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Ultimate limits of approximate unambiguous discrimination
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Quantum hypothesis testing is an important tool for quantum information processing. Two main strategies have
been widely adopted: in a minimum error discrimination strategy, the average error probability is minimized;
while in an unambiguous discrimination strategy, an inconclusive decision (abstention) is allowed to vanish any
possibility of errors when a conclusive result is obtained. In both scenarios, the testing between quantum states
is relatively well understood, for example, the ultimate limits of the performance are established decades ago;
however, the testing between quantum channels is less understood. Although the ultimate limit of minimum
error discrimination between channels has been explored recently, the corresponding limit of unambiguous
discrimination is unknown. In this paper, we formulate an approximate unambiguous discrimination scenario,
and derive the ultimate limits of the performance for both states and channels. In particular, in the channel case,
our lower bound of the inconclusive probability holds for arbitrary adaptive sensing protocols. For the special
class of “teleportation-covariant” channels, the lower bound is achievable with maximum entangled inputs and
no adaptive strategy is necessary.
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I. INTRODUCTION

Quantum sensing [1–4] has enabled quantum advantages in
various applications, such as positioning and timing [5,6], tar-
get detection [7–11], digital-memory reading [12], distributed
sensing [13–18], entangled-assisted spectroscopy [19], and
most prominently the Laser Interferometer Gravitational-
wave Observatory (LIGO) [20–22]. As fundamental tools for
quantum sensing, various different strategies have been devel-
oped for quantum hypothesis testing in various scenarios. In
a minimum error discrimination (MED) [23–26] strategy, the
overall error probability is minimized, while in an unambigu-
ous discrimination (UD) [27–31] strategy, an inconclusive
result is allowed to vanish any possible errors. Both strategies
have wide applications: MED is important for applications
like target detection and digital-memory reading; and UD can
be utilized in applications related to quantum key distribu-
tion protocols [32] and optimal cloning [33]. To make UD
practically relevant, given that the experimentation of sensing
protocols is never perfect, relaxations of exact UD have been
considered in many different approaches, including allowing a
fixed inconclusive probability [34–40], maximum confidence
[41,42], error-margin tuning [43], and general cost-function
approaches [40,44,45]. Extensions to parameter-estimation
scenarios have led to quantum metrology protocols assisted
by abstention [46–48].
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Another complication beyond the different strategies is
that the hypotheses being discriminated often involve physical
processes modeled as quantum channels. While quantum state
discrimination [24,49,50] is relatively well understood, many
open problems in quantum channel discrimination [51–55]
still await answers. For example, the ultimate limit of state
MED [23], the general condition of UD [31,54,56], and the
optimum UD of various ensembles of states [57–62] are
known. However, quantum channel discrimination is compli-
cated by the various choices of input states and the potential
of an adaptive strategy. Due to the complication, the ultimate
limits of channel discrimination are much more challenging
to solve. While the Helstrom limit [23] is established half
a century ago, the ultimate limit of MED between quantum
channels has been unsolved until very recently [63,64]. And
the ultimate limit of UD between quantum channels, beyond
the exact UD condition [54], is not well understood.

In this paper, we solve the ultimate limit of an approximate
version of UD between quantum channels. Different from pre-
vious approaches, we enable the fine tuning of all conclusive
conditional error probabilities. Such a relaxation allows the
proof of a general continuity inequality for states. Then, we
prove an ultimate lower bound on the inconclusive probability
in approximate channel UD for an arbitrary adaptive sensing
protocol, following Refs. [63,64]. The lower bound can be
calculated from the approximate UD between Choi states. For
a special ensemble of channels called “jointly teleportation-
covariant” channels, this lower bound can be achieved by
inputting the maximum entangled states and directly measur-
ing the output, without any adaptive strategy involved. When
the Choi states are pure, this achievable lower bound can be
directly calculated; while for mixed Choi states, we further
obtain an efficiently calculable but nontight lower bound.
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II. APPROXIMATE UNAMBIGUOUS DISCRIMINATION
BETWEEN STATES

Consider an ensemble of states ϒ = {ρ, P}, where the
states ρ = {ρn}m

n=1 have prior probabilities P = {Pn}m
n=1. The

goal of a state discrimination task is to determine an unknown
state sampled from the ensemble through a measurement.
In general, we also allow an inconclusive decision, when
not enough information is obtained to reach a definitive
conclusion. Therefore, the measurement is described by a
set of positive-operator-valued measurements (POVMs) � =
{�n}m

n=0, where �0 represents the inconclusive result, and
each of the rest �n corresponds to the decision that the state
is ρn. As POVMs, we require each element �n � 0 to be pos-
itive semidefinite, and

∑m
n=0 �n = I , with I being the identity

operator.
The performance of the protocol is characterized by an

overall inconclusive probability

PF =
∑

n

Pntr(ρn�0), (1)

where F stands for failure, and the conditional conclusive
error probabilities

PE |n = 1 − [tr(ρn�n) + tr(ρn�0)], (2)

where E stands for error.
In the exact UD scenario, one requires all PE |n to be

zero; in this paper, we introduce the approximate version of
UD, where each of the conclusive error probabilities PE |n is
bounded, forming the set of constraints

EU (ε) = {PE |n � εn}m
n=1, (3)

where ε = {εn}m
n=1 describes the error tolerance. Alternatively,

we can also consider the error probability conditioned on mak-
ing a conclusive decision. Namely, the constraints become

ER(ε) =
{ PE |n

1 − PF
� εn

}m

n=1
. (4)

Under the above constraint, in general we want to choose
the POVM � to minimize the inconclusive probability to
obtain

PX�
F (ε; ϒ) = min

�:EX (ε)
PF (ϒ,�) (5)

as a function of the state ensemble ϒ and the constants ε.
Here, X is a superscript to denote the different constraints:
when X = U we adopt the unrescaled constraints in Eq. (3);
when X = R we adopt the rescaled constraints in Eq. (4).

The different constraints can be adopted for different pur-
poses. The constraints in Eq. (4) vary quickly when PF is
close to unity, therefore leading to complexity in terms of
obtaining a good continuity bound. Moreover, as we will show
in Lemma 1, PU�

F is convex in the constraints ε, while PR�
F is

not. However, PR�
F is often easier to evaluate.

