
PHYSICAL REVIEW RESEARCH 2, 043246 (2020)

Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer
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We compare the BFGS optimizer, ADAM and NatGrad in the context of VQES. We systematically analyze their
performance on the QAOA ansatz for the transverse field Ising and the XXZ model as well as on overparametrized
circuits with the ability to break the symmetry of the Hamiltonian. The BFGS algorithm is frequently unable to
find a global minimum for systems beyond about 20 spins and ADAM easily gets trapped in local minima or
exhibits infeasible optimization durations. NatGrad on the other hand shows stable performance on all considered
system sizes, rewarding its higher cost per epoch with reliability and competitive total run times. In sharp contrast
to most classical gradient-based learning, the performance of all optimizers decreases upon seemingly benign
overparametrization of the ansatz class, with BFGS and ADAM failing more often and more severely than NatGrad.
This does not only stress the necessity for good ansatz circuits but also means that overparametrization, an
established remedy for avoiding local minima in machine learning, does not seem to be a viable option in the
context of VQES. The behavior in both investigated spin chains is similar, in particular the problems of BFGS

and ADAM surface in both systems, even though their effective Hilbert space dimensions differ significantly.
Overall our observations stress the importance of avoiding redundant degrees of freedom in ansatz circuits and
to put established optimization algorithms and attached heuristics to test on larger system sizes. Natural gradient
descent emerges as a promising choice to optimize large VQES.
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I. INTRODUCTION

Variational quantum algorithms such as the variational
quantum eigensolver (VQE) or the quantum approximate
optimization algorithm (QAOA) [1] have received a lot of
attention of late. They are promising candidates for gaining
a quantum advantage already with noisy intermediate-scale
quantum (NISQ) computers in areas such as quantum chem-
istry [2], condensed matter simulations [3], and discrete
optimization tasks [4]. A major open problem is that of finding
good classical optimizers which are able to guide such hybrid
quantum-classical algorithms to desirable minima and to do
this with the smallest possible number of calls to a quantum
computer backend. In classical machine learning, the adaptive
moment estimation (ADAM) optimizer [5] is among the most
widely used and recommended algorithms [6,7], and has been
one of the most important enablers of progress in deep learn-
ing in recent years. Such an accurate and versatile optimizer
for quantum variational algorithms is yet to be found.
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We are here mostly interested in variational algorithms
for quantum many-body problems. To make progress towards
finding an efficient and reliable optimizer for this domain, we
concentrate on cost functions derived from typical quantum
many-body Hamiltonians such as the transverse field Ising
(TFIM) and the XXZ model (XXZM) for two reasons. First,
their system size can be varied allowing us to systematically
study scaling effects. Second, for integrable systems, the exact
ground states are known and for the TFIM it is possible to
construct ansatz classes for VQE circuits that provably contain
the global minimum and can be simulated efficiently. Such
systems thus allow us to distinguish between the performance
of the optimizers and the expressiveness of the ansatz.

As a first result we show that the commonly used
optimization strategies ADAM [8] and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [9–18] both run into convergence
problems when the system size of a VQE is increased. This
happens already for system sizes within the reach of cur-
rent and near future NISQ devices, which underlines the
importance to a systematic search for suitable optimization
strategies. The performance of ADAM is shown to depend
strongly on the learning rate (the scaling prefactor determin-
ing the size of parameter update steps) via multiple effects and
the number of epochs required for convergence increases fast
with the problem size. Convergence can be improved but only
with an expensive fine-tuning of the hyperparameters.

We then study the performance of an optimization strategy
known as the quantum natural gradient or NatGrad [19–21]
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and introduce Tikhonov regularization to the classical pro-
cessing step in the VQE [22]. The key characteristic of
NatGrad is that it uses the canonical metric on Hilbert space,
the Fubini-Study metric, to determine improved updates to
the variational parameters. While the proposal of NatGrad for
VQES includes numerical experiments comparing it to several
established optimizers as well as an ADAM variant that uses
the natural gradient [19], the presented results extend this
comparison in multiple directions: First, we include the BFGS
optimizer which is widely used throughout the VQE literature.
Second, different models are considered here, each of which
is more complex than the example in Ref. [19] as they contain
more than one two-qubit term. This extension is essential as
is visible by the fact that no qualitative difference between
the diagonal approximation of the Fubini-Study metric and
the full metric was seen in Ref. [19] but the optimization
problems presented here are not solvable with the diagonal
approximation at all. Third, we extend the considered problem
size from maximally 11 qubits to 40 qubits for the TFIM and
14 qubits for the XXZM. Fourth, our analysis includes the ro-
bustness of the investigated optimization algorithms regarding
overparametrization, which can be expected to be of relevance
in applications. We find that NatGrad does consistently find a
global optimum for the largest system sizes we test (40 qubits)
and requires significantly fewer epochs to do so than ADAM
(in the cases where ADAM converges at all).

