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Pedestrian dynamics with mechanisms of anticipation and attraction
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We study the pedestrian dynamics with the consideration of two heuristic mechanisms of anticipation and
attraction. The former enables the individuals to anticipate potential collisions in terms of the state of surrounding
environment and slow down their moving speed accordingly, while the latter reflects the tendency of the
individuals following (or being attracted by) those peer partners with high moving speeds, trying to reach their
destinations as quickly as possible. By tuning the interaction ranges of anticipation and attraction, we explore
the collection motion behavior of the pedestrians in three common movement scenarios, i.e., the bidirectional
pedestrian flows in a straight corridor, the crossing pedestrian flows in a square and the crowd evacuation in
a room. Interestingly, with appropriate combinations of the anticipation distance and attraction distance, we
reproduce the typical collective motion patterns of the pedestrians observed in the empirical studies, such as the
formation and separation of global pedestrian flow lanes, the stop-and-go waves, and the vortexlike patterns as
well. Particularly, we find that a strong attraction effect by the fast-moving pedestrian flows benefits the efficient
passing only in the corridor case, whereas in the case of crossing pedestrians the avoidance behavior due to
anticipation will play a dominating role in guaranteeing an ordered collective motion.
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I. INTRODUCTION

Collective ordered motion with distinct patterns are dis-
covered in many real-life situations, ranging from the
organization of cells [1], migration of animals [2] to the traffic
of human beings [3], etc. Specifically, it was observed in
these multibody systems that simple local-scale interactions
among individuals usually lead to complex structures macro-
scopically, such like vortex in sardines [4], marching queues
in spiny lobsters [5,6], and lanes in pedestrians [7,8]. In the
last decades, a lot of insightful models have been introduced
to reproduce and explain the emergence of collective motion
behavior of animals as well as our human beings [9–11]. It is
worth pointing out that the occurrence of ordered collective
motion is identified as a nonequilibrium phase transition from
the viewpoint of statistical mechanics, and thereby the ideas
and methods from the field of statistical physics have been
extensively utilized to treat the collection motion phenom-
ena [11,12].

As a major research area for collective motion, pedestrian
dynamics in confined space is quite interesting for scien-
tists [13]. Particularly, when the population density becomes
sufficiently large, crises and disasters may happen occasion-
ally in human crowds [14], resulting in great economic and
life loss. Therefore one of the important aims of studying
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pedestrian dynamics is trying to find potential interventions
to prevent accidents to arise [15,16]. Noticeably, thanks to
the development of data analysis technique, individual recog-
nition and tracer technique in images in recent years, more
and more empirical data of real social events become avail-
able, which provide us practical views on understanding the
quantitative relationship between relative position and veloc-
ity of the pedestrians and the emergent collective motion
pattern [7,8,14,16–20].

In theoretical studies of the pedestrian dynamics, re-
searchers have constructed various dynamical models to
depict different situations that people may face [21]. To
the best of our knowledge, most existing models in the
literature are either based on the fluid dynamics, which re-
gards pedestrians as continuum matter [22–26], or on cellular
automaton [27–29] and multi-agent-based models, which re-
gards pedestrians as active agents (or particles) [30–32]. In the
latter case, the pedestrian dynamics is usually studied within
the framework of the so-called social force model, where the
interactions between particles depend on their relative posi-
tions [13,33–38].

Recently, the psychological status of the pedestrians per
se is also taken into account in determining the dynamics of
their movements with respect to time [39]. Generally, in most
scenarios (such as in a hallway, or crossroad) the pedestrians
like to move without bodily contact with other individuals,
and are eager to arrive at their next destinations as soon as
possible. That is, people would like to keep their own space
and moving quickly with less disturbance of the rhythm of
movement.

Anticipation is one of psychological mechanisms to guide
the movement of the pedestrians with less bodily contact,
i.e., when moving on the road, the pedestrians always tend

2643-1564/2020/2(4)/043250(13) 043250-1 Published by the American Physical Society

https://orcid.org/0000-0002-3382-014X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043250&domain=pdf&date_stamp=2020-11-18
https://doi.org/10.1103/PhysRevResearch.2.043250
https://creativecommons.org/licenses/by/4.0/


LÜ, WU, AND GUAN PHYSICAL REVIEW RESEARCH 2, 043250 (2020)

to anticipate the others’ positions and their moving tendencies
to avoid any potential collisions in the near future. With the
anticipation mechanism, the interaction between any pair of
agents depends not only on their relative positions, but also
on their velocity difference. A recent research work indicated
that the estimation time for collision is a typical characteristic
of the pedestrian dynamics [3].

In contrast to the extensive investigations of the mechanism
of avoiding collision, the issue of quickly moving is little
explored in the literature so far [40–42]. In this work, we try to
fill this gap by taking into account both the factors of avoiding
collision and quickly moving to study the collective behavior
of pedestrians in three typical scenarios. Our principal idea is
to consider the flow lanes (generated by the pedestrians just
along the ahead or behind of their moving directions) as the
object entities for interaction. We presume that in order to
achieve fast moving with less collision the individuals have
a tendency to follow the fast pedestrian flow lanes with the
same moving direction and keep apart from the opposite ones.
It is convenient to cast such effect into physical interaction
rules, where the individuals are either attracted or repelled by
the flow lanes generated by those surrounding pedestrians.
By means of extensive computer simulations and thorough
analysis, we intend to figure out some general characteristics
of the collective behaviors of humans in typical pedestrian
scenarios.

II. THE MODEL

As in common practice [12], we treat the pedestrians as
active particles, whose motion with respect to time depend on
serval types of forces.

