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Optical Hall response of bilayer graphene: Manifestation of chiral hybridized states in
broken mirror symmetry lattices
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Understanding the mechanisms governing the optical activity of layered-stacked materials is crucial to the
design of devices aimed at manipulating light at the nanoscale. Here, we show that both twisted and slid bilayer
graphene are chiral systems that can deflect the polarization of linear polarized light. However, only twisted
bilayer graphene supports circular dichroism. Our calculation scheme, which is based on the time-dependent
Schrödinger equation, is particularly efficient for calculating the optical-conductivity tensor. Specifically, it
allows us to show the chirality of hybridized states as the handedness-dependent bending of the trajectory of
kicked Gaussian wave packets in bilayer lattices. We show that nonzero optical Hall conductivity is the result
of the noncanceling manifestation of hybridized states in chiral lattices. We also demonstrate the continuous
dependence of the conductivity tensor on the twist angle and the sliding vector.
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I. INTRODUCTION

Stacked two-dimensional (2D) materials represent a unique
platform for the manipulation of light at the nanometer scale,
therefore they are also an ideal platform for advances in fu-
ture emerging technologies [1–3]. Additionally, twisted stacks
of graphene or other so-called 2D van-der-Waals materials
may be used to realize twistronics and optoelectronics de-
vices based on tuning their electronic structure [4–11]. It was
predicted that using Bernal-stacked bilayer graphene may pro-
duce a finite Faraday rotation of light when traveling through
microcavities [12]. In recent experiments, it was demonstrated
that twisted bilayer graphene (TBG) can be used to manipu-
late the polarization state of light, resulting in finite circular
dichroism (CD) [13]. Since intrinsic monolayer graphene does
not have this property, understanding how twisting layers of
graphene results in a finite optical activity, besides being a
fundamental physical question, is also essential for the devel-
opment of nanodevices with novel chiral properties [13], with
important applications for recognizing different enantiomers
of molecules [14,15].

Usually, the application of a magnetic field leads to the
generation of finite Faraday and Kerr rotations of the light po-
larization plane [16–19]. However, this requires large devices,
thus their practical applications are limited. It was found that
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an electronic ground state with broken time-reversal symme-
try (TRS) may support the appearance of Faraday rotation in
the absence of a magnetic field [20,21]. A strained graphene
lattice was also shown to exhibit giant Faraday and Kerr
rotation [22,23]. The electronic structure of strained graphene
can be described by a picture of Weyl-like fermions moving in
a gauge field [24,25]. It was also pointed out that the physics
of low-energy electronic states in TBG is governed by an ef-
fective non-Abelian gauge field [26,27]. Similar to spin-orbit
interactions [28], these non-Abelian gauge fields preserve
TRS [26]. An alternative analysis is terms of a Berry curvature
dipole was recently proposed [29]. It has been predicted that
the deformation of electron states caused by twisting and
sliding graphene layers will manifest through unique transport
and optical properties, such as a nonzero optical Hall response
and the anisotropy of longitudinal conductance [30–34].

Phenomenological models are usually employed to de-
scribe the optical activity of solids; see Refs. [34–36] for
recent proposals describing the low-frequency regime of the
chiral response in chiral 2D materials. However, a micro-
scopic approach was recently proposed by Suárez Morell et al.
in Ref. [37]. Here, the analysis of the optical activity is based
on the decomposition of the current operator into components
in each graphene layer. They introduced an external parameter
describing the phase factor characterizing the dephasing of the
currents in two different graphene layers. The optical Hall
conductivity is then deduced as a result of the correlation
between the current components in the two layers. They con-
cluded that the relative rotation of the electron chirality due to
the lattice twisting and the current dephasing are the origin of
the circular dichroism of the TBG system.

In this work, we present a microscopic analysis for the opti-
cal activity of TBG. We find that decomposing the current into
different contributions from the two layers is not a conclusive
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interpretation for describing the optical activity of TBGs and
the other bilayer graphene (BLG) systems [37]. Instead, we
notice a crucial role played by the electron dynamics in the
twisted or slid lattices. Under twisting or sliding, the change
of the lattice symmetry induces the spatial deformation of
the wave functions of hybridized electron states. It is thus
responsible for the chiral response of the bilayer graphene
systems. We introduce an efficient scheme to calculate all
elements of the optical conductivity tensor rather than only the
longitudinal conductivities. Our approach allows us to con-
sider the electron dynamics at the atomic scale with respect to
all the natural symmetries of the atomic lattice [38]. Secondly,
we show how the optical Hall response of the system is gov-
erned not only by the interlayer current-current correlations,
as pointed out by Suárez Morell et al., but by the intralayer
current-current correlations as well.

In the following, we show that only hybridized states
formed by electrons between the two layers govern the optical
activity of the bilayer system. These hybridized states support
the electron propagation not only in each graphene layer but
also interchangeably between the two layers [39,40]. How-
ever, their contribution to the optical Hall response depends
on their spatial symmetries. We show that when the mirror
symmetry is broken, the hybridized states have no canceling
contribution to the optical Hall conductivity, resulting in a
nonzero value for this quantity. Our analyses are based on a
real-space approach, entirely at the microscopical level. To
study the optical Hall response, we express the Kubo formula
for the conductivity tensor in the form of the Kubo-Bastin for-
mula. On a practical level, we obtain the conductivity tensor
within the kernel polynomial method (KPM) [40–43]. This
numerical approach allows us to work with arbitrary con-
figurations of the bilayer graphene, i.e., taking into account
both the twist angle and the sliding vector, and considering
all of the natural symmetries of the bilayer atomic lattice. We
do not need to find the electronic eigenfunctions explicitly:
we performed the calculation based on the analysis of the
time-evolution of two kinds of states in the bilayer lattice—the
localized 2pz-states and the kicked Gaussian wave packets.
We show that the trajectory of the centroid of wave packets
deviates from the direction of the initial wave vector, and the
deviated direction depends on the initial layer location of the
wave packet. This demonstrates the transverse correlation of
the electron motion, and hence the dependence of the optical
Hall response on the chirality of the bilayer lattice.

