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Eliminating the wave-function singularity for ultracold atoms by a similarity transformation
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A hyperbolic singularity in the wave function of s-wave interacting atoms is the root problem for any accurate
numerical simulation. Here, we apply the transcorrelated method, whereby the wave-function singularity is
explicitly described by a two-body Jastrow factor, and then folded into the Hamiltonian via a similarity trans-
formation. The resulting nonsingular eigenfunctions are approximated by stochastic Fock-space diagonalization
with energy errors scaling with 1/M in the number M of single-particle basis functions. The performance of the
transcorrelated method is demonstrated on the example of strongly correlated fermions with unitary interactions.
The current method provides the most accurate ground-state energies so far for three and four fermions in a
rectangular box with periodic boundary conditions.

DOI: 10.1103/PhysRevResearch.2.043270

I. INTRODUCTION

Quantum gases make the study of strongly correlated
many-body physics accessible [1], and can be probed with
exquisite control in the many-particle [2–6] and few-particle
[7,8] regimes. At ultracold temperatures their interactions are
accurately described by only the s-wave scattering length as

[9], or no parameters in the universal regime of unitary inter-
actions [10]. Despite this apparent simplicity, it is nevertheless
a great challenge to represent the complicated many-body
wave functions in computational approaches [11]. Specifi-
cally, a 1/r divergence when two particles with distance r
approach each other [12] introduces divergent short-range cor-
relations into the wave function. While exact approaches are
limited to four particles [13–17], computational approaches
for larger particle numbers rely on lattice discretization with
renormalized interactions [18] (employed at zero [19–22]
and finite temperature [23–31]), the closely related renor-
malized contact interaction [32], finite-range pseudopotentials
[33–35], or the more sophisticated effective Hamiltonian ap-
proaches [36,37]. By introducing an ultraviolet cutoff, these
approaches do not accurately describe the short-range corre-
lations, and suffer from slow convergence upon increasing the
number of lattice sites or basis functions.

In this work we apply the transcorrelated method [38] to
remove the short-range correlations from the wave function
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by a similarity transformation of the many-body Hamilto-
nian. Previously, the transcorrelated method was applied to
Coulomb-interacting electrons [39–42] and to ultracold atoms
in one dimension [43]. In these cases the wave function is
nonsingular but has a cusp, i.e., is continuous with a discontin-
uous first derivative [44]. Here, we extend the transcorrelated
approach to the hyperbolic singularity and show that it is com-
pletely removed. The similarity-transformed, transcorrelated
Hamiltonian is free from singular zero-range interactions,
which are replaced by new two-body and three-body terms,
and has nonsingular eigenfunctions. The advantages of the
method are demonstrated by ground-state calculations with
stochastic projective diagonalization in Fock space [45]. For a
few fermions with unitary interactions we find that the error of
the energy is the smallest among the available methodologies.
Moreover, this error decays with 1/M, where M is the number
of the single-particle plane-wave basis functions. This is the
fastest convergence rate so far.

This paper is organized as follows: Section II introduces
the correlation factor for zero-range s-wave interactions and
the transcorrelated transformation of the many-body Hamil-
tonian. Results on three and four fermions are described
in Sec. III before concluding the main text with Sec. IV.
Appendices provide many derivations and details starting
with the real-space form of the correlation factor in Ap-
pendix A. Appendix B provides a derivation to show that
the matrix elements of the similarity transformed Fermi-
Huang pseudopotential between smooth functions vanish.
The smoothness of the transcorrelated two-particle eigen-
functions is examined in Appendix C. Appendix D concerns
the transcorrelated many-body Hamiltonian and provides it
in second-quantized form, while Appendix E describes the
algorithm used for evaluating an infinite sum that appears in
the transcorrelated Hamiltonian. Appendix F finally provides
details of the numerical calculations including parameters
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relating the the FCIQMC method (Appendix F 1), extrap-
olation procedures (Appendix F 2), and data (Appendix
F 3), details about lattice renormalization procedures used
for comparison (Appendix F 4), and about the exact and and
approximate implementation of three-body interaction terms
(Appendix F 5).

II. CORRELATION FACTOR AND SIMILARITY
TRANSFORMATION

Zero-range s-wave interactions are characterized by the
Bethe-Peierls boundary condition [12]

�(r1, r2, . . . ) ∼ 1

ri j
− 1

as
+ O(ri j ) for ri j → 0, (1)

where ri j = |ri − r j | is the distance between particles i and
j, and � is the many-body wave function. We aim to deal
with the divergent short-range part with a Jastrow factor eτ by
writing

�(r1, r2, . . . ) = eτ (r1,r2,... )�(r1, r2, . . . ), (2)

which defines the transcorrelated wave function �. τ is
chosen as a sum of pair correlation factors τ (r1, r2, . . . ) =∑

i< j u(ri j ). Requiring

u(r) ∼ const − ln

(
r

as

)
− r

as
+ O(r2) (3)

allows the Jastrow factor to carry the main part of the sin-
gular short-range correlation and leaves the transcorrelated
wave function � nonsingular. Inserting the ansatz (2) into the
Schrödinger equation H� = E� and multiplying it with e−τ

from the left yields

H̃� = E�, (4)

where H̃ = e−τ Heτ is the transcorrelated Hamiltonian [38].
It is convenient to define the correlation factor in momen-

tum space, and we choose

ũ(k) =
{

2π2

k3 + 8π
ask4 if k � kc,

0 if k < kc,
(5)

where kc is a momentum cutoff. The real-space cor-
relation factor is obtained by Fourier transform u(r) =
(2π )−2

∫ ∞
0 dk ũ(k)k sin(kr)/r and the corresponding Jastrow

factor exp(u) is shown in Fig. 1. More details are provided in
Appendix A, where it is shown that u(r) satisfies Eq. (3). The
momentum cutoff kc damps out the real-space u(r) for large
r. The idea is that long-range correlations in the transcorre-
lated wave function � can be effectively dealt with by the
expansion in a Fock basis, as we will show, while the Jastrow
factor eτ very efficiently removes the singular short-range
correlations.

For definiteness we consider a system of ultracold atoms
of mass m with Hamiltonian H = H1 + VFH, where H1 =∑

i − h̄2

2m ∇2
i + Vtrap is the single-particle part with trapping

potential Vtrap. The zero-range s-wave interactions between
atoms are represented by the Fermi-Huang pseudopotential

FIG. 1. The Jastrow factor eu(r) as a function of particle separa-
tion r with unitary interaction at different values of the momentum
cutoff. L is the size of the computational box.