The first one is the endogenous self-driving force. Since
each particle i has its own destination such that there exists a
self-propelled force to guide its movement

�F sp
i = β(�v0,i − �vi ) (1)

where the self-propelled force is aligned with the vector differ-
ence of pedestrian heading direction �vi and its desired velocity
�vi,0, and its magnitude is proportional to the length of the
vector difference. The prefactor β characterizes how fast the
particles react to the difference.

Second, we consider the repulsive force whenever two
particles are too close to each other, which is defined as

�F r p
i = α

∑
j

(
1 − ri j

2r0

)
r̂i j . (2)

The repulsive force between particle i and j works when their
physical distance satisfies ri j < 2r0, where r0 is the radius of
each particle (for simplicity, all the particles are identical).
The quantity �ri j = �ri − �r j characterizes the relative displace-
ment between them, where ri j is the length of �ri j , and r̂i j is the
unit vector of �ri j , and α is a proportional factor.

Third, we account for the interaction force induced by
the anticipation mechanism. Whenever moving forward, the
agents always detect the state of surrounding circumstance
to anticipate the possibility of collisions and slow down their
walking speed where necessary. Following Refs. [31,33–38],
the calculation of the interaction force due to anticipation is

FIG. 1. Graphical illustration of our model. Whenever the angle
between �vi and �v j is greater than π/2 (left), collision might arise on
the direction of relative movement �vi j = �v j − �vi provided that both
the agents keep their moving trends unchanged. The agent i antici-
pates such situation and will try to avoid collision by slow down its
speed as if it is acted upon the repulsive force, exerted by the reverse
flow lane along the direction �vi j . If the included angle between �vi

and �v j is less than π/2 (right), the agent i has a tendency to follow
the trails of the “peer partner” j trying to reach its destination quickly
and with less collisions, as if it is attracted by the same direction flow
lane generated by the agent j.

based on the anticipation distance, which is associated with
the psychological attitude on the surrounding circumstance
of the agents [43,44]. Generally, one person’s psychological
desired space is small when the surrounding crowd density is
dense, which means that even they might be quite close to the
others, they would accept the status and make slight (or no)
response to the situation. By contrast, when the crowd density
is sparse, even they could walk on smoothly without body
contact with others, they would be unsatisfied to walk with
strangers shoulder by shoulder. In light of these points, we
take psychological desired distance with others as a relevant
index to measure potential collision, and define the interaction
force due to anticipation as

�F ad
i = γ

(
1 − rs

ds

)
W ad (v̂i j × ẑ), (3)

where ds stands for the psychologically desired (or tolerant)
distance, rs is the estimated distance of collision (whose value
is determined by ri j | sin(θv,r )|, where θv,r is the included angle
between the vectors �ri j and �v ji, see Fig. 1), and γ is a pref-
actor. Note that the anticipative force is at work only when
rs < ds. The quantity W ad = vi j

ri j
cos(θv,r ) characterizes the

extent of anxiety of the agents for potential collisions, which
turns into the driving force to adjust the rhythm of movement.
Basically, W ad should be proportional to the magnitude of the
relative velocity of the two agents v̂i j , the cosine of θv,r , and
be inversely proportional to distance of agent i to the lane
induced by j. For anticipative force, the direction of the unit
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TABLE I. A summary of the parameters used in our model.

α fixed as 75 Characterizing the intensity of bodily repulsive interaction
β fixed as 3 Reciprocal of the characteristic time for self-acceleration and self-deceleration
γ fixed as 1 Proportional coefficient for the repulsive or attractive forces exerted by the pedestrian flow lanes,

its magnitude is as the same order as β so that the former two types of forces are of the same
order as the self-propelled force

r0 fixed as 0.3 (m) Radius of a typical pedestrian based on empirical observation
v̄0 fixed as 1.34 (m/s) Average walking speed of the pedestrians
dm chosen as 2, 5, 10 (m) Maximum range of visibility of the pedestrians (lower for denser systems, see Appendix)
ds free parameter Characterizing the interaction range of the repulsive force due to the anticipation mechanism
df free parameter Characterizing the interaction range of the attractive force due to the attraction mechanism

vector ẑ is defined as ẑ = (�ri j × �vi j )/|�ri j × �vi j | such that the
dodging direction is always perpendicular to and away from
the reverse flow lane, denoted by �F ad in the left panel in
Fig. 1. In any case the included angle between �ri j and �vi j is
zero, ẑ will be a unit vector perpendicular to the plane, inward
direction. In this way, the agents follow a right-hand traffic
rule for frontal approaches (θ = 0).

In case the estimated distance of collision rs is less than
2r0 indicating the adjustment of the direction of velocity,
i.e., Eq. (3), may not work for avoiding the occurrence of a
collision, we assume the presence of another repulsive force
to drive the agent’s motion

�F ar
i = γ

(
1 − rs

ds

)
W ad r̂i j, (4)

whose magnitude is exactly the same as in Eq. (3), but with a
different direction.

Finally, we also consider the attractive effect of the pedes-
trian flow lanes, as indicated in the right panel of Fig. 1.
The rationale is that, besides the tendency to keep away from
the reverse flow lanes, each agent is willing to follow those
same direction flow lanes (i.e., flow lanes pointing to the same
target direction) trying to reach the destination as efficiently
as possible. (Here we remind that only those pedestrian flow
lanes with potential crossover with the forward path of the
focal agent will exert either an attractive or a repulsive force
on it.) We define the attractive force on the agent i exerted by
the same direction flow lane from the agent j as

�F f w
i =

{
γ

( r f

d f

)2
W f w(v̂ j × ẑ), if r f < d f

0, otherwise
, (5)

where r f = ri j | sin(θv j,r )| representing the vertical distance
from the position of i to the black dash line (the flow lane gen-
erated by the individual j), θv j,r is the included angle between
the vectors �ri j and �v j , and d f depicts the maximum distance
that an agent will start to follow (i.e., to be attracted by) the
lanes of the others. The quantity W f w = v j

ri j
v̂ j · v̂0,i measures

the extent of attraction of the flow lane. Obviously, a larger
speed and more similar direction of movement will exert
greater attraction to the focal agent i. Similarly, for attractive
force, ẑ = (�v j × �ri j )/|�ri j × �v j | so that the cross product of ẑ
and v̂ j is pointing vertically (and closing) to the pedestrian
flow lane, denoted by �F f w in the right panel in Fig. 1.

