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Weyl points and exceptional rings with polaritons in bulk semiconductors
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Weyl points are the simplest topologically protected degeneracy in a three-dimensional dispersion relation.
The realization of Weyl semimetals in photonic crystals has allowed these singularities and their consequences
to be explored with electromagnetic waves. However, it is difficult to achieve nonlinearities in such systems.
One promising approach is to use the strong coupling of photons and excitons, because the resulting polaritons
interact through their exciton component. Yet topological polaritons have only been realized in two dimensions.
Here, we predict that the dispersion relation for polaritons in three dimensions, in a bulk semiconductor with
an applied magnetic field, contains Weyl points and Weyl line nodes. We show that absorption converts these
Weyl points to Weyl exceptional rings. We conclude that bulk semiconductors are a promising system in which
to investigate topological photonics in three dimensions, and the effects of dissipation, gain, and nonlinearity.
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I. INTRODUCTION

Degeneracies in band structures are a key concept at the
heart of recent developments in condensed-matter physics
and optics [1]. Two-dimensional materials such as graphene
possess Dirac points, where the dispersion is locally linear,
which are responsible for many of their unique properties. In
three-dimensional materials, Weyl points have been found in
photonic [2] and electronic [3] band structures, providing low-
energy models of Weyl fermions. More generally, topological
considerations mean that materials hosting degeneracies are
the basis for realizing topological insulators and related ef-
fects such as robust edge modes. Such work is now also being
extended to dissipative systems, such as photonic materials
with gain and loss, described by non-Hermitian Hamilto-
nians [4]. In this case the singularities include exceptional
points [5,6] in parameter space, at which both the frequen-
cies and lifetimes of the modes become degenerate. Rings
of such exceptional points have been shown to emerge from
Dirac points in photonic crystals [7]. In the three-dimensional
case, Weyl points can become Weyl exceptional rings [8],
which have a quantized Chern number and a quantized Berry
phase. Like their counterparts in Hermitian systems, such
non-Hermitian singularities give rise to interesting physical
effects [9], including edge modes [10], unusual transmission
properties, topological lasing, and Fermi arcs arising from
half-integer topological charge [11].

Polaritons are exciton-photon superpositions that are
formed by strong light-matter coupling in semiconduc-
tors [12,13]. Their half-matter half-light nature implies
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relatively strong nonlinearities, and this feature among others
makes them an interesting system in which to study topolog-
ical effects. Topological phases have been predicted [14–19]
and observed [20] for polaritons formed from quantum-well
excitons coupled to photons confined in microcavities. Topo-
logical lasing [21] and exceptional points [22] have also been
studied. However, as microcavities and quantum wells are
two-dimensional systems, phenomena such as Weyl points,
Fermi arcs, and the three-dimensional topological phases [1]
have not been considered.

In this paper, we report topologically nontrivial dispersion
relations for polaritons propagating in three dimensions. We
consider a bulk semiconductor in a magnetic field and show
that the p-type structure of the valence band leads to intri-
cate dispersion relations containing topologically protected
degeneracies. In the absence of nonradiative losses there
are eight sheets of the dispersion surface, which host Weyl
points [2,3,23–25], for wave vectors along the field direction,
and ring degeneracies, for wave vectors transverse to it. In the
non-Hermitian case [4,5,10], with absorption, we show that
the Weyl points become Weyl exceptional rings, which can
be reached by tuning the frequency and the angle between the
propagation direction and the applied field. These results show
that bulk semiconductors could be used to study topological
effects in three spatial dimensions. Furthermore, bulk polari-
ton lifetimes can be long since, unlike microcavity polaritons,
they are not subject to radiative decay. They may therefore
give access to the strongly interacting regime of topological
photonics [1].

II. METHOD

A. Exciton spectra

We consider polaritons formed from 1s excitons in direct
band-gap zinc-blende semiconductors such as GaAs. These
involve p-type valence-band states with �8 symmetry and
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FIG. 1. (a) Calculated 1s exciton energies relative to the band gap
for GaAs with a magnetic field Bz ∈ [0, Bmax] in the [001] direction.
The line coloring indicates the polarization of each transition: right
circular (red/σ−) and left circular (blue/σ+), with the field in the xy
plane, or linear in the z direction (green/z). The black curves are
the spin-2 dark excitons. (b) Polarization and spin structure of the
exciton transitions, in terms of the hole spin mh and electron spin ms.

s-type conduction band states with �6 symmetry. The combi-
nations of the hole spin mh = ±3/2,±1/2 and the electron spin
ms = ±1/2 then give rise to eight exciton spin states, denoted
|Xn〉 for n = 1, . . . , 8, with energies En.

