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Theory of inversion-Z4 protected topological chiral hinge states and its applications to
layered antiferromagnets
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We study positions of chiral hinge states in higher-order topological insulators (HOTIs) with inversion
symmetry. First, we exhaust all possible configurations of the hinge states in the HOTIs in all type-I magnetic
space groups with inversion symmetry by studying dependence of the sign of the surface Dirac mass on surface
orientations. In particular, in the presence of glide symmetry, for particular surface orientations, the surface Dirac
mass changes sign by changing the surface terminations. By applying this result to a layered antiferromagnet, we
find a difference in the hinge states between the cases with an even and odd number of layers. In the case of an
even number of layers, which does not preserve inversion symmetry, positions of hinge states are not inversion
symmetric. Nonetheless, these inversion-asymmetric hinge states result from the bulk topology. We show that
their inversion-asymmetric configurations are uniquely determined from the symmetries and the topological
invariant.
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I. INTRODUCTION

The discovery of topological insulators (TIs) has trig-
gered intensive studies on topological aspects in electronic
structures of solids [1,2]. Three-dimensional (3D) TIs have
gapless surface states which are protected by time-reversal
(T ) symmetry. On the other hand, these surface states can be
gapped by breaking T symmetry while preserving topologi-
cal properties of the bulk; such TIs are called magnetic TIs.
Among magnetic TIs, those characterized by the quantized
value of the Chern-Simons axion angle θ = π [3–13] are
known as axion insulators (AXIs). The simplest AXIs have
been proposed in inversion (I) symmetric TIs in an external
magnetic field and in a TI doped with magnetic atoms without
breaking I symmetry. I symmetry pins the axion angle θ to
π even when T symmetry is broken. AXIs have the quantized
magnetoelectric effect from the nontrivial axion angle θ = π

[4–6], and the surfaces of AXIs have a half quantum Hall
effect [4,9]. Recently, EuIn2As2 [11] and MnBi2Te4 [14] have
been proposed as layered antiferromagnetic TIs, and they have
been studied extensively [15–26]. In MnBi2Te4, the combined
symmetry S = T τ1/2 leads to a Z2 topological classification
in the absence of T symmetry [27], where T and τ1/2 repre-
sent a T operator and a half-translation one, respectively.

Higher-order TIs (HOTIs) have been proposed as a new
class of TIs [28–40,40–70]. 3D HOTIs have topological
one-dimensional states along hinges of the systems, which
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are called hinge states. Hinge states arise from nontrivial
higher-order topology of the bulk. Among various classes
of HOTIs, one class of HOTIs is protected by I symmetry
[10,11,39,40,43–46]. The HOTIs without T symmetry have
chiral hinge states (CHSs) [10,11,39,40,43], whereas the HO-
TIs with T symmetry have helical hinge states [44–46,71].
In the magnetic systems only with I symmetry, the topo-
logical phases are characterized by three weak Z2 indices
and the strong Z4 index μ1 [72–77], and CHSs always ap-
pear when all the weak indices vanish and μ1 = 2 [78,79].
Therefore, magnetic TIs with I symmetry and μ1 = 2 have
CHSs, and remarkably, they are AXIs with θ = π [9–11,13].
The positions of the CHSs found are always I symmetric
[10,11,39,40,43].

In this paper, we find all the possible patterns of positions
of CHSs in HOTIs from I symmetry. We exhaust all the
patterns by studying dependence of the sign of the surface
Dirac mass on surface orientations for each space group. In
particular, in the presence of glide symmetry, for particular
surface orientations, the surface Dirac mass changes sign by
changing the surface terminations. By applying this result
to a layered antiferromagnet (AFM), we find a difference
in the hinge states between the cases with an even and odd
number of layers, and we find emergence of I-asymmetric
hinge states (IAHSs) in the case of an even number of lay-
ers. Moreover, we show that IAHSs result from the bulk
Z4 topology protected by I symmetry, and they generally
appear in antiferromagnets (AFMs) with an even number of
layers and the nontrivial Z4 index. In addition, we show that
their I-asymmetric positions are uniquely determined from
an interplay of the symmetries and topology, which is also
discussed in the axion insulator EuIn2As2 [11,23,24].

The organization of the paper is as follows. In Sec. II, we
find all the possible patterns of positions of CHSs in HOTIs
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in all type-I MSGs with I symmetry. In Sec. III, we discuss
CHSs in layered antiferromagnetic HOTIs, and then we show
that the positions of the CHSs depend on the parity of the
number of layers N . In Sec. IV, we perform calculations on
the tight-binding model to confirm our theory in Sec. III. Our
conclusion is given in Sec. V.

II. TYPE-I MAGNETIC SPACE GROUPS WITH
INVERSION SYMMETRY

First, we consider positions of the CHSs in all the 92 space
groups (SGs) with I symmetry or, equivalently the 92 type-I
magnetic space groups (MSGs) with I symmetry. To this
end, we consider a Dirac Hamiltonian on a surface of the
system. In the simplest case, the surface Dirac Hamiltonian is
written as

H(k) = λ(k1σy − k2σx ) + mσz, (1)

where σ = (σx, σy, σz ) are Pauli matrices, k̃ = (k1, k2) is a
wave vector along the surface, and λ and m are real constants.
On every surface, we define the mass m for the surface Dirac
Hamiltonian, whose general form is discussed in Appendix
A 1. We first assume that the surface Dirac mass mn is deter-
mined by the surface orientation, where n is the normal vector
of the surface. We show the dependence of mn on n in a system
with a shape of a sphere, with a point on the sphere identified
as a surface normal vector n (Fig. 1). In the I-symmetric HO-
TIs without T symmetry, the sign of the mass term is reversed
by I operation, i.e., m−n = −mn [43]. Thus, the domain wall
with mn = 0 appears in a I-symmetric manner, and on this
mn = 0 line, the CHS appears in a clockwise direction around
the region with positive mn [see Fig. 1(a-1)]. Therefore, in the
rod geometry along the z direction, the CHSs follow from the
distribution of mn on the equator of the sphere [Fig. 1(a-2)].

Next, we consider the cases with n-fold rotational (Cnz)
symmetry around the z axis in addition to I symmetry. In
the presence of I and C3z symmetries, i.e., the point group
3, the CHS is invariant under C3z symmetry [Fig. 1(b)]. In the
cases with C2z symmetry, the CHS on the sphere is always a
great circle on the mirror xy plane due to mirror symmetry Mz

[Fig. 1(c)]. In this case, chiral surface states protected by mir-
ror symmetry appear on the side surfaces in the rod geometry
along the z axis. Meanwhile, if all the surfaces of the crystal
are not mirror symmetric, CHSs appear. Furthermore, in the
cases with C4z or C6z symmetries, the distributions of the mass
terms are the same as those with C2z symmetry. Thus, the CHS
on the sphere is along a great circle in the point groups 2/m,
4/m, and 6/m. Similarly, in other point groups, the patterns
of CHSs are classified into the five patterns [Figs. 1(d)–1(h)],
where the CHSs are located on great circles on the mirror
planes. As shown in Appendix D, the sum of the mirror Chern
numbers on kz = 0 and kz = π planes is a nonzero odd num-
ber when μ1 = 2. Thus, the system with mirror symmetry has
gapless surface modes protected by mirror symmetry when
μ1 = 2, which makes the mass to vanish on the intersection
between the sphere and the mirror plane.

Notably, while on a mirror-invariant surface the surface
states are helical due to the nontrivial mirror Chern num-
ber, the hinge states predicted here are chiral as shown in
Figs. 1(c)–1(h). This is not a contradiction. For example, let

rotation axis

m = 0

(b)(a-1) (a-2)

z

x ym = 0

Inversion center

z

x y z

x y

m > 0

m < 0

m > 0

m < 0

Type 1
Point group 1

Type 2
Point group 3

mirror plane

z

x y

rotation axis (d)

m = 0
z

x y

(e)

m = 0
z

x y

(f)

m = 0
z

x y

(h)

m = 0
z

x y

(g)

(c)

m = 0
z

x y

rotation axis

rotation axis

rotation axis

m > 0

m < 0

m > 0

m < 0
m > 0m < 0

m > 0

m < 0

Type 3
Point groups
 2/m, 4/m, 6/m

Type 4
Point groups
 mmm, m3 

Type 5
Point group
 3m 

Type 6
Point group
 4/mmm 

Type 8
Point group
 m3m 

Type 7
Point group
 6/mmm 

FIG. 1. Eight types of the distributions of the mass term and
CHSs as a function of the surface normal n shown on a sphere with
I symmetry. (a-1) Type 1: The CHS forms a loop protected by I
symmetry in the point group 1, and (a-2) in the rod geometry they
appear along z direction. (b) Type 2: In the point group 3 the CHS on
the sphere is invariant under C3z and I symmetries. In point groups
(c) type 3: 2/m, 4/m, 6/m, (d) type 4: mmm, m3, (e) type 5: 3m, (f)
type 6: 4/mmm, (g) type 7: 6/mmm, and (h) type 8: m3m, the CHSs
form one, three, three, five, seven, and nine great circles, respectively.

us consider a 3D system of an I-symmetric alternate stacking
of Chern insulator layers with Chern numbers ±1 along the
z direction, with each layer being Mz invariant. Even with
Mz-invariant interlayer coupling, there appear gapless helical
surface states on the (100) surface due to a nontrivial mirror
Chern number. On the other hand, if we cut out a finite crystal
with I symmetry, the crystal consists of N + 1 layers with the
Chern number +1 and N layers with the Chern number −1 or
vice versa to preserve I symmetry. Thus, on the (100) surface,
we should consider the N → ∞ limit, and the surface states
are helical. On the other hand, for an I-symmetric crystal with
a finite N having no mirror-symmetric surfaces, by moving
states of opposite chirality toward each other without break-
ing I symmetry, the chiral edge states hybridize to result in
a nonvanishing Chern number (N + 1) × 1 + N × (−1) = 1,
leading to CHSs. Thus, the massless line on the mirror planes
in Figs. 1(c)–1(h) corresponds to both helical surface states
and CHSs.