Our second set of results concerns the effect of over-
parametrization in VQES. We study the impact of adding
redundant layers to the ideal circuit ansatz. This over-
parametrization not only increases the optimization cost, it
actually appears to make finding the optimum significantly
harder. The BFGS algorithm but also the ADAM optimizer,
designed to thrive on additional degrees of freedom, fail fre-
quently in this setting. This cannot easily be mitigated by
increasing the epoch budget and reducing the learning rate
of the ADAM optimizer. While also affected, NatGrad shows
much higher resilience against this effect, compensating its
higher cost per epoch with a higher chance to succeed. In
applications on a relevant scale the circuit ansatz cannot be
expected to be minimal making this resilience essential for
the success of an optimizer for VQES. This also demonstrates
the importance of understanding the role of redundant de-
grees of freedom in the variational class. When restricting
the additional degrees of freedom to the symmetry sector of
the model, ADAM does not profit from overparametrization
and the BFGS optimizer performs worse whereas NatGrad
reliably converges globally.

Our results are in sharp contrast to the usually very good
performance of the ADAM optimizer and related (stochas-
tic) gradient descend based techniques in the optimization
of classical neural networks. A possible explanation for this
good performance in usually overparametrized settings is the
following: For common activation functions and random ini-
tialization, increasing overparametrization tends to transform
local minima into saddle points [23,24]. The optimizer then
mainly needs to follow a deep and narrow valley with com-
parably flat bottom to find a global minimum. The ADAM
optimizer is perfectly suitable to pursue this path as it has indi-
vidual learning rates per parameter that also take into account
the average of recent updates (see Sec. II B for details). In this

way it avoids side-to-side oscillations in the valley and can
build up momentum to slide down the relatively flat bottom of
the valley.

The energy landscapes of typical variational quantum al-
gorithms however look very different. First, having deep and
wide circuits with many parametrized gates is prohibitive on
NISQ computers, which excludes overparametrization as a
tool to make the variational space more accessible. Second,
the variational parameters usually feed into gates as prefactors
of exponentials of Pauli words and thus the cost function is
ultimately a combination of trigonometric functions of the
parameters. It appears that NatGrad is able to effectively use
the information about the ansatz class to navigate the resulting
energy landscape with many local minima. Third, it is known
that large parts of the parameter space form so-called barren
plateaus with very small gradients [25]. A random initial-
ization of the parameters in reasonably deep VQES is thus
almost certainly going to leave one stuck in such a plateau. Of
course this also implies that one must prevent the optimizer
from jumping to a random location in parameter space during
optimization. This can be achieved in NatGrad by inhibiting
unsuitably large steps by means of Tikhonov regularization.
Finally, due to the small number of variational parameters in
VQE, the added (classical) computational cost of inverting the
Fubini-Study metric, which is used to determine the parameter
updates (see Sec. II B), is negligible as compared to the cost
of sampling from the quantum backend. This fact, combined
with the highly correlated nature of the learning landscape
in quantum many-body problems [26], might render second-
order methods such as NatGrad more amenable to quantum
than to classical settings, where samples are cheap, but there
are many variational parameters.

In order to generalize our results, we consider the XXZM

together with the Trotterized time evolution operator as circuit
ansatz. Indeed we find BFGS to experience the same diffi-
culties in high-dimensional parameter spaces and ADAM to
exhibit a similar behavior of the required number of epochs as
for the TFIM. The performance of NatGrad mostly is as reliable
for this model as for the TFIM.

A. Informal summary of the results

Our main results are the following. First, NatGrad is the
most reliable optimization method. This is due to the ca-
pability to maneuver high-dimensional search spaces driven
by the Natural gradient and its relatively high resilience to
overparametrization, both within and outside of the sym-
metry sector of the solution. The BFGS optimizer fails to
navigate towards global minima in large spaces and in the
presence of redundant degrees of freedom even in small sys-
tems. ADAM suffers significantly from symmetry-breaking
overparametrization and is not able to use additional degrees
of freedom within the symmetry sector for improved perfor-
mance.

