
PHYSICAL REVIEW RESEARCH 2, 043255 (2020)

Theoretical methods to treat a single dissipative bosonic mode coupled globally to an interacting
many-body system
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We present two approaches capable of describing the dynamics of an interacting many-body system on a
lattice coupled globally to a dissipative bosonic mode. Physical realizations are, for example, ultracold atom
gases in optical lattice coupled to a photonic mode of an optical cavity or electronic gases in solids coupled
to THz cavity fields. The first approach, applicable for large dissipation strengths and any system size, is a
variant of the many-body adiabatic elimination method for investigating the long-time dynamics of the system.
The second method extends the time-dependent matrix product techniques to capture the global coupling of
the interacting particles to the bosonic mode and its open nature. It gives numerically exact results for small
to intermediate system sizes. As a benchmark for our methods we perform the full quantum evolution of a
Bose-Hubbard chain coupled to a cavity mode. We show that important deviations from the mean-field behavior
occur when considering the full atoms cavity coupling [C.-M. Halati, A. Sheikhan, H. Ritsch, and C. Kollath,
Phys. Rev. Lett. 125, 093604 (2020)].
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I. INTRODUCTION

The coupling of quantum matter to quantum light has been
achieved in numerous experimental platforms. Examples of
such realizations are ultracold atomic gases coupled to optical
cavities [1,2], electron gases in solids coupled to THz cavities
[3–5], or superconducting artificial atoms coupled to on-chip
cavities [6,7]. These systems open the exciting possibilities to
study self-organization phenomena of light and matter [8–10].
Novel phenomena arise from the interplay of the long-range
interactions and dissipative nature induced by the cavity field
and the short-range interactions between the atomic degrees
of freedom.

In ultracold atomic systems by additionally confining the
atomic gas with external optical lattice potentials an extended
Bose-Hubbard model with long-range interactions has been
experimentally realized [11–13]. In addition to the superfluid
and Mott insulating phases, the long-range interactions also
introduce charge density wave and supersolid phases. The
arising phase diagram has been studied [14–24] together with
the out-of-equilibrium dynamics [25].

The framework of most theoretical treatments of coupled
atomic cavity systems so far was based on the mean-field
decoupling of the cavity field and the atoms [8,17,26]. This
mean-field approach simplifies the numerous technical diffi-
culties introduced by the description of the full atom-photon
coupling. Within this approach, the cavity field is assumed in
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a coherent state and adiabatically eliminated. This results in
an effective Hamiltonian for the atoms with a self-consistency
equation which is typically solved for the ground state. Devi-
ations of this mean-field treatment have been found by taking
the exact coupling between the atomic and photonic states
correctly into account for small systems of one or two atoms,
or two sites [27–32], or in closed systems [33]. This calls for
new methods which can also treat larger atomic ensembles
globally coupled to bosonic fields.

In this work, we develop two methods capable of capturing
the exact coupling and the dissipative nature of the combined
system. The first method is an extension of the many-body
adiabatic elimination, valid for large dissipation strengths to
the combined system. Within this method any system size
can be considered. It is valid for relatively long times for
which system dynamics is dominated by virtual processes
around the dissipation free subspace. In particular, this method
provides insights about the steady state of the system. The
second method consists in quasiexact numerical simulations
based on matrix product states (MPS), which can perform
efficiently the full quantum time evolution of the coupled
system. This method is numerically exact and can deal with
small to intermediate system sizes.

Whereas these methods are very generally applicable for
quantum many-body systems with short-range interaction
coupled globally to a single dissipative bosonic mode, we
benchmark the presented methods for a Bose-Hubbard chain
coupled to a cavity mode and transversely pumped with a
standing-wave laser beam. We concentrate here on the de-
scription of the methods and their performance. The physical
effects obtained in this system, which go beyond the estab-
lished mean-field results, are presented in Ref. [34].

In Sec. II we describe the general setup of interacting
particles on a chain coupled to a single bosonic field. Further,
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FIG. 1. Sketch of a chain of interacting particles (e.g., atoms or
electrons) coupled to a single bosonic quantum mode (cavity fields
or phononic modes). The bosonic mode has a dissipative nature and
it is coupled to every site of the chain. The coupling strength can vary
from site to site.

we describe the model for the interacting atoms coupled to
an optical cavity for which the benchmarks are performed.
In Sec. III we develop a variant of the many-body adiabatic
elimination method for the combined atom-cavity system and
analyze the obtained steady state. The numerically exact tMPS
method for coupled atomic cavity systems is presented in
Sec. IV. We discuss in detail its implementation and conver-
gence properties.

II. MODEL

In this work we consider dissipative systems of interact-
ing particles globally coupled to a bosonic field, as sketched
in Fig. 1. The particles can for example describe atoms or
electrons and the bosonic quantum field can be for example
a photonic field of a cavity or a long-lived phononic mode.
Generically, these systems can be described by a Lindblad
equation for the density operator ρ given by [8,17,35,36]

∂

∂t
ρ = − i

h̄
[H, ρ] + �

2
(2aρa† − a†aρ − ρa†a). (1)

where a and a† are the annihilation and creation operators
for the bosonic mode. The dissipative term proportional to
the dissipation strength � takes into account the losses from
the bosonic mode. It is described by a Lindblad form of the
dissipator where the jump operator is the annihilation operator
a of the bosonic mode. In a cavity these can be due to the im-
perfections of the mirrors and for phononic modes it describes
the decay into a bath of phononic modes. Let us note that a
generalization of the developed methods to any set of jump
operators acting only on either the bosonic or the particle part
of the system is straightforward.

The methods that we present in this work can deal with a
Hamiltonian of the following form, H = Hc + Hchain + Hac,
where Hc contains only operators of the bosonic field and
Hchain is an interacting short-range one-dimensional Hamilto-
nian for the many-body degrees of freedom. Hac ∝ (a + a†)A
couples the bosonic field to a global particle operator, where
A is a sum over operators which act on one, or at most two,
atomic sites.

FIG. 2. Sketch of the bosonic atoms confined in a one-
dimensional chain in an optical cavity. The atoms tunnel with the
amplitude J and have an on-site interaction of strength U . The
coupling of the atoms to the cavity is realized with a retroreflected
transverse pump beam. As the lattice spacing is commensurate with
half of the wavelength of the cavity mode, the cavity field is coupled
to the total imbalance between the odd and even sites of the chain.
The strength of the coupling is controlled by the pump amplitude �.
The cavity is losing photons with the dissipation strength �, due to
the imperfections of the mirrors.

We will benchmark the developed methods using interact-
ing bosons confined to a chain coupled to a single cavity mode
transversely pumped with a standing-wave laser beam, as
depicted in Fig. 2. However, the methods are easily adaptable
to interacting spins or interacting fermions. In the considered
model, the Hamiltonian has the form [8,17,26]

H = Hc + Hatom + Hac,

Hc = h̄δa†a,

Hatom = Hint + Hkin,

Hint = U

2

L∑
j=1

n j (n j − 1),

Hkin = −J
L−1∑
j=1

(b†
jb j+1 + b†

j+1b j ),

Hac = −h̄�(a + a†)�, � =
L∑

j=1

(−1) jn j . (2)

The term Hc describes the cavity mode in the rotating frame
of the pump beam, with a detuning between the cavity mode
and the transverse pump beam δ = ωc − ωp. The operators b j

and b†
j are the bosonic annihilation and creation operators of

the atoms on site j and n j = b†
jb j . L denotes the number of

sites of the chain and the total number of bosonic atoms is
N . For the atomic part of the Hamiltonian we have the terms
Hkin which describes the tunneling processes of the atoms with
the amplitude J and the term Hint representing the repulsive
on-site interaction of strength U > 0. The term Hac gives the
coupling between the cavity field and the total imbalance
between the odd and even sites of the chain, �, with the
effective pump amplitude �. This coupling is realized due to
the assumed commensurability of the cavity mode with twice
the periodicity of the lattice spacing within the chain [17].
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The Hamiltonian, Eq. (2), exhibits a Z2 symmetry associated
with the inversion of the sign of the cavity field, a, and the
atomic odd-even imbalance, �. However, the Z2 symmetry is
only a weak symmetry of the Liouvillian [37,38], since the
transformation does not commute with the jump operator a of
the Lindblad equation, Eq. (1). Thus, a zero expectation value
for the cavity field is expected in the steady state of the system
[27,28,31,39].

