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Degenerate manifolds, helimagnets, and multi-Q chiral phases in the classical Heisenberg
antiferromagnet on the face-centered-cubic lattice

Péter Balla,1 Yasir Iqbal ,2 and Karlo Penc 1

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49, Hungary
2Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

(Received 30 June 2020; revised 20 October 2020; accepted 28 October 2020; published 24 November 2020)

We present a detailed study of the ground-state phase diagram of the classical frustrated Heisenberg model
on the face-centered-cubic lattice. By considering exchange interactions to third nearest neighbors, we find
commensurate, helimagnetic, as well as noncollinear, multi-Q orders which include noncoplanar and chiral
spin structures. We reveal the presence of subextensively degenerate manifolds that appear at triple points and
certain phase boundaries in the phase diagram. Within these manifolds, the spin Hamiltonian can be recast
as a complete square of spins on finite motifs, permitting us to identify families of exact ground-state spin
configurations in real space—these include randomly stacked ferro- or antiferromagnetically ordered planes and
interacting ferromagnetic chains, among others. Finally, we critically investigate the ramifications of our findings
on the example of the Ising model, where we exactly enumerate all the states numerically for finite clusters.
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I. INTRODUCTION

A first acquaintance with geometric frustration, which
has played such a pivotal role in modern condensed matter
physics, is tacitly made in the context of a classic textbook
example of the crystal structure of salt (NaCl), namely, the
face-centered-cubic (fcc) lattice. The elementary motif of any
covering of the fcc lattice is a triangle, and this feature renders
it impossible for antiferromagnetically (AF) interacting spins
to simultaneously satisfy all interactions. Indeed, a system of
AF interacting spins treated as n-component classical (spin
S → ∞) vectors of a fixed length forms an infinitely de-
generate one-dimensional (1D) ground-state manifold at zero
temperature [1]. The investigation of the thermodynamic and
critical behavior of the fcc O(n) antiferromagnet has had a
long history, especially for the n = 1 (Ising) model [2–6]
which is now known to undergo a first-order transition into
a collinear AF state [7–13], while on the other hand, hardly
much is known about the classical n = 2 (XY ) model [1,14].
Concerning the physically realizable case of n = 3 (Heisen-
berg) spins, after much debate [14–17], there now appears to
be a consensus that the model undergoes a first-order phase
transition into a collinear AF state [18]. For Heisenberg spins
away from the classical limit, i.e., when 1/S �= 0, only few
studies have addressed the role of quantum fluctuations in the
large-S [19] or small-S limits [20], and nearly seven decades
after being first attended to in Ref. [21], the determination of
the nature of the ground state of the quantum Heisenberg anti-
ferromagnet on the fcc lattice remains a critically outstanding
problem.
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Recently, it has been realized that the subextensive de-
generacy of the T = 0 ground-state manifold is not unique
to first-neighbor (J1) antiferromagnetic interactions and that
on inclusion of second-neighbor interactions (J2) a two-
dimensional subextensively degenerate ground-state manifold
in the form of a spiral surface can be stabilized for J2/J1 =
1/2 [22], in addition to three different AF commensurate
orders [23]. In this work, we incorporate a third-neighbor
exchange coupling J3 and obtain the T = 0 global phase
diagram of the classical J1-J2-J3 Heisenberg model for all
combinations of signs of couplings, which has hitherto not
been investigated. Our study reveals a rich phase diagram fea-
turing helimagnetic and noncollinear multiple-Q orders which
allow for noncoplanar and chiral structures. Our most salient
finding is that the phase diagram is host to highly (subex-
tensively) degenerate one- and two-dimensional ground-state
manifolds in reciprocal space (henceforth referred to as q
space) occurring at triple points (where several phases meet)
and phase boundaries. Remarkably, at these triple points and
phase boundaries, we are able to express the Hamiltonian
as a positive definite sum of complete squares on finite
motifs covering the lattice allowing one to understand the
origin of the subextensively degenerate manifold of states.
This reformulation also permits us to explicitly construct
large classes of nontrivial, aperiodic ground states in real
space, consisting of randomly stacked ordered planes and
frustrated ferromagnetically ordered chains in special crys-
tallographic directions. Considering the case of Ising spins,
we are able to completely enumerate, on finite clusters, the
type of possible configurations in real and Fourier space, and
provide indications of an even richer structure for Heisenberg
spins. Our work also provides the basis for understanding
the origin of a plethora of fcc magnetic structures in a wide
variety of magnetic materials [24]. In particular, a recent
investigation of the half-Heusler compound GdPtBi [25] pro-
posed an antiferromagnetic J1-J2-J3 Heisenberg model, and
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argued for the indispensability of a J3 interaction to match the
observed neutron scattering profile while a highly frustrated
double perovskite compound Ba2CeIrO6 is known to develop
antiferromagnetic order and has been argued to be located in
the vicinity of the J1-J2 model [26].

The remainder of the article is structured as follows:
We introduce the fcc lattice, the Heisenberg model and the
Luttinger-Tisza method in Sec. II. The phase diagram is de-
rived in Sec. III and Sec. IV presents the commensurate phases
and the construction of the possible multiple-Q structures. In
Sec. V the different notions of the chirality are discussed.
Section VI is devoted to incommensurate phases. We describe
the details of the construction of the spin structures in real and
reciprocal space in the ground-state manifolds in Sec. VII.
Finally, in Sec. VIII we conclude with a summary of the
results. The article ends with the following (mostly technical)
Appendices. In Appendix A we define our conventions for
the lattice and show the Fourier transform of the interactions.
Appendix B contains a table of the phase boundaries. The
Ising configurations in the different subextensive manifolds
are enumerated in Appendix D for finite clusters and critically
compared to results of Sec. VII.

II. THE MODEL AND THE LUTTINGER-TISZA METHOD

The fcc lattice is an archetypal frustrated lattice; it can be
tessellated from (111) triangular planes, in an ABCABC type
stacking style, see Fig. 1(a), Appendix A, and Fig. 1(b). A
triangular lattice is frequently called hexagonal to emphasize
its sixfold symmetry. This frustration is even more empha-
sized if we build the lattice from edge-sharing tetrahedra;
the two differently oriented tetrahedral building blocks are
depicted in Fig. 1(c). Another way of constructing the lattice
is an edge-sharing octahedral covering; for a picture of the
octahedral building blocks see Fig. 1(d).

The Hamiltonian of the classical isotropic Heisenberg
model,

H = J1

∑
〈i, j〉1

Si · S j + J2

∑
〈i, j〉2

Si · S j + J3

∑
〈i, j〉3

Si · S j, (1)

describes three-dimensional unit vectors |Si| = 1 at the sites
Ri of the fcc lattice, interacting with first- (J1), second- (J2),
and third-neighbor (J3) interactions. The summation indices
〈i, j〉δ with δ = 1, 2, 3 refer to the δ’th-neighbor pairs. There
are 12 first, 6 second, and 24 third-neighbor vectors in the
fcc structure. One vector of each neighbor set is presented in
Fig. 1(b).

We wish to find the ground states of the model in Eq. (1)
using the method developed by Luttinger and Tisza [27], i.e.,
by finding the minimum of the exchange interaction in Fourier
space J (q) [28]. We define the energy in reciprocal space as

H = N
∑
q∈BZ

J (q)Sq · S−q, (2)

where the summation runs over the Brillouin-zone (BZ), N is
the total number of sites of the lattice with periodic boundary
conditions, and

J (q) = 1

2

∑
δ

Jδe
ıq·δ, (3)

(a) (b)

(c) (d)

(0,0,0) (1,0,0)
(0,1,0)

(0,0,1)

a3

J1J2

J3

a1

a2

FIG. 1. Geometry and exchange interactions of the face-
centered-cubic lattice. The enclosing cube is the conventional cell
with edge length a. (a) Primitive lattice vectors a1 = 1

2 (1, 1, 0),
a2 = 1

2 (1, 0, 1), a3 = 1
2 (0, 1, 1) connect the first neighbors. (b) The

first-neighbor J1, second-neighbor J2, and third-neighbor J3 inter-
actions on the lattice [cf. the Hamiltonian Eq. (1)]. There are 12
first, 6 second, and 24 third neighbors, respectively. (111) planes are
indicated by a light cyan color as a guide to the eye: Interactions J1

and J3 are first- and second-neighbor interactions of the triangular
lattices formed by these planes, and J2 connects the planes. The fcc
lattice can be covered by edge-sharing elementary tetrahedra (c) or
by edge-sharing octahedra (d).

is the Fourier transform of the exchange interactions with
lattice separation vectors δ = Ri − R j , which is presented in
Eq. (A4). We used the following convention for the Fourier
transform of the spins:

Sq = 1

N

∑
i

Sie
ıq·Ri , (4a)

Si =
∑
q∈BZ

Sqe−ıq·Ri . (4b)

In the Luttinger-Tisza method we minimize J (q) with re-
spect to q, i.e., we solve the gradient equation,

∂J (q)

∂qα

= 0, (5)

for α = x, y, z. If the equation is satisfied at a point
q = Q, then we check the positive semidefiniteness of the
Hessian

∂2J (q)

∂qα∂qβ

∣∣∣∣
q=Q

� 0. (6)

The conditions above are necessary but not sufficient to have
a global minimum: To find a true ground state we have to
compare the different local minima and choose the lowest one.
We denote the set of points {Q}—the ordering vectors—where
J (q) takes its minimal value by MGS, and call it the ground
state manifold and choose the Fourier amplitude vectors SQ’s
to satisfy the spin-length constraint |Si| = 1 for every site. For
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TABLE I. Symmetry points and lines with their labels (first column) in the Brillouin zone of the face-centered-cubic lattice. Second
column: Number of arms of the star of the point or line (degeneracy). The corresponding energy per site ε(Q) is given in the third column. The
fourth column gives the stability region of the commensurate phases, i.e., exchange parameter regions where the Hessian [Eq. (6)] is positive
definite. The last column gives the conventional names of the commensurate antiferromagnetic phases. Compare this table with the phase
diagram given in Fig. 2. For pictures of wave vectors in the Brillouin zone see Fig. 3. We refer to points in the Brillouin zone either by their
names and coordinates in units of 2π or their respective wave vector, i.e., W (1, 1

2 , 0) ≡ (2π, π, 0) = QW .

Label(Q) No. arms ε(Q) Local stability Type

�(0, 0, 0) 1 6J1 + 3J2 + 12J3 J1 < −J2−6J3 —
X (1, 0, 0) 3 −2J1 + 3J2 − 4J3 J2 < 4J3 < 2J1−2J2 Type I
L
(

1
2 , 1

2 , 1
2

)
4 −3J2 J1−2J2 < 2J3 < J1+J2 Type II

W
(
1, 1

2 , 0
)

6 −2J1 + J2 + 4J3 8J3 < 2J2 < J1−2J3 Type III

	(q, 0, 0) 6
2−2J2

1 +2J1J2+J2
2 −24J2

3
2J2+8J3


(q, q, q) 8 − 3(J2
1 +2J1(J2−2J3 )+(J2+2J3 )2 )

8J3

�(q, q, 0) 12 ε(Q� )a

aThe ε(Q� = (q�, q�, 0)) Fourier transform is as follows:

ε(Q� ) = J3
1 +6J2

1 J2−66J2
1 J3+12J1J2

2 −120J1J2J3+12J1J2
3 +8J3

2 +24J2
2 J3−120J2J2

3 +296J3
3

432J2
3

+ (−J2
1 −4J1J2+44J1J3−4J2

2 −8J2J3−100J2
3 )

√
[J1+2(J2+J3 )]2−48J3(J1−2J3 )

432J2
3

.

a given MGS the amplitudes have to be chosen carefully to
satisfy the local constraints (the Luttinger-Tisza method only
guaranties the fulfilment of the global constraint

∑
i |Si|2 =

N). We give a detailed analysis of the amplitudes and the
corresponding orderings in real space in Sec. IV.

When the local constraints are satisfied, the ground-state
energy per site ε(Q) equals the Fourier transform of the
exchange constant evaluated on the MGS. To show this we
evaluate Eq. (2) on the MGS:

ε(Q) = 〈H〉0

N
=

∑
Q∈MGS

J (Q)
∣∣S0

Q

∣∣2 = J (Q), (7)

where the 0 indices refer to the ground-state properties; note
that ε(Q) only depends on the ordering vector parametri-
cally. We use the reality of the spin components S0

−Q =
S0∗

Q , J (Q) being constant on MGS, and employ the Fourier
form of the local spin length constraint 1 = ∑

q∈BZ |Sq|2 =∑
Q∈MGS

|SQ|2 (since Sq = 0 for q /∈ MGS in the ground
state).

The dimension of the MGS is a crucial ingredient in
understanding the physics of these systems. Conventional
commensurate ferromagnets or antiferromagnets correspond
to zero-dimensional manifolds, i.e., a handful of points
in highly symmetric positions of the BZ. Incommensurate
orders (spin spirals, helices, cycloids) [29–31] also have
zero-dimensional MGS but now at generic points in the BZ.
Magnetic Bragg peaks show up at these points in neutron scat-
tering. But in frustrated systems the possibilities are richer:
The MGS can be a one-dimensional degenerate manifold as
for the J1-J2 model on the square [32,33], honeycomb lattices
[34–36], and the J1 only model on the fcc lattice [19,37] where
every point on a line is a possible ordering vector, and with
carefully chosen amplitudes we can compose ground states
with complicated spatial variation. The situation can be even
more complex when the dimension of the MGS is larger: Spin
spiral surfaces (i.e., two-dimensional MGS’s) were found in

the J1-J2 Heisenberg model on the diamond [38], fcc [16,22],
body-centered cubic [39], and hexagonal close packed [40]
lattices. Furthermore, on the kagome [41,42] and pyrochlore
[43–45] lattices the whole BZ is the MGS. These extended
manifolds give an opportunity to the system to fluctuate
between the degenerate ground states, making them candi-
dates for classical spin liquids in some temperature range
[38,46–49].

There is another type of degeneracy, even in unfrustrated
spin models without extended MGS’s (i.e., simple cubic
ferro- or antiferromagnets with first-neighbor couplings only)
where the interactions are isotropic: Breaking the global
O(3) rotational symmetry of the model results in a fam-
ily of ground states that can be rotated globally to each
other in spin space, resulting in a degeneracy parametrized
by the three-dimensional group of rotations (we will re-
fer to this type of degeneracy as trivial, since its presence
is independent of frustration). Besides the trivial degener-
acy, ground states having multiple sublattices can still be
indeterminate: We can continuously deform them to each
other by a set of local rotations [17,50,51]. This leftover
degeneracy can again be characterized by a (continuous or
discrete) set of parameters, and we will give a detailed anal-
ysis of this scenario in cases of commensurate orders in our
model.