As the constraints are closely connected by a rescaling, we
expect a close connection between PU�

F and PR�
F . Reference

[37] minimizes the overall error probability given a fixed
PF , and two constraints are indeed equivalent there. In our
case, the formulation is slightly more involved. We can show
that when PU�

F (ε; ϒ) as a function of ε is strictly convex or

PU�
F (0; ϒ) < 1, then we have (proof in Appendix B)

PU�
F (εU ; ϒ) = PR�

F

(
εR = 1

1 − PU�
F (εU ; ϒ)

εU ; ϒ

)
. (6)

Here we utilize superscripts U or R in the dummy variables ε

in the constraints for clarity.
Our formulation allows an interpolation between UD and

MED. The case of ε = 0 in both formulations corresponds
to the (exact) UD scenario. When exact UD is possible, we
have PX�

F (0; ϒ) < 1; while if exact UD is not possible, we
have PX�

F (0; ϒ) = 1, which can be achieved by answering “in-
conclusive” all the time (�0 = I). By fixing the inconclusive
probability to be zero, one can obtain the Helstrom limit

PH (ϒ) = min
ε:PX�

F (ε;ϒ)=0
P · ε, (7)

and therefore recover the MED case.
To illustrate the scenario, we consider a pair of noniden-

tical pure states {|p〉 , |q〉}, with a general prior {p, q} and
overlap 〈p|q〉 = ξ > 0. We denote this ensemble ϒp,q for sim-
plicity. Following the ancilla-assisted measurement protocol
[28,29,65], we can solve the rescaled problem with constraint
{εp, εq} and obtain (see Appendix A for details) the inconclu-
sive probability

PR�
F = g(ξ ; εp, εq) ≡ min

δ̃,β̃
p sin2 β̃ + q sin2 δ̃,

δ̃, β̃ : (ξ − sin β̃ sin δ̃)/(cos β̃ cos δ̃) ∈ [εpq−, εpq+], (8)

where εpq± = |√εp(1 − εq) ± √
εq(1 − εp)|. One can also ob-

tain a lower bound

PR�
F � h(ξ ; εp, εq ) ≡ 2

√
pq

(
1 − 1 − ξ

1 − εpq+

)
. (9)

This lower bound is achievable when p = q = 1
2 , from which

we can see that convexity does not hold for the rescaled
inconclusive probability.

Because the ensemble of two nonidentical pure states
allows exact UD, we have PX�

F (0; ϒp,q ) < 1 and therefore
Eq. (6) holds true and we can obtain the unrescaled incon-
clusive probability from

PU�
F

[{
εU

p , εU
q

}
; ϒp,q

] = g(ξ ; εp, εq), (10)

where the constants εU
p,q = [1 − g(ξ ; εp, εq )]εp,q. One can

consider {εp, εq} as the parametrization and obtain the overall
curve of PU�

F .
In Fig. 1, we plot the contour of the minimum inconclusive

probability PR�
F with εp, εq. In Fig. 1(a), we utilize Eq. (9)

for the equal prior case. In Fig. 1(b), we numerically solve
Eq. (8) for a asymmetric case of p = 1

3 and q = 2
3 . Points

with an equal error probability, P · ε = const, lie on a surface
orthogonal to the vector P (blue dashed line). Since we require
PF = 0, the minimum P · ε is achieved when the equal error
probability line is tangent to the region of PF = 0, as shown
by the orange dashed line. The optimum choice of ε lies at the
tangent point (red cross).

Now, we derive properties of the constrained minimum
inconclusive probability.
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FIG. 1. (a) Contour of the symmetric case, Eq. (9), of prior
p = q = 1

2 and overlap ξ = 0.3. The red cross indicates the Helstrom
limit is achieved. The blue dashed line is εq = εp. (b) Contour of
the asymmetric case, Eq. (8), of prior p = 1

3 , q = 2
3 , and overlap

ξ = 0.3. The red cross indicates the Helstrom limit is achieved. The
blue dashed line represents the vector P = ( 1

3 , 2
3 ). The orange dashed

line is a tangent line to the PU�
F = 0 boundary.

A. Convexity

First, we show the convexity of the inconclusive probabil-
ity as a function of the error constraints.

Lemma 1. Convexity: Consider constants {ε(k)}K
k=1 and

non-negative numbers {rk}K
k=1 such that

∑K
k=1 rk = 1, for any

ensemble of states ϒ = {ρ, P} we have

PU�
F

(
K∑

k=1

rkε
(k); ϒ

)
�

K∑
k=1

rkPU�
F (ε(k); ϒ). (11)

The proof of this lemma is via constructing mixed strate-
gies to achieve the performance on the right side of Eq. (11)
(see Appendix C for a detailed proof). Note that for the def-
inition PR�

F in Eq. (5), convexity is not true, due to the extra
factor in the constraint in Eq. (4).

Convexity can be useful for obtaining bounds on the per-
formance by extending some operation points. We have the
end point PU�

F (0; ϒ) � 1 as we explained, and PU�
F (P̄; ϒ) = 0

from the random guessing strategy. Here P̄ = {1 − Pk}m
k=1 is

the complement of the prior. Applying Eq. (11) for K = 2,
we have an upper bound on the binary state optimum incon-
clusive probability. For example, for a symmetric prior, we
have PU�

F ({ε}; ϒ) � 1 − εm/(m − 1). Better bounds can be
achieved by considering the convex hull of PU�

F (0; ϒ) � 1 and
the point achieving the Helstrom limit.

B. A data-processing inequality and lower bounds

Similar to other sensing scenarios, we can obtain a data-
processing inequality. Formally, for any quantum channel 	,
we have

PX�
F (εX ; {	(ρ), P}) � PX�

F (εX ; {ρ, P}), (12)

for both X = U, R, as in a measurement, channel 	 can al-
ways be applied on states first if one chooses to.

Using this data-processing inequality, we can obtain sev-
eral lower bounds on the inconclusive probability. Consider
mixed states ρ with purifications ψρ = {ψρn}m

n=1 because ρ

can be obtained by getting rid of the ancilla that purifies each
state, Eq. (12) leads to

PX�
F (εX ; {ρ, P}) � PX�

F (εX ; {ψρ, P}), (13)

for both X = U, R. Utilizing Uhlmann’s theorem that the
maximum overlap between purification equals the fidelity
| 〈ψρp |ψρq〉 | � F (ρp, ρq) ≡ tr(

√√
ρqρp

√
ρq), we have the

following lemma (see Appendix E for a proof).
Lemma 2. Consider a pair of general nonidentical quantum

states {ρp, ρq} with prior {p, q}, the minimum failure proba-
bility as a function of the rescaled tolerance {εR

p , εR
q } satisfies

PR�
F

({
εR

p , εR
q

}
; ϒ

)
� PR�

F,LB,1 ≡ g
(
F (ρp, ρq ); εR

p , εR
q

)
. (14)

Equality is achieved when both states ρp, ρq are pure.
A further analytical lower bound can be obtained

PR�
F

({
εR

p , εR
q

}
; ϒ

)
� PR�

F,LB,2 = h
(
F (ρp, ρq ); εR

p , εR
q

)
. (15)

We have PR�
F,LB,1 � PR�

F,LB,2, equal when p = q = 1
2 .