Taken together, in our model the movement of pedestri-
ans are mainly driven by self-propelled force, physical body

collision, and the repulsive or attractive forces exerted by
the surrounding pedestrian flow lanes. Self-propelled force
and physical body collision are commonly considered in the
literature to study the behavior of pedestrians, while the repul-
sion or attraction due to the pedestrian flow lanes are newly
introduced ingredients in our current model. We remark that
the interaction forces exerted by the pedestrian flow lanes
are heuristically inspired in terms of the psychological status
of the pedestrians: the tendency of keeping away from the
reverse flow lanes reflects the instinctive reaction of the pedes-
trians to avoid potential collisions, and the trend of following
the flow lanes pointing to the same targeted direction implies
their eagerness for quickly moving.

Both mechanisms of avoiding potential collisions and
seeking for quickly moving will be only at work provided that
the distance between the considered pair of agents is less than
the average maximum range of visibility dm, see Appendix for
a detailed estimation of its value. To reduce the complexity of
our model, the parameters α, β, γ , r0, v̄0, and dm are chosen
as fixed values in terms of either empirical observations or
theoretical estimations, while the only two free parameters are
ds and d f , characterizing the interaction range of the repul-
sive and attractive force exerted by the pedestrian flow lanes,
respectively. In particular, we choose dm = 10, 5, and 2, re-
spectively, for sparse, moderate and dense pedestrians studied
below. Unless otherwise specified, we use α = 75,1 β = 3,
γ = 1, and r0 = 0.3 for simulations in this work, and set the
expected speed distribution as a Gaussian distribution with
mean value v̄0 = 1.34 and standard deviation 0.26. A sum-
mary of the parameters is listed in Table I.

III. SIMULATION RESULTS AND ANALYSIS

The two crucial parameters in our model are the psycholog-
ically desired distance ds away from others and the maximum
distance d f of attraction by the same direction flow lanes. In
what follows, we present and analyze the simulation results of
our model by tuning these two parameters for several typical
pedestrian scenarios, such as pedestrians in a straight corridor
with bidirectional flows, pedestrians in a square with crossing

1Note that we have adopted a sufficiently large α so that the unphys-
ical phenomenon of penetration, i.e., two pedestrians approaching
centrally may penetrate each other when their relative speed is large
enough in terms of Eqs. (1)–(5), will never occur.
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FIG. 2. Schematic illustration of our simulation setting for the
bidirectional pedestrian flows.

flows, and panic pedestrians swarming to a narrow gate in the
case of evacuation dynamics. These classical scenarios have
been extensively studied in the literature but with different
microscopic interaction rules among the agents [3,21].

A. Bidirectional pedestrian flows in a straight corridor

First, we consider the corridor case where the agents
are separated into two groups walking on with opposite
destinations. For simplicity, we assume that the number of
individuals in the two groups are equal and all the agents stay
at the waiting area shown in Fig. 2 initially. Then the agents
begin to move according to the rules Eqs. (1)–(5). We make
statistical analysis of the moving behavior of the pedestrians
in the middle observation area. The width of the corridor is
set to 3, which is of 10 times the radius of an individual,
suggesting that it allows at most 6 individuals to pass through
shoulder by shoulder. We vary the number of agents from 100
to 300 for doing statistics of the system order parameter in the
observation area.

In a straight corridor, people are generally so concerned
with the oncoming individuals. Thus it is reasonable to
assume a large anticipation distance in such situation. In par-
ticular, we adopt ds = 1.5 so that all the agents have a strong
tendency to avoid collision. By varying d f and N we observe
some interesting emergent collective motion patterns, which
are presented in Fig. 3. For sparse systems, people tend to
walk smoothly and the microscopic movement behavior is
independent of d f , whereas in the case of dense systems, large
d f results in the lane separation, which guarantees a high
efficiency of passing through, while small d f leads to the arise
of jamming.

To specify the effect of d f on the bidirectional flow move-
ment, we measure some physical quantities illustrated below.
First, we define the local order parameter of the particle i by
the mean of projection of the others’ velocity on i’s in the
rectangle shown in Fig. 4.

oi = 1

NCi

∑
j∈Ci

v̂i · v̂ j, (6)

where NCi is the number of particles in the rectangle region.
By averaging this quantity over all the agents, we obtain
the average local order parameter of the system at each
moment l as

Ol = 1

N

∑
i

oi, (7)

where N is the system size.

FIG. 3. Typical snapshots of the pedestrians in the corridor case
for different combinations of N and df . The parameter ds is fixed
as 1.5, df = 0.1 in (a) and (c), and df = 1 in (b) and (d). In sparse
systems (a) and (b), N = 50, the agents can pass through efficiently,
while in dense systems (c) and (d), N = 300, only with the presence
of a strong attraction effect does the separation of global flow lanes
emerge.