[46]

VFH = g
∑
i< j

δ(ri j )
∂

∂ri j
ri j, (6)

where g = 4π h̄2as/m is the potential strength. The derivative
term regularizes the otherwise pathological contact interac-
tion and enforces the Bethe-Peierls boundary conditions of
Eq. (1) [46,47]. This pseudopotential has been applied in exact
[13,48] and perturbative [46] treatments, but it has a limitation
in the Fock-state based approaches. As the Fock-state basis
functions are smooth, the Fermi-Huang pseudopotential re-
duces to a simple Dirac-delta function, which is pathological
in two and three dimensions [32,49–51]. It is suitable for
use with the transcorrelated method, however, as long as the
Jastrow factor eτ is designed to fulfill Eq. (1).

The similarity transformation H̃ = e−τ Heτ is applied term
by term and does not change simple functions of the coordi-
nates because the correlation factor is local in the coordinates.
The kinetic energy and VFH contain coordinate derivatives
and thus generate additional terms. Specifically, e−τVFHeτ =
VFH + [VFH, τ ] and, as we show in Appendix B,

〈χ |[VFH, τ ]|φ〉 =〈χ |g
∑
i< j

δ(ri j )
∂u(ri j )

∂ri j
ri j |φ〉, (7)

for wave functions φ and χ that are bounded and have
bounded first derivatives. In Appendix B it is shown that the
matrix elements of the similarity-transformed Fermi-Huang
pseudopotential 〈χ |e−τVFHeτ |φ〉 vanish due to cancellation
as long as the correlation factor u(r) is chosen to have the
appropriate short-range asymptotics of Eq. (3). Thus, the
singular pseudopotential is removed and the transcorrelated
Schrödinger equation (4) can be solved with a nonsingular
wave function �. This insight presents the main result of this
paper.

The transcorrelated Hamiltonian still acquires terms that
originate from the kinetic energy operator, and finally reads
as

H̃ = H1 −
∑

i

[
1

2
∇2

i τ + (∇iτ )∇i + 1

2
(∇iτ )2

]
h̄2

m
. (8)
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The new terms represent an effective interaction potential that
is less singular than the Fermi-Huang pseudopotential. The
leading singular term is (∇iτ )∇i ∼ (

∑
j ri j/r2

i j )∇i, which
has a 1/r divergence and is also non-Hermitian. Similar to
the Coulomb potential it leads to a cusp feature, where the
transcorrelated wave function � is continuous with a dis-
continuous first derivate (see in Appendix C). In momentum
space, � thus decays with 1/k4 for large k instead of 1/k2

for the original wave function �. It is this rapid decay for
large k that makes it feasible to expand the problem in a
plane-wave basis without the need for a renormalized (or
running) coupling constant. The second-quantized form of the
transcorrelated Hamiltonian in momentum space is presented
in Appendix D.

Although the similarity transformation eliminates the sin-
gularity from the wave function without modifying the
spectrum of the Hamiltonian, it introduces new challenges
for numerical calculations. The non-Hermitian term (∇iτ )∇i

prevents in general the variational minimization of the en-
ergy. However, the ground-state energy can still be found
by projection techniques as proved in Ref. [41] and previ-
ously demonstrated in Refs. [41–43,52]. As a consequence
of the non-Hermiticity, the approximate energies no longer
provide an upper bound to the exact ground-state energy.
Non-Hermitian terms are common in the transcorrelated and
coupled-cluster methods and usually do not cause problems.
Hypothetically, the projection onto a finite basis could lead to
pairs of complex-conjugate eigenvalues with small imaginary
parts in the vicinity of a accidental eigenvalue degeneracies.
The stochastic projection used in this work would then fail to
fully converge and resolve the near-degenerate eigenvalues.
This is easy to diagnose but we have not encountered this
situation so far. A removal strategy for complex eigenvalues
was suggested in the context of coupled-cluster theory [53].

The terms 1
2∇2

i τ and 1
2 (∇iτ )2 have leading 1/r2

i j and
1/ri jrik contributions, respectively, and partly compensate
each other but leave an uncompensated three-body attraction.
This long-range interaction represents a mediated three-body
attraction that is familiar from Efimov physics [54,55]. It per-
mits three-body bound states for resonantly interacting bosons
but not for fermions. Three-body interactions are common in
the transcorrelated method and were previously implemented
for the Hubbard model [52] and electronic structure calcu-
lations in atoms [42]. Appendix F 5 presents details of the
efficient numerical implementation of the three-body terms as
well as a two-body approximation that saves up to a factor 4
in computer time while still maintaining high accuracy.

III. NUMERICAL RESULTS

For numerical calculations the transcorrelated Hamiltonian
H̃ is expanded as a finite matrix in a Fock basis of anti-
symmetrized products of single-particle plane waves with a
momentum cutoff. For two particles the ground-state energy
is calculated with (numerically) exact diagonalization. For
three and four fermions the full matrix diagonalization was
not possible due to the enormous size of Hilbert space. Hence,
we used a stochastic projection method known as full configu-
ration interaction quantum Monte Carlo (FCIQMC) [45,56] to

FIG. 2. Ground-state energy of two particles with unitary in-
teractions (1/as = 0) vs inverse size of single-particle basis 1/M
from the transcorrelated method (circles) and with renormalized
Dirac delta (crosses). Horizontal green line: reference energy Eex =
−3.786 005 h̄2/mL2 [57]. Inset: Difference to the reference energy
on a log-log plot indicating power-law scaling ∝ 1/M1/3 for renor-
malization and ∝ 1/M for the transcorrelated approach.

obtain the ground-state energies. A description of the method
is provided in Appendix F.

Results for two particles are presented in Fig. 2. The
energy is shown as a function of the inverse of the basis-
set size M, where 3

√
M is the number of single-particle

plane-wave basis functions per linear dimension of the cube.
Hence, the zero on the x axis represents the complete
basis-set limit. The transcorrelated energies are compared
to standard lattice renormalization [18], where a running
coupling constant g0 is scaled with the number of lat-
tice points M as g−1

0 = m/4π h̄2as − mKM1/3/4π h̄2L (K =
2.442 749 607 806 335 . . .) [58]. It is not only seen that the
transcorrelated method gives smaller errors by orders of mag-
nitudes for the same M, but also that scaling of the errors with
M follows a faster power-law decay. For the renormalization
approach, we find a scaling of M−1/3 consistent with the
previous results from lattice calculations [18,19,59]. In the
transcorrelated approach, the error decays with M−1. This is
the same scaling as obtained for Coulomb-interacting sys-
tems, e.g., the homogeneous electron gas, which is consistent
with the Coulomb-type nature of the transcorrelated Hamilto-
nian. The M−1 scaling is the fastest scaling we found in the
literature, and is shared, e.g., with the improved lattice ac-
tion used for auxiliary field quantum Monte Carlo (AFQMC)
calculations by Endres et al. [20] or the renormalized lattice
Hamiltonian with “magic” dispersion relation discussed in
Ref. [18].