The above lemma also allows lower bounds for PU�
F . Be-

cause the bounds are obtained from the purification, Eq. (6)
holds. Therefore, one can numerically obtain lower bounds
by keeping track of the rescaling of the constraints. We will
apply this lower bound on two ensembles of mixed states
that are relevant for our later analyses of the channel case.
To narrow down the ultimate performance, we also provide
upper bounds on the minimum inconclusive probability by
designing explicit measurement strategies.

Binary mixed states with depolarizing noise. We consider
the approximate UD between an ensemble of two-qubit mixed
states of equal priors,

ρ± = ηψ± + 1 − η

4
I4, (16)

where the pure states |ψ±〉 = (|00〉 ± |11〉)/
√

2 are orthog-
onal maximal entangled states. This example of two-qubit
states will also be utilized in the extension to channels in
Sec. III B. The fidelity between states ρ± can be calculated
analytically as

F (ρ+, ρ−) = 1
2 (1 − η +

√
1 + 2η − 3η2), (17)

and then the lower bound (15) can be analytically obtained
for any error probability constraints. As shown in Fig. 2, the
lower bound (red dashed line) is below unity at the exact UD
limit of zero error and goes to zero earlier than the Helstrom
limit point (red star). This is because the bound is in general
nontight.

To provide an upper bound, we obtain the optimum strat-
egy among a restricted class of strategies �a,θ parametrized
by a, θ . Noticing the structure of the states, we design a
measurement with POVMs �Q = |ψ+〉〈ψ+| + |ψ−〉〈ψ−| and
�P = I4 − �Q to separate them. If the result is �P, with
probability a ∈ [0, 1] we decide inconclusive, with probability
1 − a we perform random guess according to the prior. If the
result is �Q, similar to Ref. [37] we consider the following
POVMs parametrized by θ ∈ [π/2, π ] as the second step:

�0 =
(

1 − 1

tan2 (θ/2)

)
|00〉〈00|, (18)

�± = 1

2 sin2(θ/2)
|φ±θ 〉〈φ±θ |, (19)
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(a) (b)

FIG. 2. Inconclusive probability PU�
F for UD between binary

mixed states, with equal prior p = q = 1
2 and symmetric error prob-

ability constraint εU
p = εU

q . The actual value is in the gray region
between the lower bound [red solid line, Eq. (15)] and the upper
bound (black solid). The Helstrom limit is highlighted with the red
star. We choose the parameters η = 0.6 and 〈p|q〉 = 0.3 in both
cases. (a) Mixed states with depolarizing noise. The upper bound
is obtained from the convex hull of (0,1), and the minimum over a
family of strategies parametrized by a. The classical lower bound is
given in Eq. (47). (b) Mixed states with a single common component.
The upper bound and lower bound overlap when the error tolerance is
small. The exact UD with inconclusive probability η 〈p|q〉 + (1 − η)
is marked in blue star. In both (a) and (b), the strategies can achieve
the dashed gray curves for different a = 0, 0.1, . . . , 0.9, 1 from left
to right.

with |φθ 〉 = cos (θ/2) |00〉 + sin (θ/2) |11〉. The overall in-
conclusive probability and error probability are

PF = a(1 − η)

2
+ 1 + η

4

(
1 − 1

tan2 (θ/2)

)
, (20)

PE = (1 − η)(1 − a)

4
+ 1

4 sin2(θ/2)

[
1 + η

2
− η sin (θ )

]
.

(21)

One can then obtain an upper bound of PU �

F through convex
hull of the above strategy and (0, 1), as shown by the black
solid line in Fig. 2(a). It is worthy to point out that the
strategies above can also achieve the Hellstrom limit PH =
(1 − η)/2 (shown by the red star).

Binary mixed states with erasure. Consider a noise model,
where two pure states in ϒp,q are mixed with a common pure
orthogonal state φ, via

ρx = η|x〉〈x| + (1 − η)φ, (22)

for x = p, q. We can evaluate the lower bound in Lemma 2
from the fidelity

F = η| 〈q|p〉 | + (1 − η) = ηξ + (1 − η). (23)

As shown by the red dashed line in Fig. 2(b), the lower
bound achieves the exact UD for the zero-error case, however,
becomes zero earlier than the Helstrom limit (red star), which
can be evaluated numerically.

To obtain an upper bound, we design a two-step measure-
ment. First, we perform the POVM {φ, I − φ}. If the outcome
is φ, we conclude inconclusive with probability a ∈ [0, 1],
and randomly guess according to the prior with probability
1 − a; otherwise, we proceed with the optimum strategy for

the binary pure states case. The inconclusive probability and
error constraints are given by

PU
F = ηPU�

F

({
εU ′

p , εU ′
q

}
; ϒp,q

) + (1 − η)a, (24)

εU
p = (1 − η)(1 − a)q + ηεU ′

p , (25)

εU
q = (1 − η)(1 − a)p + ηεU ′

q , (26)

where the function PU�
F (·; ϒp,q ) is given by Eq. (10). By

evaluating the above for different values of a and εU ′
p , εU ′

q , we
can obtain the upper bound PU

F as a function of the overall
error probabilities εU

p , εU
q , as shown by the black solid line in

Fig. 2(b).

C. Continuity

Continuity is an important property for a physical quan-
tifier. Quantum states and channels are theory models of
physical processes. As accurate as it can be, a theoretical
description has unavoidable deviations from the reality. In
this scenario, a continuous quantifier robust against imperfec-
tions is desired. While exact UD is theoretically well studied,
however, in practice when an ensemble of states is affected
by a tiny bit of depolarizing noise, some ambiguity in the
discrimination is unavoidable. While the property of exact
UD is not continuous in quantum states, the relaxation to
an approximate UD scenario allows a continuity bound (see
Appendix E for a proof).