The time sequences of Ol are plotted in Fig. 5, which
allows us to figure out the process of lane formation. Ac-
cording to our simulation procedure, Ol is initially high since
all the agents are staying at the boundaries of the observation
area. When the marching fronts of the two groups are getting
closer, the average order parameter begins to drop, see Fig. 5.
Nonetheless, we observe that a large range d f of attraction
by the same direction flow lanes helps to the formation of
collectively moving clusters (usually resulting in a large Ol ),
no matter what the system size N and the psychologically
desired distance ds are. We also find that a dense system with
greater d f can keep lanes more stably [the flat curves for large
d f in Figs. 5(c) and 5(d), and also see Fig. 3(d)], because once
the global flow lanes emerge, those nearby agents have to fol-
low the pattern formatted, since any disobedience will lead to
severe collisions with the agents in the reverse flow. Whereas
in sparse systems, even just with the avoidance mechanism,
people can pass through efficiently, similar to the results in [3].
We point out that the formatted flow patterns are vulnerable
without the support of a large number of agents, where they
are likely to merge and split for a small system of N = 100.

FIG. 4. Sketch of the calculation of the local order parameter. For
each agent i (the red one), we select a rectangular area (width is 4r0

and length is 10) along the direction of its destination (here the right)
and measure the averaged velocity projection of the others in the area
in the direction of �vi.
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FIG. 5. Time series of the mean local order parameter Ol with
different combinations of the parameters N , ds and df . N = 100,
ds = 0.6 in (a), N = 100, ds = 1.5 in (b), N = 300, ds = 0.6 in (c),
and N = 300, ds = 1.5 in (d).

We can find some useful clues on the pedestrian traffic jam
from Figs. 3(c) and 3(d) for dense systems. For small d f , the
agents are weakly influenced by their neighbors moving on the
same direction, and when the front agents of the two groups
are contacting, they are easy to form a confrontation at the
junction. The oppositely marching people without compro-
mise further duce the available width of the road, and finally
leading to the emergence of jamming, resulting in low values
of the ordered parameter Ol , shown in Figs. 5(c) and 5(d).
In Ref. [45], both bidirectional and unidirectional pedestrian
flow have been investigated, and it was found that the clogging
occurs in local area and expand gradually until the agents
overoccupy the load. However, for a sufficiently large d f ,
the great attraction forces exerted by those peer partners can
effectively prevent the formation of confrontation [even if a
deadlock is occasionally formed at the junction, a tiny fluctu-
ation (noise effect) would likely lead to the gathering of agents
with the same destination at one side of the corridor], which
in turn gives rise to the formation of flow patterns observed
in Fig. 3(d). We point out that a similar result is found in
Ref. [46], where globally ordered pedestrian flow lanes are
formed simply due to the symmetry breaking.

Another statistical quantity we measured is the mean self-
projection of velocity, which is defined as the magnitude of �vi

projected into the direction of v̂0,i

vp,i = �vi · v̂0,i. (8)

The mean self-velocity projection 〈vp〉 = ∑
i vp,i/N charac-

terizes to what extent the agents are walking in their desired
directions. If this quantity is equal to the mean expected speed
(which is set to 1.34 in our current study), then all the agents
just walk with the most efficient way to their destinations. In
Fig. 6, we plot 〈vp〉 as a function of time for some combi-
nations of the parameters. We find that compared with Ol ,
there is no evident decline for 〈vp〉 for sparse systems, where
the pedestrians may not walk in line or in lanes, but they can

FIG. 6. Time series of the mean self-velocity projection 〈vp〉 with
different combinations of the parameters N , ds and df . N = 100,
ds = 0.6 in (a), N = 100, ds = 1.5 in (b), N = 300, ds = 0.6 in (c),
and N = 300, ds = 1.5 in (d).

keep high speed, owning to less collision probability in sparse
crowd. For larger ds values, the agents are able to anticipate
potential collisions with others earlier such that they can al-
ways walk on smoothly. As a consequence, large anticipation
distance ds helps to improve the passing efficiency no matter
what the system size is.

The arise of jamming in dense systems with low d f is
also reflected by the behavior of 〈vp〉, as shown in Figs. 6(c)
and 6(d). As time goes on, more and more agents swarm
into the observation region, and are hindered there for small
d f , and their passing speeds in the observation area declines
rapidly. The crisis in this situation is that once a jam is formed,
it is hardly vanished via self-organization of the agents. Bro-
ken of self-organization means less order and more blocking
units slowing down the passing flow of the pedestrians. In
contrast, higher d f helps agents with the same destination to
form clusters with separate lanes, and once such lanes have
emerged, 〈vp〉 increases continuously with respect to time. We
remark that our current findings are consistent with those from
real experiments in Ref. [8] in studying the process of flow
lane formation.

In another experimental study of bidirectional pedestrians
in a straight corridor [18] with length 12 and width 20, it was
found that the main behavior of avoidance is that people can
steer their walking direction frequently. We yield the same
result in our theoretical model, where avoidance of potential
collisions and attraction by quickly moving lanes are the two
mechanisms to reduce the probability of collision. We empha-
sis that mutual avoidance is the dominating rule among sparse
pedestrians, but in dense systems avoidance behavior becomes
less efficient, while following fast moving peer partners will
serve as a vital role in driving the agents to form stable flow
lanes.

To check the robustness of the above results, we further
study the situation where the pedestrians are initially dis-
tributed randomly in a square area, whose top and bottom
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FIG. 7. Typical snapshots of the bidirectional pedestrian flows in
the stationary state in a square area, where the agents are reinjected
to the system whenever they are leaving out at the boundaries. The
observation region for this demonstration is a square with linear
length 12, the number of agents in both simulations is N = 400 and
df = 0.1, 1.0 respectively in (a) and (b). Stable pedestrian flow lanes
emerge in the case of large attraction distance df , right panel.

boundaries are of periodic boundary condition. The pedestri-
ans move either from left to right or vice versa. To conserve
the total amount of the pedestrians, if an agent reaches its
target at left or right side, we will inject a new one into
the system from the opposite side with distance 2.0 to the
boundary, and its y-axis position is randomly chosen.