Results for three fermions in the lowest-energy state with
zero total momentum1 are shown in Fig. 3. While the M−1

scaling can be observed for the “Endres AFQMC” values,
the transcorrelated results are much more accurate already for
very modest basis-set size and hardly distinguishable from
the reference values on the scale of the figure. Moreover, in
Appendix F 5 we show that approximate calculations avoiding

1The true ground state has finite momentum [33].

043270-3



PÉTER JESZENSZKI et al. PHYSICAL REVIEW RESEARCH 2, 043270 (2020)

FIG. 3. Energy of zero-momentum ground state of two spin-up
and one spin-down fermions with unitary interactions vs inverse
size of single-particle basis 1/M. Transcorrelated (“TrCorr”) are
compared with semianalytical results from Ref. [60] (“scattering
theory”) and AFQMC (“Endres AFQMC”) [20]. The horizontal
yellow band marks the standard error of the extrapolated AFQMC
results. Renormalized lattice calculations with FCIQMC using differ-
ent single-particle dispersions: “Hubbard,” “quadratic,” and “quartic”
as in Ref. [19] and the “magic” dispersion from Eqs. (122) and (124)
in Ref. [18]. E0 = 4π 2 h̄2/mL2 is the noninteracting energy.

the numerically expensive three-body excitations achieve the
same accuracy within our statistical errors.

Figure 3 also shows renormalized lattice calculations with
different single-particle dispersion relations as discussed in
Refs. [18,19] obtained with FCIQMC. Since they are expected
to show slower scaling than M−1, the energy dependence does
not appear linear in Fig. 3. The renormalized lattice method
scales with M−1/3 when using a Hubbard, quadratic, or quartic
dispersion, and M−2/3 for a “magic” dispersion [18].

The transcorrelated energies for three particles are shown
again in Fig. 4 with a magnified energy scale and with differ-

FIG. 4. Detail from Fig. 3 at enlarged scale. The error bars of the
transcorrelated results show the stochastic errors from the FCIQMC
method. The reference value from Ref. [60] (“scattering theory”) is
marked with a horizontal line and error band in green, extrapolated
result from Endres AFQMC [20] as a dashed yellow line (error not
shown). The diagonal red and purple lines and bands indicate the
linear fits and 1σ confidence bands obtained from χ 2 fitting of the
transcorrelated FCIQMC (TrCorr) results (four largest M values),
respectively. For details, see Appendix F 2.

FIG. 5. Ground-state energy of four fermions extrapolated to in-
finite basis-set limit. The horizontal (purple) line (TrCorr) shows the
transcorrelated result E/E0 = 0.208 339 ± 0.000 094 with the error
indicated by yellow band. Results from Ref. [59] with Hamiltonian
lattice 1 (“Bour 1”) and 2 (“Bour 2”) and AFQMC with Euclid-
ian lattice (“Bour 3”) are shown alongside AFQMC results from
Ref. [20] with O(4) (“Endres 1”) and O(5) (“Endres 2”) scaling,
explicitly correlated Gaussian (“Yin”) [33], and renormalized lattice
calculations following Ref. [19] using “Hubbard” and “quadratic”
dispersion relations. For the numerical values, see Table III in
Appendix F.

ent momentum cutoffs kc in the correlation factor of Eq. (5).
It is seen that the asymptotic regime of M−1 scaling of the
energy error is only reached for the larger basis-set sizes. With
the known asymptotic scaling properties we can determine
the energies in the infinite basis-set limit by extrapolation.
The extrapolations with two different kc values are seen to
be consistent with each other as well as with the literature
results from scattering theory [60] and AFQMC [20], while
they have much smaller error bars than previous results. As
the final value for the lowest energy with zero total momentum
for three fermions we obtain E/E0 = 0.373 453 ± 0.000 034
using kc = 2π/L, where E0 is the three-particle energy with-
out interaction between the particles. Compared to the results
of Endres et al. [20] of E/E0 = 0.3735(+0.0014/ − 0.0007)
the error is reduced by more than an order of magnitude.

The results from transcorrelated and renormalized cal-
culations for a four-fermion system are shown in Fig. 5,
where they are compared to literature results with lattice dis-
cretization (exact diagonalization and AFQMC) and explicitly
correlated basis-set approaches. Despite the several orders-of-
magnitude larger Hilbert space (∼1014) we obtain bias-free
results from FCIQMC by using the initiator approximation
and bias removal by increasing the walker number [61]. The
combined stochastic and extrapolation error of the transcorre-
lated approach is about two orders of magnitude smaller than
the best existing literature values (for details and numerical
values see Appendix F). This result showcases the signifi-
cance of an explicit treatment of the wave-function singularity
for improving the accuracy of numerical calculations.

IV. CONCLUSIONS

The approach presented here can be easily extended to
include trapping potentials or external gauge fields. The
transcorrelated method is thus well suited for highly precise
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calculations on correlated few-atom systems in microtraps
[7,8]. Extensions to larger particle numbers are feasible and
have already been demonstrated with FCIQMC in weakly cor-
related regimes [62], while recent developments of FCIQMC
like the adaptive shift method [63] can help in strongly
correlated regimes. The approach can be applied to low-
dimensional systems, and while it has already proven useful
in one dimension [43], the two-dimensional case is an objec-
tive for the future. The transcorrelated method could also be
employed with extensions of FCIQMC for finite-temperature
calculations with density-matrix Monte Carlo [64], or real-
time evolution of closed [65] or open quantum systems [66].
Beyond the specific numerical approach, we expect that the
transcorrelated formalism brings new insight into the treat-
ment of the singularity in the wave function and that it
provides a useful theoretical tool in other perturbative and
exact computational approaches.
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APPENDIX A: CORRELATION FACTOR IN REAL SPACE

In this Appendix, we examine the real-space form of the
correlation factor,

ũ(k) =
{ 2π2

k3 + 8π
ask4 if k � kc,

0 if k < kc.
(A1)