This approach of the mass term is used in the previous
works [34,74] to classify the topological phases of topological
crystalline insulators with T symmetry. Therefore, these pre-
vious works are not intended to list possible positions of hinge
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states. In contrast, in this paper, we focus on the position of
CHSs in the system without T symmetry, not on the classifica-
tion of topological phases. As we discuss in Appendix A 1, in
the system without T symmetry, the transformation property
of the mass term under rotation operations is different from
the case with T symmetry, which gives a crucial difference in
the positions of CHSs.

Next, we consider the cases with glide symmetry. In sys-
tems with glide symmetry, the glide-Z2 topological invariant
is defined [80,81]. Here, the question is a relationship between
the glide-Z2 invariant and the inversion-Z4 invariant. To see
this, we consider minimal SGs which contain I and glide
symmetries. There are three such SGs, No. 13, No. 14, and
No. 15. The SGs No. 13 and No. 14 are for the simple (prim-
itive) lattice, with the inversion center inside the glide-mirror
plane in SG No. 13 and outside it in SG No. 14. The SG No. 15
is for the base-centered lattice. It is found that in SGs No. 13
and No. 15, half of the inversion-Z4 invariant μ1 is equal to the
glide-Z2 invariant [82,83], while in SG No. 14, it is equal to
a sum of the glide-Z2 invariant and half of the Chern number,
where the Chern number is even [82]. In either case, because
we are considering cases with a vanishing Chern number, a
nontrivial inversion-Z4 invariant μ1 = 2 automatically means
a nontrivial glide-Z2 invariant. Thus in our case of HOTIs,
on the surfaces preserving the glide symmetry, there should
appear topological gapless states, and the mass is zero.

To study the dependence of the surface mass on the sur-
face orientation, we consider a system with a glide symmetry
{My|00 1

2 }. In this case, on the glide-invariant surfaces, which
are perpendicular to the glide-mirror plane and along the di-
rection of a fractional translation of the glide operations, the
gap is zero in the HOTIs because of the nontrivial glide-Z2

invariant [Fig. 2(a)]. More generally, by combining integer
translations in the x, y, and z directions with this glide opera-
tion {My|00 1

2 }, it follows that {My|a, b, c + 1
2 } is also among

the symmetry operations of the system, where a, b, c are
integers. In this case, the Miller index of the corresponding
glide-invariant surface is (2c + 1, 0,−2a), and the surface
Dirac mass on this surface is zero. Therefore, on the (α, β, γ )
surface with β = 0, α ≡ 1 (mod 2), and γ ≡ 0 (mod 2), the
Dirac mass is zero.

Here, we note the following point: So far we assume that
the sign of mn is uniquely determined by the surface orien-
tation, but the assumption is violated when the system has
glide symmetries. For example, we consider a glide symmetry
{My|00 1

2 } once again. Suppose the surface mass term m for the
(001) surface z = 0 is positive. Then from the glide symmetry,
the (001) surface z = 1/2 has a negative mass. Then the glide
symmetry requires two terminations for the (001) surfaces
to have opposite mass signs, violating our assumption. Other
than the (001) surface, there are surfaces with such ambiguity
of the mass sign. In general, the (α, 0, γ ) surfaces have such
ambiguity if γ is an odd number, where α and γ are integers,
with the details in Appendix A 4. Thus, there are an infinite
number of surface orientations on which the mass ambiguity
arises. To summarize, when the surface normal is within the
glide-mirror plane on the sphere shown in Fig. 2(b), two cases
for the surface mass coexist: the mass on the (α, 0, γ ) surface
is zero when α ≡ 1 (mod 2) and γ ≡ 0 (mod 2), while the
mass is indeterminate when γ ≡ 1 (mod 2). Thus, the mass
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FIG. 2. The distributions of the mass term with glide symmetries.
(a) A glide symmetry imposes glide-invariant surfaces such as (100)
to be gapless. On the other hand, the mass sign on the (001) surface
is indeterminate. (b) Within the glide mirror plane, the mass on the
(α0γ ) surface is zero when α ≡ 1 (mod 2) and γ ≡ 0 (mod 2), while
the mass is indeterminate when γ ≡ 1 (mod 2). Thus, on the sphere,
along the great circle (dotted line) on the glide-mirror plane, the mass
is not a continuous function of the surface normal vector. (b)–(f)
We call the cases where the mirror planes in types 3–8 are replaced
with glide-mirror planes as types 3′–8′. (c) Type 4′ contains several
patterns in which the mirror symmetries in type 4 are replaced by
glide symmetries.

with the surface normal n within the glide-mirror plane sensi-
tively depends on the surface orientation, and it is no longer a
smooth function of n. In the mass distribution on the sphere,
such n forms a great circle on the glide-mirror plane. We show
this great circle as a broken circle, in contrast with the solid
circle on the mirror plane, where the mass is zero. We call the
cases where the mirror planes in types 3–8 are replaced with
a glide-mirror plane as types 3′–8′ [Figs. 2(b)–2(g)].

Next, we consider the cases with screw symmetries. The
combination between I symmetry and screw {C2z|00 1

2 } sym-
metry leads to the mirror symmetry {Mz|00 1

2 }, and the mirror
Chern number is nontrivial when the Chern number on the
kz = 0 plane is zero and μ1 = 2 as discussed in Appendix E.
This leads to the emergence of the surface states protected by
mirror symmetry (type 3 in Fig. 1).

043274-3



TANAKA, TAKAHASHI, ZHANG, AND MURAKAMI PHYSICAL REVIEW RESEARCH 2, 043274 (2020)

TABLE I. The patterns of the CHSs on the sphere for 92 type-I
MSGs with I symmetry. The distributions of the CHSs are classified
into 14 types: the 8 types (types 1–8) shown in Fig. 1 [panels (a-1),
(b)–(h)] and the 6 types with glide symmetries (types 3′–8′) shown
in Fig. 2 [panels (b)–(g)]. PG denotes the name of the point group.
In types 1–8, the MSGs do not include glide symmetries. On the
other hand, in types 3′–8′, the MSGs include glide symmetries, and
these cases correspond to the mass distributions which are obtained
by replacing the mirror planes in types 3–8 with glide-mirror planes.

PG Type-I MSG Type of CHS

1 2 Type 1
3 147, 148 Type 2

2/m 10, 11, 12 Type 3
13, 14, 15 Type 3′

4/m 83, 84, 87 Type 3
85, 86, 88 Type 3′

6/m 175, 176 Type 3

mmm 47, 65, 69, 71 Type 4
48, 49, 50, 51, 52, 53, 54, 55, Type 4′

56, 57, 58, 59, 60, 61, 62, 63,
64, 66, 67, 68, 70, 72, 73, 74

m3 200, 202, 204 Type 4
201, 203, 205, 206 Type 4′

3m 162, 164, 166 Type 5
163, 165, 167 Type 5′

4/mmm 123, 139 Type 6
124, 125, 126, 127, 128, 129, 130, Type 6′

131, 132, 133, 134, 135, 136, 137,
138, 140, 141, 142

6/mmm 191 Type 7
192, 193, 194 Type 7′

m3m 221, 225, 229 Type 8
222, 223, 224, 226, 227, 228, 230 Type 8′

In this way, we identified all the 14 possible patterns of the
mass distribution on the sphere and the resulting positions of
CHSs [types 1–8 in Figs. 1(a)–1(h) and types 3′–8′ with glide
symmetries in Figs. 2(b)–2(g)] for all the 92 type-I MSGs
with I symmetry as shown in Table I. We obtain this result
using an observation that mn behaves as a pseudoscalar with
its details in Appendix A. Here, we note the meaning of the
spherical figures in Figs. 1 and 2. They represent dependence
of the surface Dirac mass on the surface normal n. Therefore,
for a given crystal shape with various facets, we apply one
of the 14 patterns in Figs. 1 and 2 to find the signs of the
individual crystal facets, and then the positions of the CHSs
are determined as domain walls for the sign of the surface
mass. Hence, depending on crystal shapes, the positions of
CHSs may look different from Figs. 1 and 2.

