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Role of rare events in the pinning problem
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Type II superconductors exhibit a fascinating phenomenology that is determined by the dynamical properties
of the vortex matter hosted by the material. A crucial element in this phenomenology is vortex pinning by
material defects, e.g., immobilizing vortices at small drives and thereby guaranteeing dissipation-free current
flow. Pinning models for vortices and other topological defects, such as domain walls in magnets or dislocations
in crystals, come in two standard variants: (1) weak-collective pinning, where individual weak defects are unable
to pin, while the random accumulation of many force centers within a collective pinning volume combines into
an effective pin, and (2) strong pinning, where strong defects produce large vortex displacements and bistabilities
that lead to pinning on the level of individual defects. The transition between strong and weak pinning is
quantified by the Labusch criterion κ ≈ fp/C̄ξ = 1, where fp and C̄ are the force of one defect and the effective
elasticity of the vortex lattice, respectively (ξ is the coherence length). Here, we show that a third generic type
of pinning becomes dominant when the pinning force fp enters the weak regime, the pinning by rare events.
We find that within an intermediate regime 1/2 < κ < 1, compact pairs of weak defects define strong pinning
clusters that extend the mechanism of strong pinning into the weak regime. We present a detailed analysis of
this cluster-pinning mechanism and show that its pinning force density parametrically dominates over the weak
pinning result. The present work is a first attempt to include correlations between defects into the discussion of
strong pinning.
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I. INTRODUCTION

Broken-symmetry phases, as they appear in supercon-
ducting, magnetic, or density wave systems, exhibit physical
properties on top of those originating from the underlying
material. Typically, these ordered phases develop topological
excitations (or defects) that govern the material properties,
e.g., vortices in superconductors [1] or domain walls in
magnets [2,3]. Remarkably, it is the interaction between the
material’s and the topological defects that determines the
static and dynamical properties of the latter, with pinning
immobilizing vortices in superconductors guaranteeing the
material’s dissipation-free current transport [4,5] and fixing
domain walls in the magnet determining its coercive field
[6]. On the fundamental side, pinning of topological defects
constitutes a rich branch of disordered statistical physics with
challenging phase-space and ergodicity properties, including
the phenomenon of glassiness [7,8].

Traditionally, pinning in such systems was thought of as
due to large ensembles of weak defects; the ensuing collective
pinning theory [5,9–11] has become a common framework
for the description of pinning of superconducting vortices
[7,12–14], magnetic domain walls [15–17], charge density
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waves (CDWs) [18,19] and other types of elastic media [20].
At the same time, an alternative viewpoint describing pinning
due to a low density of strong centers was proposed early
on; see Refs. [4,5]. Recently, this strong pinning scenario has
attracted increasing attention, particularly in studies of charge
density waves [19,21,22] and of magnetic flux-line lattices
[23–27]. Although some effort has been made to qualitatively
understand the crossover between the two regimes [28,29],
a quantitative model describing this transition has not been
developed so far. In this paper, we describe a regime with
a different pinning mechanism that appears at the crossover
between the two theories. We show that in a considerable part
of the weak region, pinning is dominated by defect clusters
cooperating on short distances and forming strong pinning
centers that are described with the tools of strong pinning
theory. The dominance of these strong pinning small pairs
over the weak-collective ensembles can be traced back to
the dispersive nature of the vortex elasticity. Pinning by rare
events then interpolates between the strong pinning of individ-
ual defects and the random sum of weak pinning forces due
to the many defects within the Larkin domains of collective
pinning theory, as illustrated in Fig. 1.

The central problem arising in studies of pinned systems
is the determination of the maximal driving (or critical) force
density Fc below which the system remains immobilized. This
critical force is determined by the competition between the
pinning centers characterized by their density np and individ-
ual forces fp and the elastic properties of the manifold. In
the present study, we focus on the vortex lattice [1] formed
by flux lines or vortices, each carrying a superconducting
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FIG. 1. Pinning mechanisms for flux lattices in type II supercon-
ductors in the regime of low defect density npa0ξ

2 � 1. Shown is the
critical force density Fc as a function of pinning strength κ ∝ fp/C̄ξ .
For small κ → 0, pinning arises due to the collective action of a large
number of defects within the Larkin volume Vc ∼ R2

cLc, resulting
in the collective pinning force density Fcoll ∼ (ξ/λ)2κ3 fpnp(npa0ξ

2).
For intermediate values 1/2 < κ < 1, pairs of defects in close prox-
imity form strong pinning clusters that produce the cluster pinning

force density Fclust ∼ (ξ/a0)2(κ − 1
2 )

4
fpnp(npa0ξ

2); the latter domi-
nates over the collective pinning result for a Labusch parameter κ >

1/2 + O[(a0/λ)1/2]. For κ � 1, pinning is strong, with the pinning
force density due to individual defects rising as (ξ/a0 )2(κ − 1)2 fpnp;
the latter dominates over the cluster pinning when increasing κ

beyond unity by the amount (npa0ξ
2)

1/2
.

flux quantum �0 and characterized by a line energy ε0 =
(�0/4πλ)2 (λ denotes the London penetration depth). The
effective elasticity C̄ ∼ ε0/a0, with a0 the distance between
vortices, captures the full elastic properties of the vortex lat-
tice that combines the line tension and the interaction between
vortices. The competition between pinning and elastic forces
then can be quantified by the dimensionless Labusch param-
eter [4] κ ∼ fp/ξC̄, where ξ denotes the coherence length
(or vortex diameter) in the superconductor. When κ increases
beyond unity, individual pins change from weak to strong. The
three scenarios, strong, weak-collective, and cluster pinning
as illustrated in Fig. 1 then provide different mechanisms and
scaling laws for the critical force density Fc.

The strong pinning paradigm rests on the assumption of
a low defect density np, such that κnpa0ξ

2 < 1 [28], and
strong defects, i.e., κ > 1. In this setting, material defects
act independently, resulting in a critical force density Fc ∝ np

that is linear in the density np of pinning centers. The task
of calculating Fc then simplifies considerably and even allows
for a quantitative treatment: as defects act independently, the
calculation of their contribution to the critical force density
Fc boils down to an effective single-particle problem where a
strong defect interacts with an elastic manifold. The compe-
tition between potential and elastic forces does, however, add
quite some complexity to the problem, with strong pinning
inducing plastic deformations and bistable (pinned and free)
states of the elastic manifold [5,19,21,30]. The nonsymmetric
occupation of these bistable solutions then generates a finite
pinning force, with the critical force density derived from the
maximally asymmetric occupation of metastable states given
by Fc ∼ (Strap/a2

0) np fp ∼ (κξ 2/a2
0) np fp; here Strap/a2

0 defines

the fraction of vortices falling into the defect trapping area
Strap ∼ κξ 2 with longitudinal and transverse dimensions ∼κξ

and ∼ξ [30,31].
Weak-collective pinning instead, relies on the joint ac-

tion of many defects, as individual weak pins with κ <

1 cannot hold the manifold. In the weak-collective pin-
ning scenario, distant defects act with random forces on
the manifold and their (random) addition within the Larkin
volume Vc ∼ λ3(λ/a0)/(κ2npa0ξ

2)
3

(that contains a large
number of pins) produces a critical force density Fc ∼
[(ξ 2/a2

0)np f 2
pVc]

1/2
/Vc ∼ (ξ 2/λ2)κ3(npa0ξ

2) np fp, where the
factor ξ 2/a2

0 accounts for the fraction of defects within Vc

that overlap with the vortex cores. In fact, the collective force
randomly accumulated in the Larkin volume Vc produces an
effectively strong pin [28] that satisfies the Labusch criterion
κ (Vc) = 1.

In the present paper, we study the crossover between the
strong and weak-collective pinning mechanisms near κ ∼ 1;
this study leads us to the mechanism of pinning by rare events.
Pairs of defects that reinforce one another appear with relative
probability n2

p and thus potentially compete with the force
generated in the weak pinning scenario. In identifying suitable
pairs, we find that nearby defects within the action volume
ξ 2a0 of one defect define the relevant clusters; the density
of such clusters then is given by (npa0ξ

2) np. Defects in one
cluster act cooperatively rather then competitively. For defects
with a pinning strength 1/2 < κ < 1, such neighboring pairs
jointly produce a strong defect with 2κ > 1. Applying the
strong pinning formalism to these strong cluster defects then
produces a critical force density Fc ∼ (ξ 2/a2

0)(npa0ξ
2) np fp

that is larger than the weak-collective force density by a factor
(λ/a0)2. This factor is a consequence of the dispersive nature
of the tilt elasticity c44(k): while (nondispersive) collective
pinning involves the large Larkin scale Rc > λ, cluster pinning
appears on short distances below a0 and hence involves the
line rather than the bulk elasticity. Hence, we find a transition
region in the pinning strength κ where rare events, neighbor-
ing defects forming a strong pinning cluster, determine the
critical force density Fc.

The relevance of rare events has been pointed out before
in the context of charge density wave pinning [32], where
an analysis in D > 4 dimensions demonstrated the irrelevance
of weak-collective pinning. Instead, a finite but exponentially
small (in the disorder strength) pinning force density was
found that originates from rare regions with anomalously co-
herent pinning. In our case, we deal with a D = 3-dimensional
vortex lattice, where both types of pinning, weak-collective
and rare events, contribute simultaneously, with the rare
events identified as small defect pairs.

The paper is organized as follows: in Sec. II, we dis-
cuss the formalism used in the description of vortex pinning
for the generic case of an isotropic material and briefly present
the main steps in the derivation of the pinning force density Fc

in the strong and weak pinning scenarios and for the newly
introduced framework of pinning by close pairs of defects. In
our analysis of weak and pair/cluster pinning, we assume an
uncorrelated distribution of defects; alternative scenarios are
possible where defects are spatially correlated, e.g., as a re-
sult of material growth and or special treatment. Well-known
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examples are grain boundaries in cuprate superconductors or
columnar defects due to heavy-ion irradiation; see Ref. [7] for
a detailed discussion. In Sec. III, we first introduce the general
two-defect problem for pairs of any size. In the overview
section III C, we identify the strong pinning pairs and discuss
their contribution to the pinning force density as a function
of the spatial separation between the defects constituting the
pair. We show that pairs of distant defects provide a smaller
contribution, justifying the assumption of dominant pinning
by rare clusters of close defect pairs. We proceed with a
detailed analytical derivation of our results, involving an in-
depth discussion of the effective anisotropic pinning potential
of defect pairs (Sec. III D), the effective Labusch parameter
of defect pairs in Sec. III E, and the average pinning force of
defect pairs in Sec. III F including a comparison to numerical
results. Finally, in Sec. IV, we summarize our results and
place them into context, including also some further directions
of research.

II. VORTEX LATTICE PINNING

The pinning of a vortex lattice is an example of the
(D + n)-dimensional random manifold problem; the latter
describes a D-dimensional elastic manifold with elasticity
c parametrized by ρ ∈ RD that is distorted with an n-
dimensional displacement field u(ρ) ∈ Rn due to a pinning
potential εpin(ρ, u). Assuming small distortions, the generic
Hamiltonian

H =
∫

dDρ

[
c

2

∑
i,α

(∂ρi uα )2 + εpin(ρ, u)

]
(1)

describes this type of systems. Minimizing Eq. (1) yields the
equation for the displacement field in the form

u(ρ) =
∫

dDρ′ G(ρ − ρ′){−∇uεpin[ρ′, u(ρ′)]}, (2)

with the Green’s function G(ρ); in reciprocal space, G(k) =
1/ck2. Going over to the vortex lattice, the single elastic
constant c of the generic manifold is replaced by an elastic
matrix that includes anisotropic and dispersive tilt (c44), com-
pression (c11), and shear (c66) moduli [7]. In the following, we
first discuss the relevant properties of the real-space Green’s
function G(ρ) for our vortex problem and then turn to the
peculiarities of the disorder potential εpin(ρ, u) for the weak
and strong pinning situations.

A. Green’s function

The vortex pinning problem considered here belongs to the
class D = 3, n = 2, and the complex structure of the vortex
lattice brings a number of modifications to the simple pinning
model in Eq. (1). The Green’s function for the vortex lattice
(aligned along the z axis) is in fact nondiagonal and features
anisotropic and dispersive elastic moduli; focusing the dis-
cussion to isotropic superconductors and writing k = (K, kz )
with the transverse (K) and longitudinal (kz) components of
the reciprocal vector, it assumes the form [7]

Gαβ (k) = P‖
αβ (K)

c11(k)K2+c44(k)k2
z

+ P⊥
αβ (K)

c66K2+c44(k)k2
z

(3)

with indices α, β ∈ 1, 2 and the projection operators
P‖

αβ (K) = KαKβ/K2 and P⊥
αβ (K) = δαβ − KαKβ/K2. The

compression and tilt moduli c11(k) ≈ c44(k) ≈ (B2/4π )(1 +
λ2k2)−1 exhibit strong (isotropic) dispersion due to the long-
range interaction between vortices; c66 = B�0/(8πλ)2 is the
nondispersive shear modulus (B ‖ ẑ is the magnetic field in-
duced in the bulk of the superconductor). The corresponding
real-space Green’s function is obtained via standard Fourier
transformation,

Gαβ (ρ) =
∫

K<KBZ

d2K dkz

(2π )3
Gαβ (k) eik·ρ, (4)

with the integration over K restricted to the Brillouin zone of
the vortex lattice, KBZ ≈ √

4π/a0. Of key importance will be
the on-site Green’s function Gαβ (ρ = 0) = G(0) δαβ . The in-
tegration in Eq. (4) then is dominated by transverse momenta
near the Brillouin zone boundary K ∼ KBZ, and estimating the
relevant longitudinal momentum by comparing the shear and
tilt elastic energies c66K2 ∼ c44(KBZ)k2

z , we obtain the scaling
result G(0) ∼ 1/[a0

√
c44(KBZ) c66]. The precise integration in

Eq. (4) gives the result [23,25,33]

G(0)−1 = ζ
(
a2

0/λ
)√

c44 c66, (5)

where we define c44(k = 0) ≡ c44 and with a numerical factor
ζ that depends on the chosen approximation for the elastic
moduli.

To evaluate the spatial variations of the Green’s function,
we consider a simplified model of the vortex lattice elas-
ticity: we drop the first term in Eq. (3) involving the large
compression modulus c11(k) > c66 and replace the projection
operator in the remaining term by δαβ , such that Gαβ (ρ) =
G(ρ) δαβ . Our diagonal response function G[ρ = (R, z)] is
characterized by a sharp and structured peak around the origin
and a smooth decay ∝ 1/ρ̃ at large distances ρ̃ > λ, where
ρ̃ = (R,

√
c66/c44 z) is the properly scaled distance due to

the anisotropic elasticity of the vortex lattice. Going beyond
the diagonal approximation does not change our strong pair-
pinning results obtained below. Note that the function G(ρ)
provides us with the displacement field u(ρ) = G(ρ) F due to
a δ force F δ(ρ) at the origin.