III. CLASSICAL PHASE DIAGRAM
AND ORDERING VECTORS

In this section we construct the classical, zero tempera-
ture, ground-state phase diagram of the model Eq. (1) in the
J1-J2-J3 parameter space. We compare the ε(Q) values for the
possible orderings and choose the lowest one for a given set
of parameters; these results are collected in Table I, and we
present the detailed phase diagram in Fig. 2.

We analyze the phase boundaries by comparing the
ground-state energies of the neighboring phases summarized
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FIG. 2. Phase diagram of the classical J1-J2-J3 Heisenberg model
on the face-centered-cubic lattice for (a) ferromagnetic J1 < 0 and
(b) antiferromagnetic J1 > 0 first-neighbor interactions. Basic infor-
mation about the phases is collected in Table I. Solid black lines mark
first-order phase transitions, dashed black lines denote continuous
(second-order) transitions, and the equations describing these bound-
aries are collected in Table VII. We label the phases by their ordering
vectors given in units of 2π/a, as presented in Fig. 3. The four
commensurate phases are the ferromagnet �(0, 0, 0), and the three
types of antiferromagnets: X (1, 0, 0), L( 1

2 , 1
2 , 1

2 ), and W (1, 1
2 , 0).

The commensurate ordering vectors are depicted in Fig. 3(a); note
that all these phases are already present in the absence of J3

[17,52]. Introducing a finite J3 introduces the incommensurate phases
	(q, 0, 0), 
(q, q, q), and �(q, q, 0), where q has to be optimized
according to Eqs. (51a)–(51c), and the possible ordering vectors are
depicted in Figs. 3(d)–3(f). The phase �(q, q, 0) in Fig. 3(b) has
a bow-tie shape (enlarged in the inset) with a neck consisting of
a single point J2 = J1/2 and J3 = 0 (the green dot), and through
this point the L( 1

2 , 1
2 , 1

2 ) and W (1, 1
2 , 0) phases meet. The dark red

X -W phase boundary emanating from the first-neighbor antiferro-
magnetic point J2 = J3 = 0 is degenerate: Along this line any of the
ground states with ordering vectors residing on the one-dimensional
manifold M1

Z defined by Q = (2π, q, 0) with q ∈ [−π, π ] shown
in Fig. 3(b) have the same energy. In (a) the two triple points also
have one-dimensional ground-state manifolds: M1

	 [Fig. 3(d)] and
M1


 [Fig. 3(e)]. The green dot at J3 = 0, J2 = J1/2 > 0 is a phase of
even higher degeneracy: The ground states form the two-dimensional
manifold shown in Fig. 3(c). Basic properties of these manifolds are
collected in Table II.

in Table VII. The phase boundaries are of second order if
the ordering vectors of the two matching phases can be de-
formed continuously into each other and of first order if

the transition requires a discontinuous jump of the ordering
vector. There are special points of the phase diagram: the
triple points and the X (1, 0, 0) − W (1, 1

2 , 0) phase boundary
that require particular attention. At these points ground-state
manifolds extend to lines and a surface, signaling a large but
subextensive degeneracy of the ground states. We use two sets
of notation for the BZ points: We refer to points in the BZ
either by their names and coordinates in units of 2π or their
respective wave vector, i.e., W (1, 1

2 , 0) ≡ (2π, π, 0) = QW .
Basic information about these phases is collected in Table II.
In the following we briefly summarize the properties of the
phase diagram, but details of the real space picture of the
orders are given in Sec. IV.

Basically, we found three types of phases:
(i) Four commensurate spin configurations with ordering

vectors at the high-symmetry points in the BZ [17,23,37,52]—
the usual ferromagnet, with ordering vector �(0, 0, 0), and
three kinds of antiferromagnetic orders with ordering vectors
X (1, 0, 0), L( 1

2 , 1
2 , 1

2 ), and W (1, 1
2 , 0) [see Fig. 3(a)], which

are already present in the J1-J2 models. These are discussed in
Sec. IV.

(ii) Three types of incommensurate spin spirals (helices
[29–31,53,54], cycloids) caused by the frustrating effect of J3,
with a pitch vector of length fixed by the exchange parame-
ter values and pointing in highly symmetric crystallographic
directions, with incommensurate ordering vectors 	(q, 0, 0),

(q, q, q), and �(q, q, 0) [see Figs. 3(d)–3(f)] (Sec. VI).

(iii) Four phases with large ground-state degeneracy.
Three of these phases have one-dimensional MGS’s: One is
at the X (1, 0, 0) − W (1, 1

2 , 0) phase boundary, that extends
from the first-neighbor antiferromagnetic model [17,37]. The
degenerate manifold corresponding to this phase boundary
is called M1

Z ; this manifold is depicted in Fig. 3(b): The
lines are connecting the X (1, 0, 0) and W (1, 1

2 , 0) points of
the BZ, and these lines are sometimes called “Z ,” hence the
name of the manifold, and the upper index ”1” refers to its
dimensionality. The two other one-dimensional degenerate
manifolds are at the triple points �(0, 0, 0) − 	(q, 0, 0) −
X (1, 0, 0) [its MGS = M1

	 coincides with the collection of
	(q, 0, 0) depicted in Fig. 3(d)] and �(0, 0, 0) − 
(q, q, q) −
L( 1

2 , 1
2 , 1

2 ) [its MGS = M1

 coincides with the collection

of 
(q, q, q) depicted in Fig. 3(e)]. There is also a phase
with a two-dimensional MGS = M2 [16,22,26] at the triple
point L( 1

2 , 1
2 , 1

2 ) − �(q, q, 0) − W (1, 1
2 , 0): This surface is

depicted in Fig. 3(c). These degenerate phases can be found
at carefully chosen parameter values where other more con-
ventional phases meet (Sec. VII).

In the following sections we give a detailed analysis of the
possible configurations.

IV. COMMENSURATE ORDERINGS AND REAL
SPACE DESCRIPTION

In this section we describe and analyze the develop-
ing orders in detail. For the four commensurate orderings
[cf. Fig. 3(a)] we calculate the Fourier amplitudes, give the
constraints on them, count the degeneracies [the number of
free parameters describing the order that remain after remov-
ing the trivial, global O(3) of the symmetry breaking]. We
describe the orders in real space and analyze their symmetry
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TABLE II. Multiple points of the phase diagram, corresponding to degenerate manifolds in q space. In the first column we give the label
of the manifold, see Fig. 2. The manifolds themselves are depicted in Figs. 3(b)–3(e). In the second column we list phases that meet at the
special parameter values given in the third column. In the fourth column the dimension of the manifolds is given, together with their defining
equation in q space, when given in parametric form we mention only one of the crystallographically equivalent directions. The last column
gives the energy per site on the manifolds.

Label Touching phases Constraints on J’s dim MGS Definition of MGS ε(Q)

M1
Z ∪ � �-X -W J2 = −2J1, J3 = − J1

2 , J1 > 0 1 Q = (2π, q, 0) −6J1

M1
Z X -W J3 = J2

4 , −2J1 < J2 < 0, J1 > 0 1 Q = (2π, q, 0) 2(J2 − J1)
M1

	 �-	-X J2 = 2J1, J3 = − J1
2 , J1 < 0 1 Q = (q, 0, 0) +6J1

M1

 �-
-L J2 = −J1, J3 = 0, J1 < 0 1 Q = (q, q, q) +3J1

M2 L-W -� J2 = J1
2 , J3 = 0, J1 > 0 2 cos Qx

2 + cos Qy

2 + cos Qz
2 = 0 − 3

2 J1

properties. In order to find the number of wave vectors par-
ticipating in a given order and to find the constraints on
their Fourier amplitudes we must not distinguish between the
equivalent q vectors, where by equivalence we mean differing

only in some reciprocal lattice vector G, i.e., q ∼ q′ if q =
q′ + G. Constraints on the Fourier amplitudes and the number
of free parameters can be calculated as follows: We expand
the spins Si in Fourier space, keeping only the amplitudes of

(a) (c)

(d) (e) (f)

(b)

FIG. 3. Brillouin zone (truncated octahedron) of the face-centered-cubic lattice together with ordering vectors and ground-state manifolds
corresponding to the phases in Fig. 2. (a) Commensurate ordering vectors, and the enclosing red cube as a guide to the eye. �(0, 0, 0) is the
ferromagnet (this wave vector’s star has only one arm), X (1, 0, 0) is the Type-I antiferromagnet (three-armed star of the wave vector), L( 1

2 , 1
2 , 1

2 )
is the Type-II antiferromagnet (four-armed star of the wave vector), and W (1, 1

2 , 0) is the Type-III antiferromagnet (six-armed star of the wave
vector). (b) Degenerate wave vectors (Z lines) on the boundary of the X (1, 0, 0)-W (1, 1

2 , 0) phases forming a one-dimensional manifold M1
Z

for J1 > 0 and J3 = J2/4, cf. the dark red line in Fig. 2(b). Every point on the crisscrosses is energetically degenerate. (c) Two-dimensional
energetically degenerate manifold M2 (a Schwarz P surface [22,55]) corresponding to J3 = 0, J2 = J1/2 > 0 [green dot in Fig. 2(b)]. The
second row [(d)–(f)] corresponds to incommensurate orderings, in these figures—depending on the exchange parameter values [cf. Eq. (51a)–
(51c)]—a single ±Q pair of wave vectors is chosen as the ordering vector of the developing spin spiral. This row also depicts the one-
dimensional degenerate manifolds of the special points of the phase diagram. (d) Incommensurate ordering vectors 	(q, 0, 0) corresponding
to spin spirals propagating in the directions of the cubic axes with 6 arms. This is also the manifold M1

	 of the �-	-X triple point, see the
yellow dot in Fig. 2(a). (e) Incommensurate ordering vectors 
(q, q, q) corresponding to spin spirals propagating in the directions of the
body diagonals of the cubic cell with 8 arms. This is also the manifold M1


 of the �-
-L triple point, see the orange dot in Fig. 2(a). (f)
Incommensurate ordering vectors �(q, q, 0) corresponding to spin spirals propagating in the directions of the face diagonals of the cubic cell
(only pictured in the horizontal planes for better visibility, this vector has 12 arms). We refer to points in the Brillouin zone either by their
names and coordinates in units of 2π (fractional coordinates) or their respective wave vector, e.g., W (1, 1

2 , 0) ≡ QW = (2π, π, 0).
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the arms of the star of the respective ordering vector finite.
Afterward we impose the constraints that for every lattice
point the spins have to be real unit vectors and solve the
equations [52,56,57] for the Fourier amplitudes:

S0
Q = S0∗

−Q, (8a)∑
Q

∣∣S0
Q

∣∣2 = 1, (8b)

∑
Q

S0
Q · S0∗

Q−q′ = 0, ∀ q′ �= 0. (8c)

In order to make the last equation useful one has to choose q′
such a way that Q − q′ lies on the MGS.

Equation (8a) is a consequence of the reality of the real
space spins Si. The second set of equations Eqs. (8b)–(8c) can
be calculated as follows: We substitute the Fourier decompo-
sition Eq. (4b) in the local length constraints |Si|2 = 1:

∑
q,q′′

Sq · Sq′′ e−ı(q+q′′ )·Ri = |Si|2 = 1, ∀ i, (9)

this is a set of N equations. We perform a Fourier transform
by multiplying the ith equation by eıq′ ·Ri and sum over i:

∑
i

∑
q,q′′

Sq · Sq′′ e−ı(q+q′′−q′ )·Ri =
∑

i

eıq′ ·Ri . (10)

Performing the sums yields
∑

q

Sq · Sq′−q = δq′,0, (11)

which is true for every configuration, even for the ones on
MGS, resulting Eqs. (8b)–(8c).

A. The �(0, 0, 0) ferromagnet

This phase is an ordinary ferromagnet, where all the spins
align and only the trivial O(3) degeneracy is present.

B. The X (1, 0, 0) antiferromagnet, Type I

In this phase the nonequivalent Q vectors form a three-
armed star:

X1 = (2π, 0, 0), X2 = (0, 2π, 0), X3 = (0, 0, 2π ). (12)

Since these arms reside on the midpoints of the square-shaped
faces of the BZ [56] we can mix them to construct a triple-Q
order, provided we choose the Fourier amplitudes appropri-
ately. In order to make the spins real unit vectors we need to
consider some constraints on the complex amplitudes S0

Xα
:

Si =
3∑

α=1

S0
Xα

e−ıXα ·Ri . (13)

Since Xα and −Xα are equivalent (Xα ∼ −Xα) and the phase
factors e−ıXα ·Ri are simply ±1’s, the amplitudes have to be real
to ensure the reality of Si:

S0
Xα

∈ R3, ∀α. (14)

The following four constraints [see Eqs. (8b)–(8c)] fix the
lengths of the spins:

3∑
α=1

∣∣S0
Xα

∣∣2 = 1 (one constraint), (15)

S0
Xα

· S0
Xβ

= 0, ∀α �= β (three constraints), (16)

where the last equation follows if we chose q′ = Xα − Xβ

in Eq. (8c). The three real amplitudes S0
Xα

imply nine free
parameters. The global O(3) freedom removes three of them,
and together with the four constraints in Eq. (16) we are left
with two free parameters to characterize the degeneracy [17].

The global O(3) freedom of the symmetry breaking and the
mutual orthogonality and normalization of the S0

Xα
’s allows us

to parametrize them as:

(
S0

X1

∣∣S0
X2

∣∣S0
X3

) =
⎛
⎝ξ 0 0

0 η 0
0 0 ζ

⎞
⎠, (17)

where all the parameters are real, and they satisfy the
additional constraint: ξ 2 + η2 + ζ 2 = 1. The ground-state
manifold thus can be parametrized by a unit vector (ξ, η, ζ ).
In the following we construct and analyze the developing
order in real space.

With the parametrization of Eq. (17) the spin sitting on the
lattice point Ri = (x, y, z) is (we recall that the coordinates
can be integers or half-integers):

Si =
⎛
⎝(−1)2xξ

(−1)2yη

(−1)2zζ

⎞
⎠. (18)

The superlattice vectors of this order form a simple cubic
lattice with the same unit cell as the conventional cell of the
original fcc lattice, and the four sublattices form tetrahedra
with spins

(SA|SB|SC |SD) =
⎛
⎝ξ −ξ −ξ ξ

η −η η −η

ζ ζ −ζ −ζ

⎞
⎠, (19)

see Fig. 4(a). The spins on every elementary tetrahedron sum
to zero:

SA + SB + SC + SD = 0, (20)

we refer to this situation as the tetrahedron rule. We can
check our Fourier space degeneracy by counting in real space:
The four sublattice spins mean four unit vectors as eight
free parameters, and the global O(3) symmetry and also the
tetrahedron rule remove three of them, leaving only two free
parameters as expected.