To evaluate the polariton spectrum, we need the ener-
gies and polarizations of the exciton transitions. To obtain
these, we diagonalize the effective Hamiltonian for the 1s
excitons given in Ref. [26]. The parameters in this effective
Hamiltonian are related to the underlying electron-hole ex-
change parameters, Luttinger parameters, and g factors. This
approach treats the valence-band anisotropy, magnetic field,
and electron-hole exchange as perturbations on a spherically
symmetric electron-hole Hamiltonian [27]. The unperturbed
wave function is of the usual hydrogenic form, with the
binding energy R0 = μe4/32π2ε2

0ε
2h̄2 and Bohr radius a0 =

4πε0ε h̄2/μe2, where μ−1 = m−1
c + m−1

v . mv = m0/γ1 is the
isotropic part of the effective mass for the valence band,
related to the Luttinger parameter γ1, and mc is the effective
mass for the conduction band. For this perturbative approach
to be valid the cyclotron energy must be small compared with
the exciton binding energy R0. We take the specific criterion
given by Altarelli and Lipari [27],

γ = h̄ωc

2R0
= eh̄B

2μR0
� 0.4, (1)

to define the maximum field Bmax of the perturbative regime.
In the following we will consider the specific case of GaAs,
with applied field Bmax in the [001] direction, using the band-
structure parameters from Ref. [28]. For the electron-hole
exchange parameters [26] we take �1 = −9.61 μeV [29],
and �0 = �2 = 0. The exciton spectrum computed for these
parameters is shown in Fig. 1(a). As expected, the magnetic
field lifts the degeneracies of the eight electron-hole pair
states. This splitting of the energies of the excitons will result
in an anisotropic and multiply resonant optical susceptibility
and hence a direction- and polarization-dependent polariton
dispersion.

B. Polariton Hamiltonian

The topological singularities of the polariton dispersion
arise from the polarization dependence of the exciton-photon
coupling. In the Coulomb gauge the interaction between
the vector potential and the electrons, from the Hamiltonian∑

i[p̂i + eÂ(r̂i )]2/(2m), is

Ĥep = e

m

∑
i

∑
k,s

√
h̄

2ε0ωV
[âk,sek,se

ik.r̂i + H.c.] · p̂i. (2)

Here, the first sum is over the electrons, and the second is
over the photon wave vectors, k, and polarizations, s, with
corresponding polarization vectors ek,s. âk,s is the photon
annihilation operator, ω = c|k| is the photon frequency, and V
is a quantization volume. Thus we have the second-quantized
Hamiltonian in the subspace of the eight 1s exciton states,
|Xk,n〉,

Ĥxp = e

m

∑
k,s,n

√
h̄

2ε0ωV
[X̂ †

k,nâk,sek,s · 〈Xk,n|p̂|0〉+ H.c.], (3)

where we have made the rotating-wave approximation. We
have also neglected the diamagnetic term, proportional to
Â

2
, which is justified when treating the strong coupling of

near-resonant modes [30]. Both the diamagnetic and coun-
terrotating terms give nonresonant contributions which are
perturbative in the ratio of the light-matter coupling strength
to the exciton or photon energy, and hence small. There is,
also, a resonant part of the diamagnetic term, which is ac-
counted for in the observed value of the exciton energy. We
note that the diamagnetic and counterrotating terms can be
important away from resonance, being required, for example,
to ensure the photon energy remains positive at long wave-
lengths. They are also important in the ultrastrong coupling
regime, where the light-matter coupling becomes comparable
to the transition energy.

In the envelope function approximation the matrix ele-
ments appearing in Eq. (3) are products of the matrix elements
of the Bloch functions at k = 0 and the hydrogenic exciton
wave functions χms,mh Fn(r = 0). For the spatial part of the
latter we take the unperturbed result |Fn(0)|2 ≈ 1/πa3

0. For
the spin part χms,mh we note that at the field Bmax we are con-
sidering, the Zeeman terms dominate over the electron-hole
exchange. Thus the excitons are, to a good approximation,
diagonal in the spin projections ms and mh [31]. Using the
standard forms for the valence-band wave functions [32] and
the Kane parameter P [33–35], we then have 〈Xn|p̂|0〉 =√

V mF ∗
n (0)|P|vn/h̄, where v1 = v8 = 0 and

v2 = 1√
6

⎛
⎝ i

1
0

⎞
⎠, v3 =

√
2

3

⎛
⎝0

0
i

⎞
⎠, v4 = 1√

2

⎛
⎝−i

1
0

⎞
⎠,

v5 = 1√
2

⎛
⎝ i

1
0

⎞
⎠, v6 =

√
2

3

⎛
⎝0

0
i

⎞
⎠, v7 = 1√

6

⎛
⎝−i

1
0

⎞
⎠. (4)

The states |X1〉 . . . |X4〉 correspond to excitons with electron
spin ms = 1/2 and hole spin mh = 3/2, 1/2,−1/2,−3/2, respec-
tively, while |X5〉 . . . |X8〉 are the corresponding states with
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ms = −1/2. Thus |X1〉 and |X8〉 are dark states, and the remain-
ing transitions are either circularly polarized in the xy plane
or linearly polarized in the z direction, as shown in Figs. 1(a)
and 1(b).