The methods and results presented in this work are to be
put in contrast with the approach of adiabatically eliminating
the cavity field by a mean-field decoupling of the atoms and
the cavity mode [8]. In this crude approximation, after elim-
inating the cavity field one obtains an effective Hamiltonian
for the atoms, which for the system presented in Eqs. (1) and
(2), is given by Heff = Hkin + Hint − Vc�. The parameter Vc

has to be determined self-consistently as it depends on the
expectation value of odd-even imbalance, Vc = 2h̄�2δ

δ2+�2/4 〈�〉. In

this approach above a certain threshold �MF,c

√
N the cavity

field 〈a〉 takes a finite value and the atoms self-organize into a
density modulated pattern either on the odd or even sites of the
chain breaking spontaneously the Z2 symmetry of the effec-
tive Hamiltonian. The steady state is a pure state composed
of a product state between the atomic and photonic sector
ρMF = |α(�eff ),�eff〉 〈α(�eff ),�eff|. The photonic mode is
in the coherent state α(�eff ) with α(�) = �

δ−i�/2� and the

corresponding average photon number is nMF = �2

δ2+�2/4�2
eff.

The atomic state |�eff〉 denotes the ground state of the ef-
fective Hamiltonian with the self-consistency condition. The
effective imbalance �eff is defined as the expectation value
of the odd-even imbalance in the ground state of the effective
Hamiltonian.

III. MANY-BODY ADIABATIC
ELIMINATION FORMALISM

In order to understand the long-time behavior of our system
in the strongly dissipative regime, we employ the many-body
adiabatic elimination method [40–44]. In this section we de-
scribe the many-body adiabatic elimination formalism and
how to apply it to the photon mode coupled to the interacting
atoms.

A. Derivation of the equation of motion

We assume that we can consider the kinetic energy term,
Hkin, as a perturbation (h̄� � h̄�, h̄δ � J) compared to the
other terms in the Liouvillian L0 = − i

h̄ [Hc + Hint + Hac, ·] +
D(·). This approach will give an insight into the effective dy-
namics of the density matrix in the decoherence free subspace
of L0, i.e., the space 
0 formed by all density matrices ρ0

which are eigenstates of the superoperator L0 with vanishing
real part of the eigenvalue. The other spaces, 
m, formed by
the right eigenvectors corresponding to eigenvalues with equal
nonzero real part are only considered within perturbation
theory.

In Fig. 3 we sketch the decoherence free subspace 
0

and two different subspaces 
1, 
2, together with the action
of the Liovillian L0 and the perturbation Lkin = − i

h̄ [Hkin, ·]
which connects the different subspaces. If we consider only
contributions from the subspace, 
1, that can be accessed via

FIG. 3. Sketch of the spectrum of the Liouvillian L0. The
subspaces 
α are spanned by the eigenstates of L0 which have
eigenvalues with the same real part. The subspace 
0 is the deco-
herence free subspace of L0, containing only states with a vanishing
real part of the eigenvalues. While the evolution given by L0 is
contained within a subspace, the Liovillian Lkin = − i

h̄ [Hkin, ·] can
induce transitions between the different subspaces 
α .

one hopping event, the effective dynamics for the elements of
the decoherence free subspace is given by [41,44]

∂

∂t
ρ0 ≈ λ0ρ

0 + 1

h̄2 P0
[
Hkin,L−1

0 P1[Hkin, ρ
0]

]
, (3)

where ρ0 ∈ 
0 is an eigenstate of L0 with vanishing real part
of the eigenvalue, i.e., L0[ρ0] = λ0ρ

0 with Re(λ0) = 0. The
operators P0 and P1 are the projectors onto the subspaces 
0

and 
1, respectively.
In the following we need to determine the elements of

the decoherence free subspace 
0 and of 
1. Solving the
eigenvalue equation belonging to L0 is already complex for
the system we consider. However, we find that a set of right
eigenstates of L0 is given by states of the form

ρ = |α(�); n1, · · · , nL〉 〈α(�′); n′
1, · · · , n′

L| . (4)

At this point we do not assure that these states are phys-
ical density matrices. The atomic part is given by Fock
states with the odd-even imbalances � = ∑

j (−1) jn j and
�′ = ∑

j (−1) jn′
j and its total interaction energies u =

U
2

∑
j n j (n j − 1) and u′ = U

2

∑
j n′

j (n
′
j − 1). The photons are

in a coherent state which depends on the atomic imbalance

α(�) = �

δ − i�/2
�. (5)

The corresponding eigenvalues for the right eigenvectors
in Eq. (4) are given by

λ(�, u,�′, u′) = −1

2

�2�

δ2 + �2/4
(� − �′)2

+ i

[
�2δ

δ2 + �2/4
(�2 − �′2) − (u − u′)

]
. (6)
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FIG. 4. (a) The dependence of the scaled photon number
〈a†a〉/N , on the dissipation strength, h̄�/J , using tMPS and many-
body adiabatic elimination, for h̄δ/J = 2, U/J = 2 and h̄�

√
N/J =

4.47. (b) The dependence of the scaled photon number 〈a†a〉/N ,
on 1/L. The parameters used are N = L/2 particles and h̄�/J ∈
{10, 11, 12, 13}. The behavior is consistent with a L−1 scaling of
〈a†a〉/N . In the inset we have the dependence of the photon number,
〈a†a〉, on the system size, L, which seems to saturate at large L.

For � = �′ the real part of the eigenvalues is zero. Thus,
the states in Eq. (4) with � = �′ lie in the decoherence free
subspace of L0. Interestingly, the eigenstates with � = �′ but
with different interaction energies u 
= u′ have purely imagi-
nary eigenvalues. The subspace which can be accessed via a
hopping event from the decoherence free subspace is given for
the states in which � = �′ ± 2.

By writing explicitly the equations of motion, Eq. (3), for
the elements of the decoherence free subspace (see Appendix)
one obtains that the mixed state given by

ρmix = 1

N
∑
{n j}

|α(�); n1, · · · , nL〉 〈α(�); n1, · · · , nL| (7)

is a steady state of the system. Here we sum over all possible
density configurations {n j} and N is the number of these
configurations, which is the number of ways one can arrange
N identical particles in L sites, N = (L + N − 1

N

)
.

In order to illustrate the range of validity of the many-body
adiabatic elimination approach, we compare its results with
the numerically exact tMPS method results, which will be in-
troduced and discussed in Sec. IV. In Fig. 4(a) we observe that

the scaled photon number computed with ρmix is in agreement
with the tMPS results for h̄�/J � 9, which is larger than the
other chosen parameters, and the agreement continues as we
increase the dissipation strength.

In Ref. [25] the authors consider the same model, but they
eliminate the cavity field and analyze the obtained effective
Liouvillian in the atomic sector. As in their case the effective
jump operators are Hermitian, it follows directly that the fully
mixed state is a steady state. In contrast, in our analysis we
consider the full Liouvillian Eqs. (1) and (2), including the
photonic degrees of freedom, and because the jump operator
(annihilation operator of the cavity mode a) is not Hermitian
we need to perform the complicated many-body adiabatic
elimination in order to obtain insights into the nature of the
steady state.

B. Properties of the steady state

With the many-body adiabatic elimination method we ob-
tain a steady state ρmix which is very different in nature
compared with the expected mean-field state. The mean-field
state is the ground state of the effective Hamiltonian and by
this a pure state with a coherent state in the photonic sector
and a density wave in the atomic sector. In contrast, tracing out
the photonic mode in ρmix leads to a fully mixed atomic sector
corresponding to an infinite temperature state, which is very
different from a pure ground state. Moreover, the steady state,
ρmix, is a mixture of separable states, thus no entanglement
is present between the photons and the atoms, but the strong
cavity-atoms coupling is reflected by the fact that in each of
the pure states present in the mixture the cavity field is fully
determined by the atomic density profile.

This very distinct nature of the steady state is also reflected
in the physical observables. Due to the fully mixed atomic
sector, the density-density correlations have a flat profile.
Therefore, the staggering of the density-density correlations
vanishes. ρmix has a zero expectation value of the cavity field,
〈a〉 = 0, capturing the weak Z2 symmetry of the system [34],
but has a finite expectation value of the photon number. The
average photon number for the state ρmix, Eq. (7), is given by

〈a†a〉 =
∑
�

(�
√

N )2

δ2 + �2/4

c�

N
�2

N
, (8)

where the sum is taken over the set � ∈ {−N,−N +
2, . . . , N − 2, N} and c� being the number of states with a
certain imbalance �, given by

c� =
(

1
2 (L + N + �) − 1

1
2 (N + �)

)(
1
2 (L + N − �) − 1

1
2 (N − �)

)
.