We plot the typical stationary results in Fig. 7, where the
formation of visible flow lanes can be observed. Once again,
for large values of d f , the flow lanes are more distinguished
with stable structures.

To better understand the simulation results, we measure the
velocity-direction correlation on the vertical distance, which
can be used as a rough estimation of the width of the formatted
flow lanes. The results are summarized in Fig. 8. Although the
amplitude of the correlation function decays with vertical dis-

FIG. 8. Average velocity-direction correlation Cv·v of the agents
as a function of the vertical distance for different N and df , which
is measured as Cv·v (�y) = 〈Ci j

v·v (|yi − y j |)〉, if i �= j, and Ci j
v·v (|yi −

y j |) = v̂i · v̂ j , �y = |yi − y j |. N = 100, 200, 400, and 800 respec-
tively in (a), (b), (c), and (d).

FIG. 9. Relative amplitude of the velocity-direction correlation
function as a function of the parameters N and df , and ds for these
simulations is fixed as 1.0.

tance, the period-like waveform indicates that the flow lanes
with opposite directions occur alternatively and evenly, and its
wave length represents approximately the width of the lanes.
Particularly, the amplitude can signify how stable those lanes
are: if the formed lanes rarely change over time, we would
obtain relatively high values of correlation, otherwise the
rapid changes of lanes would mask the correlation and result
in vanishingly small amplitude. Therefore we can infer from
Fig. 8 that in sparse systems, pedestrian flow lanes always
change frequently no matter what d f is. With the increase
of density, however, large d f will result in more stable and
wider lanes markedly. This point is easily understandable,
a wider attraction distance will drive more peer partners to
follow, which benefits the formation of wider flow lanes, and
with agents swarming into these lanes continuously, the newly
joined pedestrians will further make the lanes even more
stable.

In Fig. 9, we calculate the relative amplitude of the corre-
lation function by the second peak value subtracting the first
trough value in Fig. 8 for different N and d f . The relative
amplitude can be regarded as the degree of purity of the
adjacent lanes, which may also serve as another indicator of
the order of the system. Obviously, in Fig. 9, we witness that
d f plays a vital role in dense system with N ∈ (200−600) [the
density ρ ∈ (0.5 − 1.5)], and larger d f brings more neat lanes.

B. Crossing pedestrian flows in a crossroad

Now we turn our attention to the crossing motion scenario
of two groups of pedestrians with mutual orthogonal target
directions (for convenience, we call them as group one and
group two, respectively). As before, we first consider the situ-
ation of no reentrance of the agents whenever they are leaving
out the simulation area, see Fig. 10. Initially, the two groups
with mutual orthogonal destinations are placed in the wait-
ing area, and then they are allowed to move simultaneously.
When they enter the crossing area, we make some statistical
measurements on their moving behavior. In a previous exper-
iment [17], it was suggested that people may underestimate
the risk of collision when they just notice each other, and the
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FIG. 10. Sketch for the crossing pedestrian flow simulation. Ini-
tially, the agents are standing in the waiting areas (blue zone), whose
length is 29 and width is 2. We measure their moving behavior when
they are entering the crossing area (light blue zone) and the statistics
area (red region).

estimation of collision risk is increased as they are getting
closer. Our aim here is to investigate how the anticipation
distance ds influences the agents to avoid each other.

In Fig. 11, we present the typical snapshots for the crossing
flow scenario for two combinations of ds and d f . When the
agents are of strong tendency to avoid collision (ds = 1.5)
but of weak inclination for following fast moving peer part-
ners (d f = 0.1), we observe interesting phenomena, where
the agents with different targets are capable of organizing
themselves into blocks. when one block of agents start to
pass the crossing area as a whole, the agents from the other
group will stay waiting, and then the reverse case happens. By
contrast, for the system with ds = 0.6 and d f = 1.5 (agents
take care less for collision, but serious for quickly moving),
the agents fall into a state of disarray and no one can pass
cross the other-side crowd to reach the destination efficiently.

To get a quantitative view, we check the proportion p(t )
of agents from one certain group having entered the red color
region in Fig. 10 as a function of time. To be more specific,
if there are a agents from the group one and b agents from

FIG. 11. Typical snapshots of the crossing pedestrian flows for
two different combinations of df and ds, ds = 0.6, df = 1.5 in (a) and
ds = 1.5, df = 0.1 in (b). The number of agents in both simulations
is N = 200.

FIG. 12. Time series of the proportion p(t ) of agents from one
certain group having entered the red color region in Fig. 10. The
results are for one single simulation realization with no reentrance of
the agents whenever they are leaving out the simulation area.

the group two have appeared in the red region at time t , then
p(t ) = a/(a + b). The time series of p(t ) is plotted in Fig. 12,
which can tell us at a certain moment which direction (hori-
zontal or vertical) is the major one with active pedestrian flow,
i.e., almost only the agents along this direction are moving,
while those along the other one are waiting. From Fig. 12,
we observe rhythmic overturn of p(t ) representing the arise of
alternate passing and waiting phenomenon. On the contrary,
irregular fluctuation of p(t ) around 0.5 just means, without
mutual compromise as shown in Fig. 11(a), people get into
disordered motion.