Lemma 3. Continuity of approximate UD: Consider two
sets of states ρ = {ρn}m

n=1 and ρ′ = {ρ ′
n}m

n=1, with one-norm
deviation ‖ρn − ρ ′

n‖ � δn, 1 � n � m. Given identical prior
P = {Pn}m

n=1, the minimum failure probability PU�
F (ε; {ρ, P})

as a function of the unrescaled tolerance ε satisfies the conti-
nuity

PU�
F (ε; {ρ, P}) ∈ [P−, P+], with (27)

P± = PU�
F (ε ∓ δ; {ρ′, P}) ± 1

2 P · δ, (28)

where we denote δ = {δk}n
k=1.

Here, we focus on the unrescaled constraints. For rescaled
constraints, the continuity lower bound is more complicated
and thus we discuss it in Appendix E.

III. APPROXIMATE UNAMBIGUOUS DISCRIMINATION
BETWEEN CHANNELS

Now, we proceed to address the approximate UD between
quantum channels. In a channel discrimination scenario, one
aims to perform hypothesis testing between a set of channels
E = {En}m

n=1, with prior probabilities P = {pn}m
n=1. To do that,

one inputs quantum states and measure the output. In general,
one can adopt an entanglement-assisted adaptive protocol Pu

of u channel uses [63,64], where each operation can depend
on all previous measurement results at earlier times and un-
limited entanglement can be utilized. In this protocol, one
can access an unknown channel E for u � 1 times, as shown
Fig. 3(a). With unlimited entanglement and unlimited ancil-
lary systems allowed, all measurements can be pushed to the
final output ρE,u, by introducing controlled unitaries. In each
round of probing, a subsystem Sk, 1 � k � u, in an arbitrary
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(a) (b) (c)

FIG. 3. Schematic of a u-step adaptive protocol Pu for channel discrimination.

quantum state, is sent through the channel E and the output S′
k

is collected for later use. In an adaptive strategy, the quantum
state of the probe Sk+1 in the next round can be produced by
a unitary on all the previous collected outputs {S′

�}k
�=1 and an

arbitrary number of ancilla in an arbitrary state.
The final decision of an adaptive protocol Pu is obtained

from a measurement on the final outputs ρ = {ρEn,u}m
n=1 (com-

bining the prior P); the problem of channel discrimination is
reduced to a state discrimination problem. Therefore, for a
fixed protocol Pu, one can introduce the same set of perfor-
mance metrics: the inconclusive probability PF in Eq. (1) and
the error probability constraints in Eq. (3) or (4). However,
the minimum inconclusive probability for ε-approximate UD
is now a constrained minimization over all sensing protocols,

PX�
F,u(ε; {E, P}) = min

Pu:EX

PF (ε; {E, P},Pu), (29)

for X = U, R denoting the unrescaled or rescaled constraints,
which is even more challenging than the state case in Eq. (5).
Similar to the state case, the minimum error probability
of adaptive channel MED [63,64] can also be given by
Pu({E, P}) = min′

ε P · ε, where the minimization is under the
constraint PX�

F,u(ε; {E, P}) = 0.
In Sec. III A, we give a general lower bound to PX�

F,u, valid
for any u-round adaptive sensing protocol. Then, we evaluate
the lower bound for three examples in Sec. III B. We close
this section by a discussion of the advantages from utilizing
entanglement in the protocol.

A. Lower bound on the ultimate limit of inconclusive probability

To prove a lower bound of the inconclusive probability, we
need to optimize over all possible protocols. To avoid such
a challenging optimization, for each protocol Pu, following
Refs. [63,64] we can design another protocol to simulate its
action. Suppose the protocol Pu on the d-dimensional channel
E produces state ρE,u, the simulation protocol produces an
approximation ρ̃E,u of ρE,u, only relying on multiple copies
of the Choi state

ρE = (E ⊗ I )ζ (30)

of the channel E rather than utilizing the original channel.
Here, I is the identity channel and the pure state |ζ 〉 =∑d−1

�=0 |�, �〉 /
√

d is a d-dimensional maximally entangled
state. The protocol [see Figs. 3(b) and 3(c)] combines two
techniques: channel simulation [66–69] and protocol stretch-
ing [67,68].

First, we consider each channel use of E in the original
sensing protocol. The action of channel E on the input can in
general be approximated by a universal programmable quan-
tum processor, given some program state that describes the
channel E [69]. Note that here the quantum processor does not
contain any information about the channel E . In this paper,
we consider processor as the general teleportation operation
T M , as depicted in Fig. 3(b), while the program state is M � 1
copies of the Choi states ρE . We denote such an approximation
of the input-output relation as a channel EM .

In general, the teleportation operation T M can be chosen
as port-based teleportation (PBT) [70] and the number of
Choi states M can be optimized to obtain the best bound. In
the special case of teleportation-covariant channels, where for
each Pauli unitary U and any quantum state ρ, one can find
another unitary V such that

E (UρU †) = VE (ρ)V †, (31)

one can simply use the direct teleportation to achieve an exact
simulation with m = 1 copy of Choi state.

The precision of such a channel simulation is quantified by
the diamond norm deviation

�E,M ≡ ‖E − EM‖�, (32)

where ‖A‖� = supρ ‖A ⊗ I (ρ)‖ is the diamond norm [51,71].
For teleportation-covariant channels, the simulation error
�E,M = 0 for M = 1; while for PBT simulation, the simula-
tion error can in general be bounded by [63]

�E,M � δM,d ≡ 2d (d − 1)M−1, (33)

which is valid for any number of ports M � 1 and any input
dimension d � 2 for the channel. In general, other simula-
tion protocols can also be used, and may potentially further
decrease the simulation error and improve our overall lower
bound.

By replacing the channel E with EM in each step, one can
obtain an overall protocol approximating the actual sensing
protocol. Using the triangle inequality repeatedly, we can
bound the deviation between the output state ρE,u of the actual
protocol and the output state ρ̃E,u of the simulated protocol as
follows:

‖ρE,u − ρ̃E,u‖ � u�E,M . (34)

To provide a lower bound on the sensing performance, the
final step is protocol stretching [63,67,72]. First, we notice
that in each step of the protocol, the only channel-dependent
component is the M copies of the Choi states. Moreover,
the overall uM copies of the Choi states consumed in the u
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steps can be directly prepared at the beginning of the entire
protocol. Therefore, as depicted in Fig. 3(c), the simulated
protocol can be organized into an equivalent protocol 	 on
the uM copies of Choi states, so that the approximate output
state ρ̃E,u can be obtained as ρ̃E,u = 	(ρ⊗uM

E ). Combining this
with Eq. (34) we have the overall error∥∥ρE,u − 	

(
ρ⊗uM
E

)∥∥ � u�E,M . (35)

With the above preparation, we can prove the following
ultimate limit of approximate unambiguous channel discrimi-
nation.