(9)

By plotting the scaled photon number 〈a†a〉/N at a fixed
filling N/L, Fig. 4(b), we can see that this quantity vanishes
as L−1 at large L. This implies that even though the scaled
photon density per atom is finite for any finite-size system, it
goes to zero in the thermodynamic limit, L → ∞. Thus, the
many-body adiabatic elimination method tells us that in the
thermodynamic limit at large dissipation strengths the system
is no longer in a superradiant state with a finite 〈a†a〉/N ,
but in a state with an average number of zero photons and
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a fully mixed atomic sector. This is very distinct to the normal
state predicted by the mean-field approach. Despite the fact
that in both states the average photon number vanishes, the
atomic part of the mean-field state is a pure state and not
the infinite temperature state as predicted by adiabatic elim-
ination. Therefore, our results also question the nature of the
transition predicted by the mean-field approach between the
superradiant state and the normal state.

IV. TIME-DEPENDENT MATRIX PRODUCT STATE (tMPS)
METHOD FOR COMBINED ATOM-CAVITY SYSTEMS

In this section we describe the numerical exact method
based on MPS we developed to perform the quantum time
evolution of the combined system.

A. Details of the tMPS method
for the coupled photon-atom system

The considered dissipative system of atoms coupled to an
optical cavity poses several challenges for its treatment via
MPS-based methods. The first difficulty arises due to the in
principle arbitrarily large dimension of the Hilbert space of
the cavity field. The second obstacle is the global coupling of
the cavity mode to the interacting atoms. The third challenge
is the dissipative nature of the combined system due to the
photon losses. In the following we describe how our im-
plementation overcomes all these difficulties. We implement
the newly developed algorithm efficiently using the ITensor
library [45,46].

We begin by presenting how the dissipative aspect of the
considered models is included in the numerical method. For
the simulation of the dissipative many-body quantum sys-
tems the time evolution of the density matrix following the
Lindblad equation needs to be determined. State of the art
are two different routes: The first is the purification approach
which relies on the rewriting of the density matrix with a
larger dimension [47,48]. The second is the stochastic un-
ravelling of the master equation using quantum trajectories
[49,50]. This approach has the advantage of simulating the
time evolution of wave functions instead of density matrices at
the disadvantage of a stochastic sampling. We have chosen as
a first implementation the stochastic unraveling of the master
equation. This has in particular two reasons: First, already the
representation of the interacting ground state of the bosonic
atoms as initial state would have been demanding in the
purification approach. Second, the additional presence of the
large Hilbert space of the photons would have increased the
required matrix dimension.

In the stochastic formulation we take good quantum
numbers into account for the atomic sector. The efficient com-
bination of the stochastic unraveling of the master equation
with the matrix product state methods has been relatively
recent and only few groups have efficient implementations
taking conserved quantum numbers into account (see, e.g.,
References [51–57]).

In order to apply the stochastic unravelling procedure, the
time evolution of many trajectories of pure states is sampled
and finally the results are averaged. The initial states for
the trajectories are drawn corresponding to their probability

weights in the initial density matrix. Then a stochastic time
evolution is performed for each trajectory which is described
in the following:

(i) A random number η is drawn from the interval [0, 1).
(ii) For each trajectory, the time evolution is performed for

a time step with a nonunitary time-evolution operator, corre-
sponding to the effective Hamiltonian, H̃ = H − i

2 h̄�a†a.
(iii) Since the effective Hamiltonian is not Hermitian, this

leads to a decay of the norm of state in time. The nonuni-
tary deterministic time evolution is performed until the norm
is smaller than a threshold posed by the random number
η.

(iv) A quantum jump is performed by applying the jump
operator a onto the wave function and the state is normalized.

(v) The described procedure is repeated until the required
final time is reached.

One can show [49,50] that taking the Monte Carlo aver-
age over all sampled quantum trajectories, the described time
evolution reproduces the Lindblad dynamics correctly up to
the first order in the chosen time step. In order to achieve
convergence in the computed quantities many trajectories are
required and the time steps need to be chosen small enough
to avoid multiple jumps within one time step. In our case,
because the jump operator only acts on the photonic space,
we need to sample several hundred trajectories, as discussed
in the Sec. IV B.

In order to perform the time evolution within the MPS
formalism, we represent the wave function as a MPS [58],
with the first site initially corresponding to the cavity mode
and the rest to the atomic lattice using a Fock basis for each
site (see Fig. 5). In Sec. IV F, we compare this geometry to
the one, where the cavity site is placed in the center of the
chain. In order to take care of the in principle arbitrarily large
Hilbert space of the photonic mode, we introduce a cutoff for
the dimension of the local Hilbert space of the photonic site,
which is dynamically adapted during the time evolution. This
is done by setting a truncation goal of the photonic distribution
and the details are given in Sec. IV E. For benchmarking we
also present results in which a fixed dimension of the photonic
Hilbert space is used.

The global range coupling between the cavity mode and
all the atomic sites makes the use of the tMPS implementa-
tion for short-range Hamiltonians based on the Trotter-Suzuki
decomposition impossible. Thus, in order to take both the
global coupling between photons and atoms and the short-
range interaction of the atoms into account, we develop a
variant of the tMPS based on the dynamical deformation of the
MPS structure. The dynamical deformation allows one to alter
the order of the sites as needed using swap gates [54,58,59].
Previous variants of the MPS time evolution with swap gates
dealt with short-range interaction in two-dimensional models
[59] or spin-boson models [54,60]. Our implementation, in
contrast, can efficiently deal with interacting bosonic models
globally coupled to the dissipative photonic field. An adapta-
tion to fermionic and spin systems coupled to photonic modes
is straightforward.

In the following, we describe our procedure for performing
a time step dt with the effective Hamiltonian, H̃ . It is based
on the Trotter-Suzuki decomposition of the time-evolution
propagator in combination with swap gates. The terms are
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FIG. 5. The graphical representation of one step of the evolution
in time, based on the Trotter-Suzuki decomposition described in the
text, Eq. (10). The first (red) site in the graphical representation of
the MPS structure corresponds to the cavity mode and the rest to
the atomic sites. To be noted that the cavity mode index marked
with a red line has a large local dimension. Green boxes represent
the application of the two site gates of the atomic terms of the time
evolution after Trotter-Suzuki decomposition followed by an SVD
compression step. With an orange box we depict the large tensor
corresponding to the time evolution of the cavity and cavity-atoms
coupling terms of the Hamiltonian. Its application is detailed in
Fig. 7.

split in order to separate the terms containing the cavity field
operators and the remaining terms,

e− idt
h̄ H̃ ≈ e− idt

2h̄ (Hkin+Hint )e− idt
h̄ (Hac+Hc− i

2 h̄�a†a)e− idt
2h̄ (Hkin+Hint ).

(10)

This decomposition is valid to the order O(dt3) in the time
step. The evolution given by the operator e− idt

2h̄ (Hkin+Hint ) which
only contains the atomic operators is computed as in the stan-
dard tMPS algorithm for short-range interactions [61,62] by a
further decomposition into two site gates. The two site gates
are applied to the MPS followed by a compression step via a
singular value decomposition (SVD) in the order sketched in
Fig. 5. We mention that the boundary gates at the beginning
and the end of the bosonic chain differ from the gates applied
in the bulk.

For the operator e− idt
h̄ (Hac+Hc− i

2 h̄�a†a) which contains the
global coupling to the cavity field, we use the fact that we
can decompose Hac such that each term only acts on two sites

FIG. 6. The graphical representation of the application of the
swap gate procedure. (a) The two site MPS with the physical indices
s, corresponding to the cavity site, and σ , corresponding to the
atomic site, and the swap gate with the indices (s, σ, σ ′, s′). (b) The
application of the swap gate onto the MPS by contracting the indices
s, σ and the MPS bond index. (c) Restoring the MPS structure by
performing a SVD and renaming the indices σ ′ → σ and s′ → s.

(even though distant ones)

e− idt
h̄ (Hac+Hc− i

2 h̄�a†a)

=
1∏

j=L

e− idt
2 [−�(a+a† )(−1) j n j+ 1

L (δ− i
2 �)a†a]

×
L∏

j=1

e− idt
2 [−�(a+a† )(−1) j n j+ 1

L (δ− i
2 �)a†a] + O(Ldt3).