The Fourier transform of function (A1) can be calculated
analytically:

u(r) =
∫ ∞

−∞
dk3 ũ(|k|) eik·r

(2π )3
= v(r) + 8π

as
w(r),

v(r) = sin(kcr)

kcr
− Ci(kcr),

w(r) = cos(kcr)

4kcπ2
+ sin(kcr)

4k2
c π

2r
+ r

4π2
si(kcr),

where Ci(x) = − ∫ ∞
x

cos(t ) dt
t is the cosine integral and si(x) =

− ∫ ∞
x

sin(t ) dt
t is the sine integral. The boundary condition can

be reproduced by expanding function v(r) and w(r) in Taylor

series around r = 0:

v(r) = − ln (kcr) + 1 − γ + O
(
k2

c r2
)
,

w(r) = 1

2π2kc
− r

8π
+ O

(
k2

c r2
)
,

u(r) = − ln (kcr) + 1 − γ + 4

πaskc
− r

as
+ O

(
k2

c r2
)
,

where γ is the Euler-Mascheroni constant. Calculating eu(r),
we obtain back the hyperbolic singularity for the Jastrow
factor,

eu(r) = e1−γ+ 4
askcπ

[
1

kcr
− 1

kcas
+ O(kcr)

]
.

APPENDIX B: MATRIX ELEMENTS OF THE
TRANSCORRELATED FERMI-HUANG

PSEUDOPOTENTIAL

We consider the matrix element of the transcorrelated
Fermi-Huang pseudopotential and show that it vanishes, if
evaluated with wave functions that are bounded and have a
bounded first derivative almost everywhere.

In order to show that, let us consider the transcorrelated
Fermi-Huang pseudopotential

e−τVFHeτ = VFH + [VFH, τ ], (B1)

where the commutator can be evaluated if we apply the sub-
stitution VFH = g

∑
i< j δ(ri j ) ∂

∂ri j
ri j ,

[VFH, τ ] = g
∑
i< j

δ(ri j )
∂τ

∂ri j
ri j . (B2)

The partial derivative with respect to the separation ri j =
|ri − r j | is defined in the usual way, where both particles
i and j move while the center of mass 1

2 (ri + r j ) is held
constant, as are the orientation of the vector ri j = ri − r j ,
and all other particle coordinate vectors rk for k 
= i, k 
= j.
Since τ depends on the separations of all particle pairs, the
chain rule will generate many terms, most of which, however,
vanish.

In order to evaluate the derivative ∂τ
∂ri j

, let us substitute in
the expansion of τ in pair correlation functions

τ =
∑
i< j

u(ri j ) (B3)

into ∂τ
∂ri j

,

∂τ

∂ri j
= ∂u(ri j )

∂ri j
+

i<l 
= j∑
l

∂u(ril )

∂ri j
+

i 
=k< j∑
k

∂u(rk j )

∂ri j

+
i 
=k, j 
=l∑

k<l

∂u(rkl )

∂ri j
. (B4)
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The last term on the right-hand side is zero as rkl does not
depend on ri j . For the second and the third terms on the right-
hand side we can apply the chain rule

∂u(ril )

∂ri j
= ∂u(ril )

∂ril

3∑
p=1

∂ril

∂ri,p

∂ri,p

∂ri j︸ ︷︷ ︸
cos θ jil /2

, (B5)

∂u(rk j )

∂ri j
= ∂u(rk j )

∂rk j

3∑
p=1

∂rk j

∂r j,p

∂r j,p

∂ri j︸ ︷︷ ︸
cos θi jk/2

, (B6)

where index p goes through the three spatial directions and
θ jil is the angle between r ji and ril .

Using the short-range behavior of the correlation factor

u(r) = 1 − ln

(
r

as

)
− r

as
+ O(r2), (B7)

the first derivative of u(r) can be evaluated for short interpar-
ticle separations

du(r)

dr
= −1

r
− 1

as
+ O(r). (B8)

Substituting Eqs. (B5)–(B8) into Eq. (B4), the explicit expres-
sion can be obtained for ∂τ/∂ri j :

∂τ

∂ri j
= − 1

ri j
−

i<l 
= j∑
l

cos θ jil

2ril
−

i 
=k< j∑
k

cos θi jk

2rk j

− 1

as

(
1 +

i<l 
= j∑
l

cos θ jil

2
+

i 
=k< j∑
k

cos θi jk

2

)
+ O(ri j ).

(B9)

Using the expression above, we can evaluate the matrix el-
ement of the commutator expression (B2), where the delta
function restricts the spatial integration to short interparticle
separations

〈χ |g
∑
i< j

δ(ri j )
∂τ

∂ri j
ri j |φ〉

= g
∑
i< j

[
− 〈χ |δ(ri j )|φ〉 −

i<l 
= j∑
l

〈χ |δ(ri j )ri j cos θ jil

2ril
|φ〉

−
i 
=k< j∑

l

〈χ |δ(ri j )ri j cos θi jk

2rk j
|φ〉 + 〈χ |δ(ri j )ri jO(ri j )|φ〉

−
(

1

as
+

i<l 
= j∑
l

cos θ jil

2as
+

i 
=k< j∑
k

cos θi jk

2as

)
〈χ |δ(ri j )ri j |φ〉

]
.

(B10)

Assuming that the functions χ and φ are bounded, the last
two terms in Eq. (B10) are zero as δ(ri j )ri j gives zero after
performing the integral either for ri or r j . Although the inte-
grands in the second and the third term on the right-hand side
of Eq. (B10) can be finite at the coalescence points ri = rl

and rk = r j , they are still zero everywhere else. Since the

coalescence points form a set of measure zero, these terms
yield zero after integrating over the remaining variables. This
leads to a matrix element of the Dirac delta function:

〈χ |g
∑
i< j

δ(ri j )
∂τ

∂ri j
ri j |φ〉 = −g

∑
i< j

〈χ |δ(ri j )|φ〉. (B11)

Due to the bounded nature of the functions φ and χ , the matrix
element of the Fermi-Huang pseudopotential also reduces to
the matrix element of the Dirac-delta function, but with the
opposite sign,