Theorem 1. Consider arbitrary m � 2 d-dimensional
quantum channels E = {En}m

n=1 with prior probabilities
P = {pn}m

n=1. The failure probability of an arbitrary u-step
adaptive protocol for ε-approximate UD satisfies

PU�
F,u(ε; {E, P}) � PU

F,u,LB,M (ε; {E, P})

≡ PU�
F

(
ε + u�E,M ;

{
ρ⊗uM

E , P
}) − u�M/2,

(36)

where we have used the notation �E,M ≡ {u�En,M}m
n=1 and

ρ⊗uM
E ≡ {ρ⊗uM

En
}m

n=1. Both the average simulation error �M =∑
n Pn�En,M and each �En,M in �E,M can be replaced by the

uniform error δM,d of Eq. (33).
In general, one optimizes PF,u,LB,M in Eq. (36) over M to

obtain the best lower bound. It is open whether this lower
bound can be achievable in general. For the special case of
a jointly teleportation-covariant ensemble of channels, where
each channel En ∈ E satisfies the relation in Eq. (31) with the
same choice of V for each U , the simulation becomes exact at
M = 1, therefore, we have the following corollary.

Corollary 1. Consider arbitrary m � 2 jointly
teleportation-covariant channels E with prior probabilities
P. The minimum failure probability of an arbitrary
u-step adaptive protocol for ε-approximate UD equals
the corresponding formula computed over their Choi matrices

PU�
F,u(ε; {E, P}) = PU�

F

(
ε;

{
ρ⊗u

E , P
})

. (37)

This is achievable by a nonadaptive entanglement-based strat-
egy where u copies of a maximally entangled state ζ are sent
through the extended channel En ⊗ I.

This means that for jointly teleportation-covariant chan-
nels, adaptivity is not necessary. As a by-product of our lower
bound, we can extend the results of Ref. [54] to include adap-
tive strategies for teleportation-covariant channels; the ε = 0
case of Eq. (37) corresponds to the exact UD case. In fact, be-
cause for teleportation-covariant channels the simulations are
exact, therefore Corollary 1 can be extended to the rescaled
case

PR�
F,u(ε; {E, P}) = PR�

F

(
ε;

{
ρ⊗u

E , P
})

. (38)

Although Eq. (36) in general reduces the channel problem
to discrimination between Choi states, solving the mini-
mum inconclusive probability of approximate UD for general
mixed states still requires challenging optimizations. Here,
we make use of the lower bound from Eq. (14) of Lemma
2 and Eq. (6), and further derive the following lower bound
for binary quantum channels.

Lemma 4. Consider a pair of nonidentical channels
{Ep, Eq} with prior {p, q}, the minimum failure probability as
a function of the unrescaled tolerance {εU

p , εU
q } satisfies

PU�
F,u � PU

F,u,LB,M ≡ g
(
F uM
Ep,Eq

; εR
p , εR

q

) − u�M/2, (39)

with {εR
p , εR

q } obtained from solving {εU
p + u�Ep,M , εU

q +
u�Eq,M} = [1 − g(F uM

Ep,Eq
; εR

p , εR
q )]{εR

p , εR
q }.

Here we utilized F (ρ⊗uM
Ep

, ρ⊗uM
Eq

) = F uM (ρEp, ρEq ) ≡
F uM
Ep,Eq

, where we introduced FEp,Eq as the fidelity between
the Choi matrices for the two channels. The function g is
defined by Eq. (8). Note that when p = q = 1

2 , we can switch
function g in Eq. (39) to the analytical function h given by
Eq. (9) to have an analytical bound.

Similar to Corollary 1, when the two channels are telepor-
tation covariant, we can let M = 1, �Ep,M = �Eq,M = 0 and
obtain a simplified bound

P�
F,u � PU

F,u,LB = g
(
F u
Ep,Eq

; εR
p , εR

p

)
(40)

with {εR
p , εR

q } obtained from solving {εU
p , εU

q } =
[1 − g(F u

Ep,Eq
; εR

p , εR
q )]{εR

p , εR
q }.

B. Examples

Now we evaluate the lower bound (39) in Lemma 4 in three
examples. We first consider jointly teleportation-covariant
channels, including noisy Pauli gates and quantum erasure
channels. For these cases, Lemma 1 can be directly utilized
and upper bounds can also be obtained by designing mea-
surement schemes on the Choi states. Then, we consider the
general case of amplitude-damping channels, which are not
teleportation covariant.

Noisy Pauli gates. Single-qubit gates are a fundamental
building block in quantum computers. It is therefore important
to certify the type of gates being built. Practical gates are
noisy, which makes the discrimination between different gates
challenging. As an example, we consider the discrimination
between two single-qubit Pauli gates in presence of depolar-
izing noise

Ek (ρ) = ησkρσk + (1 − η)
I2

2
, k = Z, I (41)

with σZ being the Pauli operator and σI = I2 being identity. As
Pauli channels, EZ and EI are jointly teleportation covariant,
with Choi states

ρEk = η|�k〉〈�k| + (1 − η)
I4

4
, (42)

where |�I〉 = |+〉 and |�Z〉 = |−〉 are maximally entangled.
We see that the Choi states in Eq. (42) are identical to the
binary mixed states with depolarizing noise described by
Eq. (16). From Corollary 1, the results in Sec. II B imme-
diately provide upper and lower bounds for the u = 1 case
of channel discrimination, as shown in Fig. 2(a). From the
fidelity in Eq. (17), we can also obtain the lower bound in
Eq. (40) for different u, as shown in Fig. 4(a).

Quantum erasure channels. We consider two different
quantum erasure channels. Upon input ρ, each channel Ek

gives the output

Ek (ρ) = η|ek〉〈ek| + (1 − η)ρ, (43)
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FIG. 4. Lower bound PU
F,u,LB vs the error tolerance for approxi-

mate UD between quantum channels of symmetric prior p = q = 1
2 .