III. CHIRAL HINGE STATES IN ANTIFERROMAGNETIC
HIGHER-ORDER TOPOLOGICAL INSULATORS

Based on the mass distribution mn dependent on the sur-
face normal vector n, one can determine positions of CHSs
for a given crystal shape. In Sec. II, we find an interesting

possibility in HOTIs with glide symmetry. Namely, for par-
ticular choices of surface orientations, the surface Dirac mass
changes its sign, when the surface termination is shifted by
half of the lattice constant. Since the mass distribution as a
function of n determines the positions of CHSs, our finding
in Sec. II suggests that in such cases, a change in the surface
termination, while keeping the surface orientation specified
by n, will change the positions of the CHSs. To show this, we
consider an example of a glide-symmetric system in cylindri-
cal geometries along the direction of the fractional translation
of glide symmetry, and we choose types 3′ and 5′ in Fig. 2 as
an example.

Here, we consider crystals in type 3′ in the shape of a
parallelepiped and in type 5′ in the shape of a hexagonal prism
[Fig. 3(a)]. These are I-symmetric 3D layered antiferromag-
netic HOTIs with μ1 = 2. Here, the staggered magnetization
is along the z axis, which is along the stacking direction. In
this section, we show that the positions of the CHSs depend
on the parity of the number of layers N , and IAHSs generally
appear in the cases with even N , where I symmetry is broken.
We assume that each layer has I symmetry. First, we consider
CHSs along the direction of the stacking, i.e., the z direction
as shown in Fig. 3(a), which follows from Fig. 1. Here we
assume that the number of layers is much larger than the
penetration depth of the CHSs. In this case, CHSs along the
stacking direction always emerge irrespective of the number
of layers because of the topological property in the bulk, i.e.,
μ1 = 2 [78].

Next, we consider behaviors of CHSs at the corners A
and B in Fig. 3(b). At each corner, the number of incom-
ing hinge modes should be equal to that of outgoing hinge
modes because otherwise a charge will be accumulated at
a corner in proportion with time, due to the fact that each
hinge mode provides one-channel transport. This argument is
similar to the one in Ref. [84] applied for chiral edge currents
in a two-dimensional (2D) insulating ferromagnet. Therefore,
CHSs should appear either along (i) or along (ii) between the
corners A and B [Fig. 3(b)]. In addition, a similar discussion
is applicable to the corners C and D. Therefore there are
four possible patterns of the positions of CHSs as shown in
Figs. 3(c)–3(f). In Figs. 3(c) and 3(d), the positions of CHSs
are I symmetric.

A. Cases with an odd number of layers

First of all, we consider the cases with odd N with the
magnetization of each layer given by ↑↓ · · · ↓↑, which rep-
resents the magnetizations of the individual layers from top
to bottom. When N is odd, the system has I symmetry, and
such an I-symmetric 2D slab of a 3D HOTI with I symmetry
is shown to be a 2D Chern insulator with the Chern number
Cz

slab ≡ 1 (mod 2) [10,39,79]. Here the Chern number Cz
slab in

2D systems is defined by

Cz
slab = 1

2π

∫
BZ

dkxdkyTr[Fxy(k)]. (2)

Here Fab(k) = ∂aAb(k) − ∂bAa(k) is the Berry curvature
written in terms of the Berry connection of the occupied
bands, [Aμ(k)]αβ = i 〈uα| ∂μ |uβ〉. In the present case of
the layered antiferromagnet, when N = odd, I symmetry is

043274-4



THEORY OF INVERSION-Z4 PROTECTED … PHYSICAL REVIEW RESEARCH 2, 043274 (2020)

FIG. 3. Positions of the CHSs and the slab Chern number Cz
slab. (a) The CHSs appear along the z direction, i.e., the stacking direction in

the rod geometries parallel to the fractional translation vector in the glide symmetry in type 3′ and type 5′. (b) The number of incoming hinge
modes should be equal to that of outgoing hinge modes at the corners A and B. There are two possibilities for CHSs, (i) and (ii) in both cases
corresponding to types 3′ and 5′. (c)–(f) There are four possible patterns of the positions of CHSs. The cases with N = odd are in (c) Cz

slab = 1
and (d) Cz

slab = −1. The cases with N = even are in (e) and (f), and IAHSs appear in these cases.

preserved, and the slab Chern number Cz
slab (mod 2) satisfies

[79]

Cz
slab ≡ 1

2μ1 ≡ 1 (mod 2), (3)

since we are considering HOTIs with μ1 ≡ 2 (mod 4). In
particular, for odd N with ↑↓ · · · ↓↑ and ↓↑ · · · ↓, we can
choose Cz

slab = 1 and Cz
slab = −1, respectively, without losing

generality (see Appendix C), leading to the positions of CHSs
shown in Figs. 3(c) and 3(d).

B. Cases with an even number of layers

Next, when N is even, I symmetry is broken and Cz
slab ≡ 1

(mod 2) does not hold. For even N with ↑↓↑↓ · · · ↓, it can
be understood as ↑↓ · · · ↑ + ↓↑ · · · ↓, i.e., the composition
of odd-N layers with Cz

slab = 1 and odd-N layers with Cz
slab =

−1. The resulting positions of CHSs are shown in Fig. 3(e)
because two counterpropagating CHSs on the same hinge will
hybridize and open a gap. Likewise, for even N with ↓↑ · · · ↑,
the CHSs are as shown in Fig. 3(f), which is obtained from
Fig. 3(e) via an I operation. These positions of CHSs are
not I symmetric; namely, they are IAHSs. Thus, while the
CHS forms a single loop when N = odd [see Figs. 3(c) and
3(d)], those with C3z symmetry when N = even do not form
a single loop, but three loops instead [Figs. 3(e) and 3(f)].
The difference in the positions of CHSs can be observed by
transport measurements on the hinges of crystals.

Interestingly, though a slab with even N does not preserve
I symmetry, it has IAHSs due to bulk topology protected by
bulk I symmetry. It is also interesting that the positions of
the IAHSs for even N are also uniquely determined in this
case, and they are different from those for odd N . EuIn2As2

with even N possesses IT̃ symmetry where T̃ ≡ C2zT , from
which the Chern number is

Cz
slab = 0, (4)

when N is even as proved in Appendix B.

IV. MODEL CALCULATIONS

In this section, we use a tight-binding model of a layered
AFM showing a HOTI phase to study the behaviors of the
IAHSs. This model was proposed as a model of a HOTI with
CHSs in Ref. [40]. This model is an alternate stacking of
layers of the Haldane model within the xy plane with the
Chern number = ±1 [85], and their magnetizations alternate
correspondingly [Figs. 4(a) and 4(b)]. The Haldane model is
a tight-binding model on the honeycomb lattice representing
a ferromagnet, and its Hamiltonian within the αth layers is
written as

Hxy = t1
∑
〈i j〉,α

c†
iαc jα + it2

∑
〈〈i j〉〉,α

(−1)ανi jc
†
iαc jα, (5)

where i and j run over the sites in the layer α, t1 is the hopping
strength for the first-neighbor pairs 〈i j〉, t2 is that for the

043274-5



TANAKA, TAKAHASHI, ZHANG, AND MURAKAMI PHYSICAL REVIEW RESEARCH 2, 043274 (2020)

FIG. 4. Tight-binding model of the layered AFM. (a) Each layer
forming the Haldane model on the honeycomb lattice with the A and
B sublattices. Primitive translation vectors are a1 = (a, 0, 0)T and
a2 = (a/2,

√
3a/2, 0)T , where a is a lattice constant. (b) Schematic

picture of the interlayer hopping. Each layer can be regarded as a
ferromagnetic system, and the magnetizations of each layer change
alternately. From this, the whole system has four sublattices, A, B, A′,
and B′ sublattices. The interlayer hopping between A sites alternates
with that between B sites. a3 = (0, 0, 2a)T is the translation vector
along the z direction. (c) The Brillouin zone of this model, and there
are eight TRIMs. (d) The number of occupied states with even and
odd parities at the eight TRIMs.

second-neighbor pairs, and νi j = 1 (νi j = −1) if the second-
neighbor hopping path is counterclockwise (clockwise) in the
hexagonal plaquette. The Fermi energy is set to be EF = 0.
We assume t1 and t2 to be negative; then each layer is a Chern
insulator with the Chern number C = (−1)α+1. Therefore, the
Chern numbers of the individual layers change alternately, and
so does their magnetization. Therefore, the model is a layered
AFM. Next we introduce a hopping tz between the layers as
shown in Fig. 4(b), and this Hamiltonian is given by

Hz = tz
2

∑
i∈A,α

[1 − (−1)α]c†
iαciα+1

+ tz
2

∑
i∈B,α

[1 + (−1)α]c†
iαciα+1 + H.c. (6)

The overall Hamiltonian is H = Hxy + Hz, and it has I sym-
metry in the bulk. This interlayer coupling breaks S (= T τ 1

2
)

symmetry but preserves bulk inversion symmetry, which leads
to gapped surface states and gapless CHSs. Here, we assume
that the interlayer coupling is weak so that the gap remains
open even when tz is continuously changed to zero. Then the
topological properties of the layered system are the same as
those of a stack of decoupled 2D Chern insulators. Therefore,
Cz

slab is obtained by the sum of the Chern number of each layer.
In 3D systems, there are eight time-reversal invariant mo-

menta (TRIMs) denoted by � j . The topological phases are
characterized by the Z4 index for I-symmetric systems in
class A, one of the Altland-Zirnbauer symmetry classes [86].