If we use all three arms of the star, creating a triple-Q order
(with ξ , η, ζ finite) the spins are noncoplanar. For, say, ζ =
0, the configuration is coplanar, and if only ξ remains, it is
collinear. Thermal or quantum order by disorder effects select
a single arm of the star resulting in a collinear structure [17].
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FIG. 4. (a) Type-I X (1, 0, 0) 4-sublattice antiferromagnetic or-
der. The spins on each sublattice are SA, SB, SC , and SD, repectively.
Each sublattice forms a simple cubic lattice with lattice vectors
(1, 0, 0), (0, 1, 0), and (0, 0, 1). The different spins sit on elemen-
tary tetrahedra of the fcc lattice, with the constraint of the total
spin of each tetrahedron being SA + SB + SC + SD = 0. (b) Type-II
L( 1

2 , 1
2 , 1

2 ) antiferromagnetic order, with four pairs of antiferromag-
netically ordered sublattices: Inverted colors correspond to opposite
spins, i.e., SĀ = −SA is a white letter on a black disk. Each sublattice
forms an fcc lattice with a doubled lattice constant. On each elemen-
tary octahedron of the original fcc latice the spins form antiparallel
pairs on opposite vertices of the octahedra.

C. The L( 1
2 , 1

2 , 1
2 ) antiferromagnet, Type II

In this phase the nonequivalent Q vectors form a four-
armed star:

L1 = (π, π, π ), L2 = (π,−π,−π ),

L3 = (−π, π,−π ), L4 = (−π,−π, π ). (21)

Since they are on the midpoints of the hexagonal BZ faces we
can construct a quadruple-Q order from them [56]. We expand
the spins in Fourier amplitudes:

Si =
4∑

α=1

S0
Lα

e−ıLα ·Ri ∈ R3. (22)

Since Lα ∼ −Lα and the phase factors are e−ıLα ·Ri = ±1, the
amplitudes have to be real to ensure the reality of Si:

S0
Lα

∈ R3, ∀α. (23)

We can express the spins in real space as:

Si = (−1)x+y+zS0
L1

+ (−1)y+z−xS0
L2

+ (−1)x+z−yS0
L3

+ (−1)x+y−zS0
L4

. (24)

We can substitute the lattice points in the above equation
that yield four independent sublattices on an elementary tetra-
hedron. The tetrahedron rule does not hold, since the J1

interactions cancel. Shifting this tetrahedron by δ = (1, 0, 0)
reverses the directions of the spins, so we have an 8-sublattice
antiferromagnet of spin pairs SA, SB, SC , and SD, and SA =
−SĀ [shifted by (1,0,0)], and so on:

SA = S(0) = S0
L1

+ S0
L2

+ S0
L3

+ S0
L4

, (25a)

SB = S(a1) = −S0
L1

+ S0
L2

+ S0
L3

− S0
L4

, (25b)

SC = S(a2) = −S0
L1

+ S0
L2

− S0
L3

+ S0
L4

, (25c)

SD = S(a3) = −S0
L1

− S0
L2

+ S0
L3

+ S0
L4

. (25d)

This type of order is depicted in Fig. 4(b). We can expand
the Fourier amplitudes as:

S0
L1

= 1
4 (SA − SB − SC − SD), (26a)

S0
L2

= 1
4 (SA + SB + SC − SD), (26b)

S0
L3

= 1
4 (SA + SB − SC + SD), (26c)

S0
L4

= 1
4 (SA − SB + SC + SD). (26d)

The superlattice becomes an fcc lattice doubled in linear size
with respect to the original one, with primitive lattice vectors
given by:

aL
1 = (1, 1, 0), aL

2 = (1, 0, 1), aL
3 = (0, 1, 1). (27)

It is easier to calculate the degeneracies in real space: The
four independent unit sublattice spins mean eight real degrees
of freedom, the global O(3) removes three of them yielding
five independent real parameters [17]. In each of the (111)
triangular planes only four spins appear, forming a regular
4-sublattice order [58].

D. The W (1, 1
2 , 0) antiferromagnet, Type III

There are 24 symmetry-related vectors (the corners of the
BZ) belonging to this type of order, and they fall into six
equivalency classes so the star of W has six arms. This can
be understood since each corner of the BZ is shared by four
truncated octahedra. The arms of the star form three ± pairs:
Qα = ±W1, ±W2, ±W3, the classes are as follows:

W1 ∼ {(π,0,2π ), (−π,−2π,0), (−π,2π,0), (π,0,−2π )},
W2 ∼ {(2π,π,0), (−2π,π,0), (0,−π,−2π ), (0,−π,2π )},
W3 ∼ {(0,2π,π ), (−2π,0,−π ), (0,−2π,π ), (2π,0,−π )}.

(28)

Since Wα � −Wα to ensure reality of the spins in real space
we have to combine the ±Wα pairs:

Si =
3∑

α=1

(
S0

Wα
e−ıWα ·Ri + S0

−Wα
e+ıWα ·Ri

)
, (29)

with

S0
−Wα

= S0∗
Wα

. (30)

This type of ordering is also called a triple-Q one. To fix the
lengths of the spins we have the following constraints for the
complex amplitudes:

3∑
α=1

S0∗
Wα

· S0
Wα

= 1

2
, (31a)

S0
Wα

· S0
Wα

∈ ıR, ∀α, (31b)

S0
Wα

· S0
Wβ

= S0∗
Wα

· S0
Wβ

= 0, ∀ α �= β. (31c)

Noting that S0∗
Wα

= S0
−Wα

the first equation follows from
Eq. (8b):

3∑
α=1

(
S0∗

Wα
· S0

Wα
+ S0∗

−Wα
· S0

−Wα

) = 1, (32)
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and the last two equations follow from Eq. (8c) by choosing
q′ = 2Wα and q′ = Wα ± Wβ .

We can decompose the complex amplitudes into real vec-
tors,

S0
±Wα

= uα ∓ ıvα, uα, vα ∈ R3, (33)

and we can express the constraints Eqs. (31) for the real and
imaginary parts of the amplitudes as

1

2
=

3∑
α=1

(|uα|2 + |vα|2) (one constraint), (34a)

|uα| = |vα|, ∀ α (three constraints), (34b)

0 = uα · uβ, ∀ α �= β (three constraints), (34c)

0 = vα · vβ, ∀ α �= β (three constraints), (34d)

0 = uα · vβ, ∀ α �= β (three constraints). (34e)

The three pairs of real vectors uα and vα imply 18 free param-
eters, the equations above give 13 constraints, and we have the
global O(3) degrees of freedom (3 free parameters), so we are
left with 2 free real parameters for the degeneracy degrees of
freedom, in perfect analogy with the Type-I phase.

Using the global O(3) freedom and the orthogonality and
normalization of the uα’s we can parametrize them as:

(u1|u2|u3) = 1

2

⎛
⎝ξ 0 0

0 η 0
0 0 ζ

⎞
⎠, (35)

where all the parameters are real, and they satisfy the addi-
tional constraint: ξ 2 + η2 + ζ 2 = 1. We use the orthogonality
relations between the uα’s and vα’s [see Eq. (34c)–(34e)] to
calculate the form of the vα’s (at this point any combination
of signs is allowed, resulting in eight possible combinations):

(v1|v2|v3) = 1

2

⎛
⎝±ξ 0 0

0 ±η 0
0 0 ±ζ

⎞
⎠. (36)

With this parametrization the spins become

Si(ξ, η, ζ ) =
√

2

⎛
⎜⎝

ξ cos
(
W1 · Ri ± π

4

)
η cos

(
W2 · Ri ± π

4

)
ζ cos

(
W3 · Ri ± π

4

)
⎞
⎟⎠. (37)

Actually these states are not all physically different, there are
only two independent phases that form chiral partners (i.e.,
they are transformed to each other by space inversion). We
are going to show this in Appendix C.

In order to understand this real space spin pattern we write
the lattice point in Cartesian coordinates [Ri = (x, y, z), i.e., in
our fcc lattice the Cartesian coordinates x, y, and z can either
be integers, or some half integer combinations]. The spins are
parameterized as follows:

Si(ξ, η, ζ ) =
√

2

⎛
⎜⎝

ξ cos
[
π (x + 2z) ± π

4

]
η cos

[
π (y + 2x) ± π

4

]
ζ cos

[
π (z + 2y) ± π

4

]
⎞
⎟⎠. (38)

This form is particularly useful for analyzing the properties of
the spin structure: We only have to monitor the phase shifts
due to transformations (either in real or spin space) and draw

the consequences. From this form it can be seen that this
pattern is periodic under a translation of 2 along the Cartesian
directions (we have to change all x, y, and z by an even
number to achieve a 2π phase shift in every component), and
this is the smallest possible magnetic unit cell, with primitive
translations:

aW
1 = (2, 0, 0), aW

2 = (0, 2, 0), aW
3 = (0, 0, 2). (39)

The resulting superlattice is simple cubic, and the magnetic
unit cell contains 32 points of the original fcc lattice. There
are eight spin directions, that come in four ± pairs (like in
the Type-II phase), but they form a complicated 32-sublattice
order (we do not even try to visualize this spin pattern here).
The four spin directions are not independent: there is still a
tetrahedron rule in action [like in Eq. (20)]: Spins on every
elementary tetrahedron sum to zero. So of eight parameters
describing the four sublattice spins the tetrahedron rule re-
moves three parameters, and the global O(3) removes another
three yielding the correct number of two parameters of the
unit vector (ξ, η, ζ ). We are left with the task to decide how
many physically different phases the discrete ± parameters in
Eq. (38) yield.

Let us denote a state in Eq. (38) by their respective
sign triplet, i.e., (mmm) and (ppp) have signs (− − −) and
(+ + +). We want to study the effect of space inversion (I)
and translations tδ by a lattice vector δ = (δx, δy, δz) on the
signs in Eq. (38). We are going to prove that there are only two
nonequivalent phases, transformed into each other by space
inversion centered on a lattice point, and those phases cannot
be transformed to each other by any lattice translation, i.e.,
they are really physically different.

The action of a translation by the elementary lattice vectors
on a spin configuration is defined as

(tδS)R = SR−δ. (40)

As an example, let us consider the δ = (0, 1
2 , 1

2 ) case,

SW,(ppp)
Ri−δ

(ξ, η, ζ ) =
√

2

⎛
⎜⎝

ξ cos
[
π (x + 2z − 1) + π

4

]
η cos

[
π

(
y + 2x − 1

2

) + π
4

]
ζ cos

[
π

(
z + 2y − 3

2

) + π
4

]

⎞
⎟⎠

=
√

2

⎛
⎜⎝

−ξ cos
[
π (x + 2z) + π

4

]
η cos

[
π (y + 2x) − π

4

]
−ζ cos

[
π (z + 2y) − π

4

]
⎞
⎟⎠

= SW,(pmm)
Ri

(−ξ, η,−ζ ), (41)

so we can write

t(0, 1
2 , 1

2 )SW,(ppp)
Ri

(ξ, η, ζ ) = SW,(pmm)
Ri

(−ξ, η,−ζ ). (42)

This and other cases are collected in Table III. Of partic-
ular importance in our analysis is the effect of translations
on the sign structure of the π/4 phase factors entering the
parametrization of the spin configurations defined in Eq. (38).
Scrutinizing Table III, we find that configurations that have an
odd number of m’s [i.e., (mmm), (mpp), (pmp), and (ppm)]
can be translated to each other, so can the ones with an even
number of m’s [i.e., (ppp), (pmm), (mpm), and (mmp)]. Since
the translations preserve the parity of the number of m’s,
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TABLE III. The effect of the translations by the elementary lattice vectors δ on the triple-Q states for the W (1, 1
2 , 0) spin configurations,

tδS
W,ϒ
R (ξ, η, ζ ) = SW,ϒ

R−δ (ξ, η, ζ ) = SW,ϒ ′
R (ξ ′, η′, ζ ′).

δ = (0, 1
2 , 1

2 ) δ = ( 1
2 , 0, 1

2 ) δ = ( 1
2 , 1

2 , 0)

ϒ ϒ ′ (ξ ′, η′, ζ ′) ϒ ′ (ξ ′, η′, ζ ′) ϒ ′ (ξ ′, η′, ζ ′)

(ppp) (pmm) (−ξ, η, −ζ ) (mpm) (−ξ, −η, ζ ) (mmp) (ξ,−η, −ζ )
(pmm) (ppp) (−ξ,−η, ζ ) (mmp) (−ξ,−η, −ζ ) (mpm) (ξ, η, −ζ )
(mpm) (mmp) (−ξ, η, ζ ) (ppp) (ξ, −η, −ζ ) (pmm) (−ξ, −η, −ζ )
(mmp) (mpm) (−ξ, −η,−ζ ) (pmm) (ξ,−η, ζ ) (ppp) (−ξ, η, −ζ )

(mmm) (mpp) (−ξ,−η, ζ ) (pmp) (ξ, −η, −ζ ) (ppm) (−ξ, η, −ζ )
(mpp) (mmm) (−ξ, η, −ζ ) (ppm) (ξ,−η, ζ ) (pmp) (−ξ, −η, −ζ )
(pmp) (ppm) (−ξ, −η,−ζ ) (mmm) (−ξ, −η, ζ ) (mpp) (ξ, η, −ζ )
(ppm) (pmp) (−ξ, η, ζ ) (mpp) (−ξ,−η, −ζ ) (mmm) (ξ,−η, −ζ )

the configurations fall into two disjoint sets (characterized by
even or odd number of m’s).

These two sets, however, are connected by the inversion
I . Namely, the Ri → −Ri operation of the inversion can be
counteracted by reversing the sign of the π/4 phase in every
component of Eq. (38), i.e., it changes each m to p and vice
versa, and therefore the number of m’s is changed by an odd
number [for example, (mmm) → (ppp), (mmp) → (ppm),
and so on]. So the states with different parity of number of m’s
that form the two disjoint sets can only be transformed into
each other by inversion. The importance of this distinction
will become clear in Sec. V. A more abstract way to describe
the effect of the space-group transformations is given in Ap-
pendix C.

The fact that the W (1, 1
2 , 0) type order is defined within

a 32 site unit cell, naturally raises the question as to how
it can be obtained from a spin configuration defined on an
elementary tetrahedron and obeying the tetrahedron rule of
Eq. (20). To this end, we consider the translations by δ =
(1, 0, 0), (0,1,0), and (0,0,1):

t(1,0,0)SW
i (ξ, η, ζ ) = SW

i (−ξ, η, ζ ) = �C2(x) · SW
i (ξ, η, ζ ),

(43a)

t(0,1,0)SW
i (ξ, η, ζ ) = SW

i (ξ,−η, ζ ) = �C2(y) · SW
i (ξ, η, ζ ),

(43b)

t(0,0,1)SW
i (ξ, η, ζ ) = SW

i (ξ, η,−ζ ) = �C2(z) · SW
i (ξ, η, ζ ).

(43c)

In this cases the signs of the π/4 phase do not change,
and we can omit the (ppp), and so on. Under the effect of
translations some of the spin components change sign. These
changes in the sign can be captured by a C2 rotation in spin
space augmented by time reversal. Hence, we obtain an impor-
tant property of the triple-Q spin configurations, namely that
they are invariant under the above mentioned operations. This
provides a prescription of generating the spin configuration
defined within the 32 site magnetic unit cell starting from four
spins on a tetrahedron. We just need to be careful about the
choice of the three axes we do the C2 rotations about: They
are the three C2 symmetry axes of the initial tetrahedron rule
obeying configuration.