(a) Noisy Pauli gates with η = 0.6, (b) quantum erasure channels
with 〈e1|e2〉 = 0.3.

on the input ρ for k = 1, 2, with two pure error states
{|e1〉 , |e2〉} orthogonal to the input Hilbert space. Note that
〈e1|e2〉 can be nonzero in general. The two channels are jointly
teleportation covariant, as the teleportation unitaries act only
on the input Hilbert space. The Choi states

ρEk = η|ek〉〈ek|E⊗ I2

2
+ (1 − η)|ζ 〉〈ζ |SI (44)

differ only by the error part, similar to the binary mixed state
with a single common component considered in Eq. (22).
Therefore, from Corollary 1, the upper bounds and lower
bounds in Sec. II B can be utilized for the u = 1 case here,
which are calculated in Fig. 2(b). From the fidelity in Eq. (23),
we can also obtain the lower bound in Eq. (40) for different u,
as shown in Fig. 4(b).

Amplitude-damping channels. A quantum amplitude
damping channel Ar with damping probability r has the
Kraus representation Ar (ρ) = ∑

i=0,1 KiρK†
i , with operators

K0 = |0〉〈0| + √
1 − r|1〉〈1| and K1 = √

r|0〉〈1|. It is not tele-
covariant and its PBT simulation has nonzero error �Ar ,M =
ξM[(1 − r)/2 + √

1 − r], where ξM is the constant given in
Ref. [[63], Eq. (11)]. We consider the u-round approximate
UD between Arq and Arp . The fidelity between the Choi states
of the channels can be obtained analytically [63,64]

FArq ,Arp
≡ [1 + √

(1 − rq)(1 − rp) + √
rqrp]

/
2. (45)

We can therefore evaluate the lower bound PU
F,u,LB,M in

Eq. (39) of Lemma 4. First, we optimize over M and calculate
the optimum lower bound maxM PU

F,u,LB,M for different error
constraints and number of rounds u in Fig. 5. We see that
as the number of rounds u increases, the lower bound is de-
creasing as expected. To further understand the trend, we also
evaluate the change of the lower bound PU

F,u,LB,M with u for
different fixed M in Fig. 6. The envelope of the lower bounds
for all M is the optimum lower bound we considered in Fig. 5.
We see that when M is small (red lines), the simulation error
is large and causes the lower bound to be small, while when
M is large (blue lines), the abundance of Choi states makes
the lower bound again small. For each u, one has an optimum
M to balance between the above two effects and provide the
tightest lower bound.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Optimum lower bound maxM PU
F,u,LB,M [Eq. (39) of

Lemma 4] for a pair of quantum amplitude-damping channels with
damping parameters rq = 0.8, rp = 0.9. (a), (b) u = 1, (c), (d) u =
2, (e), (f) u = 3. We numerically scan over εR

p , εR
q to obtain both

εU
p , εU

q and PU
F,u,LB,M ; then we optimize over M for each εU

p , εU
q . The

optimum M are given in (b), (d), and (f).

Entanglement advantages over classical schemes. To bet-
ter understand the effects of entanglement, here we consider
nonadaptive classical strategies without entangled ancilla. To
show the advantage of entanglement, we need upper bounds
on the inconclusive probability of the entangled strategy and
lower bounds on the classical correspondence. While efficient
calculable lower bounds are provided in Lemma 4, upper
bounds on the performance are hard to obtain, even for the
approximate UD between the Choi states. Only in the u = 1
case, we have upper bounds available, as depicted in Fig. 2.
Therefore, we focus on the u = 1 case.

First, we consider the noisy Pauli gates specified in
Eq. (41). From the symmetry of the channel, we consider
the input |+〉 in the classical strategy. Then one reduces the
problem to states

ρZ = η|−〉〈−| + (1 − η)

2
I2, ρI = η|+〉〈+| + (1 − η)

2
I2.

(46)
The fidelity between the states F (ρZ , ρI ) =

√
1 − η2. From

Eq. (40), the lower bound of the inconclusive probability can
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(a)

(b)

FIG. 6. Lower bound PU
F,u,LB,M in Eq. (39) of Lemma 4 vs the

number of rounds u. rq = 0.98, rp = 0.99. (a) εU
q = 0.1, εU

p = 0.1
(b) εU

q = 0.02, εU
p = 0.04. Color indicates M, from red (M = 1) to

blue (M = 81), in steps of �M = 5.

be obtained

P�
F,u � PU

F,u,LB = g
(√

1 − η2; εR
p , εR

p

)
. (47)

We compare the above classical lower bound with the up-
per bound of the entangled strategies in Fig. 2. In the range
around 0.07 � εU

p = εU
q � 0.2, we can see an advantage from

entanglement. We expect better entangled strategies to exist
within the shaded region and a larger advantage is possi-
ble. The entanglement’s benefit in presence of depolarizing
noise resembles the advantage in quantum illumination [8].
Despite entanglement being fragile, its advantage over the
performance achievable with only initial classical correlations
survives noise.

Next, we consider the erasure channels specified in
Eq. (44). From the symmetry of the channel, we can simply
consider the input |0〉, leading to the output

ρk = η|ek〉〈ek|E + (1 − η)|0〉〈0|, k = 1, 2. (48)

The fidelity can be calculated as F = η| 〈e1|e2〉 | + (1 − η),
which is identical to the case with entanglement assistance.
Therefore, the lower bound of the classical strategy coincides
with the ultimate lower bound. And we are not able to show
any entanglement advantage in this case, similar to the MED
case in Ref. [64].

IV. CONCLUSIONS

In this paper, we formulated the approximate unambigu-
ous discrimination scenario for quantum states and quantum
channels. For the binary pure states case, we are able to
solve the minimum inconclusive probability as a function of
the conclusive error probability constraints for an arbitrary
prior. The minimum inconclusive probability satisfies con-
vexity, continuity, and data processing, which makes it more
friendly for both theory analyses and experimental realiza-
tions. For the channel case, we are able to prove an ultimate
lower bound of the minimum inconclusive probability for
any adaptive sensing protocols, based on the approximate
unambiguous discrimination between the Choi states. For
jointly teleportation-covariant channels, the lower bound can
be achieved with maximum entangled inputs and no adaptive
strategy is required.
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APPENDIX A: BINARY PURE STATES

In the first example of binary pure states discrimination, we
are able to solve PR�

F (ε; ϒ) as a function of ε for an arbitrary
prior. The equal prior exact UD is sovled in Refs. [28,65].
Here, we consider a general prior P = {p, q} and solve the ap-
proximate UD. Following Ref. [28], we adopt a measurement
protocol assisted by an ancilla qubit in a pure state |s0〉. A
general unitary is applied on the ancilla and input to transform

|ps0〉 → α |p1s1〉 + β |p2s2〉 , (A1)

|qs0〉 → γ |q1s1〉 + δ |q2s2〉 , (A2)

such that the output states of the ancilla is orthogonal, i.e.,
〈s1|s2〉 = 0. Then, by measuring the ancilla in the {|s1〉 , |s2〉}
bases, we can determine inconclusive when the outcome is s2

and continue to perform a second measurement on the input
when the outcome is s1.