We first evaluate the Green’s function in the nondispersive
regime (large distances ρ), with the dominant contributions
to the integration in Eq. (4) originating from small mo-
menta λ2k2 � 1 such that c44(k) ≈ c44. The anisotropy of
the Green’s function in Eq. (3) generates different decays
along the directions longitudinal and transverse to the in-
duced magnetic field, i.e., for ρ = (0, z) and ρ = (R, 0). To
simplify the calculation, we remove this anisotropy by intro-
ducing the rescaled momentum vector q = (K,

√
c44/c66 kz )

with c44/c66 = 16πλ2/a2
0, which leads to

G(ρ̃) ≈ 1√
c44 c66

∫
d3q

(2π )3

eiq·ρ̃

q2
, (6)

with
√

c44 c66 = (B2/16π
√

π )(a0/λ) and the rescaled
distance ρ̃ = (R,

√
c66/c44 z). Integrating over the momenta

q yields G(ρ̃) = 1/(4π
√

c44 c66 ρ̃ ) and the reverse
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FIG. 2. Different domains analyzed in the evaluation of the
scaled Green’s function g(R, z) = G(R, z)/G(0). In the nondisper-
sive region (yellow) outside the ellipse ρ̃2 = R2 + (a2

0/16πλ2) z2 ≈
λ2 the Green’s function decays ∝ 1/ρ̃; see Eq. (7). The value of
the Green’s function on the ellipse boundary is g(ρ̃ ∼ λ) ∼ a2

0/λ
2.

Inside the ellipse (green), we find several regions characterized by
different scaling results. For a0 � z � λ2/a0, the Green’s function
reads g(R, z) ∼ (a0/z)e−√

πR2/a0z + a2
0/λ

2; starting out at g(0, z) ∼
a0/z, it decays exponentially fast along R on the scale R ∼ √

a0z
(region I, green) before saturating (ignoring slow logarithmic vari-
ations) at g ∼ a2

0/λ
2 (region II, light green). For small longitudinal

coordinates z � a0, the Green’s function evaluated on the z axis is
g(0, z) ≈ 1 − z/ah, with ah ∼ a0[ln(a0/ξ )]1/2 the healing length, and
its decay along the transverse coordinate R is governed by the same
scale ∼ah (region III, dark green). For z � a0, R � a0, the Green’s
function again saturates at the value g(R, z) ∼ a2

0/λ
2. Increasing z at

fixed R within the interval a0 < R < λ, the ratio g first increases and
goes over a maximum when z reaches the value R2/a0 (red dashes);
this feature produces a distinct ridge in the peak region of g.

transformation ρ̃ → ρ = (R, z) provides us with the result

G(R, z) ≈ 1/4π
√

c44 c66√
R2 + (

a2
0/16πλ2

)
z2

. (7)

Equation (7) describes the situation where the dispersion in
the tilt modulus can be neglected, which is the case at large
distances R2 + (a2

0/16πλ2) z2 � λ2; see the yellow region in
Fig. 2; on the inner boundary (an ellipsoid with extensions
R ∼ λ and z ∼ λ2/a0), the Green’s function assumes a con-
stant value G ∼ (a2

0/λ
2)G(0) and decays ∝ 1/ρ̃ farther out;

see Eq. (7). Indeed, in order to drop the dispersion in c44(k),
we require the q integral in (6) to be cut by a large distance
ρ̃ (rather than the Brillouin zone), q � 1/ρ̃, at values where
qλ < 1 (rendering dispersion irrelevant), implying that ρ̃ > λ.

The evaluation of the Green’s function at locations in-
side the ellipsoid requires proper integration both over small
(k � λ−1) and large (k � λ−1) momenta; the full calculation
is presented in Appendix A. For longitudinal distances z � a0

z

0 λ

0

R

g(R, z)

1

10−1

10−2

10−3

0.001

g = 0.003

10λ2

a0

FIG. 3. Color plot of the rescaled Green’s function g(x =
R, 0, z) = G(R, 0, z)/G(0) evaluated for λ = 10 a0; axes are not
to scale. The dark-green peak in the center saturates to unity

over a region ∼a2
0; at large distances ρ̃ =

√
R2 + (a2

0/16πλ2)z2 >

λ, a smooth decay ∝ 1/ρ̃ is observed (yellow). The peak
at small distances (green) exhibits a dumbbell shape and
gives way to a smoothly decaying background of elliptical
shape at large distances (yellow); the two contours with g =
0.003 and g = 0.001 illustrate this change of shape from a
dumbbell to an elliptical form. Figure 11 in Appendix A
shows the detailed contour plot near the center of the structured peak,
including the position of the ridge.

and arbitrary R, we find the interpolation formula

G(R, z) ≈ λ/
√

4π

a0z
√

c44 c66
e−√

πR2/a0z

+ 1/16π

λ
√

c44 c66

[
1−2γ + ln

16λ2

R2 + a0z/eγ
√

π

]
(8)

with γ ≈ 0.577 the Euler-Mascheroni constant. This result
provides us with various scaling regimes for the Green’s func-
tion, as illustrated in Fig. 2. First, fixing R = 0 and going away
from the origin along the longitudinal direction, the rescaled
Green’s function decays as G(0, z) ∼ (a0/z) G(0); the result
in Eq. (8) matches the nondispersive expression (7) at the
crossover z ∼ λ2/a0.

Increasing R for z < λ2/a0, the Green’s function is domi-
nated by the first term in Eq. (8) that describes a Gaussian with
height G(R = 0, z) ∼ (a0/z) G(0) and of width R ∼ √

a0z;
with decreasing z this Gaussian peak becomes higher and
narrows down to produce a dumbbell shape peak; see region I
in the schematic Fig. 2 and the neck in the contour g = 0.003
in Fig. 3. Increasing R beyond ∼√

a0z, we enter region II
in Fig. 2 where the second term in Eq. (8) dominates, inter-
polating smoothly between the peak and the nondispersive
result Eq. (7). This smooth interpolation through region II is
of order G(R, z) ∼ (a0/λ)2G(0), with logarithmic corrections
that become large at small values of z where the narrow

043266-4



ROLE OF RARE EVENTS IN THE PINNING PROBLEM PHYSICAL REVIEW RESEARCH 2, 043266 (2020)

dumbbell peak at the origin decays more rapidly. Note that
beyond the point z ∼ λ2/a0 where the decay length R ∼ √

a0z
meets the ellipsoidal shell, the Green’s function for R = 0
already assumes a value G(0, z ∼ λ2/a0) ∼ (a2

0/λ
2) G(0) and

no substantial variations with R are seen within region I.
Increasing instead the longitudinal distance z at fixed R <

λ, the Green’s function first remains flat (region II), then
steeply increases ∝ e−√

πR2/a0z upon entering the peak region
I at z ∼ ±R2/a0, and then decreases smoothly ∝ 1/z, thus
defining a maximum at z ∼ ±R2/a0. The resulting ridges
located at the edges of the Gaussian peak are another mani-
festation of the dumbbell structure of the peak in G(R, z); see
Figs. 3 and 11.

The discussion has to be further refined in the regime of
small z � a0. As z → 0, the first term in Eq. (8) diverges for
R = 0 and vanishes for R > 0, formally approaching the 2D
delta function ∝ δ2(R/a0). In reality, accounting for the q
cutoff at the Brillouin zone boundary in Eq. (4) provides us
with the finite result for the on-site Green’s function G(R =
0, z = 0). An expansion in the longitudinal direction for small
z � a0 then gives [34]

G(0, z) ≈ (1 − |z|/ah) G(0), (9)

with the healing length ah ∼ a0[ln(a0/ξ )]1/2.
The decay length in the transverse direction at small z is

affected by the single-vortex elasticity that becomes relevant
near the Brillouin zone boundary [7,35]. Replacing the tilt
modulus by c44(k) → c44(k) + (ε0/a2

0) ln(a0/ξ ) then entails
a saturation of the decay scale R ∼ √

a0z in Eq. (8) at R ∼
ah ∼ a0 [we ignore a factor ln(a0/ξ ) in the scaling estimates]
for z � a0 (region III). For R � ah, we again cross over to
region II where the Green’s function assumes the constant
value ∼a2

0/λ
2, up to slow logarithmic corrections.

The above analysis has been carried out for a simplified
diagonal expression Gαβ = G δαβ . In a further step, one may
replace the identity matrix δαβ by the full transverse projector
P⊥

αβ (K); see Eq. (3). Focusing on the nondispersive regime,
the q integral in Eq. (6) picks up an additional angular de-
pendence on the geometry of the problem. For the component
Gxx evaluated in the xz-plane, we obtain the asymptotic de-
pendence

Gxx(R, 0, z) ≈ 1

4π
√

c44 c66

√
R2 + z̃2 − z̃

R2
, (10)

where z̃ = (a0/4
√

πλ)z is the scaled longitudinal length. The
result (10) then exhibits a modified anisotropy at large dis-
tances: the simple scaling G ∝ 1/

√
R2 + z̃2 in the expression

(7) is replaced with Gxx ∝ 1/2z̃ when z̃ 
 R and Gxx ∝
1/R at large R 
 z̃. Finally, while Gxy = 0, we find that
Gyy(R, 0, z) = (z̃/

√
R2 + z̃2) Gxx. Note that Gxx + Gyy = G,

as expected.
Having analyzed the elastic component in the pinning

problem, we now turn to the discussion of the pinning po-
tential εpin(ρ, u) in Eq. (1) for the cases of strong pinning,
weak-collective pinning, and the pinning by rare clusters.
Note that the smallest transverse scale R in the context of
elasticity is the separation a0 between vortices, while sep-
arations between defects as discussed below are considered
small when R reaches the effective size ξ of defects. Hence,

small lengths R take a different meaning when talking about
the vortex lattice (elasticity) or the pinning landscape.

B. Strong pinning

We consider a lattice of flux lines or vortices aligned with
the z axis and described by the unperturbed vortex core po-
sitions Rμ ∈ R2. The pinning force acts on the vortex cores
and the pinning energy can be expressed in the form [with
ρ = (R, z)]

εpin(ρ, u) =
∑

μ

δ(2)(R − Rμ) ε
μ
pin[z, uμ(z)] (11)

with ε
μ
pin[z, uμ(z)] the random pinning potential acting on the

μth vortex line,

ε
μ
pin[z, uμ(z)] =

∫
d2R Upin(R, z) p[R − Rμ− uμ(z)]. (12)

Here Upin(R, z) denotes the disorder potential generated by
the material defects; assuming pinning due to pointlike defects
located at ri = (Ri, zi ), each with identical pinning energy ep,
the disorder potential takes the form

Upin(R, z) = −
∑

i

ep δ2(R − Ri ) δ(z − zi ). (13)

The factor p(R) in Eq. (12) describes the vortex form factor,
e.g., for a δTc-type pinning mechanism [7], it reads p(R) =
1 − |ψ (R)|2, with ψ (R) the superconducting order parameter
of the single-vortex solution to the Ginzburg-Landau equa-
tions. The simple Ansatz [36,37] |ψ (R)| = R/(R2 + 2ξ 2)1/2

provides us with Lorentzian shape for the form factor, p(R) =
1/(1 + R2/2ξ 2).

Combining Eqs. (12) and (13), we express the random
pinning potential as

ε
μ
pin[z, uμ(z)] =

∑
i

ep[Ri − Rμ − uμ(z)]δ(z − zi ), (14)

with ep(R) = −ep p(R) the pinning potential due to a single
defect; note that ep(R) is maximally negative for R = 0, i.e.,
pinning is maximal when the defect position Ri coincides with
the perturbed vortex position Rμ + uμ(z). Substituting this
result into Eqs. (2) and (11), we arrive at the equation for the
displacement of the νth vortex in the form

uν (z) ≡ u(Rν, z) (15)

=
∑
μ,i

G(Rν − Rμ, z − zi )fp[Rμ + uμ(zi ) − Ri]

with the pinning force

fp(R) = −∇Rep(R) = −ep

ξ

R/ξ

(1 + R2/2ξ 2)2
(16)

acting in the direction transverse to the field. The last relation
above applies for the Lorentzian-shaped potential.

In Eq. (15), we sum over all interactions between defects
and vortices. In practice, we assume that no more than a single
vortex can be pinned by an impurity and neglect interactions
of vortices with defects far away from the vortex core, |Rμ +
uμ(zi ) − Ri| 
 ξ . The sum over the vortex index μ is then
restricted to a single index μ(i) denoting the vortex closest to
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the impurity i. The relation (15) then allows to evaluate the
displacement uμ(i) of the vortex μ pinned to the defect i at the
position zi; this is nothing but the vortex tip displacement of
the μ(i)th vortex,

ui ≡ uμ(i)(zi) =
∑

j

G(Rμ(i) − Rμ( j), zi − z j )

× fp(Rμ( j) + u j − R j ). (17)

The set of equations (17) represents a system of N coupled
nonlinear equations for the displacements ui, with N the total
number of defects.

Within the strong pinning paradigm, we assume that de-
fects act independently, allowing for a further simplification
of Eq. (17) where the displacement ui is ascribed exclu-
sively to the action of the defect i; the summation over j in
Eq. (17) then reduces to the term j = i, i.e., we neglect the
force exerted by distant defects j �= i on vortices μ( j) that
contributes to the displacement ui via the nonlocal Green’s
function G(Rμ(i) − Rμ( j), zi − z j ). It is exactly this simplifi-
cation that will be dropped later on when considering strong
pinning by pairs. The system of equations (17) then reduces
to N independent equations

ui ≈ fp(Rμ(i) + ui − Ri )/C̄ (18)

with the effective vortex-lattice elasticity defined by C̄ =
1/G(0); see Eq. (5).

The resulting pinning force density is obtained by sum-
ming the forces from all pinning sites. Note that the solution
ui in Eq. (18) depends only on the distance of the vortex from
the pinning defect xi = Rμ(i) − Ri. The average pinning force
density is thus Fpin = np〈fp[x + u(x)]〉x, where np denotes the
density of impurities and the average is taken with respect to
the possible position vectors x; assuming a uniform distribu-
tion of relative distances x, the average then corresponds to a
simple integration over x.

It turns out that the pinning force can be expressed
as the gradient of the total pinning energy, fp[x + u(x)] =
−∇xepin(x), with epin(x) involving pinning and elastic terms,

epin(x) = ep[x + u(x)] + 1
2C̄u(x)2. (19)

If the solution u(x) to the on-site equation (18) is unique,
implying a continuous evolution with x, the average pinning
force density vanishes, as follows from a simple integration of
fp[x + u(x)] over x,

Fpin = −np

∫
d2x

a2
0

∇xepin(x) = 0. (20)

The single-defect Ansatz is thus meaningful only in the
strong pinning regime where the solution for the on-site
displacement is nonunique. In this case, different values
(branches) for the total pinning energy epin(x) describe pinned
and unpinned vortex states; see Fig. 4. Proper averaging
accounts for the occupation of these branches, which is un-
symmetric, resulting in a nonvanishing average pinning force
density. We perform this analysis for a radially symmetric
potential with a force fp(r) = r̂ fp(r).