In order to get a deep insight, we calculate the quantity

〈p〉 =
∫ T

0
|p(t ) − 0.5|dt/T (9)

during a long time interval T , whose magnitude thereby
specifies whether the phenomenon of alternate waiting and
passing is significant or not. The greater 〈p〉 is, the more
striking of the phenomenon. The ensemble average results of
〈p〉 for different system size and parameters d f and ds are
summarized in Fig. 13. In sparse systems, the moving pattern
of the pedestrians seems independent of d f and ds, which is
understandable since great fluctuations of small systems will
erase the statistical meaning of our measurements. For denser
systems with large ds, the appearance of a large number of
agents in one group will force the front individuals of the other
group decelerating their speeds in front of the crossing area so
that they tend to aggregate there until they pass together in due
course. Our simulation results are in well agreement with the
experimental studies for mutual crossing scenario [18], where
alternate waiting phenomena are frequently occurred.

A counterintuitive phenomenon is the arise of disordered
moving pattern in dense systems with large d f , which indi-
cates that following fast flow lanes does not always help to the
formation of highly ordered motion, see Figs. 13(c) and 13(d).
In Fig. 11, we find that the attraction effect by the same
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FIG. 13. The quantity 〈p〉 = ∫ T
0 |p(t ) − 0.5|dt/T as a function

of the attraction distance df for different system size N and anticipa-
tion distance ds, N = 50, 100, 150, and 200 in (a), (b), (c), and (d).
The larger value of 〈p〉, the more striking of the alternate waiting and
passing phenomenon.

direction pedestrian flow lanes has pushed people into narrow
lines for large d f , hence much part of the road are wasting. For
the crossing pedestrian flows, the width of the channel affects
greatly the efficiency of passing. If the agents were evenly
dispersed on the road, the pedestrian density in the crossing
area would become lower so that individuals could be easier
to avoid the others instead of facing collision of two screwing
long queues.

The mean self velocity projection 〈vp〉 in the crossing
pedestrian flow scenario is shown in Fig. 14. In sparse sys-
tems, the collective motion behavior of the pedestrians is

FIG. 14. Time series of 〈vp〉 of the agents in the crossing area
for different combinations of the parameters N , ds and df , N = 50,
ds = 0.6 for (a), N = 50, ds = 1.5 for (b), N = 200, ds = 0.6 for (c),
and N = 200, ds = 1.5 for (d).

FIG. 15. Typical snapshots of the crossing pedestrian flows
where the agents are allowed to rejoin into the systems whenever they
are leaving out from the right or bottom boundaries. The parameter
df = 0.1 and the number of agents is N = 400 in both simulations.
The parameter ds = 0.6 in (a) and ds = 1.5 in (b)

insensitive to both the parameters ds and d f , see Figs. 14(a)
and 14(b), whereas in dense systems, the anticipation distance
ds plays a dominating role in determining the passing effi-
ciency of the pedestrians. For small ds, the performance of
the agents is poor, shown in Fig. 14(c). Whenever the agents
anticipate potential collisions very early (large ds), they are
able to pass the crossroad quickly provided that the attraction
effect among peer partners is weak (small ds), see Fig. 14(d).
Nevertheless, if the attraction effect is strong (large d f ), the
passing efficiency is greatly inhibited again.

What about the collective motion pattern in the situation
that the agents are allowed to rejoin the system whenever
they leave out through the right or bottom boundaries? In-
terestingly, we find the emergence of skewed flow lanes for
large anticipation distance ds = 1.5, shown in Fig. 15, which
is quite different from the bidirectional pedestrian flows in a
straight corridor. The skewed flow lanes appear alternately for
the two groups with different targets such that it looks like
the formatted lanes are moving themselves. By aid of such
lane-moving mode, the agents hardly collide to the others, and
the well-regulated lanes ensure that the agents walk efficiently
toward their targets, since when they move forward, the others
blocking in the front have also moved away at same time
so that individuals in this situation seldom slow down their
speed. Remarkably, we notice that with such skewed lane
mode, the pedestrians try to bypass the others ahead from their
back, which is in accordance with our daily experience that
people usually prefer a early moving with slightly longer route
rather than stop and wait for the pedestrians in front to pass.
We remark that in a recent research [3], similar phenomenon
is obtained with different microscopic interaction rules among
the agents.

C. Crowd evacuation in a room

To check whether our current model is able to depict
versatile collective motion of pedestrians, as a final at-
tempt we study how the agents swarm quickly to narrow
or bottleneck exit in the case of an indoor fire panic. The
evacuation dynamics has been extensively investigated in the
last decades [30,47]. Plenty of previous works have focused
on the influence of the population density, door size, flow rate
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FIG. 16. Typical snapshots of the crowd evacuation in a room for different df = 0.1, 1.2, 1.5, and 1.5 in (a), (b), (c), and (d). The other
parameters are N = 300 and ds = 0.6. In the case of evacuation, the agents have strong desire for moving to the exit point which marked as
a star. For simplicity, however, we don’t allow them to cross the wall, since the exit serves as a bottleneck extremely inhibiting the passing
efficiency, especially in panic situations.

on the efficiency of evacuation and safety [31,43]. In a recent
work [48], Bottinelli et al. investigated exclusively the stable
patterns of the pedestrians gathering at the exit.

Following the research line of [48], we here intend to study
the gathering patterns of the pedestrians near the exit entry.
To do this, we make minor modifications of our model for the
bidirectional and crossing pedestrian flows. A lot of existing
work has suggested that in the panic situation, the behavior of
human becomes irrational or even crazy [30,47]. Thus we as-
sume that under such situation, the agents prefer mainly those
high speed flow lanes without the consideration of whether the
followed flows are really helpful to close to the exit. For this
reason, we change the function W f w to W f w = v j

ri j
so that only

the magnitude of the speed matters much, not the direction of
the velocity. Since the desired direction of each agent is the
vector from its location pointing to the exit, we regard that,
apart from the four types of forces mentioned above, the exit
point serves as a central force field exerting attraction force on
all the agents. In particular, the central force exerted on agent
i is formulated as

�F ex
i = ω(0 − �ri ) = −ωdexit r̂i, (10)

where ω is fixed as 0.2, dexit is the distance between the
position of the agent i and the exit. Note that we have selected
the exit as the origin of the coordinates.