While Ref. [28] considers 〈p1|q1〉 = 0 to enable exact
UD, we let 〈p1|q1〉 � 0 in general. We consider a projective
measurement along |φθ 〉 = cos θ |p1〉 + sin θ |p⊥

1 〉 and |φ⊥
θ 〉 =

sin θ |p1〉 − cos θ |p⊥
1 〉 to trade off the error probabilities such

that

PE |p = | 〈p1|φ⊥
θ 〉 |2 = sin2 θ � εp, (A3)

PE |q = | 〈q1|φθ 〉 |2 = | cos θ 〈q1|p1〉 + sin θ 〈q1|p⊥
1 〉 |2 � εq.

(A4)

We can parametrize 〈q1|p⊥
1 〉 =

√
1 − | 〈q1|p1〉 |2eiα . The first

constraint is that there is a valid solution for θ, α, which leads
to the constraint

| 〈p1|q1〉 | ∈ [εpq−, εpq+], (A5)
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where

εpq± = |√εp(1 − εq) ± √
εq(1 − εp)|. (A6)

The other constraint is unitarity, which preserves the inner
product

〈p|q〉 = α�γ 〈p1|q1〉 + δ�β 〈q2|p2〉 . (A7)

Because of norm preservation, |α|2 + |β|2 = |γ |2 + |δ|2 = 1.
Under these constraints, we want to minimize

PF = p|β|2 + q|δ|2. (A8)

It is straightforward to see that to minimize PF , we need
| 〈q2|p2〉 | = 1 and the constraint in Eq. (A7) becomes

| 〈p|q〉 | =
√

1 − |β|2
√

1 − |δ|2| 〈p1|q1〉 | + |δ||β|. (A9)

We can reparametrize with angle parameters in [0, π/2]
as β = sin β̃, δ = sin δ̃. Then we can obtain the optimization
problem in Eq. (8). We can use inequality

p sin2 β̃ + q sin2 δ̃ � 2
√

pq sin β̃ sin δ̃, (A10)

which is achievable when p sin2 β̃ = q sin2 δ̃. We can ob-
tain a lower bound that leads to the solution in Eq. (9) via
Lagrangian multiplier methods. Moreover, the only case that
both Eqs. (A10) and (9) can be achieved is p = q = 1

2 , where
we have

PR�
F = 1 − 1 − | 〈p|q〉 |

1 − εpq+
. (A11)

In fact, one can check that this result agrees with Ref. [34].
We can check both end points analytically. When PF =

0, we have α̃ = β̃ = 0 and | 〈p1|q1〉 | = 〈p|q〉, then sim-
ple optimization gives the Helstrom limit. In particular, for
the equal-prior case, Eq. (7) leads to PH = min(εR

p + εR
q )/2

under the constraint | 〈p|q〉 | = εpq+. From symmetry, it is
achieved at PH = εp = εq = (1 −

√
1 − 4| 〈p|q〉 |2)/2 which

agrees with the Helstrom limit. When εR
p = εR

q = 0, we can
show that 〈q1|p1〉 = 0 and then the problem goes back to the
exact UD case, and for the symmetric case one can obtain the
exact UD results in Ref. [29].

To validate our numerical results of Eq. (8), in Fig. 7
we consider the equal prior case and compare the numerical
results (black dots) and the analytical results of Eq. (A11) (or-
ange dashed) along the line of εp = εq. A perfect agreement
is found. Moreover, we analytically calculate the end points
of exact UD (blue circle) and Hesltrom limit (red circle) and
they also agree well with our results.

APPENDIX B: PROOF OF EQ. (6)

Let PU�
F (εU ; ϒ) = p f . Consider the rescaled constraints

εR = 1

1 − p f
εU . (B1)

First, because the same choice of measurement can achieve
p f while satisfying the rescaled constraint of εR, we have

PR�
F (εR; ϒ) � p f . (B2)

Next, if

PR�
F (εR; ϒ) = p′

f < p f , (B3)

FIG. 7. PR�
F : Comparison between numerical results and analyti-

cal results in the symmetric case of p = q = 1
2 and 〈p|q〉 = 0.3.

then there is a corresponding

εU ′ = (1 − p′
f )εR = 1 − p′

f

1 − p f
εU > εU (B4)

that guarantees PU�
F (εU ′; ϒ) � p′

f . Here, the inequality be-
tween vectors means a set of item-wise inequalities. Figure 8
visualizes the setup by condensing all constraints into a single
axis. The points A = (εU ′, p′

f ), B = (εU , p f ), and C = (0, 1)
are on the same line. While point B is on the curve PU�

F , the
other two points C and A are upper bounds on PU�

F . From
convexity in Lemma 1, C and A have to be on the curve as
well, namely,

PU�
F (εU ′; ϒ) = p′

f , PU�
F (0; ϒ) = 1, (B5)

and the straight line AC must be the optimum. If the PU�
F (ε; ϒ)

is strictly convex in ε or PU�
F (0; ϒ) < 1, then this leads to a

FIG. 8. Schematic of the proof of equivalence.
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contradiction, therefore, Eq. (B3) cannot be true and

PR�
F (εR; ϒ) = p′

f = p f = PU�
F (εU ; ϒ). (B6)

The only possible case would be a straight line CA passing
through (0,1).

APPENDIX C: PROOF OF LEMMA 1

Suppose for each ε(k) the POVM achieving PU�
F (ε(k); ϒ) is

�(k)�. Then, we have

PU�
F (ε(k); ϒ) =

∑
Pntr

(
�

(k)�
0 ρn

)
. (C1)

The constraints give

PE |n = 1 − tr
(
�

(k)�
0 ρn

) − tr
(
�(k)�

n ρn
)
� ε (k)

n . (C2)

We can define POVMs �̄ = ∑
k rk�

(k)�, which represents a
strategy that performs the measurement represented by �(k)�

with probability rk . It is easy to verify
∑

n �̄n = ∑
k rkI = I

and they are positive semidefinite. Then, the error probability

PE |n = 1 − tr

(∑
k

rk�
(k)�
0 ρn

)
− tr

(∑
k

rk�
(k)�
n ρn

)

�
∑

k

rkε
(k)
n . (C3)

The inconclusive probability

PF =
∑

Pntr

(∑
k

rk�
(k)�
0 ρn

)
=

∑
k

rkPU�
F (ε(k); ϒ). (C4)

This strategy achieves the inconclusive probability∑K
k=1 rkPU�

F (ε(k); ϒ) with error constraints
∑K

k=1 rkε
(k);

because better measurement can exist for the same error
constraints, so we have Eq. (11) of Lemma 1.