〈χ |g
∑
i< j

δ(ri j )
∂

∂ri j
ri j |φ〉

= g
∑
i< j

〈χ |δ(ri j )|φ〉 + g
∑
i< j

〈χ |δ(ri j )ri j
∂

∂ri j
|φ〉︸ ︷︷ ︸

0

, (B12)

where we have assumed that χ and ∂φ/∂ri j are bounded.
Equation (B12) shows that a matrix representation of the
the (physically meaningful) Fermi-Huang pseudopotential
with sufficiently smooth (and bounded) basis functions is
equivalent to the bare Dirac-delta pseudopotential, which is
pathological in the sense that the infinite basis-set limit does
not exist. After the transcorrelated similarity transformation,
however, we obtain the two matrix elements (B11) and (B12),
which cancel each other and thus eliminate the irregular be-
havior in the matrix representation. Combining Eqs. (B1),
(B2), (B11), and (B12) we finally obtain

〈χ |e−τVFHeτ |φ〉 = 〈χ |VFH + [VFH, τ ]|φ〉 = 0. (B13)

APPENDIX C: SMOOTHNESS OF THE
TRANSCORRELATED EIGENFUNCTION

FOR TWO PARTICLES

In this Appendix we investigate the transcorrelated eigen-
function for two bosons or distinguishable particles with
the same mass (e.g., fermions with different spin quantum
number). We show that the singularity is reduced in the
transcorrelated Hamiltonian due to the similarity transforma-
tion. Consequently, the transcorrelated eigenfunctions are not
singular, there is only a cusp at the particle-particle coales-
cence point.

We consider the two-particle Hamiltonian without trapping
potential (Vtrap = 0)

H = − h̄2

2m
∇2

↑ − h̄2

2m
∇2

↓ + gδ(r↑ − r↓)
∂

∂|r↑ − r↓| |r↑ − r↓|,

where ↑ and ↓ label the two particles. Separating the center
of mass from the relative motion coordinates, we obtain

Hrel = − h̄2

2μ
∇2 + gδ(r)

∂

∂r
r, (C1)

where r = r↑ − r↓, μ = m/2, and the center of mass is de-
scribed by free-particle motion.
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Applying the transcorrelated similarity transformation to
the relative-motion Hamiltoninan of Eq. (C1) yields

H̃rel = e−τ Hrele
τ ,

H̃rel = − h̄2

2μ
∇2 − h̄2

μ

[
1

2
∇2τ + (∇τ )∇ + 1

2
(∇τ )2

]

+ gδ(r)

[
∂

∂r
r + r

(
∂τ

∂r

)]
. (C2)

Using Eqs. (B3) and (B7), τ can be given explicitly at small
interparticle separation

τ = 1 − ln

(
r

as

)
− r

as
+ O(r2), (C3)

with which the derivatives of τ in Eq. (C2) can be expressed
as

∂τ

∂r
= −1

r
− 1

as
+ O(r), (C4)

∇τ = − r
r2

− r
asr

+ O(r), (C5)

∇2τ = − 1

r2
− 2

asr
+ O(r0). (C6)

Substituting back into Eq. (C2), an explicit expression for the
Hamiltonian can be obtained for short distances

H̃rel = − h̄2

2μ
∇2 + h̄2

μ

(
1

r
+ 1

as

)
r
r
∇

+ gδ(r)

(
r

∂

∂r
− r

as
+ O(r2)

)
+ O(r0).

In order to obtain the transcorrelated eigenfunction, let us
substitute the Hamiltonian into the Schrödinger equation

− h̄2

2μ
∇2φ(r) + h̄2

μ

(
1

r
+ 1

as

)
r
r
∇φ(r)

+ gδ(r)

(
r

∂

∂r
− r

as
+ O(r2)

)
φ(r) = E ′φ(r),

where E ′ = E + O(r0). Due to the spherical symmetry we
can transform the differential equation into polar coordinates
and consider only s-wave solutions

−∂2φ(r)

∂r2
+ 2

as

∂φ(r)

∂r
+ gμ

2π h̄2r
δ(r)

[
∂

∂r
+ 1

as
+ O(r2)

]
φ(r)

= 2μE ′

h̄2 φ(r). (C7)

The differential equation can be solved for small interparticle
separation

φ(r)
r→0= e

r
as

(
c1e

r

√
h̄2

2μa2
s
−E ′

+ c2e
−r

√
h̄2

2μa2
s
−E ′)

,

where c1, c2, and E ′ can be determined only if we know the
solution in the whole space.

Differentiating the wave function we notice that it has a
linear term

φ(r) = c1 + c2 + br + O(r2),

where the prefactor b, before the linear term, is

b = φ′(0) = c1 + c2

as
+ (c1 − c2)

√
h̄2

2μa2
s

− E ′.

Considering the spherical symmetry, we obtain a function
which goes linearly to c1 + c2 around the origin and forms
a cusp. This function is not singular and continuous, however,
its first derivative is discontinuous. Therefore, the transcor-
related transformation smooths the wave function from a
hyperbolic singularity (∼1/r) to a cusp feature.

APPENDIX D: SECOND-QUANTIZED FORM OF THE
TRANSCORRELATED HAMILTONIAN

In this Appendix, we give an explicit expression for the
second-quantized form of the transcorrelated Hamiltonian in
a rectangular box with periodic boundary conditions.

Starting from the full Hamiltonian of Eq. (7) of the main
text we write

H = Hk +
∑

i

Vtrap(ri ) + VFH, (D1)

where

Hk =
∑

i

− h̄2

2m
∇2

i (D2)

is the kinetic energy operator. Under the transcorrelated simi-
larity transformation

H̃ = e−τ Heτ = e−τ Hkeτ +
∑

i

Vtrap(ri )

= H̃k +
∑

i

Vtrap(ri ), (D3)

where we assume that will only apply the transcorre-
lated Hamiltonian in the domain of bounded and almost-
everywhere differentiable functions, under which conditions
the Fermi-Huang pseudopotential disappears according to
Appendix B. The trapping potential is unchanged by the
similarity transformation because it is a diagonal operator in
coordinate space.

The transcorrelated kinetic energy operator obtains addi-
tional terms, as already discussed [see Eq. (8) in the main
text]:

H̃k = − h̄2

2m

∑
i

[
∇2

i + 1

2
∇2

i τ + (∇iτ )∇i + 1

2
(∇iτ )2

]
.