Using these exciton matrix elements in Eq. (3), and approx-
imating ω ≈ Eg/h̄ in the prefactor of the coupling, we find for
the exciton-photon Hamiltonian,

Ĥ =
∑

k

{∑
s

h̄ck√
ε

â†
k,sâk,s +

∑
n

EnX̂ †
k,nX̂k,n

+ h̄
0

2

∑
s,n

(ek,s · vn)X̂ †
k,nâk,s + H.c.

}
, (5)

where k = |k| and we use a Rabi splitting

h̄
0 =
√

2e2|P|2
ε0εEgπa3

0

to quantify the light-matter coupling in the material.

C. Polariton spectra

In the following we will consider the polariton spectrum,
which we obtain from the Heisenberg equations of motion
for the exciton and photon annihilation operators by look-
ing for solutions with time dependence e−iωt , i.e., setting
â(t ) = e−iωt â(0) and similarly for the exciton operators. We
specify the wave-vector direction in terms of the polar co-
ordinates θ, φ, with the field direction and the [001] crystal
axis corresponding to θ = 0. For the photon polarization we

use the circularly polarized states, ek,± = (ek,θ ± iek,φ )/
√

2,
constructed from the linearly polarized basis transverse to k,

ek,θ =
⎛
⎝cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎠, ek,φ =

⎛
⎝− sin φ

cos φ

0

⎞
⎠. (6)

Since there are two photon polarizations and six excitons
(discounting the irrelevant dark states), this procedure gives
an 8 × 8 Hamiltonian matrix, H8, with elements dependent
on the wave-vector magnitude and direction. The form of
this Hamiltonian is given explicitly in the Appendix. We
determine the polariton dispersion ω(k, θ, φ) by finding the
eigenvalues, ω, of H8 numerically.

While the dispersion ω(k, θ, φ) is given by the eigenvalues
of H8, there is another approach to analyzing the topological
singularities of the polariton spectrum, in terms of the function
k(ω, θ, φ). This latter function provides a natural description
of optics at a fixed frequency and is related to constructs such
as the refractive index surface of classical optics [36–38].
For example, a radial plot of k at some fixed frequency over
angles gives a contour (in k space) of the dispersion relation
ω(k). The normal to such an isofrequency surface is therefore
the group velocity, ∇kω, controlling the refraction direction
at that frequency. While the two functions ω(k, θ, φ) and
k(ω, θ, φ) are equivalent in the absence of dissipation, we
shall see that they have some differences in its presence, and
we therefore consider both representations in the following.

To obtain the dispersion in the form k(ω, θ, φ), we elimi-
nate the exciton amplitudes from the Heisenberg equations of
motion. This leads to a two-dimensional eigenproblem for the
photon amplitudes,

[
(ω − ck/

√
ε)δss′ − 
2

0

4

∑
n

(e∗
k,s · v∗

n ).(ek,s′ · vn)

ω − En/h̄

]
âk,s′ (0) = 0, (7)

so that the magnitudes of the wave vectors are the eigenval-
ues of a 2 × 2 matrix, whose elements are functions of the
frequency and propagation direction.

It is useful to note that this form, Eq. (7), can also be
derived semiclassically, by looking for plane-wave solutions
to Maxwell’s equations, including the excitonic resonances
via a frequency-dependent dielectric function ε(ω). In an op-
tically isotropic material, ε(ω) is a scalar, and the polariton
dispersion satisfies c2k2/ω2 = ε(ω) [39]. In the present case,
however, the optical response is anisotropic due to the mag-
netic field, and we must consider the vector equation

−k × k×E = ω2

c2
ε(ω)E. (8)

Longitudinal modes, with k ‖ E, occur if ε(ω) = 0. To obtain
the equation for the transverse modes, we take matrix ele-
ments of Eq. (8) in a basis perpendicular to k̂, such as ek,±.
This eliminates the zero eigenvalue of the operator k × k×,
i.e., the longitudinal polariton, and gives[

(ω2 − c2k2/ε)δss′ + ω2

ε
χss′

]
Ek,s′ = 0, (9)

where χss′ (ω) = e†
k,sχ (ω)ek,s′ is the transverse part of the

excitonic susceptibility and ε is the background permittivity.
We approximate the prefactors in this expression as (ω2 −
c2k2/ε) ≈ 2ω(ω − ck/