Δe1
pin

Δe2
pin

free

ef
pin(x) ep

pin(x)

pinned

FIG. 4. Sketch of a typical large-κ energy profile epin(x) with
multiple branches involving an approximately parabolic pinned
branch and nearly flat free branches. The branch occupation (denoted
by thick blue lines) changes at the points −x− and x+ that are
associated with the pinning and depinning processes for a vortex
passing the defect. The sum of the associated energy jumps �e1

pin

and �e2
pin provide a quantitative result for the pinning force density.

The condition for the appearance of multiple solutions is
provided by the Labusch criterion [4,19,28]

κ = max f ′
p(r)

C̄
> 1 (21)

[we note that max f ′
p(r) = f ′

p(rm) with the inflection point
rm obtained from f ′′

p (rm) = 0]. Furthermore, we assume that
the vortices are driven in the positive x direction, and we
parametrize their trajectories x = (x, b) through the longi-
tudinal vortex position x and an impact parameter b in the
transverse direction (the distinction between the “longitudi-
nal” field direction along z and the “longitudinal” direction
of motion along x should be clear from the context). The
resulting pinning force averaged over positions x then points
in the negative x direction and is evaluated in two steps: first,
we perform an averaging over x at vanishing impact parameter
b = 0, and then we average over contributions from vortex
trajectories with finite impact parameters b �= 0.

For the case of a vanishing impact parameter b = 0,
Eq. (18) can be reduced to one dimension, C̄u = fp(x + u)
(we have dropped the index i). This is equivalent to minimiz-
ing the total pinning energy epin(x, u) = ep(x + u) + 1

2C̄u2

with respect to u. Provided x falls into the bistability re-
gion, |x| ∈ [x−, x+], there exist multiple solutions uf (x), up(x)
for the vortex tip displacement (denoting free and pinned
vortex states) [23,30,33]. Substituting these solutions to the
total pinning energy provides multiple branches ef,p

pin(x) ≡
epin[x, uf,p(x)]; see Fig. 4. When going from large negative
to large positive x, the branch occupation first undergoes a
transition from the free to the pinned branch at the pinning
point −x− and then another transition from the pinned to the
free branch at the depinning point x+. Averaging the pinning
force fp[x + uo(x)] over the occupied branches (as marked
by the index o ∈ {f, p}), the resulting integral over x can be
expressed as [see Eq. (20) and [23,27,33]],

〈 fp[x + uo(x)]〉x = −�e1
pin + �e2

pin

a0
, (22)

with the jumps in energy �e1
pin = [ef

pin − ep
pin]x=−x− and

�e2
pin = [ep

pin − ef
pin]x=x+ occurring at the pinning (−x−) and

depinning (x+) points, respectively.
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The result (22) remains unchanged even for a nonvanishing
impact parameter b �= 0 [23,27], provided the vortex passes
the defect within the pinning distance yp along the y direction;
for the radially symmetric case, it turns out that yp = x− and
hence pinning occurs for impacts with |b| < x−. For |b| > x−,
the pinning forces are small and multiple branches no longer
exist, implying a vanishing average over x [23,27]. Finally,
averaging the result (22) over y contributes a factor 2x−/a0

and thus

〈fp[x + u(x)]〉x = (−ex )
2x−
a0

�e1
pin + �e2

pin

a0
, (23)

with −ex denoting the unit vector pointing in the negative x
direction.

Equation (23) assumes different scaling forms for the
regime of very strong pinning κ 
 1 and for moderately
strong pinning κ − 1 � 1. In the first case, the jump sizes
are related to the pinning potential depth via �e1

pin ∼ ep and
�e2

pin ∼ κep [23,27], together providing the estimate for the
magnitude of the position-averaged pinning force 〈 fp〉x ∼
(κξ 2/a2

0) fp and a pinning force density

Fpin ∼ κξ 2

a2
0

np fp = Strap

a2
0

np fp. (24)

This result is interpreted as a pinning force fp ∼ ep/ξ [see
Eq. (16)] due to a single defect exerted within the trapping
area [28,31] Strap = 2yp(x+ + x−) ∼ κξ 2; Strap/a2

0 denotes the
fraction of area occupied by trapped vortices.

For moderately strong pinning with κ close to unity (that is
particularly relevant for the pinning by rare events), the energy
jumps are evaluated by expanding the pinning force around
the inflection point at rm, f ′′

p (rm) = 0, where f ′
p(rm) = κC̄ is

maximally positive [27–29,33],

fp(rm + δr) ≈ fp(rm) + κC̄δr + 1
6 f ′′′

p (rm)δr3. (25)

In this situation, both jumps are identical and given by the
expression [27,28] [note that f ′′′

p (rm) < 0]

�e1
pin = �e2

pin = 9C̄2

2[− f ′′′
p (rm)]

(κ − 1)2. (26)

Using the scaling formulas C̄ = f ′
p(rm)/κ ∼ fpξ [provided

κ ∼ O(1)], f ′′′
p (rm) ∼ fp/ξ

3 in Eq. (26) then gives

〈 fp〉x ∼ ξ 2

a2
0

fp(κ − 1)2. (27)

The pinning force density follows trivially,

Fpin ∼ ξ 2

a2
0

(κ − 1)2np fp, (28)

and vanishes at the Labusch point κ = 1, in accordance with
the strong pinning criterion (21).

C. Weak-collective pinning

When pinning is weak, κ < 1, individual defects fail to
produce multivalued solutions for the vortex displacement and
the mean pinning force in Eq. (20) vanishes. Pinning then

arises through the random action of defects within the collec-
tive pinning volume Vc defined as the region where the spatial
fluctuations of the vortex displacement 〈u2(ρ)〉 = 〈[u(ρ) −
u(0)]〉2 remains bounded by the pinning scale, 〈u2(ρ)〉 � ξ 2.
The displacement correlation function can be systematically
evaluated from Eq. (2) using the disorder-averaged correlator
of the pinning energy density Eq. (11) [7,11],

〈εpin(ρ, u)εpin(ρ′, u′)〉= e2
pnp

a2
0

δ3(ρ−ρ′)k(u−u′), (29)

with the correlation function k(u − u′) = ∫
d2R p(R −

u)p(R − u′) related to the vortex form factor p(R).
A qualitative estimate for the displacement correlator is

provided by summing up distortions originating from all de-
fects within a finite volume. In the vicinity of a reference
defect characterized by the pinning force fp ∼ ep/ξ , the dis-
tortion scale u0 is given by the on-site Green’s function, u0 ∼
G(0)−1 fp. Expressing the on-site displacement through the
effective vortex lattice stiffness C̄ = G(0)−1 and estimating
the Labusch parameter as κ ∼ fp/C̄ξ provides us with u0 ∼
κξ . Assuming small defect densities and hence large typical
interdefect separations, the extension of the collective pinning
volume falls into the nondispersive regime of the Green’s
function; see Eq. (7). Defects located a distance ρ̃2 = R2 +
(a2

0/16πλ2)z2 away from the reference defect contribute with
the displacement u(ρ̃) ∼ u0 G(ρ̃)/G(0) ∼ u0(a2

0/λρ̃ ). Within
the collective pinning volume Vc = R2

cLc ∼ (λ/a0)R3
c , these

displacements add up with a random sign, as the forces from
different defects are randomly directed; furthermore, only the
fraction ξ 2/a2

0 of defects that reside inside the vortex cores are
directly attacking the vortices, resulting in a total squared dis-
placement 〈u2(Rc)〉 ∼ (κξ a2

0/λRc)
2
(ξ 2/a2

0) npVc on the scale
Rc. Finally, the condition 〈u2(Rc)〉 ∼ ξ 2 provides us with the
collective pinning radius

Rc ∼ λ
1

κ2 npξ 2a0
. (30)

For small defect densities, as specified by the condition
κ2npξ

2a0 � 1, the pinning radius Rc 
 λ indeed falls into
the nondispersive regime (note that κ � 1). Finally, sum-
ming up the random force contributions due to the active
defects within the bundle volume Vc = (λ/a0)R3

c , Fcoll ∼
[ f 2

p np(ξ 2/a2
0)Vc]

1/2
/Vc, we find the collective pinning force

density

Fcoll ∼ ξ 2

λ2
κ3(npa0ξ

2)np fp. (31)

D. Pinning by rare events

The collective pinning scenario described above sums up
small competing contributions to the vortex lattice distortions
arising from typical fluctuations in the defect distribution,
involving defects that lie far away from each other within
the collective pinning volume. However, it does not account
for the presence of rare clusters, where two (or more) weak
defects act cooperatively, giving rise to an effectively strong
pinning center; the latter then is supposed to produce a dis-
tortion exceeding the scale ξ of the pinning potential. In
looking for promising candidate pairs, we consider Eqs. (7)
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and (8) that describe the decay of the Green’s function; these
imply that the vortex displacement is substantially suppressed
beyond a distance ∼a0 away from the defect. Hence, two weak
defects with 1

2 < κ < 1 can be combined into a strong pinning
object characterized by κ > 1 and producing a displacement
u of order ξ only if they are at most a longitudinal distance
z ∼ a0 apart and pinning the same vortex core, i.e., they are
separated by at most R ∼ ξ in the transverse dimension. This
consideration then provides us with the density (npa0ξ

2) np

of strong pinning pairs. With only the fraction ξ 2/a2
0 of those

clusters being located within the vortex core area and each
cluster exerting a pinning force ∼fp, we arrive at the following
estimate for the pinning force density due to defect pairs (with
1/2 < κ < 1 still close to unity),

Fclust ∼ ξ 2

a2
0

(npa0ξ
2) np fp. (32)

Assuming a magnetic field sufficiently above Hc1 such that
a0 < λ, the pinning force due to such clusters dominates over
the collective pinning contribution in Eq. (31) by a factor of
(λ/a0)2.

This factor in fact arises due to the dispersion of the tilt
elastic modulus; in order to trace its origin, we need to under-
stand the explicit dependence of the quantities contributing
to both pinning mechanisms on the elastic properties of the
vortex lattice, a dispersive tilt modulus c44(k) and nondis-
persive shear modulus c66. The collective pinning radius in
Eq. (30) can be obtained by comparing the elastic energy
Eel(Vc) ∼ c66(ξ/Rc)2Vc and the pinning energy Epin(Vc) ∼
[ f 2

p np(ξ 2/a2
0)Vc]

1/2
ξ accumulated within the pinning domain

of volume Vc = R2
cLc. Assuming a large collective pinning

volume where the dispersion of the tilt modulus is not rel-
evant, the extensions Rc and Lc in the longitudinal and the
transverse directions are related via c66(ξ/Rc)2 ∼ c44(ξ/Lc)2,
that provides us with (we write c44(k = 0) ≡ c44)

Rc ∼ c3/2
66 c1/2

44 a2
0

f 2
p np

, (33)

and the pinning force density is estimated as

Fcoll ∼ Eel(Vc)

Vc ξ
∼ ξ

a4
0

f 4
p n2

p

c2
66c44

. (34)

We replace a factor f 3
p in (34) with κ3(C̄ξ )3,

Fcoll ∼ ξ 4

a4
0

n2
p fp

κ3C̄3

c2
66c44

, (35)

and using κ ∼ 1, C̄ ∼ a0[c44(KBZ)c66]1/2, and [c44(KBZ)/
c66]1/2 ∼ 1, we obtain the desired result

Fcoll ∼ c44(KBZ)

c44

ξ 2

a2
0

(npa0ξ
2)np fp. (36)

On the other hand, our strong pinning pairs are small
and the associated elastic scales Rp and Lp in the longitu-
dinal and transverse directions are related by c66(u/Rp)2 ∼
c44(KBZ)(u/Lp)2 with the short scale elasticity c44(KBZ);
hence Lp ∼ a0

√
c44(KBZ)/c66 ∼ a0, where we have chosen

the smallest transverse scale Rp ∼ a0 of the lattice. The den-
sity of pairs then is given by np(npξ

2a0) and the resulting

pair-pinning force density is [assuming again κ ∼ O(1); cf.
Eq. (32)]

Fclust ∼ ξ 2

a2
0

(npa0ξ
2)np fp. (37)

Finally, comparing the weak-collective and cluster-pinning
force densities in Eqs. (36) and (37) provides us with

Fclust

Fcoll
∼ c44

c44(KBZ)
∼ λ2

a2
0

, (38)

which demonstrates that the cluster pinning dominates over
the weak-collective pinning contributions due to the disper-
sion in the tilt modulus with its reduction ∝ (a0/λ

2) at the
Brillouin zone boundary.

The concept of pair pinning described above can be ex-
tended to larger clusters, pushing the domain of pinning by
rare events further down to smaller values of κ . Within the
interval κ ∈ [1/n, 1/(n − 1)], n � 2 and integer, n neighbor-
ing defects are required to form a strong pinning cluster with
nκ > 1; the density of such clusters is given by (npa0ξ

2)
n−1

np,
and the resulting pinning force density becomes Fclust ∼
(ξ/a0)2(npa0ξ

2)
n−1

np fp. However, for pinning strengths κ �
1/n with n ≈ 2 + 2[ln(λ/a0)]/[ ln (1/npa0ξ

2)], the collective
pinning dominates; given a low density of defects such that
npa0ξ

2 � (a0/λ)2, this crossover lies close to n = 2, κ = 1
2 .

The idea of pinning due to rare events has been previously
touched upon in the context of charge density wave pinning
in high dimensions; see Ref. [32]. In this case, the disorder-
induced distortions accumulated over a finite-sized domain
are not sufficient to induce pinning. This can be easily seen
by considering the elastic Green’s function G(ρ) ∝ ρ2−D in D
dimensions, yielding a total displacement accumulated within
a pinning domain of size R that scales as 〈u2(R)〉 ∼ R4−D;
see Eq. (2). While for D < 4, the accumulated displacement
will eventually exceed the threshold required for the existence
of bistabilities at large domain sizes R, this is not the case
for dimensions D � 4. As noted by Fisher [32], this does
not render the weak disorder irrelevant, since, although with
exponentially small probability, one will always find rare do-
mains with anomalously coherent pinning. The manifold is
then pinned by such rare fluctuations rather than by the col-
lective action of the disorder landscape. In our D = 3 vortex
lattice, the situation is somewhat different: for D = 3, weak
pinning is still active and competes with the pinning by rare
events, which take the specific form of nearby defect pairs
making up for a strong pinning object. The latter mechanism
dominates for defect strengths 1

2 < κ < 1 and a small density
of defects. The dominance of pinning by such rare events is,
however, not an inherent property of the pinning mechanism,
but rather appears as a result of the specific, i.e., dispersive,
elastic response of the vortex lattice.