Finally, combining all of the three translations above, we
get that the translation by the δ = (1, 1, 1) reverses the spins,

t(1,1,1)SW
i (ξ, η, ζ ) = SW

i (−ξ,−η,−ζ ) = �SW
i (ξ, η, ζ ), (44)

where � denotes the time reversal operation.
Let us note that for double-Q state the unit cell reduces to

16 sites, e.g., setting ζ = 0, Eq. (43c) tells us that the spin
configuration is invariant with respect to translation by δ =
(0, 0, 1), halving the lattice vectors defining the unit cell in
this directions. The single-Q state has a four-site unit cell, e.g.,
for η = ζ = 0 the lattice vectors of the unit cell are (1, 1

2 , 1
2 ),

(0,1,0), and (0,0,1).

V. NONCOPLANAR STATES AND CHIRALITY

In this section we discuss the noncoplanar but commen-
surate spin configurations. We have seen in Sec. IV that
choosing multiple arms of the stars of a commensurate order-
ing vector we get noncollinear or even noncoplanar states on
this Bravais lattice: Such multiple-Q structures can be created,
e.g., by choosing ξ , η, and ζ in Eq. (18) finite [and analogous
constructions work for Eq. (24) or Eq. (37)]. In general, non-
coplanar states are rarely observed in isotropic spin systems,
since order by disorder (either quantum or thermal) mecha-
nisms tend to select the collinear (or coplanar) configurations
[17]. Nevertheless, counterexamples exist in models including
ring exchanges on Bravais lattices, e.g., the tetrahedral phase
on the triangular lattice [59–61], and longer range exchanges
on non-Bravais lattices such as cuboc orders on the kagome
lattice [62,63].

Disorder mechanisms may also favor noncollinearity [51],
so the fate of these states depends on further details. A non-
coplanar state can be chiral. In the following we will review
some notions of chirality and its relationship to noncoplanar
orders found here.

A. Scalar chirality

If a magnetic order is noncoplanar, then it has a finite
scalar chirality [56,64–66], defined on an oriented triangular
plaquette of vertices ABC as

χABC = SA · (SB × SC ), (45)
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FIG. 5. Tetrahedra with triangular faces having nonzero scalar
chirality χ in the triple-Q W (1, 1

2 , 0) state, here shown within a
32-site cubic unit cell defined by the lattice vectors (2,0,0), (0,2,0),
and (0,0,2). Red and green depict triangles with equal |χ | but op-
posite signs of χ . The network of the corner-sharing alternating red
and green tetrahedra builds two interpenetrating pyrochlore lattices,
distinguished by solid and dashed lines.

i.e., as the signed volume of the parallelepiped spanned by the
three spins. This also shows that a finite value of the scalar
chirality on a triangle is equivalent to a noncoplanar spin
configuration. On the fcc lattice care has to be taken of how
to define the orientation of the triangular plaquettes. Since no
triangle is shared between two octahedra, one can use the right
hand rule for outward pointing normals on the faces of the
octahedra. All the commensurate phases can be chiral in the
sense that one can construct noncoplanar spin configurations
by using multiple arms of the star of the ordering vector, these
are the mutiple-Q phases.

1. The X (1, 0, 0) phase

The Type-I X order, given by Eq. (19) and shown in
Fig. 4(a), is noncoplanar when ξ , η, and ζ are all nonzero. The
scalar chirality χ is then finite with |χ | = |4ξηζ | on all faces
of every tetrahedron, the sign alternating on the two types of
tetrahedra.

2. The L( 1
2 , 1

2 , 1
2 ) phase

This phase is composed of pairs of opposite pointing spins
located on antipodes of the octahedra, as shown in Fig. 4(b).
As a consequence, the scalar chirality is equal on all six faces
of an octahedron. There are four types of octahedra, so there
can be four different values of scalar chiralities in the lattice
for noncoplanar spins.

3. The W (1, 1
2 , 0) phase

The direct evaluation of the scalar chirality χ results in
a pattern displayed in Fig. 5. The χs on the faces of a
tetrahedron are all identical, with three types of tetrahedra:
On 1/4 of all tetrahedra the chiralities are alternating be-
tween the χ = 4ξηζ and χ = −4ξηζ , while on the remaining
tetrahedra the χ vanishes. The chirality pattern changes sign
when translated by (±1, 0, 0), (0,±1, 0), and (0, 0,±1) lat-

tice vectors and is invariant under the translations by (1,1,0)
and equivalent vectors.

B. Chiral enantiomers

Another concept of chirality more closely related to hand-
edness is the following [56]: For a given spin configuration
apply a mirror plane on the configuration that is a symmetry
of the underlying lattice. If the resulting spin pattern cannot
be transformed back to the original configuration by any
proper space group operation to the original one, then we
call the configuration chiral. (A sidenote about nomenclature:
In three-dimensional space a rotation is called proper [an
element of SO(3)] if it is orientation preserving. Point group
operations that change the the orientation of a basis are either
called improper rotations or rotoreflections; this includes the
inversion I : Ri → −Ri, the orthogonal group is the direct
product O(3) = SO(3) × {E , I}, with E being the identity.)
This notion of chirality is the straightforward generalization
of the concept of chirality defined for molecules: A molecule
is chiral if it cannot be rotated to its mirror image. Such
pairs of reflection-related partners are called enantiomers
or enantiomorphic-chiral partners. In the following we will
expand this concept and analyze the commensurate orders
according to it.

A space group operation (proper or improper) acting on a
lattice point Ri is denoted by gδ ≡ {G|δ}:

R′
i = gδRi ≡ {G|δ}Ri = G · Ri + δ, (46)

where G is the O(3) matrix of a point group element fol-
lowed by the lattice translation δ. On a spin—being an axial
vector—the point group element acts as S′ = GA · S, where
GA = (det G)G is the axial-vector representative of the group
element g (it agrees with G for proper rotations and it is
−G for improper rotations). The inverse of a space group
operation is g−1

δ
= {G−1| − G−1 · δ}. The transformation rule

for a spin pattern (sometimes called as an active view of a
transformation: we grab the spin pattern together with the
lattice points and transform them as a rigid body) reads:

S′
Ri

= {G|δ}SRi = GA · Sg−1
δ

Ri
. (47)

Any improper rotation is the product of a proper rotation and
inversion, e.g., a mirror plane with normal n̂ is a composition
of a twofold rotation about n̂ composed with inversion, and
inversion acts in spin space as the identity, I : S → S. Every
Bravais lattice is inversion symmetric, hence instead of mirror
planes we can use space inversion to define chirality, and this
definition has a practical advantage: Spins remain intact under
inversion. Now we can formulate chirality for spin patterns
defined on Bravais lattices: Let us apply inversion to a spin
pattern SRi :

S′
Ri

= {I|0}SRi = S−Ri . (48)

If there is no proper space group element {G|δ}, with G ∈
SO(3), that can compensate for the change in spin pattern in
Eq. (48),

{G|δ}S′
Ri

�= SRi , (49)

then the pattern is chiral. Here we have considered the case
when the mirror plane contains a lattice point, i.e., the inver-
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sion used instead of the mirror plane is centered at that point,
but for other cases—when for example the mirror plane is
a perpendicular bisector plane of a bond—the argumentation
(mutatis mutandis) still applies.

Let us now turn to the question if the noncoplanar phases
show handedness or not. The spin configuration in the
X (1, 0, 0) phase and in the L( 1

2 , 1
2 , 1

2 ) phases is unchanged if
inverted about a lattice site. Therefore neither of these states
is chiral in the sense defined above.

The situation is different for W (1, 1
2 , 0) phase. In Sec. IV D

we have examined the effect of translations and inversions on
the spin configurations and found that there are two disjoint
sets, which can be transformed into each other by inversion.
Having introduced the concept of the handedness, we can now
identify the spin configurations in the two sets as being of
opposite handedness, i.e., they are enantiomers.

C. Time reversal and chirality

Finally, Refs. [62,67] considers yet another definition for
the chirality: whether the operation of time reversal (called
“spin inversion” in Refs. [62,67]) on a spin configuration can
be undone using an SO(3) rotation acting on the spins. Using
this definition, any noncoplanar X (1, 0, 0), L( 1

2 , 1
2 , 1

2 ), and
W (1, 1

2 , 0) spin configuration is chiral. However, if we allow
for translations, then the L( 1

2 , 1
2 , 1

2 ) and W (1, 1
2 , 0) are not

chiral in this sense, since they are invariant under time reversal
combined with a translation. The cuboc orders considered in
Refs. [62,63] are chiral by means of the time-reversal sym-
metry considered here [67], and are also chiral in the sense
defined in Sec. V B, since time reversal and spatial inversion
about the center of a hexagon is equivalent in this case: both of
them flip every spin and this cannot be undone by any proper
space group operation.

VI. INCOMMENSURATE PHASES

All the commensurate phases were found in the J1-J2 mod-
els [17,23,52], see the J3 = 0 lines in Figs. 2(a) and 2(b).
A novel feature of the J3 �= 0 model is the appearence of
incommensurate orderings with propagation vectors along
special, highly symmetric directions [68–70]. For the three
incommensurate orderings [cf. Figs. 3(d)–3(e)] we give the
dependence of the wave vectors on the exchange parameters
and give their accessible ranges.

In all these phases—since the ordering vectors Q are
incommensurate—we have to include both ±Q to ensure re-
ality of the spin components, and the resulting coplanar spin
pattern becomes

Si = s1 cos (Q · Ri + ϕ) ± s2 sin (Q · Ri + ϕ), (50)

where s1 and s2 are arbitrary orthogonal unit vectors spanning
the plane of spin rotations, ϕ is an arbitrary phase, and ±
accounts for the two possible chiral enantiomers (in the sense
explained in Sec. V B). The model being isotropic, there is
nothing to fix the plane of rotation to the wave vectors or to
the crystallographic axes (another manifestation of the sponta-
neous breaking of the global O(3) symmetry). Since the wave
vectors are incommensurate we cannot build any multiple-Q
ground states of their stars [56].

The three possible incommensurate ordering directions are
	(q, 0, 0) with its 6-armed star [see Fig. 3(d)], 
(q, q, q)
with its 8-armed star [see Fig. 3(e)], and �(q, q, 0) with its
12-armed star [see Fig. 3(f)]. Note in Fig. 2(a) that 	(q, 0, 0)
smoothly interpolates between the phases �(0, 0, 0) and
X (1, 0, 0) so the possible q values exhaust the whole
	(q, 0, 0) star. Similarly, the phase 
(q, q, q) smoothly con-
nects the phases �(0, 0, 0) and 
( 1

2 , 1
2 , 1

2 ) and the possible q
values exhaust the whole 
(q, q, q) star. The situation with
the �(q, q, 0) star is quite different; the possible q values
are confined to 1.28π � q � 2π , and the transition between
�(0, 0, 0) and �(q, q, 0) is of first order.

The vector Q = (π, π, 0), although not a special point
in the BZ is compatible with a Néel-type commensurate
antiferromagnetic ordering, called the Type-IV phase fcc an-
tiferromagnet, realized in CoN [19,71]. Unfortunately, the
possible q values of the �(q, q, 0) phase are far from π ,
and we could not even stabilize this type of Néel order by
introducing quantum fluctuations (in the spirit of Ref. [72]).

The optimized q values of the incommensurate ordering
vectors are given by:

cos
q	

2
= −J1 − 2J3

J2 + 4J3
, (51a)

cos q
 = −J1 + J2 + 2J3

4J3
, (51b)

cos
q�

2
=

√
[J1 + 2(J2 + J3)]2 − 48J3(J1 − 2J3)

24J3

−J1 + 2(J2 + J3)

24J3
. (51c)

VII. GROUND STATES OF THE EXTENDED MANIFOLDS

For the pure fcc model (J1 > 0, J2 = J3 = 0) the degener-
ate manifold M1

Z has already been found [5,37], and a class of
ground states were constructed from (100)-directed, noninter-
acting AFM planes. In this section we describe the phases with
extended MGS’s of energetically degenerate ordering vectors
[see Figs. 3(b)–3(e)] that correspond to large ground-state
degeneracies at special points in the phase diagram in Fig. 2.
We explain these degeneracies by a real space construction of
covering the lattice with finite motifs (see Fig. 6) and write
the Hamiltonian as a positive definite sum over these motifs.
Minimizing the Hamiltonian imposes local constraints on the
spins on these motifs: Any state that satisfies these constraints
is an allowed ground state. We extend the construction pre-
sented in Ref. [37] for the other degenerate manifolds and
construct ground states from noninteracting planes and also
find ground states consisting of ferromagnetic chains (though
the chains are now interacting).

We have solved the models for the extended manifolds for
Ising spins Si ∈ {1,−1}, for finite, symmetric clusters. Details
of these results are presented in Appendix D. We also have
performed numerical simulations for planar (O(2) or XY )
spins Si = (Sx, Sy)i, S2

x + S2
y = 1 to guide our intuition about

the possible ground states.
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(a) (b) (c) (d) (e)

FIG. 6. Finite motifs used to cover the fcc lattice in the exchange parameter regions with high ground-state degeneracies. Red, green, and
blue lines denote first-, second-, and third-neighbor bonds of a motif, respectively. By building up the crystal from these motifs we cover bonds
and sites multiple times; this overcounting is summarized for every motif in Table IV. (a) Elementary tetrahedra (index “tetra” in formulas).
From each lattice point we draw two differently oriented tetrahedra to cover every first-neighbor bond twice. (b) A signed rectangle (index
“rect1” in formulas): with six differently oriented rectangles put on every site we can cover every first-, second-, and third-neighbor bond.
“Signed” here means that when writing the complete squares of the spin sums in the Hamiltonian we have to assign a minus sign to the spins
sitting in the vertices denoted by white dots, black dots get a plus sign, see Eq. (73). Together with the tetrahedra we use this motif to construct
the ground states of the phase corresponding to the manifold M1

Z , see Fig. 3(b). (c) A signed rectangle (index “rect2” in formulas): very
similar to the former one, but the signs are distributed differently, see Eq. (74). We cover the lattice with this single motif for the phase with
MGS = M1

	. (d) A signed square: (index “square” in formulas), by three differently oriented squares per site we cover the lattice for the phase
with MGS = M1


, see Eq. (57). (e) Elementary octahedron (“octa” in formulas): We cover the lattice with one edge-sharing octahedron per
site for the phase with the two-dimensional MGS = M2, see Eq. (54).