(11)

This means that we need to apply two-site operators where the
two sites are not neighbors in the initial MPS representation.
In order to solve this problem, we adapt the structure of the
MPS while applying the time-evolution gates such that we
bring the two sites on which the operator acts next to each
other. This approach is implemented using swap gates, where
the action of the swap gates consists in the swapping of the
physical indices of two neighboring MPS matrices, i.e.,

Ss,σi (M
σ1 . . . MsMσi . . . MσL )

= Mσ1 . . . (MM )σi,s . . . MσL

= Mσ1 . . . Mσi Ms . . . MσL . (12)

Here Ss,σi is the swap operator and Mσ1 . . . MsMσi . . . MσL is
the weight of the state |σ1, . . . , s, σi, . . . , σL〉 in the MPS form
with s the index of the cavity mode site and σi the index for
the bosonic atoms. In Fig. 6 we sketch how the swap gate acts
on two MPS sites and changes their order. The swap gates are
constructed from two Kronecker δ functions, each between
indices of the same nature, but different sites, i.e., in Fig. 6(a)
we have a Kronecker δ from the cavity index s at the first
site to the cavity index s′ at the second site (red curve) and
a Kronecker δ from the atomic index σ at the second site
to the atomic index σ ′ at the first site. The next step is the
application of the swap gate onto the MPS wave function and
obtaining a two-site tensor with swapped indices [Fig. 6(b)].
Finally an SVD decomposition is performed to restore the
MPS structure. Thus, using the swap gates we can apply the
operator e− idt

h̄ (Hac+Hc− i
2 h̄�a†a) onto the wave function as a series

of two-site gates, as depicted in Fig. 7. No additional error
is introduced by the swap gates, except the SVD truncation
error.
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FIG. 7. The graphical representation of application of the
Trotter-Suzuki decomposition of the terms containing the cavity
field, Eq. (11). Swap gates are needed to bring the initially distant
sites close to each other.

The implemented time-evolution method has an error of
the order O(Ldt2) at a certain final time t , stemming from the
Trotter-Suzuki decomposition. However, the stochastic unrav-
elling is only valid up to first order to dt , such that we expect
that this limits the choice of the time step. A detailed analysis
of the contributing errors and improvements of the method
using different time-evolution schemes will be performed in
future.

To improve the performance of our tMPS algorithm we
take good quantum numbers into account, by noting that our
system preserves the total number of bosonic atoms.

B. Numerical convergence

The convergence of the numerical method is controlled by
several parameters. The stochastic unravelling of the master
equation with quantum trajectories requires an averaging of
a sufficiently large number of trajectories. Additionally, the
time step dt must be chosen small enough in order to avoid
the occurrence of multiple jumps in one time step. The next
source of error comes from the Trotter-Suzuki decomposition

of the time-evolution operator. Again this require that the time
step dt is small enough. Finally, we introduce an additional
error by representing our wave functions as a matrix product
state with finite local and bond dimensions. This implies a
cutoff, Npho, of the local Hilbert space of the photons and in
some situations also for the bosonic atoms. The procedure
to dynamically adjust the cutoff, Npho, will be presented in
Sec. IV E. Additionally, the introduction of the finite bond
dimension using SVD leads to a so-called truncation error.
To control the bond dimension of the MPS we impose a
truncation error goal ε, thus, in each compression step, after
the application of a time evolution or swap gate onto the MPS,
the number of states kept is such that the truncation error is
smaller than ε. Let us note that as in the case of the time-
dependent MPS [61,62], the arising errors are not independent
and therefore a careful analysis needs to be performed.

In the following we discuss typical values of the con-
vergence parameters and their influence on the results. The
discussion of the truncation error and the von Neumann en-
tropy of the trajectories is presented in Sec. IV C.

1. Stochastic error

We estimate the error of having a finite number of quantum
trajectories included in the Monte Carlo average by computing
the standard deviation of the mean for the measured expecta-
tion value of an operator E ,

σ (E (t )) =
√√√√ 1

R(R − 1)

R∑
r=1

(〈ψr (t )| E |ψr (t )〉 − 〈〈E〉〉)2,

(13)

where R is the total number of samples, |ψr (t )〉 the time-
evolved wave function of the trajectory labeled by r, and 〈〈E〉〉
the statistical average over all quantum trajectories. For the
numerical data presented, we show this error with the curves
when averages are presented. Typically, we average over at
least 500 trajectories, which ensures that for the physical pa-
rameters considered the relative error in the expectation value
of the photon number is smaller than 3% (see for example
Fig. 8 upper panel). For the cases when the photon number is
small, 〈a†a〉 � 1, either at small coupling � or large dissipa-
tion strengths �, we average over 750 trajectories to obtain the
same relative error, as the fluctuations have a greater influence
(Fig. 8, lower panel).

2. Cutoff of the dimension of the local Hilbert spaces

The dimension of the local Hilbert space for the photon can
be infinite and thus a cutoff for its dimension is needed in the
numerical implementation. In the following we will denote the
cutoff Npho, referring to the maximal number of photons that
we can capture and noting that we use Npho + 1 Fock states
as we also have the vacuum state. In order to identify more
clearly the influence of the cutoff on the results we used a
fixed cutoff for the photonic site in this section. However, in
Sec. IV E we present a more efficient approach by implement-
ing an adaptive photonic local dimension, since the required
cutoff varies considerably in time and with the trajectories.
Examples with a fixed cutoff with all other parameters fixed
are shown in Fig. 8. For a given set of parameters we observe
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FIG. 8. The time evolution of the photon number for different
cutoffs of the photonic Hilbert space, Npho. We present the behavior
for two parameter sets, (a) h̄�

√
N/J = 3.35, h̄�/J = 1, dtJ/h̄ =

0.0125 and (b) h̄�
√

N/J = 4.47, h̄�/J = 10, dtJ/h̄ = 0.01. The
error bars represent the standard deviation of the Monte Carlo av-
erage over 500 trajectories for (a) and 750 trajectories for (b). We
use L = 10, N = 5, h̄δ/J = 2, U/J = 2, and ε = 10−12.

that above a certain value of the cutoff Npho the average value
of the photon number is only slightly varying with increasing
the cutoff. In particular for the presented situation its variation
for Npho � 35 becomes lower that the error bars of the Monte
Carlo averaging. However, choosing a too low cutoff, e.g.,
Npho � 25 (Npho � 4) in Fig. 8, leads to misleading results
for both the time evolution and the reached long-time values.
Note, that even though the long-time value lies around 12
(below 1) photons, taking double this value for the cutoff, i.e.,
25 (4) is not sufficient. The required cutoff depends very much
on the physical parameters. Therefore, one needs to consider
each case separately, which can result in very different values
for the cutoff.

Since we consider bosonic atoms, the maximal possible
local dimension for the atomic sites equals the total atom
number plus one for the possibility to have an empty site.
We found that often this very large local dimension is needed,
which also strongly restricts the total number of atoms which
can be efficiently considered. However, in some situations a
reduced dimension of the local bosonic site can be taken. In
Fig. 9 we compare the occupations of each bosonic number
state for a site in the middle of the chain. We can observe
that for the parameter set with h̄�/J = 1 the occupations of

FIG. 9. The boson number distribution, Pm = tr(〈m| ρ |m〉), in
the middle of the chain, for site 5, at tJ/h̄ = 49.75. We present
the behavior for two parameter sets, (red dots) h̄�

√
N/J =

3.35, h̄�/J = 1, dtJ/h̄ = 0.0125, and Npho = 40 and (blue dots)
h̄�

√
N/J = 4.47, h̄�/J = 10, dtJ/h̄ = 0.01, and Npho = 10. We

use L = 10, N = 5, h̄δ/J = 2, U/J = 2, and ε = 10−12.

the states with a large boson number are a few times smaller
than for the parameter set with h̄�/J = 10. We note that the
other sites in the chain have even smaller occupations of the
states with three or four bosons, for h̄�/J = 1. Therefore, a
maximal local dimension of five instead of six is sufficient in
the considered case.

3. Influence of the time step

The dependence of the results on the value of the time
step is more involved. This is due to the fact that the time
step controls both the convergence of the stochastic sampling
process and the Trotter-Suzuki decomposition. Further, as in
the normal time-dependent MPS, the time step interplays with
the truncation error in a nontrivial fashion, since a smaller
time step requires more truncations and therefore results in
an increased truncation error [62]. Therefore, the values used
needs to be adjusted very carefully depending not only on the
physical parameters but also on the convergence parameters
of the model.

In Fig. 10 we show an example of the variation ob-
tained fixing all parameters beside the time step dt . A
relatively rapid convergence is seen using time steps between
dtJ/h̄ = 0.01–0.05. In particular, the convergence is in agree-
ment with the expected linear behavior in the time step dt
which suggests a well-justified extrapolation method. For
small values of �, here h̄�/J = 1, the error induced by the
time step remains larger than the error of the statistical error.
The extrapolated value lies a bit above the shown results at a
finite time step. In contrast for the case of large �, the statisti-
cal error is dominating the results and the extrapolated result
lies within the statistical error bars of the smallest time steps.