III. TWO-DEFECT PROBLEM

We have seen in Sec. II B that the strong pinning paradigm
assuming independent action of defects is meaningful only
provided the Labusch parameter (21) satisfies κ > 1; in this
case, the single-defect Ansatz gives rise to multivalued so-
lutions for the vortex displacement, which results in a finite
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averaged pinning force. Here we consider the range of pinning
strength 1

2 < κ < 1 and go a step beyond the single-defect
Ansatz by considering pairs of defects. Given N defects, of
all possible N (N − 1)/2 pairings there will be a finite set of
pairs that reach the strong pinning criterion, thus generating
multivalued solutions of vortex states; given that defects are
dilute, these strong pinning pairs will be dilute as well and
hence act independently.

A. Geometry

To find the relevant pairs, we consider two defects labeled
by i = 1, 2 at positions (Ri, zi ) and the associated vortices
Rμ(i) separated from the pins by xi = Rμ(i) − Ri; the displace-
ment fields ui at zi are solutions of the coupled equations [see
Eq. (17)],

C̄u1 = fp(x1 + u1) + gfp(x2 + u2),

C̄u2 = fp(x2 + u2) + gfp(x1 + u1).
(39)

The coupling g ∈ (0, 1] renormalizes the force at the site of
the first impurity due to the action of the second impurity (and
vice versa) and reads

g = G(Rμ(1) − Rμ(2), z1 − z2)/G(0). (40)

While the impurity positions Ri and displacements u1,2 in (39)
are continuous variables (with the small scale set by ξ ), the
vortex positions Rμ(1,2) in (40) are restricted to the vortex lat-
tice involving the scale a0. A coupling g of order unity implies
that both impurities act with their maximal pinning force on
the same vortex ; typical separations of such defects are below
ξ in the transverse and below a0 in the longitudinal direction.
Hence, large couplings g are associated with close defect pairs
lying within a volume a0ξ

2. Small couplings g � 1 refer to
the situation where the impurities are separated far away from
one another, of order several lattice constants a0, typically; in
this situation, the defects act on different vortices and their
mutual effect on the vortex pair is small.

As in Sec. II B, we consider a driving force applied in the
positive x direction and assume that the vortex lattice struc-
ture is preserved; under application of the drive, the vortices
are displaced from their initial positions R0

μ(i) by a constant
shift of magnitude X along x, i.e, Rμ(i) = R0

μ(i) + X ex. It is
convenient to reformulate the problem in terms of the mean
vortex position x (relative to the defects)

x = 1
2 (x1 + x2)

= 1
2

(
R0

μ(1) + R0
μ(2)

) − 1
2 (R1 + R2) + X ex, (41)

and the mismatch vector �,

� = x1 − x2 = R0
μ(1) − R1 − (

R0
μ(2) − R2

)
; (42)

see Fig. 5. Note that the vortex positions x1 and x2 (relative to
the defects) as well as the mismatch vector � are restricted to
the unit cell of the vortex lattice.

Pushing the vortex lattice a distance X along the x di-
rection, the mean vortex position x is parametrized as x =
[x(X ), b] with a fixed impact parameter b, while the vector
� remains constant. Since x1 = x + �/2 and x2 = x − �/2
(see Fig. 5), the vector � is interpreted as the mismatch in
the pinning by the two defects. If � = 0, the defects are

−Δ/2

x

x
b > 0
b = 0

θ

(a)

(b)

b > 0
b = 0

θ

Δ/2

b > 0
b = 0

x1

x2

−Δ/2

Δ/2

x

x

θ
ΔΔ/2x1

ep(r1)

eeff(g,Δ, r)

FIG. 5. Explanation of the mean vortex position x and the mis-
match vector � = (� cos θ,� sin θ ) for a vortex lattice driven in the
positive x direction. (a) Two defects (black points) are pinning two
vortices (gray circles) at the unperturbed relative (to the defects) po-
sitions x1 = �/2 + x and x2 = −�/2 + x. The areas shaded in gray
represent the defects’ pinning potentials ep(ri ) with ri = xi + ui,
i ∈ {1, 2}, the positions of the vortex tips displaced by ui (not shown
on the picture). The other vortices of the lattice are not affected by
any of the defects but their asymptotic positions are co-moving with
the vortex lattice. The pinning-force averaging is performed over the
trajectories x = (x, b); shown is an example of a trajectory with im-
pact parameter b > 0. Shifting the whole lattice downwards produces
the special trajectory of maximal symmetry characterized by b = 0.
In this case, both vortices are separated from the defect by the same
transverse distance |� sin θ | (along y). When passing through the
point x = 0, their position relative to the defect is given by opposite
vectors �/2 and −�/2. (b) Reduction of the two-vortex problem
to the pinning of an effective vortex at the position x = 1

2 (x1 + x2)
relative to an effective defect characterized by an anisotropic (or
nonradial) pinning potential eeff (g, �; r), with r = x + u and u =
1
2 (u1 + u2) the displacement of the effective vortex. For b = 0 the
effective vortex passes through the center of eeff (r).

perfectly synchronized: for any X , the position of both vor-
tices relative to the defects is the same, x1 = x2, the pinning
forces acting on both vortices are identical, and pinning by the
defect pair is maximal. For a finite � �= 0, the two vortices
are subject to different pinning forces, which reduces the total
pinning strength. As shown in Fig. 5(b), the geometry can
be reduced to one where an effective vortex at the position
x impacts on an effective defect with a nonradial pinning
potential eeff (g,�; r), with r = x + u and u = 1

2 (u1 + u2) the
displacement of the effective vortex.

Figure 5 also clarifies the meaning of the head-on vortex
trajectory x = [x(X ), 0] with vanishing impact parameter b
in the context of the two-defect problem. When � �= 0, it
is not possible for both trajectories x1, x2 to simultaneously
pass through the defect centers. The special value b = 0 then
describes the situation where both vortices are separated by
the same transverse distance from the defects and the vortex
trajectory passes through the special point x = 0 when the
vortices are located at opposite positions �/2, −�/2 with
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respect to the defects. Translated to the effective geometry, for
b = 0 the effective vortex passes through the center of eeff (r).

B. Averaging

Given the geometric layout of the strong pinning prob-
lem with two vortices and two defects, we have to find the
associated pinning force density Fpin by proper averaging.
This averaging involves (1) the averaging over trajectories
x = (x, b) of vortex pairs with fixed mismatch � and fixed
coupling g, (2) the averaging over all possible mismatch vec-
tors �, and (3) the averaging over couplings g in the pair
pinning Eq. (39) that involves the relative distances between
vortices Rμ(1) − Rμ(2) and the distance in elevation z1 − z2 of
defects; see Eq. (40). The final result will provide us with a
formula, Eq. (46), that expresses the pinning force density
Fpin due to defect pairs in terms of the individual pair forces
fpair[g(ρ),�] for defects separated by ρ and with a mismatch
� between them and the vortices. While this expression can be
evaluated precisely using numerical techniques, here we will
discuss analytic results that are necessarily of approximate
nature.

In the first step, we fix � and average over the vector
x = [x(X ), b] in a similar fashion as in Sec. II B. For each
b, we average the aggregated pinning force exerted by the two
defects while pushing X from large negative to large positive
values and then take the average over the impact parameter
b. This procedure provides us with the pinning force fpair of a
defect pair at fixed mismatch vector � and coupling g,

fpair (g,�)

=
〈

fp

[
x + �

2
+ u1(x)

]
+ fp

[
x − �

2
+ u2(x)

]〉
x

, (43)

where u1(x), u2(x) are the solutions to the coupled system,
Eq. (39). As before, this average involves the jumps in en-
ergy between bistable solutions for the pair-pinning problem
defined by Eq. (39).

In step 2, we average over mismatch vectors � (the nor-
malization a2

0 follows from � being restricted to the unit cell
of the vortex lattice),

〈 fpair (g,�)〉� =
∫

d2�

a2
0

fpair (g,�), (44)

where fpair = fpair · (−ex ) denotes the (negative) x component
of fpair; note that for a vortex lattice pushed along the positive
x direction, the x-averaged pinning force points in the negative
x direction. The y component of fpair vanishes after the �

averaging since it is compensated by the configuration with
� → −� and b → −b.

Third, we determine the pinning force density Fpin ex-
erted by all defect pairs within a volume V by summing
over pairs that are pinned at different separation ρ = (Rμ(1) −
Rμ(2), z1 − z2), where Rμ(1) − Rμ(2) refers to the separation
between the vortices and z1 − z2 is the distance between the
defects along the z axis. This final sum (or average) accounts
for the dependence of the pair force fpair (g,�) on the coupling
g(ρ). Approximating the sum by an integral gives (note the

factor of 1
2 to avoid double counting of the defects)

Fpin = n2
p

2V

∫
V

d2Rμ(1) d2Rμ(2) dz1 dz2

× 〈 fpair[g(Rμ(1) − Rμ(2), z1 − z2),�]〉�. (45)

Carrying out one volume integral, we arrive at the final ex-
pression

Fpin = n2
p

2

∫
V

d3ρ 〈 fpair[g(ρ),�]〉�. (46)

It remains to solve the coupled equations (39) and deter-
mine the resulting pinning force fpair (g,�) of defect pairs that
enters the final expression (46) for the pinning force density
Fpin. We first provide a qualitative overview of the results,
before presenting the detailed derivations.

C. Overview of results

Pinning is maximally strong if both defects are synchro-
nized, i.e., � = 0. In this case, u1 = u2 = u and Eq. (39)
reduces to a single equation

C̄u = (1 + g)fp(x + u), (47)

which is equivalent to the single-defect problem with renor-
malized pinning strength

κeff (g,� = 0) = κ (1 + g). (48)

The condition κeff (g, 0) > 1 for a strong pinning pair then
requires g(ρ) > g0(κ ) with

g0(κ ) = 1

κ
− 1 (49)

restricting the maximal separation between the defects; see
Fig. 6.

In order to arrive at an expression for fpair (g,� = 0), it is
convenient to express κeff in terms of g and the critical value
g0,

κeff (g, 0) = 1 + g − g0(κ )

1 + g0(κ )
. (50)

With κeff above but close to unity, we can make use of Eq. (27)
and find that

fpair (g, 0) ∼ (ξ/a0)2[κeff (g, 0) − 1]2 fp

∼ (ξ/a0)2(g − g0)2 fp (51)

scales with (g − g0)2 � 1.
Defect pairs satisfying g(ρ) > g0(κ ) can pin strongly at a

finite mismatch vector � as well. We then have to generalize
the effective pair-pinning strength κeff (g,�) to finite � and
the strong pinning condition κeff (g,�) = 1 will provide us
with the �(g) domain where pair pinning is strong. The latter
will allow us to determine the pair-pinning force fpair (g,�).
However, a quantitative evaluation of κeff (g,�) for general g
and � is quite cumbersome, given the complex geometry of
the problem.

Progress can be made by carrying out a perturbative anal-
ysis in � � ξ , which requires defect pairs to be at the verge
of strong pinning, i.e., g(ρ) − g0(κ ) � 1. Such a calculation
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κeff > 1

κeff < 1

R

z

g(R, z) = g0(κ)

κ → 1
2

κ → 1

g(R, z) < g0(κ)

g(R, z) > g0(κ)

FIG. 6. Illustration of domains with different effective pair-
pinning strengths. A reference vortex with undisturbed transverse
position Rμ = 0 is pinned by a defect at height z = 0; see center
of the figure. The surface g(R, z) = g0(κ ) (large ellipse) where the
coupling is critical determines the boundary between strong and
weak pinning by defect pairs. A defect located inside this region
combines with the central defect to form a strong pinning pair with
an effective Labusch parameter (or pinning strength) κeff > 1, while
a defect outside the region does not contribute to the strong pin-
ning by rare events. For κ → 1, the ellipse diverges to infinity as
R0, z0 ∝ (1 − κ )−1; see Eq. (64). For κ → 1

2 , the ellipse shrinks to
R ∼ ξ and z ∼ (κ − 1

2 )a0.

for the effective pinning strength κeff (g,�) is carried out in
Sec. III E; furthermore, it is shown there, that strong pinning
with κeff (g,�) > 1 is limited to small mismatches �x < �0

x
and �y < �0

y with [see Eqs. (98) and (103)]

�0
x ∼ ξ (g − g0)1/2(g + g0),

�0
y ∼ ξ (g − g0)1/2(g + g0)−1/2; (52)

see Fig. 7. An estimate for the �-averaged pair force can be
obtained by combining the maximal pair force (51) at � = 0

Δx

Δy

Δ0
y

Δ0
x

fpair(g,0)
fpair(g,Δ)

ξ

ξ

FIG. 7. Sketch of the pinning force fpair (g, �) for a pair of de-
fects on the verge of strong pair pinning, g − g0 � 1 as a function
of the mismatch vector � = (�x,�y ). The pinning force for the
pair-defect decays from its maximal value at � = 0, Eq. (51), on
the scales �0

x, �
0
y � ξ given by Eqs. (52) that are small compared to

the vortex core size ξ .

and the region in � where pinning is strong (see Fig. 7),

〈 fpair (g,�)〉� ∼ �0
x �0

y

a2
0

fpair (g, 0)

∼ ξ 4

a4
0

(g − g0)3(g + g0)1/2 fp. (53)

A more precise result for the average pair-pinning force
〈 fpair (g,�)〉� is derived in Sec. III F; see Eq. (111).

For g(ρ) − g0(κ ) ∼ O(1), the action of a defect-pair can
be analyzed only on a qualitative level. Such large coupling
g implies that defects are nearby and the mismatch vector �

can go up to the vortex-core radius ξ . The averaging of the
pair force fpair ∼ (ξ/a0)2 fp [see Eq. (27)] for κ − 1 of order
unity over � then gives

〈 fpair (g,�)〉� ∼ (ξ/a0)4 fp. (54)

Unlike in the previous case, a precise form for the depen-
dencies of the effective pinning strength κeff (g,�) and the
pair-pinning force fpair (g,�) on the mismatch vector � can-
not be derived analytically. Quantitative insights can be made
by a numerical treatment of the problem (see Sec. III F and
Appendix B). Such proper averaging over the vector � will
provide only a numerical prefactor to the result in Eq. (54),
which we do not consider here.

Remarkably, Eq. (53) as originally derived from a perturba-
tive analysis in small g(ρ) − g0(κ ) � 1 produces the correct
scaling result Eq. (54) also for g(ρ) − g0(κ ) ∼ O(1). On a
qualitative level, we can thus extend the regime of applica-
bility of the expression Eq. (53) to any coupling g within the
interval [g0, 1].