The Z4 index is defined as [73]

μ1 ≡ 1

2

∑
� j :TRIM

[n+(� j ) − n−(� j )] (mod 4), (7)

where n±(� j ) are the number of the occupied states with even-
and odd-parity eigenvalues at the TRIM � j , respectively. The
eight TRIMs are shown in Fig. 4(c), and the parity eigenvalues
at each TRIM are shown in Fig. 4(d). From these parity
eigenvalues, the Z4 topological index is μ1 = 2 in this model,
which leads to HOTIs with CHSs [78].

In the following, we perform calculations for the tight-
binding model using the PYTHTB package [87]. We calculate
the band structure with the rod geometry along the z direction,
and the result is shown in Fig. 5(a). This model has C3z

symmetry, and therefore the CHSs appear at the positions
which are related by C3z symmetry as shown in Figs. 5(a-1)
and 5(a-2). Next we calculate the band structure with the rod
geometry which is finite along the directions of the z axis and
of the primitive translation vector a2, and infinite along the a1
direction. The results are shown in Figs. 5(b) and 5(c), for N =
odd and N = even, respectively. When N = odd [Fig. 5(b-2)],
the system is I symmetric, and then the positions of CHSs
are I symmetric, in agreement with Fig. 3(c) with Cz

slab = 1.
When N = even, the system is not I symmetric, and the
positions of CHSs are as shown in Fig. 5(c-2); that is, IAHSs
appear with Cz

slab = 0.
The MSG of the tight-binding model is P6′

3/m′m′c (No.
194.268). This MSG contains two kinds of symmetry opera-
tions: a glide symmetry {My|00 1

2 }, and a combination of screw
and T operations, T {C2z|00 1

2 }, both of which lead to a sign
inversion of the surface Dirac mass on the (001) surface. The
MSG P6′

3/m′m′c (No. 194.268) has a maximum subgroup
type-I MSG No. 167. According to Table I, it is similar to the
point group 3m with three glide symmetries (type 5′ in Fig. 2).

According to Ref. [11], EuIn2As2 is a layered antiferro-
magnetic AXI with the magnetic moment along the z axis
[Fig. 6(a-1)]. The MSG of EuIn2As2 is P6′

3/m′m′c (No.
194.268), the same with our model. Thus, EuIn2As2 is an
ideal material to study the emergence of IAHSs. Remarkably,
the mass term in EuIn2As2 will change its sign under I and
is invariant under C3z, which makes the mass term have an
alternate sign between adjacent side surfaces of the hexagonal
crystal shown in Fig. 6(a-2) and Fig. 3(c). Moreover, if N is
even, which breaks I symmetry [Fig. 6(b-1)], CHSs will exist
in an I-asymmetric configuration [Figs. 6(b-2) and 3(e)].

In the AXIs, such as EuIn2As2, a quantized magnetoelec-
tric effect is expected. For its observation, we need to attach
electrodes so that they are electrically isolated from each
other. The CHSs can short-circuit them, then obstructing the
measurement. Our analysis shows that the case with N = even
may facilitate the measurement since the IAHSs consist of
multiple loops.

V. CONCLUSION

In summary, we found all the possible configurations of
CHSs in HOTIs in type-I MSGs with I symmetry through an
analysis of the sign of the surface Dirac mass. The configura-
tions are uniquely determined from each MSG as a massless
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FIG. 5. The positions of CHSs and the band structures of the tight-binding model with parameters t1 = −1, t2 = −0.2, and tz = −0.3. The
real-space distributions of the CHSs in (a-2), (b-2), and (c-2) are shown as the size of the blue dots. (a) Results for rod geometry along the z
direction. (a-1) Schematic diagram of the layered AFM comprising layers of the Haldane model, and the positions of CHSs for hexagonal rod
geometry. (a-2) Real-space distribution of zero-energy modes in the xy plane. The longest diagonal length of the hexagonal system in the real
space is L1 = 25a. (a-3) The band structure. (b), (c) Results for rod geometry which is finite along the z and a2 directions, and infinite along
the a1 direction. The lengths of the system along the a2 are L2 = 25a in both (b) and (c), and those along the a3 are L3 = 40a (N = 41) in
(b) and L3 = 41a (N = 42) in (c). The numbers of the layers are odd in (b) and even in (c). (b-1) and (c-1) are schematic diagrams of CHSs.
(b-2) and (c-2) are the real-space distribution of zero-energy modes in the red plane in (b-1) and (c-1). (b-3) and (c-3) The band structures.
When N = odd, the positions of CHSs are I symmetric corresponding to Fig. 3(c). When N = even, the positions of CHSs, i.e., IAHSs, are
not I symmetric corresponding to Fig. 3(e). These model calculations were performed using the PYTHTB package [86].

line of the surface Dirac mass. Through this study, we found
that in systems with glide symmetry, two surface termina-
tions with the same particular surface orientations have the
opposite signs of the mass. This possibility leads to a drastic
difference in positions of CHS in AXIs realized in layered

FIG. 6. Inversion-symmetric and inversion-asymmetric hinge
states in EuIn2As2. (a-1) The crystal with odd N for EuIn2As2. (a-2)
CHSs corresponding to the case with odd N . (b-1) The crystal with
even N for EuIn2As2. (b-2) IAHS with C3z symmetry in EuIn2As2

with even N .

AFMs between the cases with an even number of layers and
an odd number of layers. In particular, in the case with an
even number of layers, IAHSs appear at the I-asymmetric
positions because I symmetry is broken in the whole system.
Nonetheless, IAHSs are protected by I symmetry in the bulk,
and they are characterized by the topological Z4 invariant.
This difference in the positions of CHSs can be observed
by transport measurements through hinges. Furthermore, we
predict that IAHSs appear in an AXI EuIn2As2 with an even
number of layers.

ACKNOWLEDGMENTS

This work was supported by Japan Society for the Promo-
tion of Science (JSPS) KAKENHI Grants No. JP18J23289,
No. JP18H03678, and No. JP20H04633, and by the Min-
istry of Education, Culture, Sports, Science, and Technology
Elements Strategy Initiative to Form Core Research Center
(TIES), Grant No. JPMXP0112101001.

043274-7



TANAKA, TAKAHASHI, ZHANG, AND MURAKAMI PHYSICAL REVIEW RESEARCH 2, 043274 (2020)

FIG. 7. The distributions of the mass term on a sphere and the positions of CHSs in the rod geometry. (a) The signs of the mass on the
sphere with I symmetry. The mass sign on the equator of the sphere corresponds to that on the surface in the rod geometry along the z
directions. (b) The case with I symmetry and C3z symmetries. (c) The case with I symmetry and mirror Mz symmetry with respect to xy plane,
leading also to C2z symmetry. The chiral edge states flow along the great circle at the intersection between the sphere and the mirror plane. It
leads to the surface states in the rod geometry along the z direction. (d) In the case with Mx , My, and Mz symmetries, chiral edge states appear
along three great circles, and the surface states appear in the rod geometries along x, y, and z directions.

APPENDIX A: SURFACE THEORY OF CHIRAL HINGE
STATES IN 92 TYPE-I MAGNETIC SPACE GROUPS WITH

I SYMMETRY

In this Appendix, we identify all the possible patterns of
the CHSs for all the 92 type-I MSGs with I symmetry.

1. Setup of the problem

First, we start from the surface theory of HOTIs, and from
this information, we discuss emergence of CHSs. We assume
that surfaces of HOTIs with I symmetry are represented by
the Dirac Hamiltonian. In the simplest case, the surface Dirac
Hamiltonian H(k) with a mass term is given by

H(k1, k2) = λ(k1σy − k2σx ) + mσz, (A1)

where σi (i = x, y, z) represent the Pauli matrices, (k1, k2)
is the wave vector along the surface, and λ and m are real
constants. Here, m represents the surface Dirac mass. In fact,
this form of the Hamiltonian is just an example, and in general
cases, the Hamiltonian H(k) on the surface with a unit normal
vector n can be represented by

H(k1, k2) =
∑
i, j

Ai jσik j, (A2)

where k3 ≡ m is a Dirac mass. In addition, Ai j are real, and we
can always assume det(A) > 0, because otherwise we change
the definition of m by m ↔ −m so that det(A) becomes posi-
tive. This process uniquely determines the sign of the mass.
Furthermore, for the moment we assume that the sign of
the mass term is determined uniquely by the surface normal
vector n.

Now we discuss a crucial difference between HOTIs with
and without T symmetry. In HOTIs without T symmetry, the
sign of the mass can be defined without ambiguity, because
it is associated with the chiral direction of the CHS; i.e., the
CHS goes around the region with a positive mass in the clock-

wise way. In contrast, for helical hinge states in HOTIs with
T symmetry, one cannot define their flow direction (because
they contain flows in both directions), and one cannot define
the sign of the mass mn in a gauge-independent way.