APPENDIX D: PROOF OF LEMMA 2

From data processing we have

PR�
F ({εp, εq}; {{ρp, ρq}, {p, q}})

� PR�
F ({εp, εq}; {{ψρp, ψρq}, {p, q}}) (D1)

= g(| 〈ψρp |ψρq〉 |; εp, εq), (D2)

where we used the binary pure states result in Eq. (8). Similar
to Ref. [73], using Uhlmann’s theorem that the maximum
overlap between purification equals the fidelity | 〈ψρp |ψρq〉 | �
F (ρp, ρq ) ≡ tr(

√√
ρqρp

√
ρq), also since g is nondecreasing

with | 〈ψρp |ψρq〉 | increasing, therefore one can obtain the
tightest lower bound by taking

PU�
F ({εp, εq}; {{ρp, ρq}, {p, q}})

� PR�
F,LB,1 = g(F (ρp, ρq ); εp, εq). (D3)

Then, further using the lower bound (9) for the binary pure
states case, we can have the further lower bound PR�

F,LB,2.

APPENDIX E: PROOF OF LEMMA 3

Here we extend the lemma to both rescaled and un-rescaled
cases and then prove both results.

Lemma 5. Continuity of approximate UD: Consider two
sets of states ρ = {ρn}m

n=1 and ρ′ = {ρ ′
n}m

n=1, with relative
deviation ‖ρn − ρ ′

n‖ � δn, 1 � n � m. Given identical prior
P = {Pn}m

n=1, the minimum failure probability PX�
F (εX ; {ρ, P})

as a function of the tolerance εX satisfies the continuity

PX�
F (εX ; {ρ, P}) � PX�

F (εX ′; {ρ′, P}) − 1
2 P · δ, (E1)

where we denote δ = {δk}n
k=1, and use the notation that X = U

or X = R represents the two different cases. The parameter for
the unrescaled case

εU ′ = εU + δ, (E2)

while for the rescaled case

εR′ ≡ δ + εR
[
1 − PR�

F (εR; {ρ, P})
]

1 − PR�
F (εR; {ρ, P}) − 1

2 P · δ
. (E3)

Here we see that the unrescaled case has a much simpler
continuity bound; in fact, by interchanging the variables, one
can also show an upper bound as

PU�
F (ε − δ; {ρ′, P}) + 1

2 P · δ � PU�
F (ε; {ρ, P}), (E4)

while in the second formalism, an upper bound will be com-
plicated to obtain.

To prove the lemma, we will use one-norm’s variational
form

‖A‖ = 2 sup
0�P�I

Tr[PA], (E5)

so that |Tr[(ρ ′
k − ρk )�]| � ‖ρ ′

k − ρk‖/2 � δk/2 for any
POVM element �.

Consider a measurement described by the POVM elements
� = {�n}m

n=0; below we show that its performance on the two
ensembles of states is close. First, the inconclusive probability

PF (ρ) − PF (ρ′) =
n∑

k=1

PkTr(�0(ρk − ρ ′
k )),

and therefore we have

|PF (ρ) − PF (ρ′)| � 1
2 P · δ. (E6)

The conditional error probability

PE |k (ρ) − PE |k (ρ′) = Tr((ρ ′
k − ρk )�k ) + Tr((ρ ′

k − ρk )�0),

and therefore we have

|PE |k (ρ) − PE |k (ρ′)| � δk . (E7)

Now we look at the optimum solutions. For the first case,
suppose for ρ, the measurement achieves PU�

F (ε; {ρ, P}). This
means that

PF (ρ) = PU�
F (ε; {ρ, P}), PE |k (ρ) � εk . (E8)

The performance of the same measurement on the other en-
semble

PF (ρ′) � PU�
F (ε; {ρ, P}) + 1

2 P · δ, (E9)

PE |k (ρ′) � δk + PE |k (ρ′) � δk + εk . (E10)

So we have an operating point that suffices to show

PU�
F (ε + δ; {ρ′, P}) � PU�

F (ε; {ρ, P}) + 1
2 P · δ (E11)
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because the minimum can only be smaller than PF (ρ′).
For the second case, suppose for ρ the measurement

achieves p f ≡ PR�
F (εR; {ρ, P}). This means that

PF (ρ) = p f , PE |k (ρ) � εR
k (1 − p f ), (E12)

and we have its performance on the other ensemble

PF (ρ′) � p f + 1
2 P · δ, (E13)

PE |k (ρ′) � δk + PE |k (ρ′) � δk + εR
k (1 − p f ). (E14)

The corresponding constraint

PE |k (ρ′)
1 − PF (ρ′)

� δk + εR
k (1 − p f )

1 − p f − 1
2 P · δ

. (E15)

Note that the above is only true for p f + 1
2 P · δ < 1, however,

when p f + 1
2 P · δ � 1, the bound is meaningless and, there-

fore, we do not worry about that case. Therefore, the overall
performance satisfies

PF (ρ′) � p f + 1

2
P · δ, (E16)

PE |k (ρ′)
1 − PF (ρ)

� εR′
k ≡ δk + εR

k (1 − p f )

1 − p f − 1
2 P · δ

. (E17)

This operating point suffices to give an upper bound

PR�
F (εR′; {ρ′, P}) � PR�

F (εR; {ρ, P}) + 1

2
P · δ. (E18)

APPENDIX F: PROOF OF THEOREM 1

Proof. In this proof, we will simplify the notation and omit
the identical prior P in the ensemble. First, by continuity
equation (28) in Lemma 3 and applying inequality (35) on
each channel, we have

PU�
F (ε; {ρEn,u}m

n=1) � PU�
F

({ε + u�En,M}m
n=1;

{
	(ρ⊗uM

En
)
}m

n=1

)
− 1

2

m∑
n=1

uPn�En,M, (F1)

� PU�
F

({ε + u�En,M}m
n=1;

{
ρ⊗uM
En

}m

n=1

) − u

2

m∑
n=1

Pn�En,M .

(F2)

In the last step, we utilized the data-processing inequality (12).
The above inequality holds for any output states {ρEn,u}m

n=1,
and therefore holds for an arbitrary adaptive protocol Pu. �
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