Substituting 〈 fpair (g,�)〉� from (53) into Eq. (46) yields
the pinning force density

Fpin ∼
(

ξ

a0

)2

(npξ
2a0)np fp

×
∫

g(ρ)>g0

d3ρ

a3
0

[g(ρ) − g0]3[g(ρ) + g0]1/2, (55)

with the integration over distances ρ restricted through the
condition g(ρ) > g0.

We now proceed to discuss the resulting pinning force
density Fpin due to the defect pairs. Of crucial importance in
this discussion is the behavior of the coupling g(R, z) that
is of order unity at distances R, z < a0 and rapidly decays
farther away; see Sec. II A. We distinguish three cases: (i)
the limit κ → 1

2 , where g0 → 1, implying that the coupling
g > g0 has to be close to unity. This condition demands that
relevant distances R are far below a0, from what follows that
both defects pin the same vortex. This regime, where defect
pairs act on the same vortex, extends throughout all of regime
(ii), where 1

2 < κ < 1/[1 + g(R = a0)]; in this regime, the
coupling g is never large enough to produce strong pinning
of different vortices that are always further apart than a0.
Finally, in region (iii), κ → 1 and g0 → 0, hence, even a
small coupling g is sufficient to establish a strong pinning
defect pair. In this case, distances R > a0 become relevant
and different vortices can get strongly pinned to separated
defects.

043266-11



BUCHACEK, GESHKENBEIN, AND BLATTER PHYSICAL REVIEW RESEARCH 2, 043266 (2020)

Starting with region (i), we consider pinning strengths of
individual defects close to the threshold κ = 1

2 . The expan-
sion of Eq. (49) for κ − 1

2 � 1 gives the critical coupling
g0(κ ) ≈ 1 − 4(κ − 1

2 ) close to unity, and the condition g(ρ) >

g0(κ ) requires both defects to act on the same vortex. Using
Eq. (9) further implies that g(0, z) − g0 ≈ 4(κ − 1

2 ) − z/ah >

0, hence the maximal longitudinal separation is limited by
z0 ≈ 4(κ − 1

2 )ah. Since for such range of coordinates we have
g(ρ) + g0 ∼ O(1), the pinning force density in Eq. (55) can
be cast into the form

Fpin ∼
(

ξ

a0

)2

(npξ
2a0)np fp

∫ z0

0

dz

a0

[
4

(
κ − 1

2

)
− z

ah

]3

∼
(

ξ

a0

)2(
κ − 1

2

)4

(npξ
2a0)np fp, (56)

where we have ignored the logarithmic factor in the expres-
sion for the healing length [see the definition of ah below
Eq. (9)] and replaced ah ∼ a0. The result in Eq. (56) defines
the onset of the pinning force density due to defect pairs for
κ rising above κ = 1

2 ; it starts dominating over the collective
pinning result, Eq. (31), as soon as the pinning strength sur-
passes the threshold κ = 1

2 by a small amount ∼(a0/λ)1/2.
Increasing κ through region (ii), i.e., staying below the

threshold κ = 1/[1 + g(R = a0)], the critical coupling g0(κ )
will remain finite, of order unity. Referring to Figs. 2 and
3, we note that in this situation, the separation ρ = (R, z)
between defects must remain within the peak region III, since
otherwise g rapidly decays to a value ∼a2

0/λ
2 � 1 and the

criterion g(ρ) > g0(κ ) cannot be met. The integral in Eq. (55)
is of order unity and the pinning force density assumes the
small pair or cluster value

Fpin = Fclust ∼ ξ 2

a2
0

(npξ
2a0) np fp. (57)

Finally, when κ resides within the small interval 1 −
a2

0/λ
2 � κ � 1, the critical coupling becomes small, g0 �

a2
0/λ

2, and the separation between the defects producing
strong pair-pinning extends beyond region III into regions I,
II, and even the (yellow) nondispersive region of Fig. 2. In
this case, which includes region (iii), we drop the small value
g0(κ ) against g(ρ) in Eq. (55) and rewrite the result for the
pinning force density as

Fpin ∼
(

ξ

a0

)2

(npξ
2a0)np fp

∫
g(ρ)>g0

d2R dz

a3
0

g(R, z)7/2. (58)

The integration is dominated by small distances: the small-
pair or cluster region (region III in Fig. 2) contributes the same
estimate as in Eq. (57),

FIII ∼ Fclust. (59)

A similar contribution arises from region I: we integrate over
the transverse coordinate R <

√
a0z and find the expression

FI ∼ Fclust

∫ λ2/a0

a0

dz

a0

a0z

a2
0

(
a0

z

)7/2

∼ Fclust, (60)

where the main contribution originates from the lower bound
z ∼ a0 (and hence also R ∼ a0).

The contributions of region II and the nondispersive regime
are smaller by a factor (a0/λ)3: In region II with transverse
and longitudinal extension R ∼ λ and z ∼ λ2/a0, the Green’s
function assumes a constant value with g7/2 ∼ (a0/λ)7 and the
integration gives a result

FII ∼
(

a0

λ

)3

Fclust. (61)

In dealing with the nondispersive region, we introduce the
rescaled distance ρ̃ = [R, (a0/4

√
πλ) z]; the nondispersive

region is bounded below by |ρ̃| � λ and the condition g(ρ̃) >

g0(κ ) translates to the upper boundary |ρ̃| � a2
0/λg0. The

integral over the nondispersive region then takes the form

Fnon−disp ∼
(

ξ

a0

)2

np(npξ
2a0) fp

∫ ρ̃∼a2
0/λg0

ρ̃∼λ

d3ρ̃

a3
0

λ

a0

(
a2

0

λρ̃

)7/2

∼
(a0

λ

)3
Fclust, (62)

which, given the large exponent 7/2, is determined by the
lower bound ρ̃ ∼ λ. The total pinning force density then sums
up to

Fpin ∼ FI + FIII ∼ Fclust. (63)

In the limit κ → 1, we have g0(κ ) → 0 and pairs of arbi-
trarily distant defects induce a finite pinning force. Indeed, the
maximal distance between defects [providing the upper bound
of the integral in Eq. (62)] diverges as ρ̃ ∼ a2

0/λ(1 − κ ); this
translates into maximal longitudinal and transverse separa-
tions z � z0 and R � R0 between defects with

z0 ∼ a0

1 − κ
, R0 ∼ a0

λ

a0

1 − κ
; (64)

see also Fig. 6. However, the pair-pinning force in Eq. (62)
is dominated by the lower ρ̃ bound and contributions from
distant defects are irrelevant, implying a finite integral even in
the limit κ → 1.

The origin of the power α = 7/2 can be traced back to
the maximal size of the mismatch vector � ensuring strong
pinning; see Eqs. (52). The derivation of the latter requires a
detailed quantitative understanding of the pinning mechanism
due to defect pairs at the verge of strong pinning that is
presented in Secs. III D, III E, and III F below.

D. Effective pinning potential eeff

In the following sections, we provide a systematic deriva-
tion of the results presented above. In a first step, we reduce
the two-defect equation (39) to a single equation describing
the interaction of a fictitious vortex with an effective pinning
potential; see Fig. 5(b). We have seen that for vanishing mis-
match �, the action of both defects is synchronized and the
displacement of both vortices is identical, u1 = u2. For a finite
but small mismatch �, we reformulate the problem in terms
of the mean position r of the displaced vortices relative to the
defects and the internal relative position δr (we remind that
xi = Rμ(i) − Ri is the unperturbed defect – vortex distance),

r = 1
2 (x1 + u1 + x2 + u2), (65)

δr = 1
2 (x1 + u1 − x2 − u2). (66)
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Solving perturbatively for the internal coordinate δr will al-
low us to reformulate the two-defect problem in terms of a
single equation for the mean “fictitious” vortex tip position r.
This reformulated problem then will involve an effective pin-
ning potential eeff (g,�; r) exerting the pinning force feff (r) =
−∇reeff (g,�; r) on the “fictitious” vortex.

In the above new coordinates, the two-defect problem of
Eqs. (39) takes the form

C̄(r + δr − x − �/2) = fp(r + δr) + g fp(r − δr),

C̄(r − δr − x + �/2) = fp(r − δr) + g fp(r + δr).
(67)

Expanding in δr to second order and subtracting one equation
from the other provides us with an expression for δr,[

δi j − 1 − g

C̄
∂ j fp,i(r)

]
δr j = �i

2
+ O(�3). (68)

We write the gradient of the radial pinning force
fp(r) = fp(r) r̂ (with r̂ = r/r the unit vector in radial direc-
tion) in terms of the projectors P‖

i j = r̂i r̂ j and P⊥
i j = δi j − r̂i r̂ j ,

∂ j fp,i(r) = P‖
i j f ′

p(r) + P⊥
i j

fp(r)

r
. (69)

Using δi j = P‖
i j + P⊥

i j , Eq. (68) is rewritten as

[α‖(r)P‖
i j + α⊥(r)P⊥

i j ]δr j = �i

2
+ O(�3) (70)

with

α‖(r) = 1 − 1−g

C̄
f ′

p(r), α⊥(r) = 1 − 1−g

C̄

fp(r)

r
. (71)

Making use of the relation Pα
i jP

β

jk = δikδαβ for the projectors
with α, β ∈ {‖,⊥}), Eq. (70) is easily inverted and provides
a relation between the internal coordinate δr and the mean
coordinate r of the vortex pair,

δr =
[ P‖

α‖(r)
+ P⊥

α⊥

]
�

2
= (r̂·�)r̂

2α‖(r)
+ � − (r̂·�)r̂

2α⊥(r)
. (72)

Adding the two Eqs. (67) provides us with an equation for
the mean vortex tip position,

C̄(r − x) = feff (r), (73)

reminiscent of the single-defect case but with an effective
pinning force

feff (r) = 1
2 (1 + g)[fp(r + δr) + fp(r − δr)]. (74)

Expanding to second order in δr (or �), the effective pinning
force becomes

feff,k = (1+g) fp(r)r̂k + 1
2 (1+g)∂i∂ j fp,k (r)δriδr j, (75)

where the matrix of second derivatives of the pinning force
can be expressed as ∂i∂ j fp,k (r) = γ r̂i r̂ j r̂k + μ(r̂iδ jk + r̂ jδki +
r̂kδi j ) with

γ = f ′′
p (r) − 3∂r[ fp(r)/r] and μ = ∂r[ fp(r)/r]. (76)

The sums ∂i∂ j fp,k (r)δriδr j involve the expressions

γ r̂i r̂ j r̂kδriδr j = γ r̂k
(r̂ · �)2

4α2
‖ (r)

, (77)

μδi j r̂kδriδr j = μr̂k

[
(r̂ · �)2

4α2
‖ (r)

+ �2 − (r̂ · �)2

4α⊥(r)

]
, (78)

μ(δ jk r̂i + δkir̂ j )δriδr j

= μ
r̂ · �

2α‖(r)

[
(r̂ · �)r̂k

α‖(r)
+ �k − (r̂ · �)r̂k

2α‖(r)

]
. (79)

Combining Eqs. (75)–(79) gives the effective pinning force up
to second order in the mismatch �,

feff (r) = (1 + g)

⎧⎨
⎩ fp(r)r̂ + f ′′

p (r)
(r̂ · �)2

8α2
‖ (r)

r̂

+ ∂r[ fp(r)/r]
�2 − (r̂ · �)2

8α2
⊥(r)

r̂

+ ∂r[ fp(r)/r]
r̂ · �

4α‖(r)α⊥(r)
[� − (r̂ · �)r̂]

⎫⎬
⎭, (80)

with the first three terms producing a radial force (along the
vector r̂), while the last term contributes a transverse force
[along the vector � − (r̂ · �)r̂ perpendicular to r̂].

This effective pinning force can be written as the gradient
of the effective pinning potential eeff (r), feff (r) = −∇eeff (r),
which has a much simpler form. Indeed, using ∇(r̂ · �) =
[� − (r̂ · �)r̂]/r and fixing the integration constant by re-
quiring eeff (r) → 0 as r → ∞, we find the effective pinning
potential in the form

eeff (g,�; r) = (1 + g)ep(r) − C̄(1+g)

8(1−g)

×
[

(r̂ · �)2

α‖(r)
+ �2 − (r̂ · �)2

α⊥(r)
− �2

]
. (81)

Using polar coordinates � = �(cos θ, sin θ ) and r =
r(cos ϕ, sin ϕ), the effective potential can be described in
terms of the magnitude � of the mismatch and the angle ϕ − θ

enclosed by r and �,

eeff (g,�; r) = (1 + g)ep(r) − C̄�2(1 + g)

8(1−g)

×
[

cos2(ϕ − θ )

α‖(r)
+ sin2(ϕ − θ )

α⊥(r)
− 1

]
. (82)

Inserting the expressions for α‖,⊥ [see Eq. (71)] and expand-
ing for large distances r 
 ξ [i.e., small values of f ′

p(r),
fp(r)/r], we find that

eeff (g,�; r) ≈ (1 + g)ep(r) − (1 + g)
�2

8

×
[

f ′
p(r) cos2(ϕ − θ ) + fp(r)

r
sin2(ϕ − θ )

]
,

(83)

with the anisotropic terms appearing at finite mismatch �

proportional to f ′
p(r), fp(r)/r ∝ (ξ/r)4 vanishing faster than

the isotropic term ∝ ep(r) ∝ (ξ/r)2.
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In the limit g = 1 (with defects acting on the same vortex
at the same height z), the effective potential becomes

eeff (g = 1,�; r) = 2ep(r) + 1

4
(r̂ · �)2 f ′

p(r)

+ 1

4
[�2 − (r̂ · �)2]

fp(r)

r
, (84)

which corresponds, up to order O(�2), to the simple
superposition of two mutually shifted pinning potentials,
eeff (g = 1,�; r) ≈ ep(r + �/2) + ep(r − �/2). In the limit
g = 0, the two-defect problem (67) decouples and we can
obtain independently each perturbed vortex tip position ri =
xi + ui, i ∈ {1, 2}.

E. Effective Labusch parameter κeff and strong
pinning range �0

We proceed with the calculation of the effective Labusch
parameter κeff (or pinning strength) for the anisotropic pinning
potential of Eq. (82). For a single isotropic defect, the Labusch
parameter κ is defined in Eq. (21) and involves the (maximal)
potential curvature f ′

p = −e′′
p and the effective elasticity C̄.