The paper is organized as follows. In Sec. II, we present a
model used to describe the dynamics of electrons in the BLG
lattice together with the Kubo-Bastin formula. In Sec. III, we
discuss the optical Hall response of the BLG configurations
through the analysis of the behavior of the optical conductivity
components. In Sec. IV, we present results illustrating the
wave-packet dynamics in single-layer and BLG systems. We
devote Sec. V to a discussion of the optical activity of the
BLG system through a determination of the Faraday and Kerr
rotation angles as well as the circular dichroism. Finally, our
conclusions are given in Sec. VI. A few technical Appendixes
complete the manuscript. In Appendix A, we give details on
the Kubo-Bastin formula for the conductivity tensor and its
evaluation in terms of the KPM. In Appendix B, we provide
a highlight of the representation of relevant operators in terms

of Chebyshev polynomials. In Appendix C, we highlight the
relation between the components of the electrical conductivity
tensor and the optical coefficients.

II. MODEL AND METHOD

To characterize the dynamics of electrons in the BLG sys-
tem, we use a microscopic approach based on a tight-binding
Hamiltonian describing electrons in the 2pz orbitals of carbon
atoms. The system Hamiltonian reads [40,42–45]

Ĥ =
2∑

ν=1

∑
i, j

tν
i j |νi〉〈ν j| +

2∑
ν �=ν̄=1

∑
i j

tνν̄
i j |νi〉〈ν̄ j|. (1)

Here, the first term defines the dynamics of an electron in
each of the monolayers labeled by the index ν from site i
to site j with the intralayer hopping energy tν

i j ; the basis set
is given by the ket-states {|νi〉} representing the 2pz-orbitals
of carbon atoms. The second term in Eq. (1) describes the
electron hopping between two layers, which is characterized
by the hopping parameters tνν̄

i j . We use the Slater-Koster for-
malism to determine the values of the hopping parameters tν

i j

and tνν̄
i j [40,44,45]. In this work, we will ignore the effects of

the graphene sheet curvature [46–48]; we assume the spacing
between the two layers is constant and about d ≈ 3.35 Å and
we set all on-site energies to be zero. We will treat the BLG
system in the general form by considering two different types
of configurations: (a) twisted bilayer graphene, and (b) slid
bilayer graphene (SBG). In case (a), the two layers are rotated
with respect to each other by a twist angle θ . In general,
in this configuration the system does not have translational
symmetry, but it supports moiré patterns—a typical feature
of TBG configurations. The translational symmetry is only
recovered for a discrete but infinite set of twist angles given
by the expression

cos θ = 3q2 − p2

3q2 + p2
,

where p and q are integers [49]. When the twist angle θ

satisfies this equation, the stacking of two monolayer lat-
tices is called commensurate, otherwise it is incommensurate.
The unit cell of commensurate TBG configurations with tiny
twist angles usually contains thousands of carbon atoms,
causing limitations in the calculation using exact diagonaliza-
tion procedures. In contrast, in configuration (b), translational
symmetry is preserved, but the point group symmetries are
changed compared to the case without sliding. The unit cell
is always defined in this configuration and it is composed of
four carbon atoms, two from each layer [26,31].

The key to theoretically studying the optical Hall response
of an electronic system is to calculate and analyze the elec-
trical conductivity tensor. In linear response theory, there
are several formulations for the Kubo conductivity suitable
for calculating either the longitudinal conductivities or the
transversal ones [50–53]. Starting from a real-space approach,
we aim to calculate all the elements of the conductivity tensor
within a unique formalism that also works for systems lacking
translational invariance [42,54,55]. Specifically, we use the
following expression to calculate the conductivity tensor, also
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known as the Kubo-Bastin formula [55,56]:

σαβ (ω) = ie2

ω

1

�

∫ +∞

−∞
dE f (E )

× Tr
{
δ(E − Ĥ)v̂αĜ+(E + h̄ω)v̂β

+Ĝ−(E − h̄ω)v̂αδ(E − Ĥ)v̂β

}
, (2)

where Ĝ±(E ) = (E − Ĥ ± iδ)−1 are the retarded (+)
and advanced (−) resolvents, respectively, and v̂α =
i[Ĥ, x̂α]/h̄ is the α-component of the velocity operator. In
Appendix A, we present the derivation for Eq. (2) starting
from the more general Kubo formula. We implement Eq. (2)
within the KPM by using the Chebyshev polynomials of the
first kind, Tm(x) = cos[macos(x)], to represent the operators

δ(E − Ĥ) = θ (1 − ε)θ (1 + ε)

W π
√

1 − ε2

∞∑
m=0

2

δm,0 + 1
Tm(ε)Tm(ĥ), (3a)

Ĝ±(E ) = 1

W

∞∑
m=0

2

δm,0 + 1
(∓i)m+1g±

m(ε ± iη)Tm(ĥ). (3b)

In the previous expressions, we have rescaled the energy
variable and the Hamiltonian in the range of (−1, 1):

E → ε = E − E0

W
,

Ĥ → ĥ = Ĥ − E0

W
,

where W is the half-spectrum bandwidth, and E0 is the central
point of the spectrum. The function gm(z) is defined by

g±
m(z) = 1√

1 − z2
(
√

1 − z2 ± iz)m (4)

with complex variable z taking the values as z± = ε ± iη to
define the resolvents Ĝ±.

Substituting expressions (3) into Eq. (2) leads to a calcula-
tion of the so-called Chebyshev momenta

χmn = Tr[Tm(ĥ)v̂αTn(ĥ)v̂β]. (5)

These quantities are commonly evaluated by stochastic meth-
ods with the use of a set of random phase states [41]. In our
work, to study the optical Hall response, we use the scheme
of randomly sampling the basis vectors {|νi〉} in only one
graphene layer, say ν = 1, to evaluate the trace in Eq. (5)
[40,42]. When adopting this set of states, the Chebyshev
momenta χmn are simply evaluated by χmn = ∑

i χ
(i)
mn, where

χ (i)
mn = 〈νi|Tm(ĥ)v̂αTn(ĥ)v̂β |νi〉. One of the advantages of this

technique is that it avoids special treatments of nodes near
the sample edges, which are usually affected by boundary
conditions imposed by calculation. Additionally, it allows us
to interpret the final result as the contribution of local infor-
mation on each lattice site in particular domains of the lattice,
e.g., the unit cell or the moiré cell in the TBG system.