Assuming a box with side length L and periodic bound-
ary conditions, we can introduce the usual plane-wave
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single-particle basis functions. Following the description in
Ref. [41], the second-quantized form of the transcorrelated
kinetic energy operator is easily determined as

H̃k = h̄2

2m

∑
kσ

k2 a†
k,σ ak,σ

+
∑
pqk
σσ ′

Tpqk
σσ ′ a†
p−k,σ a†

q+k,σ ′ aq,σ ′ ap,σ

+
∑
pqs
kk′
σσ ′

Qkk′
σσ ′a†
p−k,σ a†

q+k′,σ a†
s+k−k′,σ ′as,σ ′aq,σ ap,σ ,

(D4)

where a†
k,σ

creates a one-particle plane-wave state with mo-
mentum k and spin σ and 
σσ ′ = δσσ ′ for bosons and 
σσ ′ =
1 − δσσ ′ for fermions. The tensors T and Q can be expressed
explicitly as

Tpqk = h̄2

mL3

(
k2ũ(k) − (p − q)kũ(k) + W (k)

L3

)
,

W (k) =
∑

k′
(k − k′)k′ũ(|k − k′|)ũ(k′),

Qkk′ = −k′kũ(k)ũ(k′)h̄2

2mL6
. (D5)

APPENDIX E: NUMERICAL EVALUATION OF THE
INFINITE SUMMATION IN EQ. (D5)

In this Appendix we describe the algorithm that we have
used for evaluating the infinite sum in Eq. (D5). First, let us
realize that we can restrict the indices in the summation from
below due to momentum cutoff in the correlation factor (A1):

W (k) =
k′,|k−k′|�kc∑

k′
(k − k′)k′ũ(|k − k′|)ũ(k′). (E1)

As we can see in Eq. (E1), the summation goes to infinity,
which prohibits the exact evaluation. However, an accurate
approximate value can be obtained if we partition the sum-
mation in Eq. (E1) to a summation inside a sphere with radius
kint and a summation outside this sphere:

W (k) = P(k, kint ) + R(k, kint ), (E2)

P(k, kint ) =
kint>k′,|k−k′|�kc∑

k′
w(k, k′), (E3)

R(k, kint ) =
k′,|k−k′|�kint∑

k′
w(k, k′), (E4)

w(k, k′) = (k − k′)k′ũ(|k − k′|)ũ(k′). (E5)

As w(k, k′) decays with k−6 at larger values of k, we can
approximate the summation with an integral in R(k, kint ):

R(k, kint ) ≈ RI (k, kint ),

RI (k, kint ) =
∫ ∞

kint

k′2dk′
∫ 1

−1
d (cos θ )

(kk′ cos θ − k′2)

4π2

× ũ(
√

k2 − 2kk′ cos θ + k′2)ũ(k′). (E6)

Due to the additional conditions in the sum (E1), further
restrictions apply at the boundaries of the integral, when√

k2 − 2kk′ cos θ + k′2 < kc. (E7)

In order to avoid the complicated limits of the integration,
we choose kint large enough such that (E7) never occurs. After
some algebra, it can be shown that it is sufficient to choose kint

such as to satisfy

kint � k + kc, (E8)

which is easy enough to fulfill as k and kc are kept small to
limit the size of the Hilbert space and to enhance the effect of
the correlation factor.

In order to evaluate the integral (E6), we consider the
Taylor-expanded form of ũ(k) in Eq. (A1):

RI (k, kint ) = −2π2

kint
− 8π

ask2
int

− 32

3a2
s k3

int

− 4k2π

3ask4
int

+ O
(
a−2

s k−5
int

)
.

In this paper we specifically consider unitary interactions,
where the integral (E6) can be evaluated exactly:

lim
as→±∞ R(k, kint ) ≈ lim

as→±∞ RI (k, kint ) = −2π2

kint
. (E9)

In this work we have applied Eqs. (E2)–(E5) and (E9) to
evaluate the matrix element W (k) for up to k = 16π/L with
kint = 1600π/L, where the finite sum P(k, kint ) was evaluated
exactly and the infinite sum R(k, kint ) was replaced by the
integral RI (k, kint ). Varying k up to the maximal value of
16π/L we found the uncertainties in the values of W (k) only
in the seventh and eighth significant digits. As the energy
scales linearly with the error in the matrix elements, the error
should appear in the energy in the same order. Moreover,
the accuracy of the integral approximation was also checked
numerically by comparing the energies from kint = 1200π/L
and 1600π/L calculations. We did not find any significant
difference in examples of two, three, and four fermions.

For two particles the convergence of the energy upon in-
creasing kint is demonstrated in Fig. 6. The observed error
seems adequate for our numerical calculations, where the
uncertainty of our final results was in the fourth and fifth
significant digits.

APPENDIX F: DETAILS OF THE NUMERICAL
CALCULATIONS

1. FCIQMC

For the numerical calculation we used the NECI code
[67], where transcorrelated Hamiltonians including three-
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FIG. 6. Convergence of the energy of one spin-up and one spin-
down particle at unitary interaction with kint . The maximal value
of the momentum for the single-particle basis was 16π/L. The
transcorrelated cutoff is kept to kc = 2π/L. The inset shows a detail
at enlarged scale. The extrapolation to 1/kint = 0 is determined with
a linear fit (shown as straight line) to the last three data points.

body excitations had previously been implemented for the
homogeneous electron gas [41], the Fermi-Hubbard model
[52], atoms, molecules [42], and the Fermi gas in one di-
mension [43]. In the context of this project we have further
extended the capabilities of the NECI code by including the
transcorrelated Hamiltonian for the unitary Fermi gas in three
dimensions.

For two particles, non-Hermitian exact (deterministic) di-
agonalization is applied in NECI using an external LAPACK

library [68]. For three and four fermions the Hilbert space
is too large for deterministic diagonalization. Hence, the full
configuration interaction quantum Monte Carlo (FCIQMC)
algorithm [45,56] is applied to obtain the ground-state energy.

One of the elementary parameters of the FCIQMC algo-
rithm is the number of the walkers [45,56]. It controls the
resolution of the wave function and the memory usage of the
algorithm. In this algorithm a minimal number of walkers is
required to eliminate the sign problem.

The minimal number is determined by the annihilation
plateau [45,69], which appears in the number of walkers dur-
ing the imaginary-time evolution. This plateau can be seen
to appear in Fig. 7 at around 50 000 walkers. At the end
of the plateau, around τ ≈ 5 × 106E−1

0 , the sign structure of
the wave function is determined, fluctuations in the projected
energy Ep are greatly reduced, and the walker number starts
growing exponentially. When the number of the walkers ex-
ceeds the initially set target walker number of 106, we start
adjusting the initially constant shift parameter S according to
protocol of Ref. [45] in order to control the walker number,
which will subsequently fluctuate around a mean. Both the
shift parameter S as well as the projected energy Ep provide
estimators for the ground-state energy. The final value of
the ground-state energy is determined by the mean of shift
parameter (after reaching the final walker number). The error
is obtained from an estimate of standard deviation of the mean
using a standard blocking analysis to remove autocorrelations
in the time series [70].
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FIG. 7. (a) The total number of walkers and (b) the shift S and
projected energy Ep during the FCIQMC simulation for the example
of two spin-up and one spin-down particles with unitary interactions
at M = 113 using the transcorrelated approach at kc = 2π/L. After
the target walker number of 106 is reached, the previously constant
shift parameter is updated in order to control the walker number.
E0 = 4π 2 h̄2/mL2 is the noninteracting energy.