Going to the defect pair, the anisotropic potential (82) de-
pends on the distance and arrangement of defects through
the parameters g and � = �(cos θ, sin θ ). In the following,
we consider a vortex with an asymptotic trajectory x = (x, 0)
and determine the angular dependence (on θ ) of the effective
Labusch parameter κeff (g,�) = κeff (g,�, θ ), i.e., we con-
sider defect pairs with different angular arrangement relative
to an asymptotically fixed vortex motion. Once the function
κeff (g,�) is known, the condition κeff (g,�0) = 1 will provide
us with the maximal misfit �0(g) limiting the strong pinning
range. Trajectories with different angle of incidence and/or
finite impact parameter b will be discussed later. Finally, the
pinning strength in the vortex-defect system can be tuned by
either changing the effective elasticity C̄ or the energy scale
ep of the defect potential—in the present discussion, we will
tune κeff via changing C̄.

We start our derivation of the pinning strength κeff (g,�) by
going back to its defining equation. For an isotropic pinning
potential, this is given by (21), which in turn derives from the
self-consistency equation [4,5,28]

C̄(r − x) = fp(r). (85)

Equation (85) allows us to connect incremental changes in
the asymptotic and tip positions, δx = [1 − f ′

p(r)/C̄]δr, with
jumps in δr occurring when 1 − f ′

p(r)/C̄ = 0. Combining this
relation with the condition of its first appearance, f ′

p(r) →
max[ f ′(r)], leads to (21). Finally, the maximum force deriva-
tive max[ f ′(r)] is achieved at the inflection point rm defined
via f ′′

p |rm = 0.
In the present anisotropic situation, Eq. (85) has to be

generalized to its vectorial form (73) and incremental changes
in asymptotic and tip positions of vortices are related via

δxi = [δi j + Hi j (r)/C̄] δr j, (86)

where

Hi j (r) = ∂ri∂r j eeff (g,�; r) (87)

is the Hessian matrix associated with the pinning energy land-
scape eeff (g,�; r). The Labusch criterion again marks the first
appearance of an instability in the vortex tip position δr. We
thus have to invert Eq. (86) and find the solution δr(δx)—a
diverging result for δr then signals the presence of a jump
in the vortex tip position. Approaching this divergence from
the weak pinning domain, i.e., starting with a large C̄ and
decreasing its value, the jump appears when the determinant
in the matrix relation (86) vanishes,

det[C̄δi j + Hi j (r)] = 0. (88)

Evaluating the Hessian in cylindrical coordinates (r, ϕ), we
obtain the matrix

H = (1+g)

[− f ′
p + β �2 γ �2

γ �2 − fp(r)/r + δ �2

]
, (89)

with

β(r, θ ) = −1

8

⎧⎨
⎩

[
f ′′

p (r)

α2
‖ (r)

]′
cos2θ +

[
( fp(r)/r)′

α2
⊥(r)

]′
sin2θ

⎫⎬
⎭

and functions γ (r, θ ), δ(r, θ ) that we do not need to calculate
explicitly. Above, we have made use of the fact that the tip
trajectory stays always close to the x axis (up to corrections of
order �2), and, hence, we have set the angle ϕ in β(r, θ ) to
zero, β(r, θ ) → β(r, θ ).

The condition of vanishing determinant (88) is equiva-
lent to matching up the lower eigenvalue λ−(r, θ ) < 0 of H
with C̄,

λ−(r, θ ) + C̄ = 0; (90)

furthermore, we need to find the location where this happens
first, i.e., we have to determine the distance reff

m (θ ) that gen-
eralizes rm to the anisotropic situation. Once this program is
executed, the generalized Labusch parameter is given by

κeff (θ ) = −λ−
[
reff

m (θ ), θ
]

C̄
, (91)

which assumes unity at the weak-to-strong pinning transition
and larger values on decreasing C̄ further into the strong
pinning region.

Let us first consider the above generalized formulation of
the Labusch parameter for the isotropic situation with � =
0. Then Hi j is already diagonal, with eigenvalues λ−(r) =
− f ′

p(r) < 0 and λ+(r) = − fp(r)/r > 0 close to the inflection
point rm, where f ′′

p (rm) = 0 and the maximum in −λ− = f ′(r)
is realized. These results are fully in line with the previous
discussion of the Labusch criterion (21).

The perturbative analysis of the anisotropic situation con-
tributes corrections to order �2 that introduce an angular
dependence of the results on θ . The eigenvalues λ±(r, θ ) of
H , see (89), coincide, to order �2, with its diagonal entries,
since the off-diagonal terms only add a correction γ 2�4 to
the determinant appearing in their calculation. In particular,
the lower eigenvalue assumes the form

λ−(r, θ ) ≈ (1+g)[− f ′
p(r) + β(r, θ ) �2]. (92)

Following the definition in Eq. (91), we have to evaluate
this expression at the generalized inflection point reff

m (θ ). The
latter remains close to rm, reff

m (θ ) = rm + O(�2), and using
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this Ansatz in (92), we find that the correction to rm is irrel-
evant since f ′

p[reff
m (θ )] = f ′

p[rm + O(�2)] ≈ f ′
p(rm) + O(�4)

as f ′′
p (rm) = 0. We thus arrive at the formal expression for the

effective Labusch parameter

κeff (g,�) ≈ 1 + g

C̄
[ f ′

p(rm) − β(rm, θ )�2]. (93)

Inserting the expression for β(r, θ ) from above, we can rewrite
this result into the convenient form

κeff (g,�) ≈ −∂2
r eeff (g,�; r)

C̄

∣∣∣∣
rm

. (94)

When the vortex trajectory is oriented at a finite angle φ with
respect to the x axis, the angular dependence in (94) has to
be replaced according to θ → θ − φ. Finally, the discussion
for a finite impact parameter b can be easily reduced to the
situation where the vortex approaches the defect center from
an angle; see the discussion in Sec. III F below.

Note that, while reff
m ≈ rm does not depend on angle to

order �2, the effective pinning strength κeff (g,�, θ − φ) ex-
perienced by a vortex incident at an angle φ does. This implies
that pinning is not equally strong when approaching the same
defect from different directions. Rather, κeff may be larger (or
smaller) than unity when changing φ ∈ [0, 2π ]. As a result,
vortex trajectories crossing the same defect may undergo pin-
ning and depinning jumps in some directions but not in other.
In this context, we draw attention to another variant of a weak
to strong pinning crossover as discussed [38,39] in the context
of random landscapes (rather than individual pinning defects
or defect pairs), where Eq. (90) shows up in the discussion
of zero modes triggering avalanches in the motion of a driven
elastic line pinned in a random 2D potential landscape.

Next, we return to our vortex incident along x, substitute
the anisotropic defect-pair potential Eq. (82) into the expres-
sion (94), and use κ = f ′

p(rm)/C̄ to find the explicit result

κeff (g,�, θ ) ≈ (1 + g)κ + (1 + g)
�2

8C̄

×
{

f ′′′
p

α2
‖

cos2 θ + ∂r

[
∂r ( fp/r)

α2
⊥

]
sin2 θ

}
r=rm

.

(95)

Setting the pinning strength to its critical value, κeff (g,�) =
1, we now can determine the misfit parameter �0(g) below
which pinning is strong. We first analyze the two special cases
θ = 0 and θ = π/2, where the mismatch � is parallel and
perpendicular to the vortex trajectory, before generalizing the
result to other angles θ .

For θ = 0, we obtain

κeff (g,�, 0) ≈ (1 + g)κ + (1 + g)
�2

8C̄

f ′′′
p (rm)

[1 − κ (1−g)]2
. (96)

Since f ′′′
p (rm) < 0, the pinning strength decreases below its

maximal value (1 + g)κ as the mismatch � is increased. By
setting κeff (g,�, 0) = 1 in Eq. (96), we can obtain the maxi-
mum longitudinal mismatch �0

x below which the pinning by
the two defects is strong,

�0
x = (8C̄κ3)1/2

[− f ′′′
p (rm)]1/2

(g − g0)1/2(g + g0)

(1 + g)1/2
. (97)

Estimating f ′′′
p ∼ fp/ξ

3 and fp/C̄ξ ∼ O(1) and dropping the
factor 1 + g in the denominator, we can express the relevant g
dependence of �0

x in the parametric form

�0
x ∼ ξ (g − g0)1/2(g + g0). (98)

For θ = π/2, we first rewrite the prefactor of the sin2 θ

term in Eq. (95). Introducing the notation β(r) = fp(r)/r, we
find that

∂r (α−2
⊥ β ′) = α−3

⊥ (α⊥β ′′ − 2α′
⊥β ′)

= α−3
⊥ C̄−1[C̄β ′′ − (1 − g)ββ ′′ + 2(1 − g)(β ′)2]. (99)

Expressing the effective elasticity C̄ through κ and β, C̄ =
κ−1(βr)′r=rm

, the second factor in this expression simplifies to

κ−1(βr)′β ′′ − (1−g)ββ ′′ + 2(1−g)(β ′)2

= (κ−1 + g − 1)(βr)′β ′′ + (1 − g)[2(β ′)2 + (βr)′β ′′ − ββ ′′]

= (g + g0)(βr)′β ′′ + (1 − g)β ′(rβ )′′

= (g + g0)(βr)′β ′′ = −(2κC̄/rm)(g + g0)β ′, (100)

where in the last two steps we used (rβ )′′ = f ′′
p (rm) = 0 and

β ′′ = −(2/r)β ′. Since f ′
p(rm) > 0, we have β ′ > 0 at r = rm,

and hence the effective Labusch parameter

κeff (g,�, π/2) = (1 + g)κ

− (1 + g)
�2

4C̄

κ (g + g0)β ′(rm)/rm

[1 − β(rm)(1 − g)/C]3

(101)

again decreases with increasing �. Setting κeff (π/2) = 1 then
defines the maximal transverse mismatch for strong pinning,

�0
y = 2C̄1/2[1 − β(rm)(1 − g)/C̄]3/2

[β ′(rm)/rm]1/2

(g − g0)1/2

[(1 + g)(g + g0)]1/2
.

(102)

Using similar estimates as above, we obtain the result in
parametric form

�0
y ∼ ξ

(g − g0)1/2

(g + g0)1/2
. (103)

Finally, expressing the effective Labusch parameter in
Eq. (95) in terms of the maximum longitudinal and transverse
mismatches �0

x , �0
y in Eqs. (97) and (102) yields the angular

dependence

κeff (θ ) = 1 + κ (g − g0)

[
1 − �2 cos2 θ(

�0
x

)2 − �2 sin2 θ(
�0

y

)2

]
.

(104)

It is interesting to compare the pinning strengths for differ-
ent vortex – defect configurations where the vortex trajectories
are either parallel or perpendicular to the mismatch vector �.
Combining Eqs. (97) and (102) and using g0 = 1/κ − 1, we
obtain the following ratio for the maximal longitudinal and
transverse mismatches:

�0
y

�0
x

= 1√
2

[− f ′′′
p (rm)]1/2

[β ′(rm)/rm]1/2

[
1 − β(rm)(1 − g)/C̄

1 − κ (1 − g)

]3/2

. (105)
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FIG. 8. Comparison of numerical (see Appendix B) and ana-
lytical [see Eq. (108)] results of the effective pinning force for a
“fictitious” vortex trajectory x = [x(X ), 0] passing through the center
of the effective pinning potential. Results are shown for κ = 0.8
and a small coupling g = g0(κ ) + 2 × 10−2, producing a κeff (g, 0)
[Eq. (50)] slightly above unity. In this regime, the maximal lon-
gitudinal and transverse mismatches are related by �0

x � �0
y . The

mismatch vector � = (� cos θ, � sin θ ) encloses an angle θ with
the x direction: the four curves correspond to (from left to right; see
also the inset) θ = 0, 3π/8, 7π/16, and π/2. The pinning force is
normalized by the scale fc = (ξ/a0 ) fp.

For a maximal coupling between defects, g = 1, such that
the defect potentials directly add up [cf. Eq. (84)], the factor
[· · · ]3/2 in the above expression is unity. The ratio of the
two scales then depends on the specific form of the pinning
potential in the vicinity of the inflection point rm. For the
Lorentzian pinning potential producing the pinning force in
Eq. (16), the ratio of the two scales reads �0

y/�
0
x |g=1 = √

3/2
and pinning is always stronger, i.e., κeff (θ ) is larger along the
direction perpendicular to the mismatch vector. Furthermore,
since β(rm) < 0, the ratio �0

y/�
0
x grows as g is decreased

away from unity towards its minimum value g0 = 1/κ − 1.
When g = g0, the term 1 − κ (1 − g) in the denominator of
Eq. (105) takes the value 2(1 − κ ), hence as κ → 1, pinning
due to pairs of distant defects is always stronger in the direc-
tion perpendicular to the mismatch, regardless of the specific
form of the pinning potential.

The maximal longitudinal and transverse mismatches �0
x

and �0
y allow us to identify the region of applicability of

the perturbative approach that we have used to derive the
effective pinning potential. For a longitudinal mismatch with
θ = 0, Eq. (72) tells us that δr � �0

x/2α‖, and using the
bound α‖ � 1 − κ (1 − g) = κ (g + g0), we find that δr �
ξ (g − g0)1/2. The perturbative approach is valid provided that
δr � ξ , which is the case for g − g0 � 1. Similarly, for a
transverse mismatch, we use α⊥ ∼ O(1) and therefore δr �
�0

y/2α⊥ ∼ �0
y . The perturbation δr then again remains small

for g − g0 � 1, except for the crossover to strong pinning
where κ = 1, g0 = 0, and �0

y ∼ ξ . In this case, the validity
of the perturbative approach requires �y � ξ [see Eq. (72)];
however, a comparison with the numerical results in Fig. 8
demonstrates that the perturbative approach still provides
excellent agreement even for a mismatch �y comparable
with ξ .

F. Average pinning force

In this section, we use the findings on the effective Labusch
parameter to calculate the average pinning force due to two
defects coupled by g. Restricting first to vortex trajectories
x = [x(X ), 0] passing through the center of the effective
pinning potential, we evaluate the x-averaged pinning force
for the longitudinal component (along the x direction) [see
Eq. (22)],

fpair (g,�, θ, b = 0)

= (−ex ) · 〈fp[r(x) + δr(x)] + fp[r(x) − δr(x)]〉x

= 2

1 + g
〈− feff,x[r(x)]〉x

= 2

1 + g

�eeff,1
pin + �eeff,2

pin

a0
, (106)

where �eeff,1
pin and �eeff,2

pin denote the jumps in the effec-
tive pinning potential defined as in Eq. (19), i.e., eeff

pin(x) =
eeff [r(x)] + 1

2C̄[x − r(x)]2.
Provided that κeff (g,�, θ ) > 1, the jumps �eeff,i

pin , i ∈ {1, 2}
in the pinning energy are given by Eq. (26) with the re-
placements f ′′′

p (rm) → f ′′′
eff (rm) and κ → κeff ; otherwise, for

κeff (g,�, θ ) < 1, the effective pinning force vanishes after the
averaging. This gives the two-defect pinning force

fpair (g,�, θ, 0) = 18C̄2

(1 + g) a0[− f ′′′
eff (rm)]

× {max[0, κeff (θ ) − 1]}2. (107)

Using Eq. (104) for the effective Labusch parameter and not-
ing that f ′′′

eff (rm) = (1 + g) f ′′′
p (rm) + O(�2), we obtain

fpair (g,�, θ, 0) ≈ 18(κC̄)2

(1 + g)2a0[− f ′′′
p (rm)]

(g − g0)2

×
{

max

[
0, 1 − �2 cos2 θ(

�0
x

)2 − �2 sin2 θ(
�0

y

)2

]}2

.