√
ε) and ω2/ε ≈ ωEg/h̄ε. Comparing

this expression with Eq. (7), we see that the final term in the
latter is related to the susceptibility by

χss′ = −
2
0 h̄ε

2Eg

∑
n

(e∗
k,s · v∗

n ).(ek,s′ · vn)

ω − En/h̄
. (10)

The spectrum k(ω, θ, φ) can be found straightforwardly by
solving the secular equation for Eq. (7), which is a quadratic in
k. It may be noted that χss′ , and hence the polariton spectrum,
is independent of φ. This reflects the rotational symmetry of
the problem about the magnetic field (θ = 0). The combi-
nation of the form of Eq. (7) with that of χss′ imposes an
additional symmetry between the solutions at θ and those at
π − θ . We may therefore set φ = 0 and consider the interval
θ ∈ [0, π

2 ]. We note that whereas the secular equation for
Eq. (7) is a quadratic in k, that for H8 is an eighth-order
polynomial in ω. Thus there are, in general, two wave vectors
for each frequency, from the two dispersing photon modes.
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FIG. 2. (a) Solid curves: polariton dispersion relations for GaAs
in a magnetic field for θ = 0. The coloring shows the degree of cir-
cular polarization. Dotted lines: energies of the z-polarized excitons.
(b) Polariton dispersion for θ = π/8. (c) Polariton dispersion for
θ = π/2. The coloring here shows the degree of linear polarization.
Energies are relative to the band gap in units of the exciton Rydberg,
and wave vectors are relative to k0 in units of the inverse exciton Bohr
radius.

There are, however, eight frequencies for each wave vector,
from those two photon modes as well as the six nondispersing
bright excitons.

III. RESULTS

A. Topological singularities: Hermitian case

Our primary interest is in the degeneracy structure of the
magneto-exciton-polariton dispersion relation, which we first
consider in the Hermitian case without dissipation. It is pos-
sible to make some observations that constrain the possible
degeneracies based on the symmetry of the problem. Owing to
the φ invariance of the solutions, we know that propagation in
the θ = 0 direction is the only configuration for which isolated
degeneracies are possible. Correspondingly, if degeneracies
occur at any nonzero θ , they are necessarily extended degen-
eracies over all φ.

In Fig. 2 we plot the dispersion of the transverse modes,
obtained from the secular equation for Eq. (7). The three
panels refer to propagation along the field, θ = 0, at a small
angle to it, θ = π/8, and perpendicular to it, θ = π/2. The
polarization of the modes is shown by the coloring. Energy is

measured relative to the band gap Eg and in units of the exci-
ton Rydberg energy. The wave vector is measured relative to
k0 = √

ε(Eg − R0)/h̄c, which is the wave vector at which the
bare linear photonic dispersion would cross an unperturbed
exciton. The wave vector is measured in units of the inverse
exciton Bohr radius.

The spectrum for propagation along the z axis is shown
in Fig. 2(a). In this case the two z-polarized excitons, X3 and
X6, do not couple to light, and there are only six modes in
the transverse spectrum. The other excitons are circularly po-
larized, and each circular polarization of light mixes with the
two excitons of that polarization. This gives rise to a spectrum
with a lower, intermediate, and upper branch for each circular
polarization. The lower branch begins at low energy as a
purely photonic, linearly dispersing, mode, which anticrosses
with the lower-energy exciton, asymptoting horizontally to
approach that exciton energy at large k. Above that energy
there is an intermediate branch, which initially has an imag-
inary k as it lies in the polaritonic (longitudinal-transverse)
gap [13]. This mode then becomes a propagating polariton
with k = 0 at the gap edge and then approaches the higher
exciton energy at large k. Above this there is an upper branch,
which again begins as a solution with imaginary k, before
becoming a propagating solution, and finally approaching the
photon dispersion at large k.

Figure 2(b) shows the spectrum at a small angle to the z
axis. Comparing this spectrum with that in Fig. 2(a), we see
that there are now eight branches, because the z-polarized
excitons now couple to light. Moreover, we find that this
spectrum is nondegenerate, with avoided crossings which
originate from the degeneracies at θ = 0. The two degenera-
cies in Fig. 2(a) between the different circular modes have
split. The splittings are quite small, due to the small angle
chosen, but are nonetheless present. In addition, we see that
the three intersections between the z-polarized excitons and
the transverse modes at θ = 0 have split, to organize into the
two additional transverse branches at θ 
= 0. There is in fact a
fourth intersection of this nature, involving the highest-energy
z-polarized exciton, but it is with an evanescent mode at an
imaginary k.