A. The J1 = 2J2 > 0, J3 = 0 point: The two-dimensional
M2 ground-state manifold

At the point J1 = 2J2 > 0, J3 = 0 [the green dot in
Fig. 2(b)] the ordering vectors of the possible ground states
form a two-dimensional M2 manifold, defined by

cos
Qx

2
+ cos

Qy

2
+ cos

Qz

2
= 0, (52)

as depicted in Fig. 3(c). This is the only point of the phase
diagram with such a large degeneracy [16,26], though extend-
ing the parameters to include the fourth-neighbor coupling J4

will allow an additional two-dimensional manifold to appear
[22]. The W (1, 1

2 , 0) and L( 1
2 , 1

2 , 1
2 ) points are parts of this

manifold, and this is the point of the phase diagram where the
W (1, 1

2 , 0) and L( 1
2 , 1

2 , 1
2 ) phases meet through the neck of the

�(q, q, 0) phase [52]. At this point the Hamiltonian reads:

H = J1

4

⎛
⎝∑

〈i, j〉1

4 Si · S j +
∑
〈i, j〉2

2 Si · S j

⎞
⎠. (53)

We can express this Hamiltonian as a sum of complete squares
of spins forming edge-sharing octahedra covering the lattice
[see Fig. 6(e)]:

H = J1

4

∑
octa

(S1 + S2 + S3 + S4 + S5 + S6)2 − 3

2
J1N, (54)

where S1, . . . , S6 refer to the six spins on the sites of an
octahedron. Since every first-neighbor bond is covered twice,
and every second-neighbor bond once (see Table IV), Eq. (54)
exactly reproduces Eq. (53), and this is why we have chosen
the octahedral covering for these particular values of exchange
parameters. Since J1 > 0 Eq. (54) is minimized if the spins
sum to zero,

S1 + S2 + S3 + S4 + S5 + S6 = 0, (55)

on every octahedron, we refer to this rule as the octahedron
rule. Every such configuration is a ground state, and every
ground state has this property. The additional constant − 3

2 J1N
gives the ground-state energy.

The following ordered phases automatically satisfy the
octahedron rule: The L( 1

2 , 1
2 , 1

2 ) and W (1, 1
2 , 0)-type ground

states, see Fig. 4(b) and Eq. (38). A general spiral with Q ∈
M2 also satisfies the octahedron rule: This can be checked
by putting an arbitrary Q in Eq. (50), and summing up the
spins on octahedra: The sum vanishes if and only if Q satisfies
the defining equation (52) of M2. Order by disorder effects
(either thermal or quantum) at the harmonic level select the
L( 1

2 , 1
2 , 1

2 ) points on the M2 surface [22].

B. The �(0, 0, 0)-�(q, q, q)-L( 1
2 , 1

2 , 1
2 ) triple point:

The one-dimensional M1
� ground-state manifold

At the triple point J2 = −J1 > 0, J3 = 0 (the orange dot in
in the phase diagram Fig. 2(a)) the MGS is M1


. The possi-
ble ordering vectors 
(q, q, q) smoothly interpolate between
�(0, 0, 0) and L( 1

2 , 1
2 , 1

2 ), hence the shape of the manifold, see
Fig. 3(e). The Hamiltonian reads

H = J1

∑
〈i, j〉1

Si · S j − J1

∑
〈i, j〉2

Si · S j . (56)

TABLE IV. Motifs used to cover the lattice (see Fig. 6) together
with their symbols used in formulas, and their overcounting of the
sites and of the J1 first-, J2 second-, and J3 third-neighbor bonds. For
example, in a tetrahedral covering we put two differently oriented
tetrahedra on each site, and as a consequence each J1 bond is shared
by two tetrahedra, and no longer bonds are covered. In the last
column we give the reference as a subfigure for the picture of the
motif in Fig. 6.

Motif Symbol Site J1 J2 J3 Subfigure

Tetrahedron tetra 2 2 – – (a)
Signed rectangle rect1 6 2 4 1 (b)
Signed rectangle rect2 6 2 4 1 (c)
Square square 3 2 2 – (d)
Octahedron octa 1 2 1 – (e)
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FIG. 7. (a) Covering octahedra of the face-centered-cubic lattice
[also depicted in Fig. 1(d) and Fig. 6(e)] showing the three possible
orientations of the signed squares [see Fig. 6(d)] inscribed. (b) The
face-centered-cubic lattice viewed from the (110) direction. This is
a two-dimensional lattice the (110) ferromagnetic chains form in a
class of solutions of the model in the �-
-L point of the phase
diagram. The bond strengths of the effective two-dimensional Hamil-
tonian Eq. (65) for the chains are denoted by K1 for the first-neighbor
red bonds, and by K2 for the second-neighbor green bonds. The gray
rhombus is the projection of one of the covering signed squares also
depicted in Fig. 6(d), minus signs have to be associated to one pair
of opposite vertices, say to A and A′. (c) Brillouin zone of the lattice
depicted in Fig. 7(b), together with the ground-state manifold (orange
cross) of the Hamiltonian Eq. (65), this manifold is the section of
M1


 [see Fig. 3(e)] with the (110) q-plane passing through the origin,
this BZ is not a perfect hexagon. Symmetry points of the original
three-dimensional BZ [see Fig. 3(a)] are shown, together with some
less commonly known points K ( 3̄

4 , 3
4 , 0) and U ( 1̄

4 , 1
4 , 1).

We can cover the lattice by signed squares, with signs dis-
tributed according to Fig. 6(d):

H = −J1

4

∑
square

(S1 − S2 + S3 − S4)2 + 3J1N, (57)

to every site we associate three squares, lying in each of the
{100} planes. This way every first and second-neighbor bond
is covered twice, see Table IV. This Hamiltonian is minimized
if and only if the

S1 − S2 + S3 − S4 = 0 (58)

sums vanish on every square, and the ground-state energy per
site is given by the additional constant ε = +3J1.

The three equations on the signed squares are not indepen-
dent, and instead of them we can use the octahedra containing
these squares to cover the lattice [see Figs. 1(d) and 7(a)].
Of the three square equations on orthogonal squares only
two are independent per octahedron. Using the notations of
Fig. 7(a) for the sites of the octahedron, the ground-state spin
configuration shall satisfy the equations:

SA + SA′ = SB + SB′ = SC + SC′ = 2m, (59)

where m is proportional to the magnetization of an octahe-
dron. We can solve them introducing the a, b, and c vectors,

SA = m + a, SA′ = m − a, (60a)

SB = m + b, SB′ = m − b, (60b)

SC = m + c, SC′ = m − c. (60c)

The length constraint |SA|2 = |SA′ |2 = 1 becomes (m ± a) ·
(m ± a) = 1, and similar equations for b and c hold. Adding
and subtracting these equations, we get

|m|2 + |a|2 = 1, m · a = 0, (61a)

|m|2 + |b|2 = 1, m · b = 0, (61b)

|m|2 + |c|2 = 1, m · c = 0. (61c)

The vectors above can differ on every octahedron provided
they satisfy some compatibility conditions: Sharing an edge
creates a dependence among them, but we omit the octahedron
index for clarity. For Ns component spins the a, b, c, and m
counts 4Ns degrees of freedom, and there are six constraints
in Eq. (61), so we expect 4Ns − 6 free continuous parameters
to describe the ground state of an octahedron.

A ferromagnetic order trivially satisfies the rule given by
Eq. (59), and this is not surprising: the �(0, 0, 0) point is
part of this manifold. In the ferromagnet a = b = c = 0. If
m = 0, then we get an L( 1

2 , 1
2 , 1

2 ) order: All the Type-II states
described in Sec. IV C and shown in Fig. 4(b) can be con-
structed this way. Among others one can choose the single
ordering vector (π, π, π ) and get a set of alternating (111)
ferromagnetic planes: See Eq. (24) with only the amplitude
S0

L1
nonvanishing, and Fig. 4(b) with SB = −SC = SD = SA.

This suggests other possible candidate ground states: we can
try to construct a family of ground states by stacking ferro-
magnetic (111) planes, these planes form triangular lattices
and they are depicted in Fig. 8(a).

Assuming a state consisting of ferromagnetically ordered
(111) planes, and representing a plane by a single effective
spin si of unit length, where now the index “i” enumerates
the consecutive planes one can derive an effective one-
dimensional model:

H(111)

 = 1

4
(6J1 + 6J2 + 12J3)

L(111)∑
i=1

si · si+1

+ 1

2
(6J1 + 6J3)L(111), (62)

where the effective exchanges can be inferred either from
Table V or from Fig. 8(a), L(111) is the number of (111) planes
in the crystal, and the additional constant derives from the
in-plane couplings. Substituting the actual values J2 = −J1

and J3 = 0, we see that the first term disappears, so the
planes disentangle, and the second term gives +3J1 for the
correct ground-state energy per site of the original model.
The resulting ground state is of the form F1F2F3F4 . . . , where
Fi denotes the independent ferromagnetic planes. This inde-
pendence of planes can be further rationalized by noting that
only the first-neighbor planes are connected by the covering
squares [see Fig. 8(a)]. Using the notation of Fig. 8(a) one
can see that S1′ = S1 and S2′ = S2, since these pairs lie on
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(a) (b) (c)

2'

2

1

1'

2'

2

1

1'2'

2

1

1'

FIG. 8. The face-centered-cubic lattice viewed from the (111) direction. (a) Consecutive (111) planes are highlighted in orange and green,
the octahedra connecting the planes are denoted by thin, black hexagons. One can recognize the six first-neighbor (J1) orange in-plane bonds
emanating from the central site, and the 3 black J1 lines connecting it to the green plane (for an enumeration of all the interplane bonds, see
Table V). The gray parallelogram shows the projection of a covering square also depicted in Fig. 6(d). (b) Kagome sublattices of majority
ferromagnetically ordered spins (S1 orange, and green S2) of the triangular (111) planes. Minority spins are denoted by purple S1′ and blue S2′

dots. (c) Highlighted (1̄10) lines on the (111) planes. Ferromagnetic order develops along these chains in a class of solutions of the model at
the �-
-L point of the phase diagram, the effective interaction between these chains is given in Eq. (65).

FM planes. Therefore Eq. (59) is automatically satisfied since
S1 + S2 = S1′ + S2′ .

Such a state can be cooked up by choosing ordering vectors
solely from the (q, q, q) line of the M1


 manifold:

S(x,y,z) =
∑

q∈[−π,π )

S0
(q,q,q)e

−ıq(x+y+z), (63)

and depending on the complexity of the real space pattern,
any symmetric set of points on the 
(q, q, q) line can be
present in the expansion, as long as we care about the choice
of the Fourier amplitudes to produce a real space pattern of
unit length spins. Of course we could have chosen any of the
symmetry-related 〈111〉 directions.

In the finite cluster Ising solution (see Appendix D for
details) we have found the {111} stacking of independent FM
planes: These involve only one line of ordering vectors of
M1


. We have found another type of solution where up and
down spins form two interpenetrating pyrochlore lattices: the
unit cell consists of eight sites, see Fig. 4(b) with SA = SB =
SC = SD = 1 and SĀ = SB̄ = SC̄ = SD̄ = −1.

TABLE V. Number of bonds connecting a single point to its
neighbors on the nearby (111) planes, see Fig. 1(b) and especially
Fig. 8(a). The first column gives the separation of consecutive planes:
“0” means the (111) plane containing the chosen point, “1” means the
two first-neighbor (111) planes, “2” means the two second-neighbor
(111) planes. The second column gives the number of first-neighbor
bonds connecting the chosen point to the planes of the given separa-
tion, and so on.

Separation J1 J2 J3

0 6 0 6
1 6 6 12
2 0 0 6

In the numerical simulations on planar spins we found
another interesting class of ground states: A 3/4 majority frac-
tion of the spins on (111) planes ordered ferromagnetically on
a kagome sublattice of the triangular layer [see the orange and
green dots in Fig. 8(b)], and the minority spins (purple and
blue dots) seemed to be independent of the majority spins,
and a similar structure was formed on every (111) plane.
In the following we use the notations of Fig. 8(b). We can
exploit the octahedral constraint of Eq. (61): We assume the
kagome-style ordering described above on consecutive planes
indexed by 1, 2, 3, . . . , and monitor how the consequences
of the constraints propagate as we step down on octahedra
between the planes. We fix the majority spins S1 and minority
spins S1′ on the first plane. For Ising spins fixing the spins on
layer “1” determines the spins on all of the consecutive planes,
and the resulting pattern is the quadruple-Q order described
in the previous paragraph. For XY spins, if S1′ �= −S1, then
we have four possible choices for {S2′ , S2}, resulting in a Z4

degree of freedom. If S1′ = −S1, then we are free to choose
any S2′ = −S2, resulting an O(2) degree of freedom. For O(3)
spins, if S1′ �= −S1, then we have an O(2) × Z2 freedom of
choice for {S2′ , S2}. If S1′ = −S1, then we are free to choose
any S2′ = −S2 parametrized by the unit sphere S2.

In the numerical study on the planar spins we have found
ground states formed by seemingly independent ferromag-
netic chains [73,74] lying in the 〈111〉 planes, pointing in
one of the 〈110〉 directions, a set of such lines are depicted
in Fig. 8(c). This numerical finding suggests the following
strategy: We assume a FM ordering along the (110) chains (the
bonds along the chain are J1 < 0 ferromagnetic), and derive
an effective two-dimensional model where we substitute the
chains by a single effective spin si of unit length, where the in-
dex “i” refers to points of the lattice formed by the chains, for
a picture of the lattice see Fig. 7(b). The effective interactions
Kδ (δ points to the neighboring chains) are in general very
complicated (each point is connected to 16 others, usually by
multiple bonds) but the actual exchange parameters (J2 = −J1

043278-14



DEGENERATE MANIFOLDS, HELIMAGNETS, AND … PHYSICAL REVIEW RESEARCH 2, 043278 (2020)

and J3 = 0) come to help us and result in a remarkably simple
set of nonvanishing effective exchanges:

K1 = 2J1 + 2J3 = 2J1 < 0, (64a)

K2 = J1 + 2J2 = −J1 > 0, (64b)

where the indices refer to the bonds depicted in Fig. 7(b).
These values can be inferred from the gray rhombus in
Fig. 7(b) depicting the projection of one of the covering
squares, also shown in Fig. 6(d) (in order to have the correct
effective exchanges one needs to take into account all the
three differently oriented squares). This lattice is topologically
equivalent to a first- and second-neighbor FM-AFM model
with bond strengths K2 = −K1/2 > 0 on the square lattice.
The effective two-dimensional model reads:

H(111)
2D = 1

2

∑
i,δ

Kδsi · si+δ + J1N (111), (65)

where the additional constant derives from the couplings
within a chain. This model is strongly frustrated having a
codimension-one MGS, depicted in Fig. 7(c): This manifold
is nothing but the section of M1


 with the (110) q-plane
passing through the origin [the q110 = 0 plane with notation
of Figs. 7(b) and 7(c)]. The large ground-state degeneracy can
be further rationalized by noting that this Hamiltonian can be
written as a sum of complete squares on signed rhombi [see
the gray rhombus in Fig. 7(b)]: The resulting rhombus rule
SA + SA′ − SB − SB′ = 0 is just the signed square rule inher-
ited from the three-dimensional problem. Any state obeying
the rhombus rule is a ground state for the (110) chains, and this
is consistent with the numerical finding of seemingly random
chains in the XY model that actually obey the rhombus rule.