In the following, we use the fact that the mass term in
HOTIs with I symmetry is a pseudoscalar under point-group
operations; namely, it changes sign under improper rotations
such as I and mirror operations. This fact is justified from the
following three properties of CHSs.

(i) It is established that the mass term in HOTIs with
μ1 = 2 changes sign under I operation, and therefore the
mass term satisfies m−n = −mn [43]. Therefore, the domain
wall with mn = 0 appears between the regions with a positive
mn and those with a negative mn [see Figs. 7(a) and 7(b)].
Along this massless line, the CHS exists in a clockwise way
around the mn > 0 region. In this way, CHSs appear along
the domain wall with mn = 0. On the other hand, in normal
insulators (μ1 = 0), the sign of the mass term does not change
under the I operation.

(ii) Under the rotations, the sign of the mass term does
not flip. One can see that this leads to a contradiction if the
sign of the mass changes under rotation operations. For ex-
ample, in a system with C2z symmetry, if the sign of the mass
term changes under C2z operation, the CHS appears along the
domain wall passing through the north pole and south pole,
which are C2z-invariant points on the sphere. This obviously
contradicts C2z symmetry because of the chiral nature. Thus,
the mass does not change under C2z, and therefore the CHS
does not follow only from the C2z symmetry. This is consistent
with the trivial strong index of the symmetry-based indicator
[75] in type-I MSG No. 3. In this argument, the chiral nature
of the hinge states is crucial.

(iii) The sign of the mass term flips under a mirror op-
eration. From this, the gapless modes appear on the mirror
plane, which are identified as topological surface states on
mirror-symmetric surfaces due to the nontrivial mirror Chern
number, as we see in Appendix D.
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Thus, we conclude that the mass term is a pseudoscalar in
HOTIs with μ1 = 2. In contrast, it is straightforward to see
that in normal insulators with μ1 = 0, the mass is a scalar,
but not a pseudoscalar. Next, we consider cases with combina-
tions between I symmetry and mirror symmetry. For example,
we consider a system with I symmetry and Mz symmetry with
respect to the xy plane, leading to the concomitant C2z sym-
metry. In this case, the chiral edge mode is along a great circle
on the sphere along the mirror plane as shown in Fig. 7(c).
This leads to the gapless surface states on the side surfaces in
the rod geometry along the z direction. These gapless surface
states are protected by mirror symmetry. Meanwhile if the
surfaces of the crystal is not mirror symmetric, CHSs appear.
In the case with Mx, My, and Mz symmetries, the gapless
surface states appear in the rod geometries along the x, y,
and z directions [Fig. 7(d)]. These gapless surface states are
characterized by the nontrivial mirror Chern number. Here,
the mirror Chern number for the Mz symmetry is defined as

Cm(kz ) ≡ [C+(kz ) − C−(kz )]/2, (A3)

where kz is 0 or π , corresponding to mirror-invariant planes.
In Eq. (A3) in spinful systems, C±(kz ) are the Chern numbers
in the mirror subspace Mz = ±i defined as

C±(kz ) = 1

2π

∫
BZ

dkxdkyTr[F±
xy(k)], (A4)

where F±
xy(k) is the non-Abelian Berry curvature in the ±i

mirror subspace. In spinless systems, the mirror subspaces
are defined by Mz = ±1 instead. As shown in Appendix D,
the sum of the mirror Chern numbers, in both kz = 0 and
kz = π sectors, is a nonzero odd number when μ1 = 2. Thus,
the system with mirror symmetry has gapless surface modes
protected by mirror symmetry when μ1 = 2.

2. Point groups

As discussed in the above, the mass term on a sphere
includes various information of positions of CHSs. In this
subsection, we consider the distributions of the mass term on
spheres with various symmetries and classify them in terms
of point groups. As discussed above, the CHS forms a loop
protected by I symmetry in the point group 1 without other
symmetries [type 1; Fig. 1(a-1)]. Here, we add rotation Cnz

(n = 2, 3, 4, 6) symmetries around the z axis. The mass signs
do not flip under rotations. In the case with C3z symmetry, that
is, in the point group 3, the CHS on the sphere is invariant
under C3z symmetry and I symmetry as shown in Fig. 1(b)
(type 2). On the other hand, in the case with C2z symmetry,
the combination of I symmetry and C2z symmetry leads to
the mirror Mz symmetry with respect to the xy plane, and
the gapless line is along the great circle on the mirror plane
[Fig. 1(c)]. The same applies to the case with C4z and C6z

symmetries and we call this case type 3.
In the point groups mmm and m3, CHSs appear along the

three great circles because of Mx, My, and Mz mirror sym-
metries with respect to the yz, zx, and xy planes, respectively
[type 4; see Fig. 1(d)]. In addition, CHSs appear along three
great circles which are related by C3z symmetry in the point
group 3m as shown in Fig. 1(e) (type 5). The point group
4/mmm has two mirror symmetries Mxy and Mxy that leave

the x = y and the x = −y planes invariant, respectively, in
addition to the mirror symmetries Mx, My, and Mz. Because
of these mirror symmetries, CHSs appear along the five great
circles as shown in Fig. 1(f) (type 6). In the point groups
6/mmm and m3m, seven and nine great circles of gapless lines
appear, respectively, because of additional mirror and rotation
symmetries [types 7 and 8, shown in Figs. 1(g) and 1(h)].

3. Screw symmetry

Next, we consider the cases with screw symmetry. In this
case, the combination between I symmetry and screw rotation
symmetry leads to the mirror symmetry whose mirror plane
is offset from the inversion center. For example, we consider
the two symmetry operations {I|000} and {C2z|00 1

2 }, corre-
sponding to the type-I MSG No. 11. These symmetries lead to
{Mz|00 1

2 }, whose mirror plane does not include the inversion
center. In this case, when μ1 = 2 and the Chern number on
kz = 0 plane is zero, the mirror Chern number is nontrivial as
discussed in Appendix E. This leads to the emergence of the
surface states protected by mirror symmetry, and therefore the
mass distribution in this case corresponds to type 3 in Fig. 1.

4. Glide symmetry

In this subsection, we consider the cases with glide
symmetry. The existence of the glide operation invalidates
our assumption that the surface orientation specified by n
uniquely determines the sign of the mass. For example, let
us consider the glide {My|00 1

2 }. Then, if the mass on the
z = 0 surface is positive, the mass on the z = 1/2 surface is
negative. Thus, the mass sign depends on a choice of surface
terminations. Therefore, we cannot determine the sign of the
mass on the z = 0 surface uniquely by glide symmetry.

Next, we consider other surface orientations with such
ambiguity of the mass sign. Let (αβγ ) denote the Miller index
for the surface with this mass ambiguity. It follows that β = 0.
The (α0γ ) plane can be written as

αx + βy + γ z = d, (A5)

where d is a constant. This plane is transformed into

αx − βy + γ

(
z − 1

2

)
= d, (A6)

under the glide {My|00 1
2 }. The mass ambiguity appears when

the two surfaces expressed by Eq. (A5) and by Eq. (A6)
are parallel but are not equivalent under lattice translation
symmetry. Thus, the following equation holds: γ ≡ 1 (mod 2)
and β = 0. Thus, the (α, 0, γ ) surfaces have such ambiguity if
γ is an odd number, and therefore there is an infinite number
of surface orientations on which the mass ambiguity arises.

As discussed in the main text, when γ ≡ 0 (mod 2) and
α ≡ 1 (mod 2), the (α0γ ) plane is invariant under the glide
{My|00 1

2 }, and therefore the mass on this plane is zero. From
this, within the glide-mirror plane, two cases for the behavior
of the surface mass coexist: the mass on the (α, 0, γ ) surface
is zero when α ≡ 1 (mod 2) and γ ≡ 0 (mod 2), while the
mass is indeterminate when γ ≡ 1 (mod 2). Thus, for the
surface normal within the glide-mirror plane, the dependence
of the mass on the surface normal vector n is singular. To
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FIG. 8. Two symmetry operations on a slab of a layered AFM
with an even number of layers. The slab with even N and its inversion
partner connected by the inversion operation I. The Chern numbers
of the two slabs are the same. In addition, the slab with even N and
its inversion partner connected by the antiunitary operation T̃ . The
Chern numbers of the two slabs are of the opposite signs.

specify the singular behavior for n perpendicular to the glide
plane, we draw broken circles, and we call the cases where
the mirror planes in types 3–8 are replaced with glide mirror
as types 3′–8′ [Figs. 2(b)–2(g)].