Figure 3 shows the dispersion relation near some of these
singularities. Since the dispersion has rotational symmetry
around z, we plot it as a function of kz and the wave vector
in the xy plane, kxy. One of the degeneracies between the two
circular polarization modes seen in Fig. 2(a) is point A in
Fig. 3, lying between the orange and blue (second and third
from the bottom) sheets. It can be seen to split linearly in kz

but quadratically in kxy. The same structure appears for the
other crossing of the circular modes at θ = 0 (not shown). The
Hamiltonian close to each of these degeneracies is therefore of
the form

c1
(
k2

x σx + k2
y σy

) + c2(kz − kc)σz (11)

for appropriate constants c1 and c2 and crossing point kc.
Following the procedure given in Ref. [40], we determine that
such a dispersion implies these degeneracies have zero topo-
logical charge. However, Fig. 3 also shows three crossings
involving the z-polarized excitons, labeled B, C, and D. As
can be seen in the figure, the dispersion near each of these
points forms a pair of touching cones. The energy splitting is
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FIG. 3. (a) Polariton dispersion relation for GaAs in a magnetic
field, centered around propagation along the magnetic-field direction,
z. The dispersion relation has rotational symmetry around the z axis.
It is shown as a function of kz and the wave vector in the xy plane,

kxy = ±
√

k2
x + k2

y . Two Weyl points with a linear dispersion in all di-

rections, B and C, and a band touching with a mixed quadratic/linear
dispersion, A, can be seen. A third Weyl point, D, lies between the
orange and blue sheets (second and third from the bottom). (b) The
same data from a different perspective.

linear in all three components of the wave vector, measured
from the degeneracy. This linear splitting is further shown in
Fig. 4, and by the analysis below [Eq. (12)]. These points
are, therefore, Weyl points. Their linear dispersion implies
that they are topologically protected, carry a unit topological
charge, and are monopoles of the Berry flux [41,42]. This is
because the only form possible for a two-band Hamiltonian,
with a degeneracy away from which the bands split linearly
in all directions, is ±σ · (k − kc) (up to transformations of
the coordinates). This implies topological protection, because
any perturbations are additions of the Pauli matrices, which

B' B D D' B'

-0.968

-0.96

-0.952

-0.944

E
-E
g
(R

0) C

D

B

D D'
B B'

kx

kzkz

kxy

FIG. 4. Polariton dispersion relation for GaAs in a magnetic
field, along a square path through k space (horizontal axis). Two
corners of the square are the Weyl points marked B and D, here
and on Fig. 3. The two remaining corners B′ and D′ are formed by
displacing these points in a direction perpendicular to kz, as indicated
in the top right of the figure. There is a third Weyl point along one
side of the square, marked C.

merely move the degeneracy. The unit topological charge can
be confirmed using the approach in Ref. [40] as above. The
Weyl points B, C, and D correspond to three of the degen-
eracies between the transverse polaritons and the z-polarized
excitons at θ = 0. The final fourth such degeneracy, lying in
one of the longitudinal-transverse gaps [13], is also a Weyl
point, with a linear dispersion. However, it occurs at an imag-
inary k.

The dispersion perpendicular to the applied field (θ =
π/2) is shown in Fig. 2(c). As indicated by the coloring, in this
case the transverse modes are purely linearly polarized, along
the polar vectors eθ = −z and eφ . Considering this geometry,
we identify two further degeneracies in the polariton disper-
sion, where modes with these two polarizations cross. These
are both extended ring degeneracies, due to the φ invariance
of the system.

We see that there are, in total, eight distinct degeneracies of
the polariton dispersion relation in the region 0 � θ � π/2.
Of these eight degeneracies, six are isolated degeneracies
occurring in the θ = 0 direction, and two are extended de-
generacies occurring in the θ = π/2 plane. The six isolated
degeneracies divide into four Weyl points, one of which is
at an imaginary k, and two topologically trivial degeneracies
with a mixed quadratic-linear dispersion.

The Weyl points are degeneracies between the z-polarized
excitons and the xy-polarized polaritons at θ = 0. To see why
this gives a Weyl point, with a linear dispersion, we note that
the coupling between such modes—and hence the splitting of
the degeneracy—is proportional to sin(θ ) [see Eq. (A2)]. This
leads to a splitting of the degeneracy which is linear in the
magnitude of the transverse wave vector, since sin(θ ) ≈ θ ∝
|kxy|, where kxy = ±

√
k2

x + k2
y . Formally, the Hamiltonian for

the two modes near the degeneracy takes the form(
c′(kz − kc) + ω0 
 sin(θ )/2


 sin(θ )/2 ωx

)
, (12)

which, with sin(θ ) ≈ kx/kc (for ky=0), gives a linear disper-
sion in kx and kz − kc at the degeneracy ω0 = ωx. 
 is the
strength of the coupling between the z-polarized exciton and
the polariton, involving the amplitude, in the polariton, of the
eθ -polarized photon. kc is the wave vector at the degeneracy,
ω0 = ωx = c′kc is the frequency, and c′ is the velocity. No-
tably, these Weyl points lie at the critical tilt between a type-I
and a type-II point [43] and as such are the three-dimensional
(Weyl) generalization of the recently achieved type-III Dirac
point [44]. These classifications distinguish Weyl points based
on their isofrequency contours. In type-I cases the energy con-
tour is a point, and in type-II cases the contours are surfaces,
while type-III cases represent the transition between type-I
and type-II cases where the contour is a line.