For all calculations for three fermions and for the lattice-
renormalized calculations for four fermions, we were able to
apply a large enough walker number to detect and exceed
the annihilation plateau. However, for the transcorrelated cal-
culations with four fermions with M > 93 the annihilation
plateau was too high for the available numerical resources.
In these cases we applied the initiator method [61], which
has proved to be efficient for electronic structure calculations
[62,71,72]. While this approximation causes a systematic
bias in the calculations, the bias disappears when increasing
the number of walkers. For all results shown, the number
of walkers was increased until the changes in energy were
insignificant compared to the statistical error bars. Another
systematic bias, the population control bias, is known to affect
FCIQMC calculations with small walker number but is well
below the statistical error for the parameters considered in our
calculations. We thus expect the FCIQMC results presented in
this work to be essentially free of any systematic bias.

The parameters for the calculations are shown in Tables I
and II. The calculations were typically run on a single node
with 20 or 40 processor cores for 3 to 9 days. The largest cal-
culation was for four particles with kc = 4π/L and M = 173.
The memory usage in this example was about 114 GByte and
about 351 days of CPU time were used.
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TABLE I. Parameters of the FCIQMC calculation for two spin-
up and one spin-down particles. Nw is the number of walkers and Nτ

is the number of time steps. The time-step size �τ was determined
by the histogram τ search algorithm [67]. An annihilation plateau
was detected for all three-particle calculations.

kc/2πL−1 M Nw Nτ �τ/E−1
0

1 113 10000000 1310720 0.00010
1 133 16000000 327680 0.000067
1 153 20000000 327680 0.000039
2 133 2000000 1310720 0.00039
2 153 10000000 163840 0.00018
2 173 20000000 327680 0.00011

2. Complete basis limit and uncertainty

The complete basis limit of the energy Ecb can be deter-
mined by extrapolation assuming that the asymptotic scaling
of the energy E with the size of the basis set is known.
According to the observed scaling of the two-particle energy
seen in Fig. 2 and discussed in Sec. III, we expect the basis-set
error of the energy to be inversely proportional to the number
M of plane-wave modes. Thus,

E/E0 = α + β
1

M
, (F1)

where α = Ecb/E0 and β are dimensionless fitting parameters.
Linear fits to Eq. (F1) are shown in Fig. 4 for three-fermion
data and in Fig. 8 for four-fermion data, where α and β rep-
resent the slope and intersect of the fitted lines, respectively.
Estimators for the mean values of α and β, their variances σ 2

α

and σ 2
β , and their covariance cov(α, β ) are obtained using χ2

fitting [73]. This assumes that each data point is a Gaussian
random variable with standard deviation given by the error
bar, as justified in Monte Carlo simulations.

Since we assume the linear relationship (F1) to hold only
asymptotically for large M, we have to decide which data
points to include in the linear fit. We expect our calcula-
tions with the smaller cutoff parameter kc = 2π/L to enter
the asymptotic regime for smaller M compared to the larger
value kc = 4π/L because of the larger correlation factor. We
also expect simulations with both values of kc to share the
same limit Ecb, and thus independently extrapolate to the same
intersect. Thus, we first consider the data for the smaller cutoff
value kc = 2π/L and choose the smallest value of M above

TABLE II. Parameters of the FCIQMC calculation for two spin-
up and two spin-down particles, as in Table I. An annihilation plateau
was detected for the calculation with M = 93. All other calculations
were performed using the initiator approach [61].

kc/2πL−1 M Nw Nτ �τ/E−1
0

1 93 2000000 655360 0.000079
1 113 8000000 1310720 0.000051
1 133 16000000 1310720 0.0000079
2 133 9500000 1310720 0.0000079
2 153 16000000 327680 0.000051
2 173 160000000 327680 0.000029

FIG. 8. The ground-state energy of two spin-up and two spin-
down fermions. The purple (upper) and red (lower) line and band
show the linear fit with 1σ confidence band obtained from χ2 fitting
for kc = 2π/L (M = 93, 113, 133, 153), and for kc = 4π/L (M =
113, 133, 153, 173), respectively. E0 = 4π 2 h̄2/mL2 is the lowest non-
interacting energy in the zero momentum sector.

which all data points for the energy E reasonably represent
the linear relationship (F1). For Fig. 4 this corresponds to
M = 93 (1/M ≈ 0.0014) and yields four data points. Then, we
consider the data for the larger value kc = 4π/L and choose
the largest M such that the intersects for interpolation with
both cutoff values are consistent within the one-σ confidence
interval. For Fig. 4 this yields three data points at kc = 4π/L
with M � 113. For the four-fermion data in Fig. 8 the same
procedure yields four data points for kc = 2π/L and four data
points for kc = 4π/L. It can be seen from the figures that the
procedure is successful and the intercepts have overlapping
confidence intervals. For both three- and four-fermion data
sets, the extrapolations with the smaller cutoff value kc =
2π/L yield the smaller confidence intervals for the complete
basis-set limit Ecb, and thus the corresponding values are
reported as the final results.

The results of the complete basis-set extrapolation for four-
fermion calculations are compared with literature results in
Fig. 5 and in Table III. The error bands shown in Figs. 4 and 8
were calculated as the 1σ confidence intervals for the energy
for each value of 1/M using the following procedure. The
1σ confidence interval at the given value of x = 1/M can be

TABLE III. Numerical values of the data shown in Fig. 5.
Ground-state energies for two spin-up and two spin-down particles.
The renormalization methodology for the different dispersion rela-
tions is described in Appendix F 4 and follows Refs. [18,19].