APPENDIX B: PROOF OF Cz
slab = 0 WHEN N IS AN EVEN

NUMBER

Here, we show that a Chern number is Cz
slab = 0 for a slab

of layered AFMs with I symmetry and T̃ = C2zT symmetry
with the even number of layers. In the following, N represents
the number of the layers. In the following, we show the rela-
tion Cz

slab = −Cz
slab via the combination of I and an antiunitary

operation T̃ = C2zT , where T represents a time-reversal op-
eration and C2z represents a twofold rotation around the z axis
as shown in Fig. 8. Slabs with even N are symmetric under
the combination of a unitary operation I and an antiunitary
operation T̃ :

T̃ IH(k)(T̃ I )−1 = H(−k), (B1)

where H(k) is the Hamiltonian of the slab with even N . From
this, for an occupied state |un(k)〉 of the Hamiltonian H(k)
with an eigenvalues En, the following relation holds:

H(−k)T̃ I |un(k)〉 = T̃ IH(k) |un(k)〉
= EnT̃ I |un(k)〉 . (B2)

Therefore, T̃ I |un(k)〉 is an eigenstate of the Hamiltonian
H(−k), and we can expand

T̃ I |un(k)〉 =
∑

m

Umn(k) |um(−k)〉 , (B3)

where Umn(k) are the matrix elements of a unitary transfor-
mation acting on the space of occupied states. Because of the
antiunitarity of T̃ , we obtain

|un(k)〉 =
∑

m

U ∗
mn(k) |IT̃ um(−k)〉 . (B4)

Therefore, the Berry connection is expressed as

[Aμ(k)]nn′

= i
∑
m,m′

Umn(k) 〈IT̃ um(−k)| ∂μ[U ∗
m′n′ (k) |IT̃ um′ (−k)〉]

= −
∑
m,m′

U †
n′m′ (k)[Aμ(−k)]m′mUmn(k)

− i
∑

m

U †
n′m(k)∂μUmn(k)

= −{U †(k)[Aμ(−k)]U (k)}T
nn′

− i[U †(k)∂μU (k)]T
nn′ , (B5)

and then the Berry curvature is written by

Fab(k) = −[U †(k)Fab(−k)U (k)]T . (B6)

Therefore, we obtain the relationship Cz
slab = −Cz

slab. We
note that this proof is based on the existence of the antiunitary
operation T̃ , which interchanges the slab with even N and its
inversion partner (see Fig. 8). In other layered AFMs with an
antiunitary operator T̃ such as T̃ = C3zT , C4zT , or C6zT , the
Chern number of the even slab is zero.

APPENDIX C: CHERN NUMBER FOR A 2D SLAB
FROM A 3D HOTI

According to the previous works [10,39,43,79], a two-
dimensional (2D) slab of a 3D HOTI with inversion symmetry,
with a finite thickness along the z direction, is a 2D Chern
insulator with the Chern number Cz

slab = 1 (mod 2). In particu-
lar, in the case of the layered insulating AFM, when N = odd,
I symmetry is preserved, and the slab Chern number Cz

slab
(mod 2) satisfies [79]

Cz
slab ≡ 1

2μ1 (mod 2), (C1)

where μ1 = 0 or 2 (mod 4). Therefore, when μ1 = 2 in the
bulk, the slab system with odd N is a 2D Chern insulator with
Cz

slab = 1 (mod 2), i.e., Cz
slab = 2M + 1.

In such a case, we can choose Cz
slab = 1 without losing

generality. One can simultaneously attach two 2D Chern in-
sulators with the same Chern number on two surfaces of the
opposite sides of the crystal, so that I symmetry is preserved
[39,41,43]. From this, a Chern number = 2M + 1 can be
transformed into a Chern number = 1 while preserving I
symmetry. Thus, in the main text, we choose the Cz

slab = 1.
In addition, we consider Chern numbers in the slabs with a

finite system size along the x and y directions: Cx
slab and Cy

slab.
Here we assume the crystal shapes are I symmetric. In this
case, we obtain that the Chern numbers Cx

slab and Cy
slab form

the topological Z4 index μ1 as

Cx
slab ≡ 1

2μ1 and Cy
slab ≡ 1

2μ1 (mod 2), (C2)

where μ1 is even [39,79]. Therefore, the HOTI with μ1 = 2 is
a 2D Chern insulator in the case with a finite thickness along
the x and y directions. Indeed, as shown in Figs. 9(a) and 9(b),
the projections of CHSs onto the yz or xz planes form loops
corresponding to chiral edge states due to the Chern numbers
Cx

slab ≡ Cy
slab ≡ 1 (mod 2), in both cases with odd and even N .

Therefore, IAHSs (for even N) are topological gapless states
characterized by

Cx
slab ≡ Cy

slab ≡ 1 and Cz
slab ≡ 0 (mod 2). (C3)

These topological properties of IAHSs are different from
those of conventional I-symmetric hinge states for odd N ,
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FIG. 9. The Chern numbers of the two slabs with odd and even
N . (a) Chern numbers in the slabs with a finite system size along the
x, y, and z directions are Cx

slab = Cy
slab = Cz

slab = 1 in the case with
an odd number of the layers. (b) In the case with even number of
the layers, Cx

slab = Cy
slab = 1 and Cz

slab = 0, which leads to topological
hinge states, i.e., IAHSs.

i.e., Cx
slab ≡ Cy

slab ≡ Cz
slab ≡ 1. We note that the relationship

Cx
slab ≡ Cy

slab ≡ 1 (mod 2) is due to the bulk topology μ1 = 2,
and the 2D Chern numbers remain nontrivial as long as the
topological invariant μ1 in the bulk is preserved.

APPENDIX D: CONNECTION BETWEEN MIRROR
CHERN NUMBERS AND μ1

In this Appendix, we discuss the connection between the
mirror Chern numbers and the symmetry-based indicator μ1.
Here, we consider a 3D magnetic insulator with I symmetry
and Mz mirror symmetry. First, we define the mirror Chern
numbers in the kz = 0 and kz = π sectors as

C0
m ≡ 1

2 (C0
+ − C0

−), Cπ
m ≡ 1

2 (Cπ
+ − Cπ

− ), (D1)

respectively, where C0
± and Cπ

± represent the Chern numbers in
the mirror sectors with mirror eigenvalues ±i in the kz = 0 and
kz = π sectors, respectively. In the following, we prove that
the Z4-symmetry-based indicator μ1 in an insulator is related
with mirror Chern number via

μ1 ≡ 2
(
C0

m + Cπ
m

)
(mod 4), (D2)

where μ1 = 0, 2. The values μ1 = 0, 2 mean that the bulk
is insulating, while μ1 = 1, 3 corresponds to the Weyl
semimetal phase. Equation (D2) means that when μ1 = 2, one
of the two mirror Chern numbers C0

m and Cπ
m is an odd number

and the other is an even number, which means emergence of
topological surface states on a mirror-symmetric surface.

In the following, we prove Eq. (D2). First, let Cm denote
the quantity of the right-hand side of Eq. (D2):

Cm ≡ C0
m + Cπ

m . (D3)

Next, we get the relation

C0
+ + C0

− = Cπ
+ + Cπ

−, (D4)

because in an insulator the total Chern number on the kz =
constant plane is independent of the values of kz. In addition,
from Ref. [88], the following two equations hold:

exp[iπC0
+] =

∏

i

ξ (+)(
i, 0), (D5)

exp[−iπCπ
−] =

∏

i

ξ (−)(
i, π ), (D6)

where ξ (±)(
i, kz ) are the parity eigenvalues of the occupied
states in ± mirror sectors, and 
i = (kx, ky) represent 2D
TRIMs. From Eqs. (D4), (D5), and (D6), the following equa-
tion holds:

exp[iπCm] = exp[iπ (C0
+ − Cπ

− )]

=
∏

i

ξ (+)(
i, 0)ξ (−)(
i, π ). (D7)

Next, let N (β )
α (α = ±, β = ±) be the number of irreducible

representations (irreps) with α parity in the β mirror sector.
Then we obtain

Cm ≡
∑

i

[N (+)
− (
i, 0) + N (−)

− (
i, π )] (mod 2). (D8)

By the way, the Mz mirror eigenvalue is common within the
kz = 0 plane and it is also the case within the kz = π plane.
Therefore the number of the irreps in the (+) mirror sector,
N (+)

+ (
i, 0) + N (+)
− (
i, 0), is independent of 
i. It follows

that

∑

i

[N (+)
+ (
i, 0) + N (+)

− (
i, 0)] ≡ 0 (mod 4). (D9)

Similarly, in the (−) mirror sector, the following equation
holds:

∑

i

[N (−)
+ (
i, π ) + N (−)

− (
i, π )] ≡ 0 (mod 4). (D10)

By using Eqs. (D8), (D9), and (D10), we get the following
equation:

Cm ≡ 1

2

∑

i

[N (+)
− (
i, 0) − N (+)

+ (
i, 0)

+ N (−)
− (
i, π ) − N (−)

+ (
i, π )] (mod 2). (D11)

Then, the C2z eigenvalue is common between k = (
i, 0)
and k = (
i, π ). Therefore, the total number of irreps with
the positive eigenvalue +i (+1) of C2z at (
i, 0) for spinful
fermions (spinless fermions) is the same as the number with
the same eigenvalue at (
i, π ). By noting C2z = MzI, we
obtain

N (+)
+ (
i, 0) + N (−)

− (
i, 0)

= N (+)
+ (
i, π ) + N (−)

− (
i, π ). (D12)

The same is true for the number of irreps with the negative
eigenvalue of C2z:

N (+)
− (
i, 0) + N (−)

+ (
i, 0)

= N (+)
− (
i, π ) + N (−)

+ (
i, π ). (D13)
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From Eqs. (D11), (D12), and (D13), the following equation
holds:

Cm ≡ 1

4

∑

i:2D TRIM

[N (+)
− (
i, 0) + N (−)

− (
i, 0)

− N (+)
+ (
i, 0) − N (−)

+ (
i, 0) + N (+)
− (
i, π )

+ N (−)
− (
i, π ) − N (+)

+ (
i, π ) − N (−)
+ (
i, π )] (mod 2)

=1

4

∑
�i:3D TRIM

[N−(�i) − N+(�i )]. (D14)

Thus we obtain Eq. (D2).