B. Exceptional points in the dispersion relation

In the presence of damping, the Hamiltonian, H8, becomes
non-Hermitian, and the polariton dispersion, ω(k, θ, φ), can
contain rings of exceptional points arising from the Weyl
points described above. This can be seen by considering the
local Hamiltonian, Eq. (12), for one of the Weyl points. Damp-
ing will arise from the phonon or impurity scattering of the
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polariton; exciton losses, through Auger recombination and
trapping in dark impurity states; and photon losses, from any
background absorption and the escape of light through the
boundaries of the sample. Such damping can be modeled by
introducing imaginary parts to the frequencies of the corre-
sponding oscillators [13], so that we replace ω0,x → ω0,x −
iγ0,x in Eq. (12).

To understand the origins of the exceptional points, we
consider the eigenvalues of Eq. (12) at the bare resonance,
which is achieved by tuning kz such that the real parts of
the diagonal elements are equal. At this point the splitting,
in the presence of damping, is

√

2 sin2 θ − (γ0 − γx )2. Thus

the imaginary parts of the eigenvalues are split, and the real
parts degenerate, for angles less than θc = arcsin |γ0 − γx|/
,
while the opposite is true for angles greater than this value.
This corresponds to the transition between the weak-coupling
and strong-coupling regimes for the two modes [12]. In the
weak-coupling regime the coupling strength 
 sin θ is smaller
than the effective damping rate, and the normal modes are
at the original degenerate frequencies, whereas in the strong-
coupling regime it is larger, and the normal-mode frequencies
(the real parts of the eigenvalues) are split. Because the inter-
action between the modes depends on the angle, we can use
it to access the transition between these two regimes. At the
critical angle θc, marking the onset of strong coupling between
these modes, we see that both the real and imaginary parts
of the spectrum are degenerate, so we have an exceptional
point. Further details of the origins and consequences of such
exceptional points, which are generic features of parameter-
ized non-Hermitian eigenvalue problems, can be found in the
review by Heiss [6]. In our case the degeneracy occurs at all
φ, so that there is a ring of exceptional points in the space of
wave vector, where both the real and imaginary parts of the
polariton energies are degenerate and, as a corollary [6], the
non-Hermitian Hamiltonian is defective.

In Fig. 5 we show an exceptional point of this type, in the
spectrum of the full Hamiltonian, H8. Figures 5(a) and 5(b)
show the real and imaginary parts, respectively, of the ener-
gies, and the expected local structure around an exceptional
point [6] is clearly visible. As can be seen from the analysis
above, the angle of the exceptional point depends on the
difference in the damping constants; if this is too small, the
Weyl exceptional ring will be indistinguishable from a Weyl
point. For Fig. 5 we have chosen to introduce damping γ3 =
0.01R0/h̄ for the X3 exciton only, so that the exceptional point
structure is clear. This is a simple, nonrealistic choice, made
to illustrate the exceptional points which occur more generally
in H8 when the modes have differing damping rates. Differ-
ences in the damping rates of the different exciton-polariton
branches can be expected due to the differing dispersion re-
lations and photon-exciton fractions, and from exciton spin
relaxation [45,46] among the Zeeman-split levels.

C. Exceptional points in the isofrequency surface

We now consider the effect of damping in terms of the
complex-valued wave vector k(E , θ, φ) = k(E , θ ) as a func-
tion of the real-valued energy and propagation direction.
This may be compared with the treatment above, where
we considered the complex-valued energy as a function

FIG. 5. Exceptional points in the polariton dispersion (top pan-
els) and wave-vector surface (bottom panels). (a) and (b) Real and
imaginary parts of the polariton energies E (k, θ ), for a real wave
vector of magnitude k, at propagation direction θ . Only one exciton,
X3, is damped, with rate γ3 = 0.01R0/h̄. (c) and (d) Real and imagi-
nary parts of the polariton wave vector k(E , θ ), for a real energy E .
All the excitons have an equal damping rate γ = 0.008R0/h̄.

of the real-valued wave vector. At a particular energy the
two-sheeted function k(E , θ, φ) is an isofrequency surface
of the dispersion relation, whose normals give the ray di-
rections [36]. More generally, real energies correspond to
monochromatic continuous-wave excitation, and the function
k(E , θ ) describes the propagation of polaritons under such
conditions. As we shall see, the isofrequency surface can have
rings of exceptional points (at particular real energies), similar
to those in the dispersion relation (at particular real wave
vectors).