Figure 16 shows some typical snapshots of the agents for
a system with N = 300 and several d f (in all cases, ds is
fixed as a small value 0.6 since in such crowding scenario the
agents account mainly for quickly moving with less consid-
eration of avoidance of collision). The agents are gathering
to the exit and arranged into a semicircular arch shape [49].
Notably, we observe the endless process of swing, gathering,
puffing, swing of the agents (typical videos are supplemented
in Ref. [50])

We plot in Fig. 17 the spatiotemporal patterns of the aver-
age local density ρ = ∑

ρi/N 2 and also those of the velocity
projection along the direction pointing to the exit (e.g., in
the direction of −r̂i for the agent i) for several values of
d f . Interestingly, we find quasi-periodic motion behaviors of
the agents. In the initial stage, all the agents are gathering
to the exit point, driven by both the self-propulsion and the
central force field. Accompanied by the aggregation process
is the increasing of internal pressure in the crowd, and once
the internal pressure is elicited to a sufficiently high level,
repulsion interactions will induce inflation, suddenly push-
ing the agents from the inner area to the periphery. After
that, the average local density in the room is decreased so that
the attraction forces on the agents can surpass the repulsive
ones again, and the individuals move to the exit subsequently,
thereby the next round of gathering begins.

For large d f , we find that the process of contraction and
inflation happen in all the directions almost simultaneously,
as shown in Figs. 16(c) and 16(d). Interestingly, when the
range of attraction d f is decreased to appropriate level, say
d f ≈ 1.1, we may obtain the anisotropic process, resulting in
the emergence of vortex-like patterns near the exit, shown in
Fig. 16(b). This is caused by a delicate balance between the
repulsive and attraction force exerted on the agents. Basically,
the density of the agents near the exit is greater than that
at the periphery. As a consequence, the inner agents (domi-
nated by repulsive force) are inclined to move outward, while
the outer agents tend to move toward the desired exit. With

2Here ρi is defined as the number of agents within the neighboring
volume of the agent i divided by the volume V = πr2 = 4πr2

0 , which
is actually the area of a circle of radius r with the center located
on i. We have checked that other choice of V does not change the
qualitative properties of the results presented in Fig. 17, as long as r
is far smaller than the linear size of the room.
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FIG. 17. Spatiotemporal patterns of the local density ρ and the
velocity projection of the agents along the direction pointing to the
exit for several attraction distances df and it respectively is df = 0.5,
0.8, 1.1, and 1.4 for (a) and (b), (c) and (d), (e) and (f), (g), and (h).
The vertical axis represents the distance between agent’s position and
exit. Periodic like behavior of gathering and bombing of the agents
becomes more striking for increasing df .

appropriate conditions, the flow lanes generated by the two
distinct groups could form a moment of couple, driving the
surrounding agents to form a vertex like pattern. This phe-
nomenon is usually called as traffic waves which is often
observed in realistic systems and very likely gives rise to the
disaster of stampede accidents [14,15].

When we decrease d f to sufficiently low values, the am-
plitude of traffic wave becomes vanishing. For instance, for
d f = 0.1, we only find very slight fluctuations in the system,
and the agents are keeping calm and move back and forth
around the location where they were, see Fig. 16(a) and also
the videos in Ref. [50].

We remark that traffic waves is often observed in unidi-
rectional flow scenario with constant width of the road for
vehicles, or in the case of evacuation into narrow channel
for pedestrians. The emergence of such phenomenon is often
ascribed to the lack of and/or the delay of obtaining the sur-
rounding road information. For instance, the individuals at the
tail part of a group might push forward without knowing the
density of the front part, or drivers can not follow the vehicles
in the front of them instantaneously when they suddenly stop
or launch and then lead to jamming.

The arise of traffic waves in our model is due to the
interplay of the strong desire of the agents to moving to
the escaping exit with the influence from local neighbors.
Specifically, when uninformed individuals are located in high
population density environment, they are more likely to act
blindly. For example, once they find some neighbors moving

fast, they would think the neighbors are just moving “rightly”
to the exit and very likely chase them in blind. The tendency
to following the fast pedestrian flow lanes will further attract
more surrounding blind individuals to join. Once such chain
reaction takes place, the process will hardly stop, and con-
tinue until excessive gathering brings huge interior pressure,
leading to collapse.

Finally, it is worth mentioning that in two recent exper-
imental studies [51,52], the real pedestrian crowds usually
form a bubble- or drop-like pattern instead of the heaplike one
observed here when they are passing a narrow bottleneck. We
argue that the difference might due to the different movement
scenarios investigated: a situation of low competitiveness of
the pedestrians (moderate/low pedestrian density with fast
moving speed) is considered in [51,52], while we have mainly
studied a case of high competitiveness of the pedestrians
(quite high pedestrian density circumstance with slow col-
lectively moving speed). In such more “panic” situation, the
heaplike pattern of the pedestrians is generally more likely to
emerge [53].

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied how the two kinds of interac-
tion mechanisms, say avoiding collision and following the fast
pedestrian flow lanes, affect the collective motion behavior
of pedestrians in three typical motion scenarios. Analogous
to other pedestrian models based on anticipation of relative
displacement and velocity, the mutual avoiding interaction be-
tween every pair of individuals is the typical driving force for
the pedestrians trying to keep safe and ordered motion. When
the number of individuals in a conserved column increases,
however, every individual has to face a crowded space, where
one usually can not obtain enough and useful information
about the motion profile in the surrounding circumstances.
For this reason, the correctness of any prior estimation or
anticipation will be greatly discounted. And as such, follow-
ing the local crowd with relatively high speed flow will be a
reasonable (or the only) choice. Interestingly, the two simple
heuristic mechanisms allow us to reproduce typical collective
motion patterns observed in the real world, and they seem to
paly distinct roles in different pedestrian scenarios.