To summarize we propose the following candidate ground
states for the �(0, 0, 0)-
(q, q, q)-L( 1

2 , 1
2 , 1

2 ) triple point:
(i) Stacking of independent ferromagnetic {111} planes in

the style F1F2F3F4 . . . . This type of ordering is realized in all
the Ising, XY and O(3) models.

(ii) Almost independent ferromagnetic kagome sublattices
in the {111} planes. This type of ordering is realized in the
XY and O(3) models. For Ising spins this order reduces to
the commensurate quadruple-L structure of intercalating py-
rochlore lattices.

(iii) Interacting ferromagnetic chains in the 〈110〉 direc-
tions, these are absent in the Ising models.

C. The �(0, 0, 0)-�(q, 0, 0)-X (1, 0, 0) triple point:
The one-dimensional M1

� ground-state manifold

The triple point J2 = 2J1, J3 = −J1/2, J1 < 0 is denoted
by a yellow dot in the phase diagram Fig. 2(a). The possi-
ble ordering vectors 	(q, 0, 0) smoothly interpolate between
�(0, 0, 0) and X (1, 0, 0), hence the shape of the manifold
M1

	, see Fig. 3(d). The Hamiltonian reads

H = J1

∑
〈i, j〉1

Si · S j + 2J1

∑
〈i, j〉2

Si · S j − J1

2

∑
〈i, j〉3

Si · S j . (66)

We can cover the lattice by signed rectangles where the signs
are distributed according to Fig. 6(c):

H = −J1

4

∑
rect2

(S1 − S2 + S3 − S4)2 + 6J1N. (67)

(a) (b)

FIG. 9. Consecutive (100) planes of the face-centered-cubic lat-
tice. (a) First-neighbor planes are connected with signed rectangle
motifs rect1 and rect2 [see Figs. 6(b) and 6(c)], first (red, J1), second
(green, J2) and third (blue, J3) bonds connecting the consecutive
planes, only one of the four possible orientations of the connect-
ing rectangles is shown. Only one in-plane J2 bond is shown in
the planes. (b) Second-neighbor planes are connected with signed
rectangle motifs rect1 and rect2 [see Figs. 6(b) and 6(c)], first (red,
J1), second (green, J2), and third (blue, J3) bonds connecting the
second-neighbor planes, only one of the four possible orientations of
the connecting rectangles is shown in the planes. Only one in-plane
J1 bond is shown.

Since −J1/4 > 0 this Hamiltonian is minimized if and only
if S1 − S2 + S3 − S4 = 0 on every rectangle, and the ground-
state energy per site is +6J1. A ferromagnetic order trivially
satisfies the above rectangle rule (the �(0, 0, 0) point is part
of the manifold), as does any X (1, 0, 0) (Type-I) order. If we
choose a single arm of the X star, i.e., only ξ �= 0 in Eq. (18),
then we get state of alternating ferromagnetic (100) planes,
see Eq. (19) with η = ζ = 0 and Fig. 4(a) with −SB = −SC =
SD = SA. This suggests the possibility to build a state of (100)
ferromagnetic planes (the sites on these planes form square
lattices). Although one cannot a priori exclude antiferromag-
netism on the planes: choosing ξ = 0 but η �= 0 and ζ �= 0 in
Eq. (19) results in an antiferromagnetic pattern on the (100)
planes, with SB = −SC and SD = −SA in Fig. 4(a).

Along the same line of reasoning presented in Sec. VII B,
we can construct a family of states of ferromagnetic (100)
planes, see Fig. 9. Representing a plane by a single effective
spin si of unit length, where now the index “i” enumerates
the consecutive planes one can derive an effective one-
dimensional model:

H(100)
X = 1

4
(8J1 + 16J3)

L(100)∑
i=1

si · si+1

+ 1

4
(2J2 + 8J3)

L(100)∑
i=1

si · si+2

+ 1

2
(4J1 + 4J2)L(100), (68)

where the effective exchange can be inferred either from
Table VI or Fig. 9, and L(100) is the number of (100) planes
in the crystal. Substituting the actual values J2 = 2J1 and
J3 = −J1/2, we see that the first two terms disappear, so
the planes disentangle, and the last term gives +6J1 for the
correct ground-state energy per site of the original model.
The resulting ground state is of the form F1F2F3F4 . . . ,
where Fi denotes the independent ferromagnetic planes. This
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TABLE VI. Number of bonds connecting a single point to its
neighbors on the nearby (100) planes, see Fig. 1(b) and especially
Fig. 9. The first column gives the separation of consecutive planes:
“0” means the (100) plane containing the chosen point, “1” means the
two first-neighbor (100) planes [see Fig. 9(a)], “2” means the two
second-neighbor (100) planes [see Fig. 9(b)]. The second column
gives the number of first-neighbor bonds (J1) connecting the chosen
point to the points on the neighboring planes of the given separation,
and so on.

Separation J1 J2 J3

0 4 4 0
1 8 0 16
2 0 2 8

independence of the planes can be further rationalized by
noting that both the first- and second-neighbor planes are
connected by the covering rectangles, and the rectangle rule is
satisfied bondwise on every ferromagnetic plane: See the rect-
angles in Fig. 9, and remember that the signs are distributed
according to Fig. 6(c) and the planes are ferromagnetic.

Such a state of ferromagnetically aligned independent
(100) planes can be Fourier decomposed as

S(x,y,z) =
∑

q∈[−2π,2π )

S(q,0,0)e
−ıqx, (69)

and depending on the complexity of the real space pattern, any
symmetric set of points on the 	(q, 0, 0) line can be present
in the expansion. Of course we could have chosen any of the
symmetry-related 〈100〉 directions.

Stacking antiferromagnetic planes is more restrictive: A
rect2 can connect neighboring planes by J1 bonds, in this case
the J2 bonds lie in-plane (and connect parallel spins, automat-
ically satisfying the J2 in-plane bonds), see Fig. 9(a). Another
possibility for a rect2 to connect second-neighbor planes by
J2 bonds, and the J1 bonds lie in-plane (and connect antipar-
allel spins), see Fig. 9(b). Second-neighbor AFM planes are
locked: they have to have the same AFM pattern to satisfy
the rectangle rule. This leaves us with the two possibilities of
stacking: an alternating set of two independent AFM planes
A1A2A1A2 . . . , or we can put independent FM planes between
the AFM ones: A1F1A1F2A1F3 . . . .

In the finite cluster Ising solutions (see Appendix D for
details) we have found the {100} stacking of independent FM
planes: F1F2F3F4 . . . and the FM stacking with intercalating
AFM planes: AF1AF2A . . . . The alternating AFM stacking is
missing here: For Ising spins it is an alternating FM stacking
F1F2F1F2 . . . viewed from a perpendicular direction.

We have performed numerical simulations for planar spins
(XY model): Besides the aforementioned planar structures we
found (seemingly disordered) ferromagnetic chains along the
〈100〉 directions, corresponding to a Fourier pattern of points
on two perpendicular lines of M1

	 in q space. Thus we try
to construct a family of states consisting of ferromagnetic
(100) directed chains. These chains sit on a square lattice of
primitive vectors (0, 1/2, 0) and (0, 0, 1/2), see Fig. 10(a).
We represent a chain by a single effective spin si of unit length,
where now the indices i refer to points of the square lattice and

(a) (b)

(c)

−2π 0 2π
−2π

0

2π

q010

−2π 0 2π

q001

−2π

0

2π

q001

q010

W

X
Γ

X'WX

W

X

X'WX

K1 K3

K4K2

(0,0,1)

(1,0,0) (0,1,0)

FIG. 10. Assuming (100)-directed, ferromagnetic chains we get
a two-dimensional model Eq. (70) on the square lattice for the effec-
tive spins si representing the magnetizations of the chains. (a) View
of the face-centered-cubic lattice from the (100) direction. The black
and white dots represent the (100) chains, lattice points on the
differently colored chains are shifted by a vector (1/2, 0, 0), but
the points are equivalent in the two-dimensional effective model.
Primitive vectors of the square lattice are (1/2, 0) and (0, 1/2). Ef-
fective interactions Kδ in Eq. (70) are represented by colored bonds.
The gray rectangle shows the projection of one covering rectangle
motif of the original model, see Figs. 6(b) and 6(c). Note that black
and white dots here have nothing to do to the sign distribution on
rectangles. The gray square shows the projection of the tetrahedron
in the original model, see Fig. 6(a). (b) Brillouin zone of the lattice
depicted in Fig. 10(a), together with the ground-state manifold (red
square) of the Hamiltonian Eq. (70), on the X -W phase boundary
of the original model. At the �-X -W triple point this manifold
extends with red �(0, 0) point. This manifold is the section of M1

Z

[see Fig. 3(b)] with the (100) q-plane passing through the origin.
Symmetry points of the original three-dimensional BZ [see Fig. 3(a)]
are shown. (c) Brillouin zone of the lattice depicted in Fig. 10(a),
together with the ground-state manifold (dark yellow cross) of the
Hamiltonian Eq. (70), at the �-	-X triple point. This manifold is the
section of M1

	 [see Fig. 3(d)] with the (100) q-plane passing through
the origin. Symmetry points of the original three-dimensional BZ
[see Fig. 3(a)] are shown.

δ to the neighbors of the lattice, and we map the system to the
effective two-dimensional model:

H(100)
2D = 1

2

∑
i,δ

Kδsi · si+δ + J2N (100), (70)

K1 = 2J1, K2 = J1 + 2J3, K3 = J2, K4 = 2J3. (71)

For the M1
	 manifold the effective interactions are: K1 =

2J1, K2 = 0, K3 = 2J1, and K4 = −J1, see Fig. 10(a) for a
picture of the generated interactions. Strong, ferromagnetic
J2 = 2J1 < 0 bonds connect along the chains and N (100) is
the number of (100) chains in the crystal. This model has a
codimension-one MGS: In the BZ of the square lattice the
minima reside on the cross connecting the BZ center to the
midpoints of the zone boundary together with the zone corner,
see Fig. 10(c), note that this manifold is nothing but the inter-
section of M1

	 with the (100) q-plane passing through the
origin. The energy per site is 6J1 = −6|J1| (4J1 comes from
the interactions and J2 = 2J1 from the additional constant).
This Hamiltonian can also be written as a sum of squares on
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signed rectangles inherited from the rect2’s projected to the
(100) plane, see Fig. 10(a). This is consistent with the numer-
ical findings of the planar spins: All the configurations found
obeyed this projected rectangle rule, but seemed otherwise
disordered.

To summarize, we propose the following candidate
ground states for the �(0, 0, 0) − 	(q, 0, 0) − X (1, 0, 0)
triple point:

(i) Stacking of independent ferromagnetic {100} planes in
the style F1F2F3F4 . . . . This type of ordering is realized in all
the Ising, XY and O(3) models.

(ii) Stacking of independent ferromagnetic layers sepa-
rated by the same antiferromagnetic layers on the {100} planes
in an AF1AF2AF3 . . . style. This type of ordering is realized in
all the Ising, XY and O(3) models.

(iii) Stacking of an alternating set of two independent
(100) AFM planes A1A2A1A2 . . . , realized in the XY and O(3)
models.

(iv) Interacting ferromagnetic chains in the 〈100〉 direc-
tions, these are absent in the Ising models.

D. The X (1, 0, 0)-W (1, 1
2 , 0) phase boundary (with endpoints):

The one-dimensional M1
Z ground-state manifold

On the phase boundary line separating the W (1, 1
2 , 0) and

X (1, 0, 0) phases [the red line in Fig. 2(b)] the ordering vec-
tors of the possible ground states form the one-dimensional
M1

Z manifold, see Fig. 3(b). Note that this manifold con-
nects the points X (1, 0, 0) and W (1, 1

2 , 0) in the BZ. On this
phase boundary given by J1 > 0, J3 = J2/4, −2 � J2 � 0 the
Hamiltonian reads:

H = J1

∑
〈i, j〉1

Si · S j + J2

∑
〈i, j〉2

Si · S j + J2

4

∑
〈i, j〉3

Si · S j . (72)

Since we have two free parameters (J1 and J2) expressing this
Hamiltonian as the sum of complete squares on finite motifs
is a little bit tricky. Here we use the elementary edge-sharing
tetrahedra of the fcc lattice and signed rectangles: Figs. 6(a)
and 6(b). Two tetrahedra and two rectangles share a nearest-
neighbor bond, and four rectangles share a second-neighbor
bond, and each third-neighbor bond is covered once by a
rectangle, see Table IV. “Signed” means that in the complete
squares on these rectangles we associate a minus sign to the
spins sitting on the sites denoted by white dots in Fig. 6(b),
and plus signs to the black dots. The Hamiltonian becomes:

H =
(

J1

4
+ J2

8

) ∑
tetra

(S1 + S2 + S3 + S4)2

− J2

8

∑
rect1

(S′
1 + S′

2 − S′
3 − S′

4)2

+ 2(J2 − J1)N. (73)

Since the prefactors are all positive the Hamiltonian is mini-
mized if and only if the spins sum to zero on every tetrahedron
and on every rectangle (with the appropriate signs), and the
additional constant 2(J2 − J1)N gives the ground-state energy.
The spin sum on rect1 can be built by subtracting the spin
sums of two edge-sharing tetrahedra, so every configuration

that satisfies the tetrahedron rule automatically satisfies rect-
angle rule.

At J2 = J3 = 0 we do not need the rectangles, and only
the tetrahedron rule survives [17] (this is the point where
the �-phase touches the X -W line). As an example [37], we
can make ground states of (100) independent antiferromag-
netically ordered planes in this endpoint: The spins form a
checkerboard pattern on the planes of an A1A2A3 . . . stack-
ing style, where Ai refers to the ith antiferromagnetic plane.
This construction extends without modification to the whole
X (1, 0, 0)-W (1, 1

2 , 0) boundary. This configuration is indeed a
ground state, since both the tetrahedron and the rectangle rules
are satisfied bondwise [for the motifs and sign distribution see
Figs. 6(a) and 6(b), for the planes connected by the rectangles
see Figs. 9(a) and 9(b)]: spins on first-neighbor bonds in a
(100) plane are antiparallel and on second-neighbor bonds
are parallel. Just like in Sec. VII C the planes disentangle,
and the in-plane contribution of interactions gives the correct
ground-state energy per spin as 2(J2 − J1).

A configuration of this stacking of AFM (100) planes can
be Fourier expanded by combining ordering vectors from the
(100) directed lines of the M1

Z manifold [see Fig. 3(b)] and
this nicely explains the shape of M1

Z . Of course we also could
have chosen the stacking direction of planes as (010) or (001).
These states appear in the Ising solution, of course there are
only two choices of AFM configurations in each plane.