Figure 6 shows the complex-valued wave-vector function
obtained using the parameters of Fig. 2(a) with damping γ =
0.015R0/h̄ for the excitons. Here and throughout this section,
we consider an equal damping rate of all the excitons, γn = γ .

FIG. 6. (a) Real and (b) imaginary parts of the wave vector of the
polariton dispersion relation at real energies, for propagation at θ =
0. Coloring shows the circular polarization of the modes. Dashed
horizontal lines show the energies of the excitons colored by polar-
ization. All excitons have an equal damping rate γ = 0.015R0/h̄.
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FIG. 7. Exceptional points of the complex wave vector k(E , θ )
for real energies, for two values of the exciton damping: (a) γ =
0.0005R0/h̄ and (b) γ = 0.008R0/h̄. The blue (orange) curves are
the zero contours of the real (imaginary) part of the discriminant
for the characteristic equation determining k. The points show the
locations of the exceptional points.

As can be seen, the damping blurs the distinction between
the lower, intermediate, and upper polariton branches, joining
them together for each polarization. In the imaginary parts
of the wave vectors, i.e., the absorption coefficients, we can
see the microstructure of the individual excitonic resonances
and their associated oscillator strengths. We see that there
are energies where the real parts of the wave vectors for the
two polarizations are degenerate, and there are, also, energies
where the absorption coefficients are degenerate. These are
not exceptional points, however, as the degeneracies in the real
and imaginary parts of k occur at different energies.

The exceptional points of the wave-vector function k(E , θ )
are values of E and θ where, simultaneously, the real parts
of k and the imaginary parts of k are degenerate. To identify
these degeneracies, we consider the characteristic equation for
Eq. (7), which is a quadratic in k. The exceptional points are
the zeros of the discriminant of this quadratic. They can be
found by plotting the zero contours of its real and imaginary
parts and looking for their crossings. This is shown for two
different values of the damping rate in Fig. 7.

Figure 7(a) shows the situation for a small damping rate,
γ = 0.0005R0/h̄. This corresponds to an exciton relaxation
time 1/γ ≈ 300 ps, similar to that observed in quantum
wells [45]. Figure 7(b) shows the results for stronger damping,
γ = 0.008R0/h̄, so that 1/γ ≈ 20 ps. In both cases we see
that there are exceptional points, which originate from the
degeneracies of the polariton dispersion in the absence of
damping. As damping is introduced the degeneracies of the
polariton dispersion move in the (θ, E ) plane. The richest
structure in terms of degeneracies is at low damping, as in
Fig. 7(a), where we see there are six exceptional points in
the region 0 � θ � π/2. Since all of these points occur at
nonzero θ , they correspond to rings of exceptional points in
the isofrequency surface, at certain energies, owing to the φ

independence of the solutions. As the damping is increased
the exceptional points annihilate and their number reduces,
as can be seen in Fig. 7(b), where there are now only two
exceptional points.

Figures 5(c) and 5(d) show the real and imaginary parts
of the complex wave vector, as functions of the real energy
E and angle θ , in the region containing the two exceptional
points of Fig. 7(b). The two exceptional points are joined
by a line degeneracy in the real parts of the wave vector,
which is clearly visible in Fig. 5(c). The structure around each
exceptional point may be compared with an exceptional point
in the complex energy [Figs. 5(a) and 5(b)]. We again have the
expected general form, i.e., line degeneracies in each of the
real and imaginary parts, which meet at the exceptional point.
The overall structure may, also, be compared with that de-
scribed by Berry and Dennis [37] for frequency-independent
absorbing dielectrics, for which the complex function k(θ, φ)
contains degeneracies in particular wave-vector directions.
These exceptional points define the “singular axes” of the
crystal. They are points in the space of wave-vector direction,
but occur at all frequencies. The degeneracies of the complex-
valued wave vector described here are, instead, extended in
the space of wave-vector direction (forming rings), but occur
only at specific frequencies.

IV. CONCLUSION

The strong coupling of light to excitons in a magnetic
field gives rise to topologically nontrivial dispersion rela-
tions ω(k), and wave-vector surfaces k(E ), for polaritons
in bulk zinc-blende semiconductors. The complex degener-
acy structure of the dispersion provides a route to realizing
topological effects for polaritons in three dimensions, going
beyond previous work in two-dimensional [14–21], and also
one-dimensional [47,48], systems such as microcavities. In
the absence of dissipation the polariton dispersion contains
Weyl points, for propagation along the field, and ring degen-
eracies, for propagation perpendicular to it. In the presence
of dissipation the Weyl points become rings of exceptional
points, which generalize the corresponding Dirac exceptional
rings of two-dimensional dissipative systems [7]. A real-
ization of Weyl exceptional rings in cold atomic gases has
recently been proposed [8]; the present work shows that a
different realization in semiconductors may be possible.