APPENDIX E: CONNECTION BETWEEN MIRROR CHERN
NUMBERS AND μ1 IN THE PRESENCE OF SCREW

SYMMETRY

In this Appendix, we discuss the connection between the
mirror Chern numbers and μ1 in the presence of screw C2z ≡
{C2z|00 1

2 } symmetry. Here, we consider a 3D magnetic insula-
tor with I symmetry and screw C2z symmetry. In addition, the
combination between the I symmetry and the screw symme-
try leads to a mirror symmetry Mz ≡ {Mz|00 1

2 }, where mirror
plane z = 1

4 does not include the inversion center at (0, 0, 0).
In the following, we prove that the mirror Chern number [see
Eq. (D1)] with respect to this mirror symmetry is related with
the symmetry-based indicator μ1 via

μ1 ≡ 2
(
C0

m + Cπ
m

) = 2C0
m (mod 4), (E1)

when the Chern number on the kz = 0 plane is zero. Equation
(E1) means that when μ1 = 2, topological surface states on a
mirror-symmetric surface appear.

In the following, we prove Eq. (E1). First, we consider the
plane kz = π . In this case, the C2z operation and Mz operation
anticommute:

C2zMz = −MzC2z. (E2)

Therefore, an occupied state |un(k)〉 and another occupied
state C2z |un(k)〉 have the opposite mirror eigenvalues to each
other. Here, the number ν of occupied states is an even num-
ber. Then the Chern number of |un(k)〉 is equal to that of
C2z |un(k)〉, and these two states are in the opposite mirror
sectors. Therefore, we get the equation Cπ

+ = Cπ
−. In other

words, the mirror Chern number in the plane kz = π is zero:

Cπ
m = 0. (E3)

Similarly, the I operation and Mz operation anticommute, and
then an occupied state |un(k)〉 and another state Mz |un(k)〉
have opposite parity eigenvalues, and they are degener-
ate. Therefore, the number of the irreps with even parity
N+(
i, π ) is the same as those with odd parity N−(
i, π ):

∑

i

N+(
i, π ) =
∑

i

N−(
i, π ), (E4)

where 
i = (kx, ky) runs through four 2D TRIMs.
Next, we consider the plane kz = 0. Unlike the kz = π

plane, the I operation and Mz operation commute on the
kz = 0 plane. Let N (β )

α (α = ±, β = ±) be the number of

irreps with α parity in the β mirror sector. Because the Mz

mirror eigenvalue is common within the kz = 0 plane, the
following equation holds:

∑

i

[N (+)
+ (
i, 0) + N (+)

− (
i, 0)] ≡ 0 (mod 4). (E5)

In addition, on the line (kx, ky) = 
i, the C2z symmetry is
preserved, and the eigenstates are classified into two C2z

sectors with C2z = ±e−ikz/2. At the 3D TRIM (
i, π ), C2z

and I anticommute, and therefore the number of occupied
states with C2z = ±e−ikz/2 is ν/2. Thus we conclude that at
the 3D TRIM (
i, 0), the number of occupied states with
C2z = ±e−ikz/2 is ν/2. By noting C2z = MzI, we obtain

∑

i

[N (+)
+ (
i, 0) + N (−)

− (
i, 0)] = 2ν, (E6)

∑

i

[N (+)
− (
i, 0) + N (−)

+ (
i, 0)] = 2ν. (E7)

From Eqs. (E4), (E6), and (E7), the following equation holds:

μ1 ≡ 1

2

∑

i

[N (+)
+ (
i, 0) + N (−)

+ (
i, 0)

− N (+)
− (
i, 0) − N (−)

− (
i, 0)] (mod 4)

=
∑

i

[N (+)
+ (
i, 0) − N (+)

− (
i, 0)]. (E8)

In addition, from Eqs. (E5) and (E8), we get the following
equation:

μ1

2
≡ −

∑

i

N (+)
− (
i, 0) (mod 2)

≡ C0
+ (mod 2). (E9)

Here we note that the Chern number along the xy plane
is even because C = Cπ

+ + Cπ
− ≡ ∑


i
N−(
i, π ) = ν

2 × 4 =
2ν ≡ 0 (mod 2) from Eq. (E4). Therefore, from Eq. (E9), we
get

μ1

2
≡ C0

+ = 1

2
(C0

+ + C0
−) + 1

2
(C0

+ − C0
−)

= 1

2
C + C0

m (mod 2), (E10)

which relates the three topological invariants μ1, C, and C0
m. In

particular, when we assume that the Chern number on kz = 0
plane is C ≡ C0

+ + C0
− = 0 as we adopted in our classification

of the CHSs, it follows that

μ1

2
≡ C0

m (mod 2). (E11)

From this equation and Eq. (E3), we obtain Eq. (E1).

043274-12



THEORY OF INVERSION-Z4 PROTECTED … PHYSICAL REVIEW RESEARCH 2, 043274 (2020)

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] F. Wilczek, Two Applications of Axion Electrodynamics, Phys.
Rev. Lett. 58, 1799 (1987).

[4] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field
theory of time-reversal invariant insulators, Phys. Rev. B 78,
195424 (2008).

[5] A. M. Essin, J. E. Moore, and D. Vanderbilt, Mag-
netoelectric Polarizability and Axion Electrodynamics
in Crystalline Insulators, Phys. Rev. Lett. 102, 146805
(2009).

[6] A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt,
Orbital magnetoelectric coupling in band insulators, Phys. Rev.
B 81, 205104 (2010).

[7] X. Chen, L. Fidkowski, and A. Vishwanath, Symmetry enforced
non-Abelian topological order at the surface of a topological
insulator, Phys. Rev. B 89, 165132 (2014).

[8] J. Wang, B. Lian, and S.-C. Zhang, Dynamical axion field in
a magnetic topological insulator superlattice, Phys. Rev. B 93,
045115 (2016).

[9] N. Varnava and D. Vanderbilt, Surfaces of axion insulators,
Phys. Rev. B 98, 245117 (2018).

[10] B. J. Wieder and B. A. Bernevig, The axion insulator as a pump
of fragile topology, arXiv:1810.02373.

[11] Y. Xu, Z. Song, Z. Wang, H. Weng, and X. Dai, Higher-Order
Topology of the Axion Insulator EuIn2As2, Phys. Rev. Lett.
122, 256402 (2019).

[12] N. Varnava, I. Souza, and D. Vanderbilt, Axion coupling in
the hybrid Wannier representation, Phys. Rev. B 101, 155130
(2020).

[13] B. J. Wieder, K.-S. Lin, and B. Bradlyn, Axionic band topology
in inversion-symmetric Weyl-charge-density waves, Phys. Rev.
Research 2, 042010 (2020).

[14] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang,
Topological Axion States in the Magnetic Insulator MnBi2Te4

with the Quantized Magnetoelectric Effect, Phys. Rev. Lett.
122, 206401 (2019).

[15] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin,
A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V.
Koroleva, A. M. Shikin et al., Prediction and observation of an
antiferromagnetic topological insulator, Nature (London) 576,
416 (2019).

[16] Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang,
L. Gu, L. Tang, X. Feng et al., Experimental realization of an
intrinsic magnetic topological insulator, Chin. Phys. Lett. 36,
076801 (2019).

[17] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W.
Duan, and Y. Xu, Intrinsic magnetic topological insulators in
van der Waals layered MnBi2Te4-family materials, Sci. Adv. 5,
eaaw5685 (2019).

[18] R. C. Vidal, H. Bentmann, T. R. F. Peixoto, A. Zeugner, S.
Moser, C.-H. Min, S. Schatz, K. Kißner, M. Ünzelmann, C. I.
Fornari, H. B. Vasili, M. Valvidares, K. Sakamoto, D. Mondal,
J. Fujii, I. Vobornik, S. Jung, C. Cacho, T. K. Kim, R. J.
Koch, C. Jozwiak, A. Bostwick, J. D. Denlinger, E. Rotenberg,
J. Buck, M. Hoesch, F. Diekmann, S. Rohlf, M. Kalläne,
K. Rossnagel, M. M. Otrokov, E. V. Chulkov, M. Ruck, A.
Isaeva, and F. Reinert, Surface states and Rashba-type spin

polarization in antiferromagnetic MnBi2Te4(0001), Phys. Rev.
B 100, 121104(R) (2019).

[19] C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao, D.
Narayan, E. Emmanouilidou, H. Sun, Y. Liu et al., A van der
Waals antiferromagnetic topological insulator with weak inter-
layer magnetic coupling, Nat. Commun. 11, 97 (2020).