(108)

The pinning force thus decays with � from its maximal value
∼ fp(g − g0)2 at � = 0 to zero as the mismatch increases to
�0

x and �0
y along and perpendicular to the vortex trajectory,

respectively; see Fig. 7. In Fig. 8, we compare this analytic
formula to the numerical results (see Sec. B) in the regime
g − g0 � 1 for different angles θ . Note that, while the (per-
turbative) analytic results assume a small mismatch � � ξ ,
they remain applicable for angles close to θ = π/2, where �

becomes comparable to ξ .
The geometric complexity arising at finite impact b (see

Fig. 9) produces interesting new features, e.g., asymmetric
pinning and depinning jumps or even trajectories with only
one of the pinning/depinning jumps realized. In the generic
situation, the vortex tip associated with the trajectory x =
[x(X ), b] undergoes a jump every time the position r hits
the distance rm + O(�2) from the center of the effective
pinning potential. At the instance of the jump, the vortex
asymptotic position is x = r − feff (r)/C̄ [see Eq. (73)], i.e.,
at a distance xp = rm − (1 + g) fp(rm)/C̄ + O(�2) from the
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FIG. 9. Pinning and depinning of a “fictitious” vortex moving
along the trajectory x = (x, b) with a nonvanishing impact parameter
b > 0 across a defect characterized by an effective pinning potential
eeff (g, �, r) (shaded grey). The vortex is pinned and depinned from
the defect at the intersection points of the trajectory with the circle
(up to corrections of order �2) of radius xp. The angular distance of
the vortex from the mismatch vector � = (� cos θ, � sin θ ) at these
points is θ + φ and θ − φ, with φ = arcsin(b/xp).

center of the pinning potential. Pinning and depinning then
occur at the asymptotic positions x = (±xp cos φ, xp sin φ),
with φ ≈ arcsin(b/xp). Note that for the single-defect pin-
ning in Fig. 4 corresponding to a large κ , the energy jumps
associated with pinning and depinning appear at different
asymptotic distances x−, x+ from the defect center; for
marginally strong effective pinning with κeff (g,�) − 1 � 1,
we can neglect the difference x+ − x− ∼ ξ (κeff − 1)3/2 (see
Refs. [27,33]) and set x− ≈ x+ ≈ xp.

The angles enclosed between x and � at the pinning
and depinning events are θp = θ + φ and θdp = θ − φ; see
Fig. 9. The jump size at the pinning transition does not
depend on the direction of the vortex motion and thus
can be evaluated from the vortex trajectory passing directly
through the center of the effective pinning potential but
at an angle θ + φ, i.e., �e1

eff (g,�, θ, b) = �e1
eff (g,�, θ +

φ, 0). Similarly, �e2
eff (g,�, θ, b) = �e2

eff (g,�, θ − φ, 0) at
depinning. Hence, the pinning and depinning jumps as-
sume different values at finite impact b. The pinning force
is then expressed as fpair (g,�, θ, b) = 1

2 [�e1
eff (g,�, θ +

φ, 0) + �e2
eff (g,�, θ − φ, 0)]/a0. Furthermore, since for

marginally strong pinning and b = 0 trajectories, the pinning
and depinning jumps in energy are equally sized, we express
the resulting pinning force in terms of the forces exerted on
the b = 0 trajectories,

fpair (g,�, θ, b) = 1
2 [ fpair (g,�, θ + φ, 0)

+ fpair (g,�, θ − φ, 0)]. (109)

With the pinning and depinning jumps no longer equal, we
may encounter situations where one of the jumps is absent.
This is the case for misfits � with θ �= 0 and b �= 0; e.g., when
κeff (g,�, θ + φ) > 1 but κeff (g,�, θ − φ) < 1, the vortex
undergoes a pinning jump in energy when its asymptotic
trajectory passes the circle of radius xp for the first time but
does not undergo any depinning jump when the asymptotic
trajectory crosses the circle a second time; see Fig. 10(b)
(note that the corresponding trajectory with opposite impact
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FIG. 10. Examples of vortex trajectories for an effective pinning
potential due to two weak defects with κ = 0.8, g = g0(κ ) + 2. 10−2,
� = 0.1 ξ . (a) Longitudinal mismatch vector � = (�, 0) (red arrow,
not to scale). For this setting, κeff (g, �, 0) = 0.994 at b = 0 and the
vortex does not undergo any jumps in energy when the asymptotic
position crosses the circle of radius xp (dashed purple line). The
plot on the right shows the vortex tip position r which remains
continuous. A vortex passing at the transverse distance b = 2.5 ξ ex-
periences an effective Labusch parameter κeff (g, �, φ) = 1.011 [with
φ = arcsin(b/xp)], and the vortex undergoes pinning and depinning
jumps (green dots) when its asymptotic position crosses the circle of
radius xp. The blue arcs denote the sections on the circle of radius
xp where the effective pinning is strong; for g − g0 � 1 and κ ap-
proaching unity, pinning is stronger along the direction perpendicular
to the mismatch vector � (i.e., for φ = π/2) than along the direction
parallel to the mismatch; see the discussion below Eq. (104). The
tip position (right plot) jumps at the pinning and depinning events,
as illustrated by the two pairs of green dots. (b) Mismatch vector
enclosing an angle θ = π/4 with the vortex trajectory. At this angle,
pinning is strong, κeff (g,�, θ ) = 1.005, and a vortex with vanish-
ing impact parameter b = 0 undergoes both pinning and depinning
jumps. However, for the vortex passing at b = 2.5 ξ , the correspond-
ing effective Labusch parameters read κeff (g, �, θ + φ) = 1.014 and
κeff (g, �, θ − φ) = 0.996 and the vortex undergoes a jump only
upon pinning. The right plot shows the corresponding tip trajectories
with its jumps.

parameter y = −b will undergo a depinning jump but will not
jump upon pinning).

The pinning force averaging is done through integration
over the mismatch � and the impact parameter b,

〈 fpair (g,�)〉�

=
∫ xp

−xp

db

a0

∫ π

−π

dθ

∫
� d�

a2
0

fpair (g,�, θ, b)
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= xp

2a0

∫ π/2

−π/2
d sin φ

∫ π

−π

dθ

∫
� d�

a2
0

[ fpair (g,�, θ + φ, 0)

+ fpair (g,�, θ − φ, 0)]

= 2xp

a0

∫ π

−π

dθ

∫
� d�

a2
0

fpair (g,�, θ, 0). (110)

The integration over � is restricted to the strong pinning
region, i.e., κeff (θ ) > 1. Rewriting the integration in terms of
� = (�x,�y), we compute the factor∫ �0

x

0

d�x

a0

∫ �0
y

0

d�y

a0

[
1 − (�x )2

(�0
x )2

− (�y)2

(�0
y )2

]2

= π

3

�0
x�

0
y

a2
0

and obtain the averaged pinning force

〈 fpair (g,�)〉� = 2xp

a2
0

6π (κC̄)2

[− f ′′′
p (rm)]

(g − g0)2

(1 + g)4

�0
x�

0
y

a2
0

. (111)

Keeping systematically the corrections in the jump position
rm + O(�2) is equivalent to replacing b = xp sin φ + O(�2)
in the integration leading to the Eq. (110). Carrying out the in-
tegration of the additional O(�2) term would contribute with
a quartic correction ∝ �4 to Eq. (111) which we ignore here.
With xp ∼ ξ and the results for the maximum mismatches �0

x ,
�0

y in Eqs. (98) and (103), we obtain a parametric estimate for
the pinning force originating from defect pairs in the form

〈 fpair (g,�)〉� ∼ ξ 4

a4
0

(g − g0)3(g + g0)1/2 fp, (112)

with the following interpretation: the defect pair induces the
pinning force ∼ fp rescaled by the factor (g − g0)2 that ac-
counts for the distance between defects, a factor ξ 2/a2

0 ∼
Strap/a2

0 that represents the areal fraction where vortices
are trapped, and the additional factor ξ 2/a2

0 together with
the distance-dependent factor (g − g0)(g + g0)1/2 that derive
from the constraint on the mismatch �. The result (112) is the
basis for the evaluation of the pinning force due to defect pairs
at different separations in Sec. III C.

IV. SUMMARY AND CONCLUSION

We have extended the strong pinning paradigm into the
weak pinning domain by accounting for correlations between
defects. The most relevant correlations arise from defect
pairs—they reduce the critical Labusch parameter (or pinning
strength) κ ∼ −e′′

p/C̄ for strong pinning from its standard
value κc = 1 to κc,pairs = 1/2. When decreasing the individual
defect’s pinning strength κ towards the critical value κc, the
strong pinning force density vanishes as Fpin ∝ np(κ − 1)2

and strong pair-pinning takes over. Upon a further decrease
of κ , the pair-induced strong pinning force density Fpin scales
with n2

p and vanishes at κ = 1/2 according to Fpin ∝ n2
p(κ −

1/2)4. The contributions to Fpin from higher-order correlations
between n defects scale as (np)n and quickly become irrel-
evant, with the dominant contribution to the pinning force
density being taken over by weak-collective pinning with
Fpin ∝ n2

pκ
3 as κ drops below 1/2.

The origin of the pair-induced strong pinning condition
κ > 1/2 is easily understood—for two defects that overlap
in position, their joint pinning strength doubles and they

reach the strong pinning criterion 2κ > 1. The substantial
enhancement in pinning strength remains in place for small
defect pairs that are separated at most by ∼ξ and ∼a0 in
transverse and longitudinal (field) directions and act on the
same vortex. However, this is not the full story: with κ > 1/2
approaching unity from below, pairs separated by transverse
distances beyond a0 can constitute a strong pinning pair as
well. These pairs, rather than pinning the same vortex, will pin
different vortices. The interaction between these two defect –
vortex entities is transmitted by the elastic properties of the
vortex lattice, specifically, the static nonlocal Green’s function
Gαβ (R, z), and determines the effective pinning strength of
the extended pair which is smaller than the one of a small
pair.

The Green’s function Gαβ (R, z) describes the displacement
field u(R, z) for a δ force acting at the origin and hence the
distortion at the site of a second defect that is positioned a
distance (R, z) away from the first defect. In our analysis, we
have simplified the expression for the Green’s function and
considered its diagonal, transverse part G(R, z); the result,
shown in Fig. 3, exhibits a sharp asymmetric and structured
peak in the shape of a dumbbell. This complex real-space
structure has not been considered before and is expected
to be present in the full expression for the response matrix
Gαβ (R, z) as well.

For our extended pairs, the effective Labusch parameter or
pinning strength κeff , rather than simply doubling κ , scales
as κeff ∼ (1 + g) κ , with g = g(R, z) = G(R, z)/G(0, 0) < 1;
hence, the partner defect contributes to the strong pinning with
a reduced weight. Extended pairs within a distance determined
by the condition g(R, z) > 1/κ − 1 ≡ g0(κ ) thus potentially
contribute to strong pair-pinning; geometric considerations re-
fine this analysis and produce an effective Labusch parameter
κeff (g,�) that depends on distance (through g) and on the
misfit � between the defect pair and the vortex lattice, with
a finite � further reducing the effective pinning strength κeff ;
see Eq. (104).

The effective Labusch parameter κeff (g,�) exhibits a non-
trivial angular dependence encoded in the direction of �.
While for isotropic single-defect pinning, strong pinning
jumps appear near the inflection points arranged in a cir-
cle of radius rm, for an anisotropic potential as in Eq. (83),
strong pinning jumps appear on arcs that grow with decreasing
elasticity C̄ or increasing pinning strength ep as illustrated
in Fig. 10. The direction away from the defect center where
these arcs make their first appearance depends, besides the
direction of �, on the detailed shape of the pinning potential;
see Eq. (105).

With contributions to strong pair-pinning arising both from
small pairs pinning one vortex and extended pairs pinning
two separated (and relatively misfitted) vortices, the question
arises about their relative total weight. It turns out, that the
extended-pair force decreases with the scaled distance ρ̃ =
[R2 + (a2

0/16πλ2)z2]
1/2

as ∝ ρ̃−7/2, that makes the small-
pair contribution (originating from pairs in a small volume
ξ 2a0) dominate the strong pair-pinning force density Fclust in
Eq. (32).

As follows from the above discussion, the elastic properties
of the vortex lattice take an important role in the calculation
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of the strong pair-pinning force. Furthermore, they also define
the dominance of strong pair-pinning over weak-collective
pinning that is reduced by the factor (a0/λ)2. This reduction
is a consequence of the nonlocal interaction between vortices
producing a dispersion in c44(k). While collective pinning
in the nondispersive regime (with a Larkin length Rc > λ)
involves a “stiff” lattice with c44(k = 0) = B2/4π , the small
defect pairs involve the soft lattice with c44(k) = B2/4πλ2k2;
with the relevant k ∼ KBZ ≈ √

4π/a0, the lattice is softer by
a factor ∼a2

0/λ
2 and hence pair pinning is stronger. The large

factor λ2/a2
0 also guarantees, that strong pair-pinning is larger

than weak-collective pinning deep in the dispersive regime
where the lattice becomes softer.

It is interesting to compare the situation described above
with the one studied by Fisher [32]: Focusing on weak defects
and large dimensions D > 4, it turns out that weak-collective
pinning is ineffective due to the fast spatial relaxation of the
manifold’s distortions. Pinning then is exclusively due to rare
configurations appearing in the random pinning landscape.
The possible existence of a pinning threshold in higher di-
mensions and for different types of short- and long-range
elasticities was recently discussed in Ref. [39]. In our analysis,
we start from the opposite limit, strong defects that pin the
elastic manifold (here, vortices) individually. Upon decreasing
the pinning strength κ below unity, we loose the strong pin-
ning of individual defects and would expect weak-collective
pinning to take over in D = 3, where distortions decay slowly,
proportional to the inverse distance. Instead, due to the nonlo-
cal interaction between vortices producing a dispersive elastic
response, we find that specific rare events, small defect pairs,
take over and produce the leading pinning mechanism. In a
nondispersive elastic medium, the stiffening at large scales is
absent and the two types of pinning, rare and collective, come
with equal (parametric) weight.