C. Entanglement of quantum trajectories

One of the most important convergence parameters is the
bond dimension, m, used within the SVD compressions. One
measure of this is the truncation error ε, the sum of the
neglected eigenvalues of the reduced density matrix in the
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FIG. 10. [(a) and (b)] The time evolution of the photon number for different time steps dt . The black dots represents the extrapolated value
in the limit dtJ → 0 at tJ/h̄ ∈ {1.75, 12, 25, 49.75}. [(c)–(f)] Convergence of the photon number with the time step at several chosen times.
The dashed line represents a linear fit of the dependence on dtJ; for (c) and (e) the fit is done for the data taken at tJ/h̄ = 49.75. We present
the behavior for two parameter sets: [(a), (c), and (d)] h̄�

√
N/J = 3.35, h̄�/J = 1, and Npho = 40 and [(b), (e), and (f)] h̄�

√
N/J = 4.47,

h̄�/J = 10, and Npho = 10. The error bars represent the standard deviation of the Monte Carlo average over 500 trajectories for (a), (c), and
(d) and 750 trajectories for (b), (e), and (f). We use L = 10, N = 5, h̄δ/J = 2, U/J = 2, and ε = 10−12.

SVD compression. Another measure of the decay of the eigen-
values is the von Neumann entropy, SvN. We analyze in the
following the behavior of these two quantities for different
parameters.

We first look at the dependence on the truncation er-
ror ε of the singular value decomposition performed in the
time-evolution gates and swap gates shown in Fig. 11. As
the truncation error is chosen relatively small for L = 10
[Figs. 11(a)–11(b)], the results only weakly depend on the
value of the maximal truncation error ε. In the case of L = 14
[Fig. 11(c)], where we control the truncation error by fixing
the used bond dimension, we can observe that the obtained
photon numbers are consistent with each other, except for the
case with m = 40, which corresponds to ε ≈ 10−6 at tJ/h̄ =
49.75. In particular, the deviations are of the order to the
statistical error. Thus, we are confident that a truncation error
of � 10−7 provides an accurate description of the considered
states in the matrix product form.

One can also monitor the maximal bond dimension needed
in the MPS representation in order to achieve the set trun-
cation error goal, as depicted in Figs. 12(a) and 12(b), or
the largest truncation error obtained for a fixed bond dimen-
sion in Fig. 12(c). The maximal bond dimension increases
considerably with lowering the truncation error. However,
for the smallest chosen truncation errors the maximal bond
dimension saturates. We can observe that the bond dimension
needed to describe the system is between 100 and 300 even
for a system of size L = 10. For a system of size L = 14
[Fig. 12(c)] one needs to increase the bond dimension with

more than an order of magnitude, from m = 40 to m = 750,
in order to decrease the truncation error from ε ∼ 10−6 to
ε ∼ 10−9 at long times.

In the following we turn to the von Neumann entropy of the
quantum trajectories to monitor the coupling of the photonic
and atomic sectors and the correlations within the atomic
chain. We note that the entanglement entropy of the quantum
trajectories is not a direct measure of the entanglement present
in the density matrix resulting from the Monte Carlo aver-
aging process. However, SvN provides valuable information
about how well our MPS method captures the entanglement
present in the trajectories.

In the following, we consider three different bipartitions of
the MPS, as depicted in Fig. 13(a), between the cavity site
and the rest of the atomic chain, bond l = 1, in the middle of
the atomic chain, where one half also contains the cavity site,
bond l = L/2 + 1, and the last bond l = L. This is motivated
by our finding that the maximum of SvN throughout the atomic
chain occurs at the bond l = L/2 + 1, and the final atomic
side is the furthest apart from the cavity site. In Figs. 13(b)
and 13(d) we present the time evolution of the entropy for the
Monte Carlo average, the maximum entropy of the sampled
quantum trajectories and for a few single trajectories, for the
three considered bipartitions. We observe that for all biparti-
tions SvN saturates to a finite value in time, both for the average
and maximum values.

In the long-time limit, the von Neumann entropy takes
finite values for all bipartitions and parameter sets considered.
In Fig. 13(b) we see that at low dissipation strength the av-
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FIG. 11. The time evolution of the photon number for different
truncation errors, ε, and bond dimensions, m. We present the behav-
ior for three parameter sets: (a) h̄�

√
N/J = 3.35, h̄�/J = 1, L = 10

sites, N = 5 particles; (b) h̄�
√

N/J = 4.47, h̄�/J = 10, L = 10
sites, N = 5 particles; and (c) h̄�

√
N/J = 2.46, h̄�/J = 1, L = 14

sites, N = 7 particles. We use h̄δ/J = 2 and U/J = 2. In the inset
of (c) the photon number is taken at tJ/h̄ = 49.75. The error bars
represent the standard deviation of the Monte Carlo average. The nu-
merical parameters used in the tMPS method are the following: The
time step is dtJ/h̄ = 0.0125 in (a) and (c), dtJ/h̄ = 0.01 in (b), and
the cutoff of the local dimension for the photon mode is Npho = 40 in
(a), Npho = 10 in (b), and dynamically adapted in (c) (see Sec. IV E).
The Monte Carlo average contains 500 trajectories for (a) and (c) and
750 trajectories for (b).

erage entropy computed between the photon mode and the
atoms (l = 1) becomes close to log(2) at long times. This sig-
nals a coherent superposition of two states which we attribute

FIG. 12. The time evolution of the maximal bond dimension for
different truncation errors, ε [(a) and (b)] and the time evolution of
the truncation error ε for different bond dimensions, m. We present
the behavior for three parameter sets: (a) h̄�

√
N/J = 3.35, h̄�/J =

1, L = 10 sites, N = 5 particles; (b) h̄�
√

N/J = 4.47, h̄�/J = 10,
L = 10 sites, N = 5 particles; and (c) h̄�

√
N/J = 2.46, h̄�/J = 1,

L = 14 sites, N = 7 particles. We use h̄δ/J = 2 and U/J = 2. The
numerical parameters used in the tMPS method are the following:
The time step is dtJ/h̄ = 0.0125 in (a) and (c) and dtJ/h̄ = 0.01
in (b), and the cutoff of the local dimension for the photon mode
is Npho = 40 in (a), Npho = 10 in (b), and dynamically adapted in
(c) (see Sec. IV E). The Monte Carlo average contains 500 trajecto-
ries for (a) and (c) and 750 trajectories for (b).

to a superposition of states with a different sign of the photon
field [34]. The value of the entanglement within the chain is
larger which points to the contribution of several states in the
superposition.
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FIG. 13. (a) The graphical representation of the MPS structure
denoting the bonds for which the von Neumann entropy was com-
puted, for a bipartition between the cavity site and the atomic sites
with l = 1, a bipartition in the middle of the atomic chain, with one
half also containing the cavity site l = L/2 + 1, and a bipartition
between the last atomic site and the rest of the chain, l = L. [(b)–(d)]
The time evolution of the von Neumann entropy, SvN, of a few single
trajectories, the Monte Carlo average and the maximum value over
different trajectories for (b) l = 1, (c) l = L/2 + 1, and (d) l =
L. The parameters used are L = 10, N = 5, h̄δ/J = 2, U/J = 2,
h̄�

√
N/J = 3.35, and h̄�/J = 1. The Monte Carlo averages contain

at least 500 trajectories.

FIG. 14. The time evolution of the von Neumman entropy
SvN for l = 1, l = L/2 + 1 and (a) different truncation errors and
(b) bond dimensions. The parameters used are h̄δ/J = 2, U/J = 2,
(a) h̄�

√
N/J = 3.35, h̄�/J = 1, L = 10 sites, N = 5 particles and

(b) h̄�
√

N/J = 2.46, h̄�/J = 1, L = 14 sites, N = 7 particles. The
Monte Carlo averages contain at least 500 trajectories.

In Fig. 14(a) it can be seen that the values of SvN only
change within the Monte Carlo averaging uncertainty for all
considered truncation errors for L = 10. Thus, we can be
confident that our method captures the dynamics of our system
correctly up to long times. In the case of L = 14, Fig. 14(b),
we can observe that the von Neumann entropy, SvN, computed
in the middle of the chain is accurately described for a bond
dimension larger than m � 240. This bond dimension corre-
sponds to ε ≈ 10−7 at tJ/h̄ = 49.75 [Fig. 12(c)]. As most
results in this work were computed with a truncation error
goal of 10−12, the perspective of pushing the numerical simu-
lations toward larger systems and longer times by considering
a larger truncation error can be envisioned.