[20] J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata, R. Yukawa,
K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita et al., Nat-
ural van der Waals heterostructural single crystals with both
magnetic and topological properties, Sci. Adv. 5, eaax9989
(2019).

[21] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian,
J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang, J.-J. Li, D.-Y.
Yan, Z.-T. Liu, W.-L. Liu, Y.-B. Huang, Y.-L. Li, Y. Liu, G.-
B. Zhang, P. Zhang, T. Kondo, S. Shin, H.-C. Lei, Y.-G. Shi,
W.-T. Zhang, H.-M. Weng, T. Qian, and H. Ding, Dirac Surface
States in Intrinsic Magnetic Topological Insulators EuSn2As2

and MnBi2nTe3n+1, Phys. Rev. X 9, 041039 (2019).
[22] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H.

Chen, and Y. Zhang, Quantum anomalous Hall effect in intrinsic
magnetic topological insulator MnBi2Te4, Science 367, 895
(2020).

[23] S. Regmi, M. M. Hosen, B. Ghosh, B. Singh, G. Dhakal, C.
Sims, B. Wang, F. Kabir, K. Dimitri, Y. Liu, A. Agarwal, H.
Lin, D. Kaczorowski, A. Bansil, and M. Neupane, Temperature-
dependent electronic structure in a higher-order topological
insulator candidate EuIn2As2, Phys. Rev. B 102, 165153 (2020).

[24] Y. Zhang, K. Deng, X. Zhang, M. Wang, Y. Wang, C. Liu,
J.-W. Mei, S. Kumar, E. F. Schwier, K. Shimada, C. Chen,
and B. Shen, In-plane antiferromagnetic moments and magnetic
polaron in the axion topological insulator candidate EuIn2As2,
Phys. Rev. B 101, 205126 (2020).

[25] R.-X. Zhang, F. Wu, and S. Das Sarma, Möbius Insulator and
Higher-Order Topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124,
136407 (2020).

[26] Y. Xu, L. Elcoro, Z. Song, B. J. Wieder, M. G. Vergniory,
N. Regnault, Y. Chen, C. Felser, and B. A. Bernevig, High-
throughput calculations of magnetic topological materials,
Nature 586, 702 (2020).

[27] R. S. K. Mong, A. M. Essin, and J. E. Moore, Antiferromagnetic
topological insulators, Phys. Rev. B 81, 245209 (2010).

[28] M. Sitte, A. Rosch, E. Altman, and L. Fritz, Topological In-
sulators in Magnetic Fields: Quantum Hall Effect and Edge
Channels with a Nonquantized θ Term, Phys. Rev. Lett. 108,
126807 (2012).

[29] F. Zhang, C. L. Kane, and E. J. Mele, Surface State Magneti-
zation and Chiral Edge States on Topological Insulators, Phys.
Rev. Lett. 110, 046404 (2013).

[30] R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents,
Impurity-bound states and Green’s function zeros as local sig-
natures of topology, Phys. Rev. B 92, 085126 (2015).

[31] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[32] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[33] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

043274-13

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.58.1799
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevLett.102.146805
https://doi.org/10.1103/PhysRevB.81.205104
https://doi.org/10.1103/PhysRevB.89.165132
https://doi.org/10.1103/PhysRevB.93.045115
https://doi.org/10.1103/PhysRevB.98.245117
http://arxiv.org/abs/arXiv:1810.02373
https://doi.org/10.1103/PhysRevLett.122.256402
https://doi.org/10.1103/PhysRevB.101.155130
https://doi.org/10.1103/PhysRevResearch.2.042010
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1038/s41586-019-1840-9
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1126/sciadv.aaw5685
https://doi.org/10.1103/PhysRevB.100.121104
https://doi.org/10.1038/s41467-019-13814-x
https://doi.org/10.1126/sciadv.aax9989
https://doi.org/10.1103/PhysRevX.9.041039
https://doi.org/10.1126/science.aax8156
https://doi.org/10.1103/PhysRevB.102.165153
https://doi.org/10.1103/PhysRevB.101.205126
https://doi.org/10.1103/PhysRevLett.124.136407
https://doi.org/10.1038/s41586-020-2837-0
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevLett.108.126807
https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402


TANAKA, TAKAHASHI, ZHANG, AND MURAKAMI PHYSICAL REVIEW RESEARCH 2, 043274 (2020)

[34] C. Fang and L. Fu, New classes of topological crystalline in-
sulators having surface rotation anomaly, Sci. Adv. 5, eaat2374
(2019).

[35] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors with
an order-two crystalline symmetry, Phys. Rev. B 97, 205135
(2018).

[36] F. K. Kunst, G. van Miert, and E. J. Bergholtz, Lattice models
with exactly solvable topological hinge and corner states, Phys.
Rev. B 97, 241405(R) (2018).

[37] G. van Miert and C. Ortix, Higher-order topological insulators
protected by inversion and rotoinversion symmetries, Phys. Rev.
B 98, 081110(R) (2018).

[38] S. Franca, J. van den Brink, and I. C. Fulga, An anomalous
higher-order topological insulator, Phys. Rev. B 98, 201114(R)
(2018).

[39] A. Matsugatani and H. Watanabe, Connecting higher-order
topological insulators to lower-dimensional topological insula-
tors, Phys. Rev. B 98, 205129 (2018).

[40] S. H. Kooi, G. van Miert, and C. Ortix, Inversion-symmetry
protected chiral hinge states in stacks of doped quantum Hall
layers, Phys. Rev. B 98, 245102 (2018).

[41] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[42] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[43] E. Khalaf, Higher-order topological insulators and supercon-
ductors protected by inversion symmetry, Phys. Rev. B 97,
205136 (2018).

[44] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I.
Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig,
and T. Neupert, Higher-order topology in bismuth, Nat. Phys.
14, 918 (2018).

[45] Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig,
Higher-Order Topology, Monopole Nodal Lines, and the Origin
of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2

(X = Mo, W), Phys. Rev. Lett. 123, 186401 (2019).
[46] M. Ezawa, Second-order topological insulators and loop-nodal

semimetals in transition metal dichalcogenides XTe2 (X = Mo,
W), Sci. Rep. 9, 5286 (2019).

[47] D. Călugăru, V. Juričić, and B. Roy, Higher-order topological
phases: A general principle of construction, Phys. Rev. B 99,
041301(R) (2019).

[48] L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary
Correspondence for Topological Crystalline Phases, Phys. Rev.
X 9, 011012 (2019).

[49] R. Okugawa, S. Hayashi, and T. Nakanishi, Second-order topo-
logical phases protected by chiral symmetry, Phys. Rev. B 100,
235302 (2019).

[50] C. Yue, Y. Xu, Z. Song, H. Weng, Y.-M. Lu, C. Fang, and
X. Dai, Symmetry-enforced chiral hinge states and surface
quantum anomalous Hall effect in the magnetic axion insulator
Bi2−xSmxSe3, Nat. Phys. 15, 577 (2019).

[51] T. Liu, Y.-R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M.
Ueda, and F. Nori, Second-Order Topological Phases in Non-
Hermitian Systems, Phys. Rev. Lett. 122, 076801 (2019).

[52] B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang,
M.-H. Lu, and Y.-F. Chen, Second-order photonic topological
insulator with corner states, Phys. Rev. B 98, 205147 (2018).

[53] C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Majorana
Kramers Pairs in Higher-Order Topological Insulators, Phys.
Rev. Lett. 121, 196801 (2018).

[54] Y. You, T. Devakul, F. J. Burnell, and T. Neupert, Higher-order
symmetry-protected topological states for interacting bosons
and fermions, Phys. Rev. B 98, 235102 (2018).

[55] C. H. Lee, L. Li, and J. Gong, Hybrid Higher-Order Skin-
Topological Modes in Nonreciprocal Systems, Phys. Rev. Lett.
123, 016805 (2019).

[56] X.-W. Luo and C. Zhang, Higher-Order Topological Corner
States Induced by Gain and Loss, Phys. Rev. Lett. 123, 073601
(2019).

[57] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen,
L. G. Villanueva, and S. D. Huber, Observation of a phononic
quadrupole topological insulator, Nature (London) 555, 342
(2018).

[58] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
A quantized microwave quadrupole insulator with topologically
protected corner states, Nature (London) 555, 346 (2018).

[59] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert,
and R. Thomale, Topolectrical-circuit realization of topological
corner modes, Nat. Phys. 14, 925 (2018).

[60] Y. Peng and Y. Xu, Proximity-induced Majorana hinge modes
in antiferromagnetic topological insulators, Phys. Rev. B 99,
195431 (2019).

[61] Y. Peng and G. Refael, Floquet Second-Order Topological In-
sulators from Nonsymmorphic Space-Time Symmetries, Phys.
Rev. Lett. 123, 016806 (2019).

[62] X.-L. Sheng, C. Chen, H. Liu, Z. Chen, Z.-M. Yu, Y. X. Zhao,
and S. A. Yang, Two-Dimensional Second-Order Topological
Insulator in Graphdiyne, Phys. Rev. Lett. 123, 256402 (2019).
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