While weak-collective pinning arises from typical fluctua-
tions in the defect distribution, strong pair or cluster pinning
arises from rare fluctuations. In reality, both types of fluc-
tuations coexist and hence simultaneously contribute to the
pinning force density Fpin. Similar to the addition of resis-
tivities arising from different scattering mechanisms in the
Matthiessen rule describing metallic transport, the pinning-
force densities from different pinning mechanisms should
be added up to the total pinning force Fpin ≈ Fcoll + Fclust

when describing the transport in a superconductor. How-
ever, given the inductive response of a superconductor, this
corresponds to an addition of (critical) currents rather than
voltages. Microscopically, comparing the distance between
small pairs, dpairs ∼ [np(npa0ξ

2)]
−1/3

, with the size of the
collective pinning volume Vc ∼ LcR2

c ∼ (λ/a0)R3
c , one notes

that Vc contains many pairs. Hence, when dragging a vortex
system slowly over the pinning landscape, one should ob-
serve a complex stick-slip type motion where small slips of
individual vortices depinning from defect pairs combine with
large slips of collectively pinned vortex bundles. It would be
interesting to observe the motion of such a pinned vortex
system in a numerical simulation. Another future topic of
interest is the further investigation of the real-space structure
of the Green’s function Gαβ (R, z), both theoretically as well
as experimentally. In particular, it would be interesting to

come up with a proposal for an experiment that is sensitive to
the nontrivial dumbbell structure of the peak in the response
function.
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APPENDIX A: GREEN’S FUNCTION IN THE
DISPERSIVE REGIME

We discuss the derivation of the interpolation formula (8)
for the diagonal Green’s function in the dispersive region
(short distances). We consider the simplified model of the
vortex lattice elasticity where we drop the longitudianal part
in Eq. (3) containing the large compression modulus c11(k) >

c66; furthermore, we replace the transverse projector by unity
and study the diagonal Green’s function Gαβ (ρ) = G(ρ) δαβ .
The integration in reciprocal space then reads

G(R, z) =
∫

K<KBZ

d2K dkz

(2π )3

eiK·Reikzz

c66K2 + c44(k)k2
z

(A1)

with the nondispersive shear modulus c66, the dispersive
tilt modulus c44(k) ≈ c44(k = 0)/(1 + λ2k2), and c66/c44 =
a2

0/16πλ2 (we write c44(k = 0) ≡ c44). We first perform the
complex integration over kz (extended to infinity) with a
pole at

kz = iK
(1 + λ2K2)1/2

(λ2K2 + c44/c66)1/2
. (A2)

We drop the term λ2K2 in the denominator that provides a nu-
merical correction to the large ratio c44/c66 when K < KBZ ≈√

4π/a0 is residing within the Brillouin zone. The Green’s
function then takes the form

G(R, z) ≈ λ

2
√

c44 c66

∫
d2K

(2π )2
eiK·R (1 + λ2K2)1/2

λK

× exp

[
− a0z

4
√

πλ
K (1 + λ2K2)1/2

]
. (A3)

We assume a small distance ρ = (R, z) within the ellipse R2 +
(a2

0/16πλ2)z2 � λ2 [see Eq. (7) for the opposite limit]. We
first focus on the contribution from λK 
 1 and approximate
(1 + λ2K2)1/2 → λK in Eq. (A3), that provides us with the
dispersive approximation

Gd(R, z) = λ

2
√

c44 c66

∫
d2K

(2π )2
eiK·R exp

[
−a0zK2

4
√

π

]
(A4)

= 1/
√

4π

a0
√

c44 c66

λ

z
exp

[
−

√
πR2

a0z

]
. (A5)

Next, we account for the difference between the full expres-
sion (A3) and the dispersive approximation (A4); we split this
difference into two terms δG< and δG> arising from small
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(K < K0) and large (K > K0) momenta,

δG< = λ

2
√

c44 c66

∫
K<K0

d2K
(2π )2

eiK·R

λK

×
{

(1 + λ2K2)1/2 exp

[
− a0z

4
√

πλ
K (1 + λ2K2)1/2

]

− λK exp

[
−a0zK2

4
√

π

]}
, (A6)

and a corresponding expression for δG> covering the remain-
ing region K0 < K < KBZ. The scale K0 is chosen such as to
satisfy λ−1 � K0 � R−1 as well as λ−1 � K0 � (a0z)−1/2,
consistent with the assumption that R � λ and z � λ2/a0.

In carrying out the integration over small momenta K <

K0, we note that the arguments in the exponentials of Eq. (A6)
remain small since KR < K0R � 1 and K0 � (a0z)−1/2; per-
forming the integration over angles then provides us with

δG< = 1/4π√
c44 c66

∫ K0

0
dK [(1 + λ2K2)1/2 − λK]

≈ 1/16π

λ
√

c44 c66
[1 + 2 ln(2K0λ)], (A7)

where we have used that λK0 
 1 in the last relation.
For large momenta K0 < K < KBZ, we rewrite the integral

in the form

δG> = λ

2
√

c44 c66

∫
K0<K<KBZ

d2K
(2π )2

eiK·R

λK
e−a0zK2/4

√
π

×
{√

1 + λ2K2e
− a0z

4
√

πλ2 [λK(
√

1+λ2K2−λK)] − λK

}
.

(A8)

Since Kλ > K0λ 
 1, we can expand the square roots; fur-
thermore the K integration is cut off by the exponentials,
either via K ∼ (a0z)−1/2 < KBZ or by K ∼ R−1 < KBZ since
R, z > a0, hence the BZ cutoff at KBZ can be replaced by
infinity,

δG> ≈ 1

4λ
√

c44 c66

∫
K>K0

d2K
(2π )2

eiK·R

K2
e−a0zK2/4

√
π . (A9)

In the evaluation along the longitudinal direction, we ex-
pand the integrand in the small parameter (a0z)1/2K0 � 1 and
obtain the result

δG>(R = 0, z) ≈ 1/8π

λ
√

c44 c66

[
−γ /2 + ln

2π1/4

K0
√

a0z

]
(A10)

with the Euler-Mascheroni constant γ . Along the transverse
direction, we expand in K0R � 1 and find that

δG>(R, z = 0) ≈ 1/8π

λ
√

c44 c66

[
−γ + ln

2

K0R

]
. (A11)

We combine these results to arrive at the interpolation formula
for a general distance ρ = (R, z) within the ellipse

δG>(R, z) ≈ 1/16π

λ
√

c44 c66

[
−2γ + ln

4/K2
0

R2 + a0z/eγ
√

π

]
.

(A12)

0 λ−λ

0

R

z

−λ2

a0

λ2

a0

0 0.01

z

g = 0.0092

g(λ
2 , 0, z)

FIG. 11. Left: contour plot of the rescaled Green’s function
g(x = R, 0, z) = G(R, 0, z)/G(0) evaluated for λ = 10 a0 illustrating
the dumbbell structure of the central peak; axes are not to scale.
The ridge marking the maximum of g when increasing z at fixed
R < λ has a parabolic shape (red lines). Subsequent contours are
separated by a factor 21/4. Right: Interpreting the Green’s function G
as providing the displacement field due to a point force in the origin,
the ratio g(x = λ/2, 0, z) follows the profile of a vortex placed at a
distance λ/2 away from the force center. The ridges in g manifest as
maxima in the vortex displacement away from z = 0.

Finally, summing up the contributions Gd + δG< + δG> pro-
vides us with the result in Eq. (8) (note that the momentum K0

drops out from the final expression); it provides us with the
peak in G(R, z) at small distances with its dumbbell structure
that is illustrated in Fig. 11.

APPENDIX B: NUMERICAL EVALUATION OF THE
PINNING FORCE

Our numerical evaluation of the pinning force fpair

(g,�, θ, b) (see Sec. III F) makes use of the numerical so-
lution for the vortex displacements u1, u2 in the two-defect
problem Eq. (39). We first reformulate the latter in terms of a
minimization problem for the total energy epair

pin of the two de-
fect system described by the mean asymptotic vortex position
x, the fixed mismatch � and vortex-tip displacements u1, u2,

epair
pin (x,�; u1, u2) ≡ ep(x + �/2 + u1) + ep(x − �/2 + u2)

+ C̄

2(1−g2)

[
u2

1 + u2
2 − 2gu1 · u2

]
,

(B1)

such that setting ∂epair
pin /∂u1,2 = 0 reproduces Eq. (39).

By rewriting u2
1 + u2

2 − 2gu1 · u2 = (u1 − u2)2 + 2(1 − g)
u1 · u2, we note that in the limit g = 1 (defects pinning
the same vortex at the same height z, such that u1 = u2), the
elastic term in Eq. (B1) remains regular and reduces to C̄u2

1/2;
Eq. (B1) then describes the interaction of a single vortex with
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x = x 1

x = x 3

x = x 2

λmin > 0

λmin < 0

(u1,u2)

epair
pin

Δepair,j
pin

FIG. 12. Minimization of the pinning energy (B1). Given the
position x = (x, b) of the vortex system with respect to the defects,
the pinning energy epair

pin is a function of the four-dimensional vector
(u1, u2). The pictures sketch the qualitative changes in the shape of
epair

pin when increasing the mean vortex position through x1 < x2 < x3.
The neighborhood of each local minimum is characterized by pos-
itive eigenvalues λ of the matrix of second derivatives of epair

pin . The
smallest eigenvalue going negative indicates the disappearance of a
local minimum and triggers a jump in the location of the occupied
minimum.

a defect potential given by the superposition of two pinning
potentials shifted by the mismatch vector � from each other.

We evaluate the critical force for a quasistatic vortex lattice
pushed to the right: For every asymptotic vortex trajectory x =
(x, b) with fixed impact parameter b, we increase the position
x in small steps, and minimize the pinning energy at each step
using the solution from the previous position as the starting
point. Starting far to the left from both defects, the contribu-
tion of the pinning energies ep(x ± �/2 + u1,2) is negligible
and the unique solution describes a system of unperturbed
vortices with u1,2 ≈ 0. On approaching the defects, the vor-
tices deform and multiple minima develop (see Fig. 12); a
small stepwise increase of x ensures that the occupied min-
imum develops continuously (see below for details on the
minimization algorithm). At the point where the minimum
disappears, the solution changes abruptly, with the associated
jump in the pinning energy contributing to the average pinning
force.

Depending on the specific setting of the problem, the sys-
tem undergoes a number of jumps in energy with increasing x
(see Fig. 10), where the fictitious vortex undergoes zero, one,
or two jumps depending on the angle θ and impact parameter
b. Going beyond the transition to strong pinning with κ > 1,
the two-vortex system may undergo up to four jumps asso-
ciated with the pinning and depinning events of two vortices
hitting the two strong pinning defects. The numerical proce-
dure then provides a convenient way to evaluate the average
pinning force for the case with an arbitrary number of jumps
in energy (even though only the cases with zero, one, or two
jumps have been discussed in the analytic part of this paper).

As for the single-defect case, it turns out that the pinning
force exerted on the vortices can be expressed as the gradient
of the total pinning energy. Indeed, taking the gradient of
epair

pin (x) ≡ epair
pin [x,�; u1(x), u2(x)] defined through Eq. (B1),

we find

∇xepair
pin (x) = ∂epair

pin

∂x
+

∑
i=1,2

∂epair
pin

∂ui

∂ui

∂x
= ∂epair

pin

∂x
, (B2)

where the partial derivative ∂epair
pin /∂x is taken at fixed u1, u2.

The term in Eq. (B2) involving the u derivatives vanishes
since ∂epair

pin /∂u1,2 = 0 at the minimum. Taking the partial x

derivative in Eq. (B1) provides us with −∇xepair
pin = fp[x +

�/2 + u1(x)] + fp[x − �/2 + u2(x)], which is precisely the
pinning force exerted by the two defects on the distorted
vortices. The x-averaged pinning force along the trajectory
x = (x, b) is then written as

fpair (g,�, b) =
∫

dx

a0
ex ·

[ − ∇xepair
pin

] = −
∑

j

�epair, j
pin

a0
,

(B3)

with �epair, j
pin = limε→0 [epair

pin (x j − ε, b) − epair
pin (x j + ε, b)]

quantifying the energy jump at the position x j . Integrating
∂epair

pin /∂y would in general give a nonvanishing contribution
to the pinning force in the y direction; it is, however,
compensated by the configuration with � → −� and
b → −b after averaging.

The result of this numerical evaluation is compared with
the analytic result (108) in Fig. 8 for the case of marginally
strong pair pinning g − g0 � 1 and shows a very good agree-
ment with the analytic result even at large values of the
mismatch � of order ξ at angles θ close to π/2, in which case
the theoretical estimates made in Sec. III E do not guarantee
the validity of the perturbative approach. For a Lorentzian
shape potential and parameters used in Fig. 8 with θ = π/2,
we find that the scaling factor in Eq. (102) assumes a value
[(g − g0)/(1 + g)(g + g0)]1/2 ≈ 0.17 and the prefactor con-
tributes a factor ≈4.46, such that �0

y ≈ 0.78 ξ .

Numerical minimization

The main challenge in the minimization of the two-defect
pinning energy in Eq. (B1) is to properly track the local mini-
mum representing the current state of the vortex (the occupied
branch) and to ensure that the minimization algorithm does
not overshoot to another minimum.

We define u = (u1,x, u1,y, u2,x, u2,y ) and minimize the
function epair

pin (u, x) [see Eq. (B1)] with respect to u. For a fixed
asymptotic position x, we use Newton’s method to iterate u,

ui+1 = ui − γ H (ui )
−1∇uepair

pin (u, x), (B4)

as long as the matrix of second derivatives Hαβ =
∂2epair

pin /∂uα∂uβ evaluated at ui remains positive-definite.
The parameter γ is chosen to bound the step size
|ui+1 − ui| < δumax to a predefined maximum value δumax.
The method converges if the initial guess u0 lies close to a
local minimum and the new minimum is used as an initial
guess for the minimization after changing the parameter x.

The appearance of at least one negative eigenvalue of
H (u) during the minimization signals the disappearance
of the local minimum and triggers the jump to another
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minimum. Minimization through this region is performed us-
ing the Nelder-Mead algorithm with the initial simplex size
set to δumax. Once the positive-definite region in the neigh-
borhood of the new minimum is reached, the minimization
procedure switches back to Newton’s method.

Obtaining the size of the energy jumps to the desired
accuracy requires precise determination of the jump points
x j = (x j, b) where the currently occupied local minimum dis-
appears. This is achieved by repeated interval halving: assume
that for x = (x0, b) the Newton minimization converged to

a local minimum u0, that is used as a starting point for the
minimization at the next position x = (x0 + δx, b). The ap-
pearance of a region with a negative eigenvalue of the Hessian
during this minimization indicates the presence of the jump
point x j in the interval (x0, x0 + δx). Another minimization
is thus performed for x = x0 + δx/2 that reduces the interval
either to (x0, x0 + δx/2) (if the negative eigenvalue region
appears during the minimization) or (x0 + δx/2, x0 + δx). The
further iteration of this procedure locates the jump point to the
required precision.
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