III. OPTICAL HALL RESPONSE

We present in Fig. 1(a) the results of the optical conduc-
tivity tensors for four TBG configurations with the following

twist angles: θ = 16.426◦, 11.635◦, 9.431◦, and 3.890◦. Al-
though our numerical method allows us to work with arbitrary
values of the twist angle, these four values are chosen, close
to the commensurate angles, to verify rigorously the symmet-
rical property of the conductivity tensor. We have verified that
the conductivity tensor has the following symmetry proper-
ties:

σxx(ω) = σyy(ω), (6a)

σxy(ω) = −σyx(ω) �= 0. (6b)

Additionally, the value of these elements are independent
of the reference frame fixed for the calculation. In Fig. 1(b) we
show the optical conductivity tensors for several SBG config-
urations with different sliding vectors τ with the length �τ =
0.8acc, 0.6acc, 0.4acc, 0.2acc and the angle φτ = 12◦, where
acc ≈ 0.145 nm is the nearest distance between two carbon
atoms in the graphene monolayer. For SBGs, since the trans-
lational symmetry of the lattices is preserved, we calculated
the optical conductivity tensor using the following two meth-
ods: the Kubo-Bastin formula in the real-space approach, and
the Kubo-Greenwood formula in the reciprocal lattice space
approach (see Appendix A). For the latter case, we express
the conductivity tensor as

σαβ (ω) =
∑
k∈BZ

σαβ (k, ω),

where the vector k is defined in the first Brillouin zone (BZ).
We verified that the results from the two methods coincide.
For SBGs, we found in general that the conductivity tensor
has the following symmetry properties:

σxx(ω) �= σyy(ω), (7a)

σxy(ω) = σyx(ω). (7b)

This means that the SBG is optically anisotropic. The
symmetry property is different from the case of TBGs in
Eqs. (6). Additionally, the specific values of the conductivity
tensor components depend on the choice of the Cartesian
axes. However, the values for the conductivity tensor in two
different Cartesian frames are related by the standard coor-
dinate transformation σ ′(ω) = Rϕσ (ω)R−1

ϕ , where Rϕ is the
2 × 2 rotation matrix transforming one frame to the other.
In particular, we found that when the sliding vector τ is
either collinear or perpendicular to one of the vectors δi with
i = 1, 2, 3, i.e., the vectors connecting one carbon atom to its
three nearest neighbors in the honeycomb lattice, the optical
Hall conductivity σxy(ω) is zero in the reference frame with τ

collinear with the Ox axis.
These results for TBGs and SBGs are completely different

from those for the AA- and AB-stacked configurations, where
the conductivity tensor is isotropic. In general, the appearance
of a finite optical Hall conductivity, and the relations between
the tensor components, are not related to the breaking of TRS,
but to the spatial symmetries of the atomic lattices. For the
bilayer system, the AA-stacking configuration presents the
highest symmetry with the point group D6h and the space
group p6mm. The symmetry of the AB-stacked configuration
is lower with the point group D3d and the space group p3m1.
Introducing a finite value of the twist angle θ and the sliding
vector τ significantly reduces the symmetry of the resulting
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FIG. 1. Real part of the longitudinal σxx (ω) and transversal optical Hall conductivity σxy(ω) as a function of the photon frequency for
several TBG [(a) and (c)] and SBG [(b) and (d)] configurations. The conductivities are expressed in units of σ0 = e2/4h̄. The conductivity
presented in panels (c) and (d) is shifted upward to distinguish the curves. In the four panels, the vertical dashed lines are added to highlight
the position of the conductivity peaks.

bilayer lattices. Specifically, θ breaks the translational and
mirror symmetries, thus reducing the point group of the TBG
lattices to be D6 (or D3, depending on the position of the
twist axis) [38]. On the other hand, τ breaks all point group
symmetries, but it preserves the translational symmetry. How-
ever, when the sliding vector τ is collinear or perpendicular
to one of the three vectors δi, an axis C′

2 exchanging the two
layers and a mirror plane perpendicular to this rotation axis is
preserved. These elements, together with an inversion center
I, form the point group C2h. Within these symmetry consid-
erations, we verify that both the TBG and SBG lattices are
chiral. In fact, the TBG configurations with twist angles of θ

and −θ are mirror images of each other, but they are never co-
incident. Similarly, the SBG configurations with τ = (τx, τy)
and τ ′ = (τx,−τy) are also mirror images of each other, and
they are never identical if the lattice has no mirror symmetry.
Such point groups of the TBG and SBG lattices are given in
three-dimensional space. However, because of their 2D na-
ture, the physical properties of these systems are governed by
their 2D subgroups, i.e., Cs for SBGs and C6 (or C3) for TBGs.
Thus, it is easy to verify that σxx = σyy and σyx = −σxy for
TBGs and σxy = σyx and σxx �= σyy for SBGs, confirming the
data we have obtained numerically. The vanishing of σxy(ω) in
special bilayer configurations, such as the SBG configurations

with the C2h symmetrical point group and also the AA- and
AB-stacked configurations, is clearly due to the canceling
contribution of optical transitions enforced by the mirror sym-
metry. Indeed, because of the preservation of a mirror plane in
the SBGs with τ ∝ δi, the Hamiltonian is even with respect
to ky, i.e., Ĥ(kx, ky) = Ĥ(kx,−ky ), but the electric current
component ĵy is odd since v̂y(kx, ky) = (1/h̄)∂Ĥ(kx, ky)/∂ky.
As a consequence, the quantity σxy(kx, ky) becomes odd with
respect to ky, i.e., σxy(kx, ky ) = −σxy(kx,−ky). As a result,
the contributions from all Bloch states in the first BZ will
mutually cancel, leading to σxy(ω) = 0. For TBGs, the inter-
pretation of its optical activity is more subtle: Suárez Morell
et al. addressed it in terms of the rotation of the isospin of the
graphene Weyl fermions [37]. However, this is not sufficient
because if the two graphene layers are decoupled, the behavior
of the system must be identical to that of the monolayer,
i.e., with σxy(ω) = 0. We can show that by decreasing the
interlayer hopping parameter t⊥, the longitudinal conductivity
of TBGs approaches the value of twice the conductivity of
monolayer graphene, and the optical Hall conductivity van-
ishes, as seen in Figs. 2(a) and 2(b). Following Suárez Morell
et al., we also decomposed the electron velocity operator v̂α

into the terms involving the electron motion in each graphene
layer, the in-plane or intralayer velocities v̂1(2)