In Fig. 15 we computed the entropy for different system
sizes, for two different parameter sets. We observe that in both
cases the entanglement present in the quantum trajectories
between the photon mode and the atoms seems stable with
the respect to the system size. This further supports the claim
that a coherent superposition of two system size-independent
states contribute, as it is the case for the states with the dif-
ferent sign of the photon field [34]. For the bond l = L/2 + 1
we see that the value at which the entropy saturates increases
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FIG. 15. The time evolution of the von Neumman entropy,
SvN, of the Monte Carlo average for different system size, L ∈
{10, 12, 14}, for two bipartitions l = 1 and l = L/2 + 1. The param-
eters used are N = L/2, h̄δ/J = 2, U/J = 2, (a) h̄�

√
N/J = 1.6

and h̄�/J = 1, (b) h̄�
√

N/J = 4.47 and h̄�/J = 13. The Monte
Carlo averages contain at least 500 trajectories.

with the system size, indicating that the system might be in a
gapless phase or that the system size is not yet long enough to
cover the correlation length of the gapped state.

D. Finite-size effects

As we have seen in the previous subsections, at long times
the considered quantities have become almost constant in
time. Typically, such a regime is reached long before tJ/h̄ ≈
50, as shown in the time-evolution plots, for example Fig. 8 for
the photon number, or Fig. 13 for the von Neumann entropy.
Therefore, in this subsection we compare the values at late
times for different system sizes, as we interpret these as very
good approximations of the steady-state values.

In order to evaluate the finite-size effects we analyze how
the transition from the normal state to the self-organized state
takes place for different system sizes. In Fig. 16(a) we scale
the photon number and the atoms-cavity coupling with the
number of particles. For a comparison we show both the
mean-field and the numerically exact tMPS method results.
Both show only small deviations with increasing the system
size. In particular, in the mean-field results the transition to
the self-organizes phase starts later and becomes steeper with
increasing system size. In the tMPS results, the rise of the

FIG. 16. (a) The scaled photon number, 〈a†a〉/N , as a function
of the scaled atoms-cavity coupling h̄�

√
N/J for L ∈ {10, 14}. We

compare our numerical results with the mean-field approach. The
dashed vertical line marks the self-organization threshold as obtained
from the mean-field approach for L = 10 sites. The black vertical
line represents the interval between the two possible extrapolations
depicted in (b). (b) The scaled photon number, 〈a†a〉/N , as a function
of the inverse system size, 1/L, for h̄�

√
N/J = 2.46. The black

curves represent a linear and a quadratic fit. The parameters are n =
N/L = 1/2, h̄δ/J = 2, U/J = 2, h̄�/J = 1, and tJ/h̄ = 49.75. The
point for L = 4 is obtained by the exact diagonalization of Eqs. (1)
and (2). The numerical parameters used in the tMPS method are the
truncation error ε = 10−12 for L = 10 and ε = 10−9 for L > 10, the
cutoff of the local dimension for the photon mode between 10 and
25, adapted to the average photon number, and dtJ/h̄ = 0.0125. The
Monte Carlo averages contain at least 500 trajectories.

photon number also seems to occur for a bit larger scaled
pump strength and the scaled photon number is slightly lower
for L = 14.

In Fig. 16(b) we computed the scaled photon number for
multiple system size in order to perform an extrapolation in
the thermodynamic limit, L → ∞. We note that the point at
L = 4 is obtained by the exact diagonalization of Eqs. (1) and
(2) and taking the expectation value of the photon number
in the steady state, the points for L � 8 were obtained using
the tMPS method. We observe that the photon number is
monotonically decreasing for larger L, but the functional form
of the system-size dependence is not unambiguous, as both
a linear fit of the points with L � 8 and a quadratic fit of all
points can describe the behavior. However, as the extrapolated
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values are not far from the finite-size results and they seems
to move away from the mean-field results (see black vertical
line in Fig. 16), it leads us to the expectation that our main
findings will remain valid for large systems.

To further support this, in Fig. 4(b) the scaled photon num-
ber is plotted as a function of the dissipation strength for large
dissipation strengths. The numerical results are compared
with the many-body adiabatic elimination results, as the state
ρmix can be evaluated for any system size. We observe that
the agreement is very good at large dissipation strengths for
all values of L and � considered. The scaled photon number
is slightly decreasing for larger systems sizes in both ap-
proaches. This is consistent with the expected vanishing of the
scaled photon number in the thermodynamic limit behavior
for ρmix, as shown in Sec. III B.

E. Dynamically adapted cutoff of the local dimension
for the cavity site

We have shown in Sec. IV B that the cutoff of the
local Hilbert space for the photons is an important conver-
gence parameter of the numerical simulations. In particular,
a sufficiently large Npho—typically about triple the average
value—is required to capture the dynamics correctly (Fig. 8).
Often during the time evolution the photon number varies
considerably, as for example for the case in Fig. 8(a). In this
case at short times, tJ/h̄ � 5, there is a sudden increase of
the number of photons in the cavity, larger than the value at
late times. This suggests that we need a much larger Npho to
accurately describe the photonic state at short times, than we
would need at later times. Therefore, we decided to optimize
our implementation by adapting the local dimension for the
cavity site during the time evolution.

This improvement is similar in spirit with the recent de-
velopments regarding the time-dependent MPS methods with
local basis optimization. References [63,64] apply the local
basis optimization idea [65] to the time evolution of the Hol-
stein model of fermions locally coupled to phononic modes.
In this approach one rotates the local Hilbert space adaptively
into an optimized basis that can be truncated. In our case we
find that even without changing the Fock basis for the photons
we can dynamically adapt the number of states considered.
The investigation whether an optimization of the photonic
basis is further improving the algorithm is left for future
implementations.

In order to implement such an adaptive cutoff, we monitor
the evolution of the photon number distribution by measuring
the occupation Pm of the photonic Fock states with photon
numbers m close to the cutoff value in each time step. We
adapt the cutoff using thresholds for the photonic state occu-
pation. To be more precise, the procedure is as following: At a
certain time in the evolution of a single quantum trajectory we
have a cutoff Npho(t ). Depending whether the photon number
should increase or decrease we encounter two different cases:

(i) The occupation PNpho of the photonic Fock states with
the largest photon number is smaller than a chosen threshold
pd . This signals that the cutoff can be decreased. In order
to do this, we find the photonic Fock state m∗ � Npho with
the largest photon number whose occupation is above the
threshold, i.e., Pm∗ � pd . We change the cut off of the local

dimension of the cavity site of the MPS such that the maximal
photon number is Npho(t + dt ) = m∗ + 1 the for the time step
t + dt .

(ii) The occupation PNpho of the photonic Fock states with
the maximum photon number is larger than a second chosen
threshold pi � pd , i.e., PNpho � pi. This signals that the photon
number should increase. We increase the local dimension of
the cavity site of the MPS at the next time step Npho(t + dt ) =
Npho(t ) + 2.

The numerical parameters that control the convergence of
the method are now the two threshold values, pd and pi.

In Figs. 17 and 18 we check our procedure of adapting
the local dimension for the cavity site by comparing with the
results for a fixed converged cutoff. In Figs. 17(a) and 18(a)
we represent the Monte Carlo average of the photon number
for two different sets of sampled trajectories with a fixed
cutoff and the Monte Carlo average of the photon number with
an adapted cutoff for different pi and pd . We can observe that,
except for the case with pi = 5 × 10−2 and pd = 10−3, the
results for an adapted cutoff agree, within the Monte Carlo
averaging error, with the ones for a fixed cutoff. The evolution
in time of the cutoff can be seen in Figs. 17(b) and 18(b).
We note that at short times, tJ/h̄ < 4, we always keep the
photonic cutoff fixed and relatively large in order to capture
the sudden increase in the number of photons in the cavity.
But at later times we can observe that in all considered cases
the cutoff is approximately 25% smaller than the initial value.
This implies a significant speed up of the tMPS method, as the
large local dimension of the cavity site being one of the bottle-
necks of the method. As a rough estimate, for the parameters
used in Fig. 17 the runtime was with 50% smaller compared
with the case with a fixed cutoff and for the parameters used
in Fig. 18 with 25% smaller. In Figs. 17(c) and 18(c) we plot
the occupation of the photon number states at the final time,
tJ/h̄ = 49.75, to check the agreement of the entire photon
number distribution. A very good agreement is found except
for the case with pi = 5 × 10−2 and pd = 10−3. We also plot
in Figs. 17(c) and 18(c) the photon number distribution at
tJ/h̄ = 1.75, close to the peak in the photon number, to show
that at short times many photon number states are occupied.