Topological bands, Weyl points, and surface states (Fermi
arcs) have recently been revealed in transmission experi-
ments [2,11,24,25,49] on photonic band structures [41]. The
topological dispersion relations described here, and their
consequences, would also give signatures in transmission.
Polariton spectra are, however, typically determined using
angle-dependent reflectivity measurements. Such techniques
are well established [50] and have been used to determine
exciton-polariton spectra in bulk semiconductors, with reso-
lution sufficient to resolve Zeeman-split levels [51–55]. The
exciton-polariton dispersion gives rise to nonstandard line
shapes in reflectivity, so the spectra need to be interpreted
by comparison to coupled oscillator models [50]. Another
approach would be to pump incoherently above the polariton
branches and study the spectra in photoluminescence. This
creates the further possibility of exploring the impact of gain
on the topological bands and surface modes and creating a
polaritonic topological laser based on surface states. Perhaps
the most promising way, however, in which the polariton
system goes beyond existing photonic topological materials is
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through the presence of large nonlinearities, giving it poten-
tial for realizing topological strong-interaction effects using
light.

An important question is the extent to which the effects
described here can be observed, given realistic values of the
dissipation. We see from Figs. 1 and 3 that the scale of the
multiple polariton branches is set by the Zeeman splittings
in the magnetoexciton spectrum. Note that the light-matter
coupling strength, h̄
0, is much larger and therefore not a
limiting factor. To observe the multiple polariton bands, along
with the Weyl points, will require the exciton damping to
be smaller than at least some, or ideally all, of the split-
tings. The achievability of such a regime is demonstrated
by many reflectivity and photoluminescence experiments on
zinc-blende semiconductors, in which polaritons formed from

Zeeman-split excitons are resolved [51–55]. In those works
some, but not all, of the Zeeman lines are resolved at the
relatively low field Bmax considered here. However, all of the
lines are resolved at higher fields, where the splittings become
larger. Although such fields invalidate the perturbative calcu-
lation of the exciton energies we took as input to our model,
the exciton levels and their polarizations remain. Thus the
qualitative features of the polariton spectra predicted by our
model will survive, with only quantitative changes.
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APPENDIX: POLARITON HAMILTONIAN MATRIX

As discussed in the main text, we obtain the polariton spectrum from the Heisenberg equations of motion for the exciton and
photon annihilation operators. In terms of the vector of annihilation operators

ψ = (â+, â−, x̂2, x̂3, . . . , x̂7)T

this reads

ih̄
dψ

dt
= H8ψ = h̄ωψ, (A1)

where the second equality holds in an eigenstate, in which all the annihilation operators have time dependence e−iωt . â+,−
correspond to the two circularly polarized photon modes, and x̂2...7 correspond to the six optically active exciton modes. The
wave-vector labels are suppressed for brevity. The explicit form of the matrix H8 is

H8/h̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck√
ε

0

0 ck√
ε

i 
0

4
√

3
c+(θ )e−iφ −i 
0

4
√

3
c−(θ )e−iφ ω2 − iγ2 0 0 0 0 0

−i 
0

2
√

3
sin θ −i 
0

2
√

3
sin θ 0 ω3 − iγ3 0 0 0 0

i 
0
4 c−(θ )eiφ −i 
0

4 c+(θ )eiφ 0 0 ω4 − iγ4 0 0 0

i 
0
4 c+(θ )e−iφ −i 
0

4 c−(θ )e−iφ 0 0 0 ω5 − iγ5 0 0

−i 
0

2
√

3
sin θ −i 
0

2
√

3
sin θ 0 0 0 0 ω6 − iγ6 0

i 
0

4
√

3
c−(θ )eiφ −i 
0

4
√

3
c+(θ )eiφ 0 0 0 0 0 ω7 − iγ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where the omitted parts of the first two rows are Hermitian conjugates of the corresponding parts of the first two columns,
c±(θ ) = (1 ± cos θ ), and ω2...7 = E2...7/h̄ are the exciton frequencies. We treat damping by taking the expectation value of
Eq. (A1), so that it becomes a set of coupled equations for the complex amplitudes, in which we can introduce imaginary parts
γ2...7 in the exciton frequencies as indicated. The now complex polariton frequencies ω are then computed as the eigenvalues of
H8/h̄.
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