α , and the in-
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FIG. 2. The longitudinal (a) and transversal optical Hall (b) conductivities of a TBG configuration with θ = 9.431◦ as a function of the
photon energy for various values of the interlayer coupling parameter t⊥. Shown is the isotropy of the optical conductivity tensor in the limit
of interlayer decoupling, t⊥ → 0.

terlayer velocities v̂12
α , i.e., v̂α = v̂1

α + v̂2
α + v̂12

α . By denoting
〈v̂μ

x (ω)v̂ν
y 〉 as the velocity-velocity correlation functions, ac-

cording to the linear-response theory, we can assign the optical
Hall conductivity σμν

xy (ω) to σμ,ν
xy (ω) = ie2〈v̂μ

x (ω)v̂ν
y 〉/ω. Here

we denote μ, ν as the indices for the electron velocity terms,
which take the values μ, ν = 1, 2, and 12. From the Hamilto-
nian (2), these velocity terms are determined by

vν = i

h̄

∑
i, j

tm
i j (rν

j − rν
i )|νi〉〈ν j|, ν = {1, 2}, (8a)

v12 = i

h̄

2∑
ν �=μ=1

∑
i, j

tνμ
i j (rν

j − rμ
i )|νi〉〈μ j|, (8b)

where the latter can be further simplified by decomposing
r2

j − r1
i = dGG + ri j , i.e., into a vertical and a horizontal

contribution, respectively. Here dGG is the vector vertically
connecting the two graphene layers with the length dGG =
0.335 nm. The velocity in Eq. (8b), therefore, can be ex-
pressed as the sum of two perpendicular contributions v̂12 =
v̂12

z + v̂12
drag. Since v̂12

drag lies in the lattice plane, only this com-
ponent contributes to the velocity-velocity correlator.

In Fig. 3 we display data for a SBG configuration with the
sliding vector τ = (1.5acc, 12◦). We see that the magnitudes
of σ 1,1

xy (ω) and σ 2,2
xy (ω) are comparable to those of σ 1,2

xy (ω)
and σ 2,1

xy (ω), while those of σ 12,12
xy (ω) and σ 1(2),12

xy (ω) are
negligible and not shown. These data indicate clearly that the
appearance of optical Hall conductivity is not dictated solely
by the correlation of the electron velocities in two different
graphene layers, but by the correlation of the velocities in the
same graphene layer as well. A different explanation was pro-
posed by Kim et al. in Ref. [13]. They stated that the circular
dichroism of TBGs is due to the interlayer optical transi-
tions. However, the interlayer optical transitions occur as well
in the AA- and AB-stacked configurations, but σxy(ω) = 0.
All these analyses suggest that we need to pay particular atten-
tion to determining the essential factors governing the optical
transitions, and hence the velocity-velocity correlation: the
electronic states conducting the current. Unfortunately, it is
simply impossible to visualize these states. However, in the

following, we will present a way to analyze their behavior
through the dynamics of wave packets.

IV. WAVE-PACKET DYNAMICS

To unveil the physics of the optical Hall response, we
numerically tracked the time evolution of electrons in TBG
lattices. In Fig. 4 we display a snapshot at time 2.9 fs of the
distribution of the probability density of an electron initially
occupying a single 2pz orbital in layer 1. We observed that
the electron wave does not spread solely in layer 1, but it
penetrates and spreads into layer 2 as well. The electron
wave propagation is always interchangeable between the two
layers. This implies the existence of hybridized states that
support such a wave interchange. Noticeably, the wavefronts
of the electron waves in two layers present differences and
similarities: both wavefronts show the anisotropy of the wave
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FIG. 3. The optical Hall conductivity σxy(ω) (the red solid curve)
as a result of the correlation of various terms of the total veloc-
ity operators v̂α = ∑

μ v̂μ
α , μ = 1, 2, 12. Here σμν

xy (ω) ∝ 〈v̂μ
x (ω)v̂ν

y 〉.
The data are presented for a SBG lattice with τ = (1.5acc, 12◦). The
terms corresponding to the correlation of the interlayer current v̂12

are small and not shown.
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(a) layer 1, t = 2.9 fs

y

x

(b) layer 2, t = 2.9 fs
 = 2.5

FIG. 4. The snapshot at t = 2.9 fs of the distribution of the probability density of an electron in the graphene layer 1 (a)/layer 2 (b) of a
TBG lattice with θ = 2.5◦.

spreading along the six preferable directions parallel to the
zigzag lines of the honeycomb lattice [40]. However, the rela-
tive rotation of the two lattices shows the misalignment of the
preferable directions of electron propagation in layer 2 com-
pared to layer 1. This result partially supports the conclusion
by Suárez Morell et al. in Ref. [37]. To clarify the key role
played by the hybridized states in governing the finite Hall
conductivity, we investigated the evolution of kicked Gaussian
waves,

ψ (r, t = 0) ∝ exp

[
− (r − r0)2

4ξ 2

]
exp(iq · r), (9)

where r0 is the initial center of the wave packet, ξ is its width,
and q is the initial wave vector. As a first step, we tracked
the trajectory of the wave centroid in the lattice of monolayer
graphene. The wave centroid at time t is defined by the vector

rc(t ) =
∑

i

ri|ψ (ri, t )|2, (10)

where the summation is over all lattice nodes ri. We observed
that the wave centroid always evolves along straight lines
parallel to the direction of the initial wave vector q indepen-
dently of the zigzag and armchair directions of the honeycomb
lattice; see Fig. 5(a). Semiclassically, this implies that an
electron injected into the honeycomb lattice with an initial
velocity vq(0) ∝ q will move along this direction without any
deflection, i.e., vq(t ) ∝ q at time t > 0. Denoting by vq‖ and
vq⊥ the components of the velocity vq of the wave centroid
parallel and perpendicular to q, respectively, we have vq‖ = vq
and vq⊥ = 0. This yields 〈vq⊥ (ω)vq‖ 〉 = 0. Since σxy(ω) can be
regarded as the result of the average of the velocity-velocity
correlation functions over all possible values of q and r0, i.e.,
σxy(ω) ∝ 〈vq⊥ (ω)vq‖ 〉, it therefore explains the zero optical
Hall conductivity of monolayer graphene. We note in passing
that the same argument applies for the case of AA-stacked
bilayer graphene. However, for the AB-stacked lattice, we

observed the oscillation behavior of the wave centroid tra-
jectories along the six preferable directions of the electron
propagation; see Fig. 5(b). By decreasing the interlayer hop-
ping parameter t⊥, the oscillation amplitude of the trajectories
is reduced. The oscillation trajectories are a peculiar feature
of the hybridized electron states in the AB-stacked lattice.
Remember that in this atomic lattice, three σv mirror planes
of the honeycomb lattice are broken, but they are replaced by
three C′