We note that we also verified the accuracy of this method at
the level of single quantum trajectories, not only by analyzing
the Monte Carlo average. The improvement brought by this
new development is dependent on the physical parameters of
the model, but, roughly, has a more important impact when
the average photon number is larger, where the difference
between the maximum photon number at short times and the
steady-state value is larger. For example for the parameters in
Fig. 17 we manage to lower the local dimension of the cavity
site with more than 10 states compared to the fixed cutoff
previously used, but for the parameters in Fig. 18 we have
lowered the local dimension with 5 states, due to the lower
photon number in the cavity.

F. Alternative MPS geometry

The results presented in this work so far have used a MPS
geometry in which the cavity site was positioned at the edge of
the atomic chain, as depicted in Fig. 13(a). In this section we
compare this approach with a geometry in which the cavity

043255-13



HALATI, SHEIKHAN, AND KOLLATH PHYSICAL REVIEW RESEARCH 2, 043255 (2020)

FIG. 17. The time evolution of (a) the photon number, 〈a†a〉, and
(b) Npho. We compare the results corresponding to an adapted cutoff
for different pi and pd with the Monte Carlo average of two different
sets of sampled trajectories with a fixed cutoff Npho = 40. (c) The
photon number distribution, Pm = tr(〈m| ρ |m〉), at tJ/h̄ = 49.75 for
the data presented in (a) and (b), and at tJ/h̄ = 1.75 with a fixed
cutoff. The parameters used are L = 10, N = 5, h̄δ/J = 2, U/J = 2,
h̄�

√
N/J = 3.35, and h̄�/J = 1, time step dtJ/h̄ = 0.0125, and the

truncation error ε = 10−12. The Monte Carlo averages contain 500
trajectories.

site starts in the middle of the atomic chain, represented in
Fig. 19(a). This is motivated by the desire to minimize the
occurring entanglement in the system. If the cavity site is
positioned in the middle of the chain the average distance
between the cavity site and the atomic sites is reduced com-
pared to when the cavity site is at the edge of the chain.
This could imply that the entanglement might be reduced and

FIG. 18. The time evolution of (a) the photon number, 〈a†a〉, and
(b) Npho. We compare the results corresponding to an adapted cutoff
for different pi and pd with the Monte Carlo average of two differ-
ent sets of sampled trajectories with a fixed cutoff. (c) The photon
number distribution, Pm = tr(〈m| ρ |m〉), at tJ/h̄ = 49.75 for the data
presented in (a) and (b), and at tJ/h̄ = 2.25 with a fixed cutoff. The
parameters used are the same as Fig. 17, with h̄�

√
N/J = 2.23.

the geometry with the cavity site in the center would be a
more efficient representation. However, we show that in the
considered cases, the geometry combined with the swap gates
is not preferable as described in the following.

The implementation of the new position of the cavity
field requires some adaptations compared to the method pre-
sented in Sec. IV A. First, the decomposition of the time
evolution with the atomic part of the Hamiltonian, given by
e− idt

2h̄ (Hkin+Hint ), depicted in Fig. 5, needs to be slighly altered
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FIG. 19. (a) The graphical representation of an alternative MPS
structure with the cavity site in the middle of the chain. The bonds
for which the von Neumann entropy was computed are marked.
(b) The atomic density profile, 〈ni〉, at time tJ/h̄ = 99.75. The inset
contains the time evolution of the atomic density 〈n6〉. [(c) and (d)]
The time evolution of the von Neumann entropy, SvN for the Monte
Carlo average and the maximum value over different trajectories for
(c) l = L/2 + 1 and (d) l = L. We compare the two different MPS
geometries, with the cavity site at the edge of the atomic chain and
the cavity site in the middle of the chain for different time steps
dt . The parameters used are L = 10, N = 5, h̄δ/J = 2, U/J = 2,
h̄�

√
N/J = 2.46, and h̄�/J = 1. The Monte Carlo averages contain

at least 500 trajectories.

as the atomic sites from the middle of the chain are no longer
neighbors in the MPS representation. In order to solve this,
one can use the swap gate to bring the two atomic sites next to
each other before the application of the time-evolution gate.
The main difference comes from the application of the op-
erator e− idt

h̄ (Hac+Hc− i
2 h̄�a†a). The decomposition that minimizes

the number of swap gates used and leaves the cavity site in the
center of the chain is given by

e− idt
h̄ (Hac+Hc− i

2 h̄�a†a)

=
L/2∏
j=1

e− idt
2 [−�(a+a† )(−1) j n j+ 1

L (δ− i
2 �)a†a]

×
1∏

j=L

e− idt
2 [−�(a+a† )(−1) j n j+ 1

L (δ− i
2 �)a†a]

×
L∏

j=L/2+1

e− idt
2 [−�(a+a† )(−1) j n j+ 1

L (δ− i
2 �)a†a] + O(Ldt2).

(14)

We can see that for the MPS structure with the cavity site in
the center the Trotter-Suzuki decomposition has a larger error
compared to the one used for the geometry with the cavity site
at the edge, Eq. (11). Thus, we expect that we need a smaller
time step, dt , in this case. One can play with the Trotter-
Suzuki decomposition at the expense of more swap gates.
However, since we show later, that the von Neumann entropy
for this geometry is not superior to the previous geometry, we
have not gone into this direction.

In Fig. 19(b) we compare the density profile at time tJ/h̄ =
99.75 obtained with the two geometries. We can observe that
in the case with the cavity site at the center the density profile
is highly asymmetric using the same time step as for the
cavity site at the edge. This signals important errors due to
the time step. If we decrease the time step the density profile
approaches the one obtained by the implementation with the
cavity site at the edge. For a time step of dtJ/h̄ = 10−3 the
differences are within the Monte Carlo error for short times,
tJ/h̄ � 20, but the deviations at long time are still important,
even though for the case with the cavity site at the edge the
time step was more than 10 times larger. We see that obtaining
the same accuracy the implementation with the cavity site in
the center needs a much smaller time step.

As one could naively expect that additional numerical
effort induced by the smaller required time step to be com-
pensated by the gain in lowering the entanglement, we show
in Figs. 19(c) and 19(d) the von Neumann entropy. For the
two bipartition considered the von Neumann entropy has very
similar values for the two geometries, showing no decrease
in the entanglement caused by the shift of the cavity site. We
attribute this to the dominating entanglement of the atomic
chain and the use of swap gates which brings the cavity site to
all different places. Therefore, we also expect that the system-
size dependence is similar to the one found in Fig. 15 and, in
particular, is dominated by the increase of the entanglement
of the atoms.
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We conclude that we do not expect, as long as we use swap
gates, to gain a lot by using different initial geometries and we
expect that this further holds for larger system sizes.

V. CONCLUSIONS

To summarize, we described in detail two methods capable
of tackling both short and global range interactions of an
interacting many-body system coupled to a single dissipative
bosonic mode. We benchmark the methods with the example
of a Bose-Hubbard chain coupled to an optical cavity.

The first method is based on the many-body adiabatic
elimination formalism and applicable for strong dissipation
strength. We show how to derive the steady state of the system
in the limit of large dissipation strength within the many-
body adiabatic elimination formalism. The resulting state is
a highly mixed state and the reduced density matrix in the
atomic sector corresponds to an infinite temperature state. Our
results can be evaluated for any system size and we analyzed
its physical properties and the thermodynamic limit. In par-
ticular, we showed that the obtained steady state has a very
different nature compared to the expected mean-field state.

As a second algorithm we developed a quasiexact tMPS
method in order to determine the full quantum evolution
toward the steady state of the interacting bosonic chain cou-
pled to the cavity. This implementation deals with all the
challenges posed by the atom-cavity system: We employ
the stochastic unravelling of the master equation to simulate
the Lindblad equation, Eqs. (1) and (2). The global coupling
of the cavity to the atoms is tackled via the dynamical defor-

mation of the MPS structure with swap gates. The efficient
simulation of the very large photonic Hilbert space is ensured
by its dynamically adapted cutoff. We analyze carefully the
convergence of the method for different parameter sets and
two different MPS geometries. In particular, we monitored the
time dependence of the von Neumann entropy of the quantum
trajectory in order to ensure that we properly capture the
entanglement between the cavity and the atoms and within the
atomic chain.