In the simulations of planar spins we found (100)-directed
FM chains, in a seemingly disordered distribution. Applying
the effective two-dimensional model for the chains forming a
(100) square lattice one gets Eq. (70) with effective interac-
tions K1 = 2J1, K2 = J1 + J2/2, K3 = J2, and K4 = J2/2 with
J1 > 0 and −2 < J2 � 0 (here we exclude the J2 = −2 � −
X − W triple point, and discuss it in Sec. VII E), see Fig. 10(a)
for a picture of the generated interactions. This model has a
codimension-one MGS: In the BZ of the square lattice the
minima reside on the BZ boundary, see Fig. 10(c), but be
careful: The zone center �(0, 0) is not part of the manifold.
The Fourier transform of the effective exchange has a local
but not global minimum at the BZ center, which gets lower
and lower as we move along the X -W line toward the �-X -W
point, and this minimum becomes degenerate with the MGS

on the BZ boundary as we finally reach J2 = −2J1. Note that
this manifold is nothing but the intersection of M1

Z with the
(100) q-plane passing through the origin. The ground-state
energy per site is 2(J2 − J1) [where J2 − 2J1 comes from the
interactions and J2 from the additional constant in Eq. (70)].
This Hamiltonian can also be written as a sum of squares
on signed rectangles inherited from the tetrahedra and rect1’s
projected to the (100) plane, see Fig. 10(a) [the projected tetra-
hedron rule prohibits �(0, 0) being a global minimum]. This
is consistent with the numerical findings of the planar spins:
all the configurations found obeyed this projected rectangle
and tetrahedron rule, but seemed otherwise disordered.

To summarize, we have found the following candidate
ground states for the X (1, 0, 0)-W (1, 1

2 , 0) line:
(i) Stacking of independent antiferromagnetic {100}

planes in the style A1A2A3A4 . . . . This type of ordering is
realized in all the Ising, XY and O(3) models.

(ii) Interacting ferromagnetic chains in the 〈100〉 direc-
tions, these are absent in the Ising models.
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At the endpoint J2 = −2J1 and J3 = −J1/2 the tetrahedron
rule vanishes in Eq. (73), and the only constraint is that spins
on rectangles have to satisfy the equation S′

1 + S′
2 − S′

3 −
S′

4 = 0, this less restrictive condition offers other possibilities
(e.g., the appearance of a net magnetization), we devote the
next subsection to its analysis.

E. The �(0, 0, 0)-X (1, 0, 0)-W (1, 1
2 , 0) triple point:

The one-dimensional M1
Z ∪ � ground-state manifold

The �(0, 0, 0)-X (1, 0, 0)-W (1, 1
2 , 0) triple point bears

striking resemblance to the triple point �(0, 0, 0)-	(q, 0, 0)-
X (1, 0, 0) presented in Sec. VII C, and has a much richer
structure than the rest of the X (1, 0, 0)-W (1, 1

2 , 0) line. Here
the parameters are J2 = −2J1, J3 = −J1/2, J1 > 0, and the
MGS is M1

Z ∪ �, see Table II. See Fig. 3(b) for the degenerate
manifold, and Fig. 2(b) for the point in the phase diagram: the
red dot where the X -W boundary line hits the �(0, 0, 0) phase.
We can cover the lattice by signed rectangles (here the tetra-
hedron rule does not apply), where the signs are distributed
according to Fig. 6(b) now:

H = J1

4

∑
rect1

(S1 + S2 − S3 − S4)2 − 6J1N, (74)

since J1/4 > 0 this Hamiltonian is minimized when S1 +
S2 − S3 − S4 = 0 on every rectangle, and the ground-state
energy per site is −6J1. This rule is compatible with ferro-
magnetism.

We can map the models �(0, 0, 0)-X (1, 0, 0)-W (1, 1
2 , 0)

and �(0, 0, 0)-	(q, 0, 0)-X (1, 0, 0) to each other by changing
the sign of J1 but keeping the other two interactions intact.
In the following we exploit the relationship between the two
models, and for the details we refer to Sec. VII C.

Stacking of FM and AFM (100) planes works in complete
analogy with Sec. VII C, we only need to interchange the
words antiferromagnetic and ferromagnetic, and instead of
rect2 we have to use rect1. The possible orderings constructed
by stacking FM-AFM (100) planes (confirmed by the solution
of the Ising model and numerical results on the XY model)
are of the form of an alternate stacking of two indepen-
dent FM planes: F1F2F1F2 . . . , of independent AFM layers:
A1A2A3A4 . . . , and of independent AFM layers separated by
FM planes of fixed magnetization direction: FA1FA2FA3 . . . .

In the numerical solution of the planar model we find (100)
chains again, and we can apply the effective two-dimensional
model of Eq. (70) on the square lattice, but now with parame-
ters K1 = 2J1, K2 = 0, K3 = −2J1, and K4 = −J1. Note, that
strong ferromagnetic J2 = −2J1 < 0 bonds connect along the
chains again. This model also has a codimension one MGS:
In the BZ of the square lattice the minima reside on the
BZ boundary together with the �(0, 0) point, see Fig. 10(b).
Note that this manifold is nothing but the intersection of M1

Z
with the (100) q-plane passing through the origin extended
with the �(0, 0, 0) point. The energy per site is −6J1. This
Hamiltonian can also be written as a sum of squares on signed
rectangles inherited from the rect1’s, projected to the (100)
plane, see Fig. 10(a). This is consistent with the numerical
findings of the planar spins: All the configurations found
obeyed this projected rectangle rule, but seemed otherwise
disordered.

All the ground states found above can be mapped to the
ground states of the �(0, 0, 0)-	(q, 0, 0)-X (1, 0, 0) model
by choosing chains along one of the 〈100〉 directions and
changing the signs of all the spins on every second chain in
a checkerboard pattern [i.e., we flip the spins on all the white
(100) chains in Fig. 10(a)].

To summarize we propose the following candidate ground
states for the �(0, 0, 0)-X (1, 0, 0)-W (1, 1

2 , 0) triple point:
(i) Stacking of independent antiferromagnetic {100}

planes in the style A1A2A3A4 . . . . This type of ordering is
realized in all the Ising, XY and O(3) models.

(ii) Stacking of independent antiferromagnetic layers sep-
arated by the same ferromagnetic layers on the {100} planes
in an A1FA2FA3F . . . style. This type of ordering is realized
in all the Ising, XY and O(3) models.

(iii) Stacking of an alternating set of two independent
(100) ferromagnetic planes F1F2F1F2 . . . , reaalized in the XY
and O(3) models.

(iv) Interacting ferromagnetic chains in the 〈100〉 direc-
tions, these are absent in the Ising models.

VIII. CONCLUSIONS

We presented a detailed study of the ground-state phase
diagram of the classical isotropic J1-J2-J3 Heisenberg model
on the face-centered-cubic lattice. We found and analyzed in
detail—in real and Fourier space—the commensurate Type-I,
-II, and -III structures, where the multiple-Q orderings al-
low for noncoplanar and even chiral structures. Besides the
commensurate orders, the introduction of the third-neighbor
coupling resulted in incommensurate spin spiral orders with
propagation vectors along high-symmetry axes of the crystal.

We also found ground-state manifolds in q space of dimen-
sions one and two with subextensive degeneracies at phase
boundaries. In all cases, we could express the Hamiltonian as
a positive definite sum of complete squares on finite motifs
covering the lattice. This reformulation provided us with hints
to explicitly construct large classes of nontrivial, aperiodic
ground states in real space, consisting of randomly stacked or-
dered planes and frustrated ferromagnetically ordered chains
in special crystallographic directions. We described relations
of the real space patterns to the q-space picture.

We thoroughly analyzed the model for Ising spins on finite
clusters in the phases with extended manifolds, and deter-
mined the number and type of possible configurations in real
and Fourier space. We performed numerical simulations on
XY models and confirmed the validity of our analytical re-
sults. Numerical studies on O(3) spins revealed even richer
structures than considered here, these need further investiga-
tions.

It is interesting to compare the commensurate orders found
here for the fcc lattice to the construction of regular magnetic
orders in Ref. [67]. Besides the trivial ferromagnetic order
only the Type-I antiferromagnet can be regular, and the latter
only if we choose |ξ | = |η| = |ζ | = 1/

√
3 in Eq. (18), i.e., for

equally weighted Bragg peaks: This is the three-dimensional
analog of the tetrahedral state presented in Refs. [59–61,67].

Our work sets the stage for future studies aimed at in-
vestigating the finite-temperature classical phase diagram of
the J1-J2-J3 model including an investigation of its critical
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phenomenon which has, till date, largely focused only on the
nearest-neighbor model. In particular, the triple points and
phase boundaries which are host to a subextensively degener-
ate manifold of ground states would provide for a promising
route toward potentially realizing classical as well as S = 1/2
quantum spin liquids on the fcc lattice [26,75,76], in the
scenario when order-by-disorder fails to lift the degeneracy
as is known to occur for the pyrochlore [45–47] and hyper-
hyperkagome lattices [77]. The triple points occurring in the
J1-J2-J3 Heisenberg model on the simple cubic and body-
centered-cubic lattices are known to give way to a quantum
paramagnetic phase for S = 1/2 [70,78–80]. Given the fact
that three of the degenerate manifolds involve a ferromagnetic
phase implies that in the scenario that long-range dipolar mag-
netic orders are absent, multipole orders such as quadrupolar
[81–91], and octupolar [42] orders could be stabilized in both
classical and quantum models. The role of disorder in stabi-
lizing noncollinear phases will also be an interesting endeavor
for future studies [51,92].
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APPENDIX A: CONVENTION FOR THE LATTICE
AND FOURIER TRANSFORM OF THE EXCHANGE

INTERACTIONS

We choose the following ai as primitive lattice translations
of the fcc lattice:

a1 = 1
2 (1, 1, 0), a2 = 1

2 (1, 0, 1), a3 = 1
2 (0, 1, 1), (A1)

depicted in Fig. 1(a). We will refer to the lattice points by
their Cartesian components in units of the lattice constant:
Ri = (x, y, z), note that either all the Cartesian coordinates are
integers, or two of them are half-integers, so that x + y + z is
always an integer. The corresponding reciprocal lattice vectors
are as follows:

b1 = 2π (1, 1,−1), b2 = 2π (1,−1, 1),
b3 = 2π (−1, 1, 1), (A2)

we will refer to any point in reciprocal space by its q-triplet,
e.g., q = (qx, qy, qz ) = (2π, 2π,−2π ) = b1. Special points
and lines in the BZ have more or less commonly used labels,
we will refer to them either by their labels, or the labels with
their Cartesian coordinates in parenthesis in units of 2π , e.g.,
one of the BZ corners of the fcc lattice can be referred to as
W , W (1, 1

2 , 0), or (2π, π, 0).
The Fourier transform of the exchange interaction for the

fcc lattice with first-, second-, and third-neighbor interactions
presented in Eq. (1) is defined by

J (q) = 1

2

∑
δ

Jδeıq·δ , (A3)

and it reads:

J (q) = 2J1

(
cos

qx

2
cos

qy

2
+ cos

qx

2
cos

qz

2
+ cos

qy

2
cos

qz

2

)
+ J2(cos qx + cos qy + cos qz )

+ 4J3

(
cos qx cos

qy

2
cos

qz

2
+ cos

qx

2
cos qy cos

qz

2
+ cos

qx

2
cos

qy

2
cos qz

)
. (A4)

APPENDIX B: TABLE OF PHASE BOUNDARIES

The analytical expressions for the boundaries between the
different phases shown in Fig. 2 are collected in Table VII.

APPENDIX C: THE ALGEBRAIC WAY TO CLASSIFY
THE TRIPLE-Q W (1, 1

2 , 0) STATES

We can rewrite Eq. (38) as

Sn
i =

√
2

⎛
⎜⎝

ξ cos
[
W1 · Ri + (2nx + 1)π

4

]
η cos

[
W2 · Ri + (2ny + 1)π

4

]
ζ cos

[
W3 · Ri + (2nz + 1)π

4

]
⎞
⎟⎠, (C1)

where n = (nx, ny, nz ) is a vector of integers defined mod 4,
and ξ , η, and ζ are nonnegative real numbers. Any
combination of signs in front of the π/4 phase and of the signs
of ξ , η, and ζ in Eq. (38) is now encoded in the vectors n.

The action of the space group elements on the spin con-
figurations can be represented in the way the n change. The
action of a translation δ, described by Eq. (40), becomes

(tδSn)R = Sn
R−δ = Stδn

R , (C2)

where

tδn = n ⊕ nδ = n + nδ mod 4. (C3)
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TABLE VII. The boundaries between phases having ordering vectors QA and QB. The optimized values of the incommensurate ordering

vectors are given by cos (q	/2) = −J1−2J3
J2+4J3

, cos (q
) = − J1+J2+2J3
4J3

, and cos (q�/2) =
√

[J1+2(J2+J3 )]2−48J3(J1−2J3 )−J1−2(J2+J3 )
24J3

. The third column
gives the equations of the phase boundaries, and the last column gives the order of the transition. Compare this table with the phase diagram
given in Fig. 2. For pictures of wave vectors in the Brillouin zone see Fig. 3.

QA QB ε(QA) = ε(QB ) Type

�(0, 0, 0) 	(q	, 0, 0) J1 + J2 + 6J3 = 0 2nd
�(0, 0, 0) 
(q
, q
, q
) J1 + J2 + 6J3 = 0 2nd
X (1, 0, 0) 	(q	, 0, 0) J1 − J2 − 2J3 = 0 2nd

L
(

1
2 , 1

2 , 1
2

)

(q
, q
, q
) J1 + J2 − 2J3 = 0 2nd

�(0, 0, 0) X (1, 0, 0) J1 + 2J3 = 0 1st

�(0, 0, 0) W
(
1, 1

2 , 0
)

4J1 + J2 + 4J3 = 0 1st

�(0, 0, 0) L
(

1
2 , 1

2 , 1
2

)
J1 + J2 + 2J3 = 0 1st

X (1, 0, 0) L
(

1
2 , 1

2 , 1
2

)
J1 − 3J2 + 2J3 = 0 1st

	(q	, 0, 0) L
(

1
2 , 1

2 , 1
2

)
J2

1 − J1J2 − 2J2
2 − 6J2J3 + 12J2

3 = 0 1st

	(q	, 0, 0) 
(q
, q
, q
) 3J2 − 4J3 = 0 1st

�(0, 0, 0) �(q�, q�, 0) 19J1 + 6J2 + 46J3 + 8
√

6J2
1 + 5J1J2 + 2J2

2 = 0 1st

X (1, 0, 0) �(q�, q�, 0) −11J1 + 10J2 − 14J3 + 8
√

2J2
1 − 3J1J2 + 2J2

2 = 0 1st

L
(

1
2 , 1

2 , 1
2

)
�(q�, q�, 0) ε(QL ) = ε(Q� )a 1st

W
(
1, 1

2 , 0
)

�(q�, q�, 0) ε(QW ) = ε(Q� )b 1st

aThe equation for the phase boundary ε(QL ) = ε(Q� ) is as follows:

J4
1 + 3J3

1 J2 − 2J2
1 J2

2 − 12J1J3
2 − 8J4

2 − 64J3
1 J3 + 58J2

1 J2J3 + 104J1J2
2 J3 − 24J3

2 J3 + 376J2
1 J2

3 − 28J1J2J2
3 − 728J2

2 J2
3 − 768J1J3

3

− 264J2J3
3 + 528J4

3 = 0.

bThe equation for the phase boundary ε(QW ) = ε(Q� ) is as follows:

(J2 − 4J3)
(
J3

1 + 2J2
1 J2 − 4J1J2

2 − 8J3
2 − 50J2

1 J3 + 120J1J2J3 − 72J2
2 J3 + 172J1J2

3 − 232J2J2
3 − 152J3

3

) = 0.