2 axes that interchange the two graphene layers. The
motion of an electron is thus not constrained by mirror sym-
metry, but by C′

2 symmetry. More importantly, the oscillating
trajectories indicate that an electron gains a nonzero trans-
verse velocity vq⊥ �= 0 when moving in the lattice, leading
to 〈vq⊥ (ω)vq‖ 〉 �= 0. However, analyzing in detail Fig. 5(b),
we can infer the zero optical Hall conductivity σxy(ω) = 0
by noticing that there are always two mirror symmetric tra-
jectories related by the symmetry plane σd of the AB-stacked
lattice corresponding to two distinct values of q. We note in
passing that a similar behavior is also observed for the particu-
lar SBG configurations with C2h symmetry. This suggests that
the existence of a mirror symmetry plane in bilayer lattices
will always lead to the existence of pairs of momenta q and
q′ such that vq′

‖ = −vq‖ , but vq′
⊥ = vq⊥ . As a consequence,

these terms always cancel each other on average, resulting in
zero optical Hall conductivity, i.e., σxy(ω) = 0. In Fig. 5(c) we
show the trajectories of the wave centroid of kicked Gaussian
wave packets in a TBG lattice. The solid (dashed) curves are
for the cases in which the initial wave packets are located in
layer 1 (layer 2). We clearly see the deflection of the trajecto-
ries from the lines along the initial vector q, which means that
〈vq⊥ (ω)vq‖ 〉 �= 0. Because of the absence of mirror symmetry,
the TBG lattices are chiral. This dictates as well the chirality
of the hybridized electron states as mirror images of the solid
and dashed curves shown in Fig. 5(c). Further study of the
centroids of the wave parts propagating on two graphene
layers shows that they move along different curly trajectories;
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FIG. 5. The trajectory of kicked Gaussian wave packets with ξ = 2
√

3acc and the initial wave vector of q = 0.95 × π/3
√

3acc orienting
along various directions characterized by the angle φq: (a) in the monolayer graphene, (b) in the AB-stacked bilayer graphene, (c) in a TBG
graphene with the twist angle θ = 3.890◦. (a),(b) The zigzag lines of the honeycomb lattice oriented along the directions of 30◦, 90◦, and
150◦ show the preferable directions of electron propagation. In panel (c) the solid/dashed curves are for the wave packets that are initially
located in the top/bottom graphene layer. Panel (d) shows the deviation from each of the trajectories of the parts of the Gaussian wave packets
propagating on the top (solid)/bottom (dashed) graphene layer of a TBG lattice for φq = 90◦ and 270◦.

see Fig. 5(d). This explains the deflection of the trajectories,
and the left-/right-deflection (chirality) behaviors observed in
Fig. 5(c). So, with the same argument made for the monolayer
and AB-stacked bilayer, we conclude that the TBG lattices
will be characterized by finite optical Hall conductivity since
there are no cancellation contributions to 〈vq⊥ (ω)vq‖ 〉 in the
optical Hall conductivity due to the breaking of the mirror
symmetry, i.e., σxy(ω) ∝ 〈vq⊥ (ω)vq‖ 〉 �= 0 after averaging over
q and r0.

V. FARADAY, KERR ROTATION, AND
CIRCULAR DICHROISM

In the previous section, we saw that the electrical conduc-
tivity tensor is the key quantity to characterize the transport
and optical properties of an electronic system. To complete
our discussion, we present in this section the results for the
Faraday and Kerr rotation angles of the light polarization
vector as well as the CD, a quantity quantifying the differ-
ence of the absorption of the left-handed and right-handed
circular polarization light. We employed the transfer matrix

method to determine the transmission t and reflection r ma-
trices; these express the relationship between the amplitude
of the transmitted/reflected light and that of the incident
light [21]. The details of the calculation are presented in
Appendix C, where the relationship between these matrices
and the components of the electrical conductivity tensor is
presented. In particular, we show that txy(ω), rxy(ω) ∝ σxy(ω);
see Eqs. (C19) and (C20). From these results, together with
Eqs. (C13) and (C10a), we see that there are no Faraday or
Kerr rotations nor any CD if the systems do not have the op-
tical Hall response, σxy(ω) �= 0. For the case of SBG systems,
because of the specific symmetry properties of the conduc-
tivity tensor, i.e., σxy(ω) = σyx(ω), Eq. (C24) indicates that
there is no CD. In other words, the SBG systems cannot dis-
tinguish the left-handed and right-handed circular polarized
light despite the chirality of the atomic lattice. This is different
from the case of TBG systems since σxy(ω) = −σyx(ω). In
Figs. 6(a) and 6(b), we present the values of the Faraday
and Kerr rotation angles and of the CD calculated for a TBG
configuration with the twist angle θ = 9.430◦ (the results for
the other twist angles are qualitatively similar).
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FIG. 6. (a) The Faraday θF and Kerr θK rotation angles, and
(b) the circular dichroism as a function of the photon energy for a
representative TBG configuration with the twist angle θ = 9.430◦

vs the photon energy. The plot of the CD is shifted upward by an
amount 2.5, and the data are multiplied by 20 to compare with σxx .
The CD is displayed (the red curve) together with the real part of the
conductivity σxx/σ0 (the blue curve) to associate the structure of the
former with that of the conductivity. (c) The DOS as a function of
the energy for TBG with θ = 9.430◦ in red. The DOS of the totally
decoupled BLG (in blue) is also displayed to highlight the energy
ranges in which the hybridized states are manifested through the
subpeaks of the red curve.