Method E/E0 SE(E/E0)

Transcorrelated FCIQMC 0.208338 0.000094
Hubbard FCIQMC 0.2087 0.0021
Quadratic dispersion FCIQMC 0.2087 0.0011
Endres 1 AFQMC O(4) [20] 0.2122 0.0040
Endres 2 AFQMC O(5) [20] 0.2130 0.0026
Bour 1 AFQMC [59] 0.211 0.002
Bour 2 AFQMC 2 [59] 0.210 0.002
Bour 3 AFQMC Euclidian [59] 0.206 0.009
Yin ECG [33] 0.2058 0.0021
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FIG. 9. Fitting procedure for results obtained using the renor-
malized lattice method with different single-particle dispersions. The
value obtained using the transcorrelated method is included for com-
parison as the horizontal red line, with the error being smaller than
the linewidth in this plot. The quadratic dispersion leads to two sets
of points, depending on whether M is even or odd. Here, we only
show the results for odd values, which are considerably closer to the
final extrapolated result.

calculated from the standard deviation σa(x) of the intercept a
in the linear equation

E/E0 = a + b

(
1

M
− x

)
. (F2)

The 68% or 1σ confidence interval is then given as

a − σa(x) <
E

E0
< a + σa(x). (F3)

The new parameters a and b can be expressed by the original
parameters in Eq. (F1):

a = α + βx, (F4)

b = β. (F5)

Using Eq. (F4), the standard deviation of parameter a is then
determined as [73]

σa(x) =
√

σ 2
α + 2 cov(α, β )x + σ 2

β x2. (F6)

3. Extrapolated values for four particles in
renormalized lattice calculations

In the main text we present extrapolated values for the
ground-state energy for four fermions obtained using the
renormalized lattice method with the standard Hubbard dis-
persion and a quadratic dispersion in Fig. 5. These dispersions
lead to a dominant convergence rate proportional to M−1/3,
as can be seen in Fig. 9. We fit a function f (M ) = E

E0
+

AM−1/3 + BM−2/3 into the FCIQMC results to obtain an ex-
trapolated value for E/E0 with fitting error.

4. Dispersions for renormalized lattice calculations

A useful basis-set expansion for a free-space Fermi sys-
tem is using the Hubbard model in the low-density limit. In
this regime, any single-particle dispersion which is quadratic

TABLE IV. Single-particle dispersions as functions of lattice
momentum �k used in FCIQMC simulations in this work for com-
parison with the transcorrelated method. Here, U and t denote the
usual Hubbard interaction and hopping parameters, α is the lat-
tice constant. The numerical constants are C1 = 0.257 022, C2 =
−12.890 76, C3 = −1.728 219, and X = 1

6 [
∑3

i=1 1 − cos(kα )]. All
functions and numerical values can be found with more details in
Ref. [18].

Name Function U/t

Hubbard 2t
∑3

i=1[1 − cos(kiα)] −7.91355
Quadratic t (�kα)2 −10.28871

Quartic t (�kα)2[1 − C1( �kα

π
)
2
] −8.66661

Magic 12tX (1 + C2X + C3X 2) −12.89076

around zero will converge to the same result in the infinite-
basis states (lattice sites) limit [57]. Werner and Castin have
proposed to replace the standard Hubbard single-particle
dispersion with several candidates which eliminate finite
effective-range contributions to varying degrees [18]. This
leads to a convergence rate improvement from M−1/3 for the
Hubbard and quadratic dispersions to M−2/3 for so-called
“magic” dispersions. While a quartic dispersion was fitted to
converge with the same power law as the magic dispersion in
Ref. [19], for the smaller particle numbers in our case we find
a small contribution remaining that is proportional to M−1/3.
In Table IV, we list all dispersions used in this work with the
renormalized Hubbard interaction parameters corresponding
to unitary interactions.

5. Effective three-body interaction terms

Evaluating the transcorrelated Hamiltonian during any di-
agonalization procedure requires increased numerical effort
compared to the renormalized lattice Hamiltonian. The largest
part of the increased effort can be attributed to the three-body
term and thus scales with N3, where N is the number of parti-
cles. An efficient procedure for implementing the three-body
term in the FCIQMC algorithm is described in Ref. [52]. By
sampling the three-body interactions at a lower rate than the
much stronger and more important two-body interactions, the
increased computational effort for having more nonzero off-
diagonal matrix elements can be mostly mitigated, leaving a
modest additional cost for treating the three-body-interaction
terms explicitly.

The results presented in the main part of the paper were
computed by fully including all three-body excitations. In the
following we discuss an approximate procedure previously
used in Refs. [41,43] that only requires evaluating effective
two-body matrix elements, and thus reduces the numerical
effort further, while still producing highly accurate results.
Specifically, for our three-particle calculations the compu-
tation time reduced by a factor of 2–3 with approximated
three-body terms (effective two-body interactions only) com-
pared to explicitly evaluating all three-body terms. For the
four-particle calculation, the speedup factor was approxi-
mately 3–4.
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FIG. 10. The lowest energy of two spin-up and one spin-down
fermions in the zero-momentum sector with the full transcorre-
lated Hamiltonian and with the approximated three-body term as
per Eq. (F7). E0 = 4π 2 h̄2/mL2 is the energy with zero interaction
between the fermions.

The approximate three-body interactions work by only
allowing excitations that change not more than two single-
particle orbitals in the Fock state |�〉:∑

pqs
kk′
σ

Qkk′a†
p−k,σ a†

q+k′,σ a†
s+k−k′,σ̄ as,σ̄ aq,σ ap,σ |�〉

≈
∑
pq
kσ

Nσ̄ Qkka†
p−k,σ a†

q+k,σ aq,σ ap,σ |�〉

−
∑

ps
kσ

Nσ Qp−q,ka†
p−k,σ

(
a†

s+p−q+k,σ̄ + a†
s+q−p+k,σ̄

)

×as,σ̄ ap,σ |�〉, (F7)

FIG. 11. The ground-state energy of two spin-up and two spin-
down fermions with the full transcorrelated Hamiltonian and with the
approximated three-body term as per Eq. (F7). E0 = 4π 2 h̄2/mL2 is
the noninteracting energy.

where σ 
= σ̄ , Nσ is the number of the particles with spin
σ , and we used the identity

∑
r a†

r,σ ar,σ |�〉 = Nσ |�〉. This
approximation is closely related to the random phase approx-
imation (RPA) [74–76].

Ground-state energies computed with approximated three-
body terms are compared to the full transcorrelated Hamil-
tonian in Fig. 10 for three fermions and in Fig. 11 for four
fermions. We find that the approximate results and the full
transcorrelated results have mostly overlapping Monte Carlo
(statistical) error bars. The difference between full and ap-
proximated three-body terms is not statistically significant.
We thus conclude that the error made by approximating
the three-body terms with the RPA-like right-hand side of
Eq. (F7) is below the statistical Monte Carlo error for our
calculations.
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