφ↓ + 2∂tφ = 0.

Taken at opposite ends of the system, this boundary condition
is leads to

nT
s T = 0, nT

g T = 0. (D4)

The unobstructed propagation of the φ f mode through the
system leads to the boundary conditions

OR/L,1 + OR/L,2 − OR/L,3 = IR/L,1 + IR/L,2 − IR/L,3,

or equivalently,

nT
f T = nT

f . (D5)

The solution to Eqs. (D4) and (D5) can be readily found to be

T = 1 − nsnT
s − ngnT

g .

The total current flowing through the primary wire may
be expressed as J = (1, 1, 0) · (IR − Ol ). Assuming that in
the primary incoming right movers emanate from a reservoir
at potential V and the left movers from a reservoir with
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zero potential, and that the secondary wire is grounded,we
set IR = e2

h V (1, 1, 0)T , and IL = (0, 0, 0)T . The two-terminal
conductance measured at the primary wire terminals can then
be extracted,

G

e2/h
= (1, 1, 0)T (1, 1, 0)T = 4

3
. (D6)

The current flowing in the secondary wire in this setup is
simply (0, 0, 1) · (IR − Ol ), which is precisely − 2

3
e2

h V . Other

transport coefficients may also be calculated using the same
T matrix obtained here.

We briefly comment on the setup where the secondary wire
is disconnected from any leads, and is “floating.” In the trion
phase, where the charge in the primary wire is “locked” to the
secondary holes, we expect zero current to flow in the primary
wire (as long as the gap in the φg sector is large enough). This
is reminiscent of the absolute drag between two capacitively
coupled quantum wires [62] and is essentially a generalization
of this phenomenon.
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