These results show that these quantities vary versus the
photon energy ω of the incident light. In the low (<1 eV) and
high (>7 eV) energy ranges wherein the electronic states in
two graphene layers effectively decouple, the values of θF, θK

and the CD are zero, as expected. On the contrary, in the
energy range of (1,7) eV, where the hybridized electron states
are formed and manifest as peaks in the density of states [42],
the values of θK, θF and CD are different from zero. For the
TBG configuration with θ = 9.430◦ we observe that θF can
reach a value of 4◦, while θK can reach a value of 2◦, and the
CD is ∼8%. In general, the dependence of these quantities
on the photon energy ω is complicated, as is presented in
Eq. (C24). Physically, since the CD is associated with light
absorption, the behavior of the curve CD(ω) should relate
to the real part of the longitudinal conductivities σxx(ω) and
σyy(ω). In Fig. 6(b) we present the curve CD(ω) together with
the curve σxx(ω) in which the CD values are multiplied by 20

and shifted upward by an amount of 2.5 as a guide for the
eyes. Clearly, we observe the consistency of the behavior of
the CD(ω) result with that of the conductivity curve σxx(ω).

VI. DISCUSSION AND CONCLUSIONS

Before concluding the paper, we would like to validate
the available predictions of the physical properties of generic
TBG systems that were usually deduced for commensurate
configurations. As our calculation method is based on the
real-space approach, it can be applied to lattices of arbitrary
stacking, regardless of commensurate or incommensurate
configuration. Using our numerical method, we can conclude
that both the density of states and the conductivity tensor σ

vary continuously with the twist angle θ and the sliding vector
τ in the whole range of these parameters, i.e., θ ∈ (0◦, 60◦)
and τ given in the triangle defined by two unit vectors a1

and a2 of the honeycomb lattice. However, it is worth noting
that the behaviors of the AA- and AB-stacked configurations
cannot be deduced as limiting cases of the TBG system for
θ → 0◦ or 60◦ or of the SBG system for τ → 0. We confirm
this argument by a symmetry analysis: as long as θ �= 0 or 60◦
or τ �= 0, the system symmetries are not changed by varying
these parameters. A sudden change is obtained only when
either θ or τ is equal to the limit values. For these cases, the
point group D6 (or D3) of the TBG lattices changes to D6h

(or to D3d ) of the AA-stacked lattice (or of the AB-stacked
lattice), whereas for the case of SBG, the change is from E to
Cs or to higher symmetry point groups. Additionally, for the
TBG case, there will be a collapse of the unit cell from the
very large size to the one containing only four carbon atoms
when θ changes to 0◦ or 60◦. In both the AA- and AB-stacked
lattices, the number of carbon atoms in one layer coupled to
another carbon atom in the second layer is higher than that
in the TBG and SBG lattices. Indeed, by defining n̄nb as the
average number of lattice nodes on one layer that an electron
can hop to another node in the other layer, we obtain the
following: for a given radius of proximity rc = √

a2
cc + d2,

we find that it is n̄nb = 4 (5) for θ = 0◦ (60◦) but n̄nb ≈ 2.7
for different values of θ , regardless of the size of θ . This
observation is interesting because it can help to explain the
behavior of the effective decoupling of the two layers in some
energy ranges [42,57].

In conclusion, stacking material layers of atomic thickness
has been considered as a potential path for engineering the
electronic structure and physical properties of complex 2D
material systems, especially when attempting to design de-
vices for manipulating light at the nanoscale [3,58]. This may
be of potential interest for designing optical systems that can
distinguish between different enantiomers of molecules, with
important applications in medicine and chemistry [14,15,59].
In this work, we analyzed in-depth the origin of the finite op-
tical Hall response of bilayer graphene under twisting and/or
sliding two layers. We showed that lattices of twisted- and
slid-bilayer graphene are chiral, and they can be used to help
rotate the polarization of linearly polarized light. Our analysis
was based on a real-space computation scheme developed to
compute all the components of the optical conductivity tensor.
We showed in detail that the TBG lattices are isotropic and
support the CD, while the SBG lattices are anisotropic and
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do not support the CD. The calculation method allows us to
monitor the evolution of an electron in atomic bilayer lattices
with an arbitrary twist angle and a sliding vector. The chiral
behavior of hybridized electron states was determined to be
a deflection of the trajectory of the kicked Gaussian wave
packets in BLG lattices. The optical Hall response of the BLG
system, therefore, was argued to be a manifestation of the
chirality of the hybridized states that supports the interchange
of electrons between the two graphene layers. However, we
showed that the mirror symmetry constrains the contribution
of such states to the optical Hall response. In the lattices
without mirror symmetry, such as the TBGs and SBGs, the
hybridized states govern the correlation of different compo-
nents of the electron velocity in such a way that the terms do
not cancel each other, hence resulting in nonzero optical Hall
conductivity. To quantify the optical activity of the bilayer
graphene systems, we employed the transfer matrix method to
establish the relationship between the transmission and reflec-
tion matrices and the components of the conductivity tensors,
and then we determined the Faraday and Kerr rotation angles
as well as the circular dichroism. Finally, taking advantage of
the calculation method combined with a symmetry analysis,
we concluded that there is a continuous variation of physical
quantities, including the density of states and the electrical
conductivity tensors, on the twist angle and the sliding vector.
This conclusion can be applied to bilayer graphene systems
that would be deduced using the force-brute exact diagonal-
ization approach.
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APPENDIX A: THE KUBO-BASTIN FORMULA

There are a number of versions of the Kubo formula for
electrical conductivity that can be implemented in different
situations. Here we present the derivation of Eq. (2). From
the general linear response theory, the element σαβ (ω) of
the electrical conductivity tensor is composed of diamagnetic
and paramagnetic components, σαβ (ω) = σ A

αβ (ω) + σ P
αβ (ω),

where [60]

σ A
αβ (ω) = i

e2

meω
neδαβ, (A1a)

σ P
αβ (ω) = ie2

ω

1

�

∑
�,n

( fn − f�)
〈n|v̂α|�〉〈�|v̂β |n〉

h̄(ω + iη) − (E� − En)
.