In the case of bidirectional pedestrian flows in a straight
corridor, we find that following the fast moving peer partners
is very beneficial in a crowding situation, which will drive the
pedestrians into a collective moving entity, wherein the agents
just only need to obey the mainstream of motion. In this way,
the pedestrians are easily able to form clusters with separate
flow lanes, and thereby expected to walk to their destinations
efficiently with less collisions.

However, we find that the strong attraction by the fast
flow lanes does not always work well in some motion sce-
narios of the pedestrians. For instance, in the case of crossing
flows, when the attraction is too strong (large d f ), we find
the squeezing of the width of a queue and the enhancement
of stability of pedestrian clusters do not increase their pass-
ing efficiency, which on the contrary just gives rise to the
wasting of the space of the passing channel. In such case,
the individuals are unable to organize themselves into alter-
nate waiting and passing, and they are assembled to moving
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together without compromise, finally leading to crowded jam.
Remarkably, the strengthening of avoidance mechanism (i.e.,
a sufficiently large ds) will become helpful in such situa-
tion, where the deceleration of moving speed contributes to
the self-organization of the motion behavior into passing–
waiting–passing pattern. In the crossing pedestrian scenario,
the desire for quickly moving does not play as much an
instructive role as it in the bidirectional flow scenario, where
the alternate acceleration and deceleration of the pedestrians
is actually dominating. Thus the repulsive force due to the
avoidance mechanism will play a decisive role in the crossing
flows scenario.

In addition, we also observe the negative side of following
the fast moving peer-partners in the case of evacuation dy-
namics. Our preliminary results indicate that strong attraction
sometimes means blind obedience, which is likely to cause
harmful pedestrian traffic waves. The arise of traffic waves de-
stroys not only the normal moving rhythm resulting in chaotic
motions, but also pushes the system density into extreme
nonuniform state so that the distribution of the velocity of the
pedestrians changed repeatedly. In such situation, once some
individuals fall down accidentally, it will very likely trigger
stampede accidents and a series of chain disasters.

Sometimes people need to be assembled into a queue to
maximize the utilization of a road or channel just like in
the bidirectional flow scenario. However, sometimes strong
following behavior will weaken the independent judgment of
the individuals on external conditions, which leads them to
fall into excessive blind obedience of the collective. The blind
crowds with great motion inertia is hardly to rein in complex
situations, especially when the crowds has already accom-
plished gathering and begin to move, and without suitable
physical boundaries and interventions their moving behaviors
would be irrational and dangerous. According to our findings,
in realistic situations, people should keep cautious to estimate
to what extent should they follow the major flow, especially in
the crowded situation with the lack of correct information of
surrounding environments.

Finally, we would like to remark that, though no explicit
extrinsic noise is added in our current model to guide the
movement of the agents like that in the standard Vicsek model,
the adjustment process of their disturbed velocities (due to
the anticipation and attraction mechanisms) to desired ones
will serve as the role of intrinsic noise, making it possible for
the pedestrians to self-organize into various ordered motion
patterns.
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APPENDIX: DETERMINATION OF THE PARAMETER dm

We denote by dm the average maximum range of visibility
of the agents. If the agent i is (partly) sheltered by the others
from the viewpoint of j, it will not be recognized by j,
see Fig. 18. As a consequence, the observer j cannot detect
the moving status of i even if they might be quite closer.
The parameter dm characterizes therefore the average response

FIG. 18. The view of the focal agent in the center is blocked to
some extent by those surroundings, decreasing the accuracy of its
responses to neighbors’ moving status.

distance of the agents to the moving status of the surrounding
neighbors. Obviously, dm is smaller in a dense system than
that in a sparse system due to the presence of more shelters.

Here, we give a crude approximation of dm. To do this, we
first estimate the shelter probability within a distance d . In a
system with uniformly distributed pedestrians of density ρ,
away from the position of the observer, the number of agents
in the circle with radius r and width dr is dN (r) = 2πρrdr.
The probability that the focal agent’s view at distance r will
be blocked reads as

p(r)dr = 2 arcsin
( r0

r

)
dN

2π
. (A1)

Substituting the expression of dN (r), we have approximately
p(r) ≈ 2r0ρ. The probability that an agent away from the
focal agent with distance d can be observed is

P(d ) = exp

[
−

∫ d

2r0

(p(r))dr

]
= exp (2r0ρ(2r0 − d )).

(A2)
Thus we obtain the relationship between d and r0 and ρ as

d = 2r0 − ln (P(d ))
2ρr0

. (A3)

In an extreme dense crowd [whose mean density ρ = ρ0 ≈
1/(πr2

0 )], the agents can just observe the ones adjacent to
them, and we approximate dm as the twice diameter of an
agent such that we have

dm = 4r0 = 2r0 − ln (P(dm))
2ρ0r0

. (A4)

After doing some algebra, we have

ln (P(dm)) = − 4

π
. (A5)

For uniform distribution of the pedestrians, the maximum
average range of visibility of the agents is then obtained as

dm = 2r0 + 2

πρr0
. (A6)
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Note that in dense pedestrian systems, the vision is more
likely to be obscured as compared to that in the case of
sparse systems, it is reasonable for us to choose a small dm

for dense systems. In our current study, we simply choose
dm as 10 and 2 for sparse and dense pedestrian systems,
respectively.
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