Both methods open the possibility to treat many-body sys-
tems coupled to a dissipative bosonic mode beyond the often
applied mean-field methods. The presented algorithm is easily
adapted to fermionic or spin many-body systems. Therefore,
the methods will have a wide range of application and we
expect that many new physical findings will rely on these
methods.
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APPENDIX: MANY-BODY ADIABATIC ELIMINATION EQUATION OF MOTION

By writing explicitly the equations of motion, Eq. (3), for the elements of the decoherence free subspace for ρ0 =
|α(�); n1, · · · , nL〉 〈α(�′ = �); n′

1, · · · , n′
L| one obtains

∂

∂t
ρ0 = − i(u − u′)ρ0 + J2e−4|α0|2

{
×

∑
i odd

∑
j odd

[
−

√
(ni + 1)ni+1

λ(� − 2, u + U (ni − ni+1 + 1),�, u′)

×
(√

(n′
j + 1)n′

j+1 |α(� − 2); · · · , ni + 1, ni+1 − 1, · · ·〉 〈α(� − 2); · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(� − 2); · · · , ni + 1, ni+1 − 1, · · ·〉 〈α(� − 2); · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)

−
√

(ni + 1)ni−1

λ(� − 2, u + U (ni − ni−1 + 1),�, u′)

×
(√

(n′
j + 1)n′

j+1 |α(� − 2); · · · , ni−1 − 1, ni + 1, · · ·〉 〈α(� − 2); · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(� − 2); · · · , ni−1 − 1, ni + 1, · · ·〉 〈α(� − 2); · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)

−
√

(n′
i + 1)n′

i+1

λ(�, u,� − 2, u′ + U (n′
i − n′

i+1 + 1))

×
(√

(n j + 1)n j+1 |α(� − 2); · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(� − 2); · · · , n′
i + 1, n′

i+1 − 1, · · ·|

+ √
(n j + 1)n j−1 |α(� − 2); · · · , n j+1 − 1, n j + 1, · · ·〉 〈α(� − 2); · · · , n′

i + 1, n′
i+1 − 1, · · ·|

)
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−
√

(n′
i + 1)n′

i−1

λ(�, u,� − 2, u′ + U (n′
i − n′

i−1 + 1))

×
(√

(n j + 1)n j+1 |α(� − 2); · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(� − 2); · · · , n′
i−1 − 1, n′

i + 1, · · ·|

+√
(n j + 1)n j−1 |α(� − 2); · · · , n j+1 − 1, n j + 1, · · ·〉 〈α(� − 2); · · · , n′

i−1 − 1, n′
i + 1, · · ·|

)]

+
∑
i odd

∑
j even

[ √
(ni + 1)ni+1

λ(� − 2, u + U (ni − ni+1 + 1),�, u′)

×
(√

(n j + 1)n j+1 |α(�); · · · , ni + 1, ni+1 − 1, · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(�); · · · , n′
i, · · ·|

+ √
(n j + 1)n j−1 |α(�); · · · , ni + 1, ni+1 − 1, · · · , n j−1 − 1, n j + 1, · · ·〉 〈α(�); · · · , n′

i, · · ·|
)

+
√

(ni + 1)ni−1

λ(� − 2, u + U (ni − ni−1 + 1),�, u′)

×
(√

(n j + 1)n j+1 |α(�); · · · , ni−1 − 1, ni + 1, · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(�); · · · , n′
i, · · ·|

+ √
(n j + 1)n j−1 |α(�); · · · , ni−1 − 1, ni + 1, · · · , n j−1 − 1, n j + 1, · · ·〉 〈α(�); · · · , n′

i, · · ·|
)

+
√

(n′
i + 1)n′

i+1

λ(�, u,� − 2, u′ + U (n′
i − n′

i+1 + 1))

×
(√

(n′
j + 1)n′

j+1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i + 1, n′

i+1 − 1, · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i + 1, n′

i+1 − 1, · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)

+
√

(n′
i + 1)n′

i−1

λ(�, u,� − 2, u′ + U (n′
i − n′

i−1 + 1))

×
(√

(n′
j + 1)n′

j+1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i−1 − 1, n′

i + 1, · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i−1 − 1, n′

i + 1, · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)]

+
∑
i even

∑
j odd

[ √
(ni + 1)ni+1

λ(� + 2, u + U (ni − ni+1 + 1),�, u′)

×
(√

(n j + 1)n j+1 |α(�); · · · , ni + 1, ni+1 − 1, · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(�); · · · , n′
i, · · ·|

+ √
(n j + 1)n j−1 |α(�); · · · , ni + 1, ni+1 − 1, · · · , n j−1 − 1, n j + 1, · · ·〉 〈α(�); · · · , n′

i, · · ·|
)

+
√

(ni + 1)ni−1

λ(� + 2, u + U (ni − ni−1 + 1),�, u′)

×
(√

(n j + 1)n j+1 |α(�); · · · , ni−1 − 1, ni + 1, · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(�); · · · , n′
i, · · ·|

+ √
(n j + 1)n j−1 |α(�); · · · , ni−1 − 1, ni + 1, · · · , n j−1 − 1, n j + 1, · · ·〉 〈α(�); · · · , n′

i, · · ·|
)

+
√

(n′
i + 1)n′

i+1

λ(�, u,� + 2, u′ + U (n′
i − n′

i+1 + 1))
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×
(√

(n′
j + 1)n′

j+1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i + 1, n′

i+1 − 1, · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i + 1, n′

i+1 − 1, · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)

+
√

(n′
i + 1)n′

i−1

λ(�, u,� + 2, u′ + U (n′
i − n′

i−1 + 1))

×
(√

(n′
j + 1)n′

j+1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i−1 − 1, n′

i + 1, · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(�); · · · , ni, · · ·〉 〈α(�); · · · , n′
i−1 − 1, n′

i + 1, · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)]

+
∑
i even

∑
j even

[
−

√
(ni + 1)ni+1

λ(� + 2, u + U (ni − ni+1 + 1),�, u′)

×
(√

(n′
j + 1)n′

j+1 |α(� + 2); · · · , ni + 1, ni+1 − 1, · · ·〉 〈α(� + 2); · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(� + 2); · · · , ni + 1, ni+1 − 1, · · ·〉 〈α(� + 2); · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)

−
√

(ni + 1)ni−1

λ(� + 2, u + U (ni − ni−1 + 1),�, u′)

×
(√

(n′
j + 1)n′

j+1 |α(� + 2); · · · , ni−1 − 1, ni + 1, · · ·〉 〈α(� + 2); · · · , n′
j + 1, n′

j+1 − 1, · · ·|

+
√

(n′
j + 1)n′

j−1 |α(� + 2); · · · , ni−1 − 1, ni + 1, · · ·〉 〈α(� + 2); · · · , n′
j−1 − 1, n′

j + 1, · · ·|
)

−
√

(n′
i + 1)n′

i+1

λ(�, u,� + 2, u′ + U (n′
i − n′

i+1 + 1))

×
(√

(n j + 1)n j+1 |α(� + 2); · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(� + 2); · · · , n′
i + 1, n′

i+1 − 1, · · ·|

+ √
(n j + 1)n j−1 |α(� + 2); · · · , n j−1 − 1, n j + 1, · · ·〉 〈α(� + 2); · · · , n′

i + 1, n′
i+1 − 1, · · ·|

)

−
√

(n′
i + 1)n′

i−1

λ(�, u,� + 2, u′ + U (n′
i − n′

i−1 + 1))

×
(√

(n j + 1)n j+1 |α(� + 2); · · · , n j + 1, n j+1 − 1, · · ·〉 〈α(� + 2); · · · , n′
i−1 − 1, n′

i + 1, · · ·|

+ √
(n j + 1)n j−1 |α(� + 2); · · · , n j−1 − 1, n j + 1, · · ·〉 〈α(� + 2); · · · , n′

i−1 − 1, n′
i + 1, · · ·|

)]}
. (A1)

In order to identify the steady states we need to solve ∂
∂t ρ

0 = 0. If we look at the coefficients of the diagonal terms of the
decoherence free subspace, |α(�); n1, · · · , nL〉 〈α(�); n1, · · · , nL|, in Eq. (A1), then we observe that their sum is zero, and thus
the mixed state given by

ρmix = 1

N
∑
{n j}

|α(�); n1, · · · , nL〉 〈α(�); n1, · · · , nL| (A2)

is a steady state of the system, where we sum over all possible density configurations {nj} and N is the number of these

configurations, N = (L + N − 1
N

)
.
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