(A1b)

Here me is the bare electron mass, ne is the electron density
in a system, η is a positive infinitesimal number, and � is the
spatial volume of the considered system. The diamagnetic part
is diagonal. It is determined through the calculation of ne:

ne =
∫ +∞

−∞
dEρ(E ) f (E ) =

∫ +∞

−∞
dE

ρ(E )

1 + eβ(E−μ)
, (A2)

where ρ(E ) is the density of states of an electron, β = 1/kBT
is the inversion of thermal energy, and μ is the chemical po-
tential. For the paramagnetic part of the conductivity elements
σ P

αβ (ω), the properties of the δ Dirac function involving the
integration are written as follows:

σ P
αβ (ω) = ie2

ω

1

�

∑
�,n

∫ +∞

−∞
dEδ(E − En) f (E )

〈n|v̂α|�〉〈�|v̂β |n〉
E + h̄ω − E� + ih̄η

+ ie2

ω

1

�

∑
�,n

∫ +∞

−∞
dEδ(E − E�) f (E )

〈n|v̂α|�〉〈�|v̂β |n〉
E − h̄ω − En − ih̄η

. (A3)

Now, noting that δ(E − Ĥ)|n〉 = δ(E − En)|n〉 and introducing the retarded (+) and advanced (−) resolvents, we have

Ĝ±(E ± h̄ω) = 1

E ± (h̄ω + iδ) − Ĥ
. (A4)

Equation (A3) is written in the form of Eq. (2):

σ P
αβ (ω) = ie2

ω

1

�

∫ +∞

−∞
dE f (E )Tr[δ(E − Ĥ)v̂αĜ+(E + h̄ω)v̂β + Ĝ−(E − h̄ω)v̂αδ(E − Ĥ)v̂β]. (A5)

For low frequencies, we can approximate

G±(E ± h̄ω) ≈ G±(E ) ± dG±(E )

dE
h̄ω. (A6)
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So, we determine the real and imaginary parts of the conductivity σ P
αβ as follows:

Re
[
σ P

αβ (ω)
] = −e2 h̄

�

∫ +∞

−∞
dE f (E )2 Im

(
Tr

[
δ(E − Ĥ)v̂α

dĜ+(E )

dE
v̂β

])
, (A7a)

Im
[
σ P

αβ (ω)
] = +e2

�

1

ω

∫ +∞

−∞
dE f (E )2 Re

(
Tr

[
δ(E − Ĥ)v̂αĜ+(E )v̂β

])
. (A7b)

The imaginary part is inversely dependent on ω, but the real
part is independent of ω. The real part is identical to the Kubo-
Bastin formula that defines the dc conductivity [56]. As the
δ-function and Green functions can be expanded efficiently
in terms of Chebyshev polynomials, i.e., with the expansion
coefficients given analytically, the Kubo-Bastin formula is
useful for general calculation. In Ref. [55], the authors demon-
strated successfully the calculation for the dc conductivity of
topological systems.

APPENDIX B: RETARDED AND ADVANCED RESOLVENTS
IN TERMS OF CHEBYSHEV POLYNOMIALS

The Bessel function of the first kind is defined by the
integral

Jn(z) = 1

inπ

∫ π

0
dθ cos(nθ )eiz cos θ . (B1)

This function has the property Jn(−z) = (−1)nJn(z).
In terms of the Chebyshev polynomials of the first kind, it

is straightforward to expand the exponent function e±ixt . This
yields

e±ixt =
+∞∑
n=0

2

δn,0 + 1
(±i)nJn(t )Tn(x), (B2)

where x ∈ (−1, 1).
Applying this result to expand the retarded and ad-

vanced resolvents Ĝ±(E ) = 1/(E ± iη − Ĥ ) = W −1/(ε ±
iη − ĥ), where ε = (E − E0)/W, ĥ = (Ĥ − E0)/W , we ob-
tain

Ĝ±(E ) = ± 1

iW

∫ +∞

0
dte±i(ε±iη)t e∓iĥt (B3)

= ± 1

W

+∞∑
n=0

(∓i)n+1 2

δn,0 + 1
g±

n (ε ± iη)Tn(ĥ),

where g±
n (ε ± iη) are defined by [53]

g±
n (z) =

∫ +∞

0
dte±izt Jn(t ) = (

√
1 − z2 ± iz)n

√
1 − z2

, (B4)

where z = ε ± iη.
The derivative of the resolvents Ĝ±(E ) with respect to E is

driven as follows:

∂Ĝ±(E )

∂E
= ± 1

W

+∞∑
n=0

2

δn,0 + 1
(∓i)n+1 ∂g±

n (ε ± iη)

∂E
Tn(ĥ)

= ± 1

W 2

+∞∑
n=0

2

δn,0 + 1
(∓i)n+1 ∂g±

n (z)

∂z
Tn(ĥ),

where z = ε ± iη and

∂g±
n (z)

∂z
= 1√

1 − z2

(
z√

1 − z2
± in

)
g±

n (z). (B5)

APPENDIX C: FARADAY, KERR ROTATION, AND
CIRCULAR DICHROISM

1. Elliptical polarization light

A monochromatic light is described by an electric vector
with the components given in the form

Ex(t, z) = E0x cos(kz − ωt ), (C1a)

Ey(t, z) = E0y cos(kz − ωt + ϕ), (C1b)

where ϕ is the dephasing between the two components Ey and
Ex. This light is elliptically polarized and is characterized by
two parameters, i.e., the polarization angle α and the ellipticity
tan ε (ε is called the ellipticity angle). These two parameters
are straightforwardly determined by

tan(2α) = 2E0xE0y

E2
0y − E2

0x

cos ϕ, (C2a)

tan ε =
∣∣∣∣E0x tan α + E0y

E0x − E0y tan α

∣∣∣∣, (C2b)

where α ∈ (−π/4, π/4) and ε ∈ [0, π/2).
In practice, we usually use a complex field to represent

a trigonometric function. We thus define a complex vector,
named the Jones vector, for the electric field as follows:

E = 1√
E2

x + E2
y

(
Ex

Ey

)
= 1√

E2
0x + E2

0y

(
E0x

E0yeiϕ

)
. (C3)

So, a monochromatic light of the vertical and horizontal linear
polarization (ϕ = 0) is defined by the following Jones vectors:

Ẽ�
v =

(
0
1

)
and Ẽ�

h =
(

1
0

)
. (C4)

Similarly, for left-handed (ϕ = π/2) and right-handed (ϕ =
−π/2) circular polarization light, they are defined, respec-
tively, by the following Jones vectors:

Ẽc
L = 1√

2

(
1
i

)
and Ẽc

R = 1√
2

(
1
−i

)
. (C5)

In general, for left-handed (ϕ = π/2) and right-handed (ϕ =
−π/2) elliptical polarization light in the canonical frame (α =
0), the Jones vectors read

Ẽe
L =

(
cos ε

i sin ε

)
and Ẽe

R =
(

cos ε

−i sin ε

)
. (C6)
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2. Equations for the polarization angle and the ellipticity

Consider a monochromatic light of the linear polarization
parallel to the Ox axis. This light is incident to a plane sepa-
rating two material environments. The light transmitting and
reflecting at this plane will be defined by Eqs. (C1a) and
(C1b). Accordingly, the Faraday and Kerr rotation angles are
determined by the value of the polarization angle α.