We introduced the shorthand notation ⊕ as addition modulo
4. Comparing Eqs. (C1), (C2), and (C3), we get

nδ = − 2

π
(W1 · δ, W2 · δ, W3 · δ) mod 4 (C4)

and the actual values of the n vector for the elementary trans-
lations are

n(0,1/2,1/2) = (2, 3, 1), (C5a)

n(1/2,0,1/2) = (1, 2, 3), (C5b)

n(1/2,1/2,0) = (3, 1, 2). (C5c)

For the inversion we get

(ISn)R = Sn
−R = S−n⊕nI

R (C6)

with nI = (3, 3, 3), while for the time reversal

(�Sn)R = −Sn
R = Sn⊕n�

R , (C7)

with n� = (2, 2, 2).
These operations define a group acting on Z4 ⊗ Z4 ⊗ Z4 =

Z⊗3
4 configuration space spanned by the n vectors. Starting

from a configuration labeled by n = (0, 0, 0), the translations
generate an orbit consisting of 32 configurations constrained
by the nx + ny + nz = even condition—this gives half of the
all possible 43 = 64 configurations in the Z⊗3

4 . Since the num-

ber of sites in the unit cell is also 32, we may conclude that
all the translated configurations are different. The other half of
the configurations (the other orbit) can be generated by trans-
lations starting from n = (1, 1, 1), changing the condition to
nx + ny + nz = odd, and inversion provides a one-to-one map
between the two orbits. Thus the possible 64 configurations
separate into two disjoint partitions of Z⊗3

4 , showing the two
different handednesses.

APPENDIX D: THE DEGENERACY OF THE MANIFOLDS
FOR ISING OR COLLINEAR SPINS ON FINITE CLUSTERS

To see the way the degeneracy in q space of the manifolds
manifests itself in real space, we have considered Ising spins
on finite clusters. The degeneracy of the Ising spins is also
the degeneracy for collinear O(3) spin configurations, which
is just half of the degeneracy of the Ising manifold if we factor
out the trivial O(3) global rotation.

First, we generate the linear set of equations defining the
manifold (e.g., the tetrahedron rule) on a finite cluster with pe-
riodic boundary conditions. The finite clusters are defined by
the superlattice vectors g1, g2, and g3, such that SRi+g1 = SRi

and so on. The clusters of different shape are listed in Ta-
ble VIII, together with the number of planes in different direc-
tions. Next, since the set of linear equation is homogeneous,
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TABLE VIII. Number of planes parallel to one of the {100} or
{111} directions in finite clusters given by the g1, g2, and g3 vectors.
L is the linear size of the cluster. All clusters respect the full point
group symmetry Oh of the fcc lattice.

Cluster geometry No. of Parallel planes

g1 g2 g3 sites L(100) L(111)

(0, L, L) (L, 0, L) (L, L, 0) L3 L L
(2L, 0, 0) (0, 2L, 0) (0, 0, 2L) 4L3 2L L
(−2L, 2L, 2L) (2L,−2L, 2L) (2L, 2L, −2L) 16L3 2L L

we search for the null space (or kernel) they define. The
dimension of the null space DNS depends on the type of the
manifold and on the shape of the cluster, and the N − DNS

spins in the cluster can be expressed as linear combinations of
DNS linearly independent spins. This would suggest that the
number of Ising configurations is 2DNS ; however, not all of the
solutions satisfy the spin length constraint. In order not to miss
a configuration, we generate by computer all the 2DNS linear
combinations, and keep only those that give Ising spins on
every site. We have collected the numerical results in Table X
and discuss the different manifolds below. The findings for the
1D manifolds are summarized in Table IX.

1. The M2 2D manifold with the octahedron rule

We discussed M2 in Sec. VII A. The spins shall obey the
octahedron rule [Eq. (55)]. The numerical results are sum-
marized in the last two columns of Table X. Seemingly, the
dimension of the null space depends randomly on the size of
the cluster. Connecting the real space picture to the reciprocal
space reveals that the dimension of the null space is equal to
the number of discrete q points which satisfy Eq. (52), i.e.,
which lie on the two-dimensional manifold shown in Fig. 3(c).
The number of Ising spin configurations is typically much
larger than in 1D manifolds.

2. The �(0, 0, 0)-�(q, q, q)-L( 1
2 , 1

2 , 1
2 ) M1

� manifold

The “signed square” constraint (58) provides three equa-
tions per site, but the number of linearly independent
equations grows linearly with the system size, more precisely

linearly with the number of the {111} planes, as seen in
Table X and summarized in Table IX.

This is in perfect agreement with the results of Sec. VII B,
that this manifold consists of independent up- or down-
pointing ferromagnetic triangular {111} planes. Since there
are four 〈111〉 directions, this leads to 4 × 2L − 6 configu-
rations in this manifold, the constant 6 is compensating for
the multiple counting of the 8 periodic single-Q L( 1

2 , 1
2 , 1

2 )
states. For an even number of planes 8 additional states appear
which do not have the layer structure. They are quadruple-
Q L( 1

2 , 1
2 , 1

2 ) states, with four amplitudes equal in absolute
value. The up and down spins form two interpenetrating py-
rochlore lattices, the unit cell consists of 8 sites [e.g., the
A = B = C = D = 1 and Ā = B̄ = C̄ = D̄ = −1 in Fig. 4(b)
represents one of the 8 states].

Let us now see what do Eqs. (61) tell us for Ising spins.
In this case a, b, c, m ∈ R and Eq. (61a) becomes e2 + a2 = 1
and ea = 0. These two equations are satisfied by either e2 = 1
and a = 0, or e = 0 and a2 = 1. The first solution implies
b = 0 and c = 0, and the spins in the octahedron are all iden-
tical to e = ±1, resulting in a ferromagnetic configuration.
When e = 0, there are eight solutions, a = ±1, b = ±1, and
c = ±1 corresponding to the choice of the three signs, and
the solutions describe structures where on the opposite {111}
faces of the octahedra we have opposite spins. We can use
these octahedral building blocks to tile the fcc lattice. The
possible configurations are the uncoupled ferromagnetic {111}
fcc planes, including the fully polarised ferromagnetic phase
as a special case, and the quadruple-Q L( 1

2 , 1
2 , 1

2 ) phases, in
full agreement with the numerical findings presented in the
preceding paragraph.

3. The �(0, 0, 0)-�(q, 0, 0)-X (1, 0, 0) M1
� manifold

This manifold has been discussed in Sec. VII C. Here there
are six equations per site, as there are six rectangles per
site, see Eq. (74) and Table IV. The dimension of the null
space grow linearly with the number of (100) planes, DNS =
3L(100) − 2, where the factor three comes from the equivalent
(100), (010), and (001) planes. The Ising configurations in the
manifold consists of:

(1) F1F2F3F4 . . . FL configurations. The FM layers can
have arbitrary directions, and their number is 3 × 2L − 4. The

TABLE IX. Discrete degeneracy of the one-dimensional manifolds for Ising spins in finite-size clusters respecting the full cubic symmetry
of the fcc lattice. The degeneracy depends on the number of the (100) planes (or (111) planes in the case of the M1


 manifold). Depending on
the even or odd number of the planes, the frustration reduces the degeneracy.

Manifold Number of equations Planes Dim. of Number of Ising

type per site No. Parity null space configurations

M1
Z 8 L(100) Even 3L(100)−3 3×2L(100) −6

Odd 0 0
M1

Z ∪ � 6 L(100) Even 3L(100)−2 3×2L(100) +12×2L(100)/2−20
Odd 1 2

M1
	 6 L(100) Even 3L(100)−2 3×2L(100) + 12×2L(100)/2−20

Odd 3L(100)−2 3×2L(100) −4
M1


 3 L(111) Even 4L(111)−3 4×2L(111) +2
Odd 4L(111)−3 4×2L(111) −6
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TABLE X. Numerical enumeration of the Ising configurations. The first two columns are the number of (100) and (111) planes in the
cluster, the next three columns show the geometry of the clusters with periodic boundary conditions, the number of sites in the cluster is shown
in sixth row. The following rows list the dimension of the null space DNS (i.e., the number of linearly independent equations) and the number
of Ising configurations.

No. planes Cluster geometry No. M1
Z M1

Z ∪ � M1
	 M1


 M2

L(100) L(111) g1 g2 g3 sites DNS Ising DNS Ising DNS Ising DNS Ising DNS Ising

2 2 (2,2,0) (0,2,2) (2,0,2) 8 3 6 4 16 4 16 5 18 4 16
3 3 (3,3,0) (0,3,3) (3,0,3) 27 0 0 1 2 7 20 9 26 12 0
4 4 (4,4,0) (0,4,4) (4,0,4) 64 9 42 10 76 10 76 13 66 10 140
5 5 (5,5,0) (0,5,5) (5,0,5) 125 0 0 1 2 13 92 17 122 0 0
6 6 (6,6,0) (0,6,6) (6,0,6) 216 15 186 16 268 16 268 21 258 40 12688
7 7 (7,7,0) (0,7,7) (7,0,7) 343 0 0 1 2 19 380 25 506 0 0
8 8 (8,8,0) (0,8,8) (8,0,8) 512 21 762 22 940 22 940 29 1026 34 2637

4 2 (4,0,0) (0,4,0) (0,0,4) 32 9 42 10 76 10 76 5 18 10 140
6 3 (6,0,0) (0,6,0) (0,0,6) 108 15 186 16 268 16 268 9 26 12 0
8 4 (8,0,0) (0,8,0) (0,0,8) 256 21 762 22 940 22 940 13 66 34 1133
10 5 (10,0,0) (0,10,0) (0,0,10) 500 27 3066 28 3436 28 3436 17 122 0 0
12 6 (12,0,0) (0,12,0) (0,0,12) 864 33 12282 34 13036 34 13036 21 258 70

2 1 (−2, 2, 2) (2, −2, 2) (2, 2, −2) 16 3 6 4 16 4 16 1 2 0 0
4 2 (−4, 4, 4) (4, −4, 4) (4, 4, −4) 128 9 42 10 76 10 76 5 18 34 1377
6 3 (−6, 6, 6) (6, −6, 6) (6, 6, −6) 432 15 186 16 268 16 268 9 26 12 0
8 4 (−8, 8, 8) (8, −8, 8) (8, 8, −8) 1024 21 762 22 940 22 940 13 66 82

periodic states are the six single-X states and the two fully
polarized �(0, 0, 0) states.

(2) AF1AF2A . . . FL/2 like configuration with alternating
ferro- and antiferromagnetic layers, where ferromagnetic lay-
ers are independent, but the antiferromagnetic layers are
locked with respect to each other. The number of states
is 3 × 4 × 2L/2 − 16. Among these configurations are the
eight quadruple-Q states made from the three Xα’s and the
Q = (0, 0, 0) vector.

Altogether there are 3 × 4L + 12 × 2L − 20 configura-
tions. For cluster that are not compatible with the four-site
cubic unit cell, only the F1F2F3F4 . . . FL states are allowed, so
the degeneracy is 3 × 2L − 4.

4. The M1
Z manifold with the tetrahedron rule

The states of the Heisenberg model with only nearest-
neighbor interactions belong to this manifold. The ground
states satisfy the tetrahedron rule—the sum of the spins on
every elementary tetrahedron is zero. This constraint gives
two linear equations per site, but these equations are not lin-
early independent. Since the tetrahedra are edge sharing, the
number of linearly independent equations is greatly reduced,
and scales with the linear size of the cluster, more precisely
with the number of {100} parallel planes. The dimension of
the null space (shown in Table IX) is 3L(100) − 3 when there
are L(100) parallel planes, the factor of 3 comes from the
three equivalent directions of the parallel planes in clusters
respecting the full cubic symmetry.

We may now count the degeneracy of the manifold as-
suming Ising spins. Choosing a direction, say [100] and the
corresponding set of parallel planes, each of (100) planes is
antiferromagnetic with a Z2 degree of freedom (we can ex-
change spins on the two sublattices), the total number of Ising
configurations is 2L. Since we have three possible directions,

the total number of Ising configurations is 3 × 2L(100) − 6,
the 6 compensates for the multiple counting of the periodic
configurations consisting of antiferromagnetic planes in two
directions and ferromagnetic planes in the third direction –
these are the single-X states.

We can extend the covering with tetrahedra by signed
rectangles, as discussed in Sec. VII D, to allow for second-
and third-neighbor exchanges. Even though the number of
linear equations increases by 6 per site, they do not lower
the dimension of the null space, neither do they change the
number of Ising configurations.

5. The M1
Z ∪ � manifold

This is the endpoint of the line M1
Z in the J1-J2-J3 pa-

rameter space, where the tetrahedron rule is lost and only
the rectangles remain, see Sec. VII E for details. The � point
appears as an allowed Q vector. The number of equations is 6
per site and the dimension of the null space has increased by
one compared to the pure M1

Z manifold. The allowed Ising
configurations are as follows:

(1) A1A2A3 . . . AL like configurations: these are inherited
from the M1

Z manifold and their number is 3 × 2L − 6. As
we noted, the six periodic single-X states belong to this class.

(2) FA1FA2F . . . FAL/2 configurations where ferromag-
netic and antiferromagnetic planes alternate along a 〈100〉
direction when the number of planes is even. While the
rectangles lock the spins in the ferromagnetic layers, the L/2
antiferromagnetic layers retain their Z2 degree of freedom,
and the tetrahedron rule is violated. The number of these states
is 12 × 2L/2 − 16. The factor 12 comes from the 3 choices
of the 〈100〉 directions, the polarization of ferromagnetic
planes (a factor of 2), and the choice of the first plane to be
ferromagnetic or antiferromagnetic (another factor of 2). The
periodic states are the 4-sublattice one-half magnetization
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plateau configurations (8 of them), that consist of the
�(0, 0, 0) and X quadruple-Q structure, with coefficients
equal in absolute value.

(3) Pure ferromagnets: 2 Ising degeneracy.

Altogether there are 3 × 4L + 12 × 2L − 20 configura-
tions, just like for M1

	. For clusters that are not compatible
with the four site cubic unit cell, the frustration only allows
the 2 FM configurations.
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