Using the complex representation for the components of
the electric vector of a monochromatic light, the polariza-
tion angle α and the ellipticity tan ε are not determined
by Eqs. (C2a) and (C2b). Instead, we define the complex
quantity as

χ = Ẽy

Ẽx
= E0y

E0x
eiϕ. (C7)

Since in the canonical frame of the ellipse the Jones vector of
the electric field is given by Eq. (C6), we should rotate it back
by an angle of α to obtain the vector components in the global
Cartesian frame xOy. We therefore obtain

(
Ẽx

Ẽy

)
=

(
cos α − sin α

sin α cos α

)(
cos ε

iη sin ε

)
, (C8)

where η = ±1 is the sign for the left-handed and right-handed
elliptical polarization. The quantity χ is thus determined by

χη = tan α + iη tan ε

1 − iη tan α tan ε
. (C9)

From this result, it is straightforward to deduce the equations
for the polarization angle and the ellipticity angle:

tan(2αη ) = 2 Re(χη )

1 − |χη|2 , (C10a)

sin(2εη ) = η
2 Im(χη )

1 + |χη|2 . (C10b)

Now we apply these results to determine the Kerr and
Faraday rotation angles occurring at one reflection plane. In
the given setup, the Jones vector for the incident light is

Ẽin =
(

Ẽ in
x
0

)
. (C11)

The Jones vectors for the reflecting and transmitting light
relate to Ẽin through the reflection and transmission matrices r
and t, respectively, by Ẽr = rẼin and Ẽt = tẼin. In particular,

Ẽ r
x = rxxẼ in

x , Ẽ r
y = ryxẼ in

x , (C12a)

Ẽ t
x = txxẼ in

x , Ẽ t
y = tyxẼ in

x , (C12b)

where rαβ and tαβ are the elements of the matrices r and t. We
thus obtain the expression for the χ -quantity as follows:

χK = Ẽ r
y

Ẽ r
x

= ryx

rxx
and χF = Ẽ t

y

Ẽ t
x

= tyx

txx
. (C13)

By inserting χK and χF into Eq. (C10a), we obtain the Kerr
and Faraday rotation angles θK, θF.

3. Relations between the transmission and reflection matrices
and the electrical conductivity tensor

We follow the transfer matrix method to establish the ex-
pression for the transmission and reflection matrices for the
system of bilayer graphene. We set up the system like the
one in Ref. [21] in which the graphene layer is separating
two semi-infinite mediums 1 and 2 characterized by the pa-
rameters (ε1, μ1) and (ε2, μ2). Ignoring the thickness of the
graphene layer, we can assume that the interface between the
two mediums has an electrical conductivity tensor σ̃ = σ0σ.
Therefore, the boundary conditions for the Maxwell equations
at the interface read

Ẽin + Ẽr = Ẽt , (C14a)

n × (H̃t − H̃in − H̃r ) = J̃. (C14b)

Here n is the normal vector of the interface, and J̃ is the
electrical current density on the interface. Because of Ohm’s
law,

J̃ = σ̃Ẽt = σ̃(Ẽin + Ẽr ), (C15)

and the relation

H̃ =
√

ε0ε

μ0μ

k × Ẽ
k

, (C16)

we identify the expression for the transmission matrix [33],

t = 2
√

ε0ε1

μ0μ1

[(√
ε0ε1

μ0μ1
+

√
ε0ε1

μ0μ1

)
I + σ̃

]−1

. (C17)

Here I is the identity matrix. The reflection matrix r is deter-
mined via the relation r + t = I.

Assuming μ1 = μ2 = 1 and noting the definition of the
refractive index n1,2 ≈ √

ε1,2, we have

t = 2[(1 + n21)I + σ̄]−1, (C18)

where n21 = n2/n1, σ̄ = (4π h̄α/n1e2)σ̃ = (πα/n1)σ, and
α = e2/(4π h̄ε0c) ≈ 1/137 is the fine-structure constant. Pro-
ceeding with further calculations, we obtain

t = 2

�

(
1 + n12 + σ̄yy −σ̄xy

−σ̄yx 1 + n12 + σ̄xx

)
(C19)

and

r = 2

�

(
1 + n12 + σ̄yy − �

2 −σ̄xy

−σ̄yx 1 + n12 + σ̄xx − �
2

)
, (C20)

where � = [(1 + n21) + σ̄xx][(1 + n21) + σ̄yy] − σ̄xyσ̄yx.

4. Circular dichroism

Circular dichroism is a quantity used to measure the de-
pendence of light absorption on the left-hand and right-hand
polarization:

CD = AL − AR

AL + AR
, (C21)
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where AL/R are the absorptances for left- and right-polarized
light. These quantities are determined through the reflectance
R and transmittance T by AL/R = 1 − (RL/R + TL/R). Here, the
reflectance and transmittance are determined by

R = (rẼin )†(rẼin )

(Ẽin)†Ẽin
, (C22a)

T = (tẼin)†(tẼin )

(Ẽin)†Ẽin
. (C22b)

In particular, with the notice of the Jones vector given in
Eq. (C5), the absorptances of the left/right-handed circular

light are given by

AL = Re[txx + i(txy − tyx ) + tyy], (C23a)

AR = Re[txx − i(txy − tyx ) + tyy]. (C23b)

The formula for the CD, therefore, reads

CD = Im(σ̄xy − σ̄yx )

Re[2(1 + n21) + σ̄xx + σ̄yy]
. (C24)

For mediums 1 and 2 being in vacuum, we can set n1 =
n2 = n21 = 1.
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