Second, NatGrad has larger quantum computation cost per
epoch than the other algorithms by design but the improved
learning strategy remedies this via small epoch counts to
convergence. Meanwhile, BFGS takes few epochs to conver-
gence at low cost per epoch but produces low-quality results,
including local minima and positions in very shallow plateaus
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in the cost function. ADAM also has low cost per epoch but
for large and complicated problems it takes many epochs to
converge and this duration is hard to predict.

Third, the above properties generalize to a certain level.
That is, the failure of BFGS and the rapid increase in cost
of ADAM appeared at similar parameter counts for different
models and ansatz circuits and NatGrad tackled both spin
chain systems successfully.

The practical conclusions from the presented work are
twofold: On one hand, when solving the ground state energy
problem with a VQE on an application-relevant scale, Nat-
Grad appears to be the optimizer of choice for the classical
processing step. This holds for both investigated spin chain
models and, given the asymptotically vanishing cost over-
head of NatGrad for Hamiltonians with many noncommuting
terms, probably even more so for quantum chemical systems.

Finally, we observed decisive differences in the cost func-
tion landscape and optimizer performance from classical
machine learning beyond obvious deviations like the dimen-
sion of the parameter space. This implies that heuristics and
established methods from machine learning require new eval-
uation and additional research in order to optimally utilize
them for VQES.

II. METHODS

A. Variational quantum eigensolver

The framework of our work is the VQE, a proposal to use
parametrized circuits on a quantum computer in combination
with classical optimization routines to prepare the ground
state of a target Hamiltonian H . In the first part of a VQE,
one constructs a quantum circuit that contains parametrized
gates. Given input parameters θ for the circuit, a quantum
computer can then prepare the corresponding ansatz state and
measure an objective function, chosen to be the energy of the
Hamiltonian

E (θ ) := 〈ψ (θ )|H |ψ (θ )〉 (1)

and for benchmark problems with known ground state energy
E0, the relative error δ can be calculated as

δ(θ ) := E (θ ) − E0

|E0| . (2)

Additionally one can prepare modified versions of the cir-
cuit to determine auxiliary quantities like the energy gradient
in the parameter space [27]. The second part of the VQE
scheme is an optimization strategy on a classical computer
which is granted access to the quantum black box just con-
structed. In the most straightforward scenario this is a black
box minimization scheme, but using auxiliary quantities, more
sophisticated optimization methods can be realized as well.

There are two main theoretical challenges for successfully
applying VQE. First, the construction of a sufficiently com-
plex, but not overly expensive, circuit that gives rise to an
ansatz class containing the ground state-expressivity. Second,
the choice of a suitable optimizer that is able to search for
the ground state within the created parameter space efficiency.
The two challenges are often seen as independent, but explicit
algorithms using information gathered about the variational
space during optimization phases for adjusting the ansatz have

been proposed as well, some of which are inspired by concrete
applications in quantum chemistry or by evolutionary strate-
gies [8,16,28,29].

We now establish some notation for the general VQE set-
ting where we assume the most common objective: Finding
the ground state energy of a Hamiltonian H . Starting from
an initial product state |ψ̄〉, we apply parametrized unitaries
{Uj (θ j )}1� j�n to construct the ansatz state

|ψ (θ )〉 :=
1∏

j=n

Uj (θ j )|ψ̄〉. (3)

The parameters are typically initialized randomly close to zero
to avoid the barren plateau problem [25]. For this work, the
unitaries are going to be translationally invariant layers of one-
or two-qubit rotations; consider, for instance,

Lzz(θ j ) :=
N∏

k=1

exp

[
− iθ j

2
Z (k)Z (k+1)

]
(4)

= exp

[
− iθ j

2

N∑
k=1

Z (k)Z (k+1)

]
, (5)

where we identified the qubits with index 1 and N + 1, i.e.,
we adopt periodic boundary conditions. The ordering of the
gates within a layer is not relevant because they commute but
for convenience we write them such that terms acting on the
first qubits are applied first. Z (k) is the Pauli Z operator acting
on the kth qubit and we tacitly assume the tensor product
between operators that act on distinct qubits as well as the
missing tensor factors of identities. Compared to proposed
ansatz circuits that employ full Hamiltonian time evolution
exp(−iθH ) (see Sec. II A 1 a), such a layer is rather easily
implemented on present quantum machines because it only
requires linear connectivity and one type of two-qubit ro-
tation. There have been many proposed circuits to generate
ansatz classes for a variety of problems, all of which can be
boiled down to combining rotational gates and possibly other
fixed gates such as the CNOT or SWAP gate (see Sec. II A 1).
For the presented optimization methods the derivatives with
respect to the variational parameters {θ j} j are important and
for the above example we observe the special structure of
translationally symmetric layers of Pauli rotation gates:

∂

∂θ j
Lzz(θ j ) =

(
− i

2

N∑
k=1

Z (k)Z (k+1)

)
Lzz(θ j ). (6)

The derivative only produces an operator-valued prefactor,
and all prefactors can be summarized because the single gates
commute. While the basic gates composing a unitary Uj (θ j )
typically take the form of (local) Pauli rotations, the full
unitary often is more complex than the above layer and in
particular the terms in Uj do not need to commute. However,
the structure of rotations enables us in general to evaluate
required expressions involving derivatives on a quantum com-
puter, either via measurements of rotation generators or via
ancilla qubit schemes.
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1. A selection of ansatz classes

Among the ansatz families proposed in the literature we
present the following which are used frequently and are di-
rectly connected to this work:

(a) QAOA. The quantum approximate optimization algo-
rithm was first proposed by Farhi, Goldstone and Gutmann
[1] in 2014 for approximate solutions to (classical) optimiza-
tion problems by mapping them to a spin chain Hamiltonian.
The algorithm looks similar to adiabatic time evolution meth-
ods with an inhomogeneous time resolution, which is rather
coarse for typical circuit depths. A lot of work has been put
into proving properties of the QAOA both in general and
for certain problem types, including extensions to quantum
cost Hamiltonians [30–33]. At the same time the algorithm
has been refined, extended, and characterized on the basis of
heuristics and numerical experiments, gaining insight into its
properties beyond rigorous statements [14,34–37].

The QAOA circuit is constructed as follows. For a cost
Hamiltonian HS and a so-called mixing Hamiltonian HB

one alternatingly applies the unitaries exp (−iϑ jHS ) and
exp (−iϕ jHB) p times, giving rise to a VQE ansatz class
with “time” parameters {ϑ j, ϕ j}1� j�p. Originally, the system
Hamiltonian would encode a classical optimization problem
and thus be diagonal while the mixing Hamiltonian was
chosen to be off-diagonal and specifically has been kept
fixed to the original HB = ∑N

k=1 X (k) for many investigations.
However, new choices of mixers have been proposed and
investigated as well, giving rise to the more general quantum
alternating operator ansatz (QAOa) [15,37,38].

Note that for quantum systems, the terms comprising the
Hamiltonian HS do not commute in general such that very
large gate sequences would be necessary to realize the exact
QAOA approach including exp (−iϑHS ). In practice these
blocks commonly are broken up in a Trotter-like fashion in-
stead, yielding circuits that are implemented more readily but
deviating from the original ansatz. For the TFIM, such a modi-
fied QAOA ansatz has been studied intensively [14,34,35] and
we are going to use it as a starting point for our investigations.

(b) Adaptive Ansätze. Most prominently for this type of
Ansätze, ADAPT-VQE tackles both the construction of a suit-
able ansatz class and the optimization within the constructed
parameter space [16].

Instead of a fixed ansatz circuit layout, ADAPT-VQE takes
a pool of gates as input and iterates the two steps of the
VQE scheme: After rating all gates the most promising one
is appended to the circuit (construction) and afterwards all
the circuit parameters are optimized (minimization). The op-
timized parameters from the previous step are then used for
both the rating of the gates for the next construction step and
the initialization for the following optimization, where newly
added gates are initialized close to the identity. For both the
concept of allowed gates and the gate rating criteria, there are
multiple options and we refer the reader to [16,28] for more
detailed descriptions.

Besides ADAPT-VQE, multiple other methods which grow
the ansatz circuit in interplay with the optimization have been
proposed and demonstrated, including ROTOSELECT [8] and
EVQE [29]. These demonstrations include the solution of
five-qubit spin chains and small molecules (lithium hydride,

beryllium dihydride, and a hydrogen chain) to chemical pre-
cision using simulations with and without sampling noise or
quantum hardware.

We will not be using any adaptive scheme in our work, but
our results on stability and overparametrization raise serious
doubts as to the reliability of any adaptive ansatz method (see
Sec. III B).

B. Optimizers

A variety of optimizers have been used in the context of
variational quantum algorithms. These optimizers are inspired
by classical machine learning and can be sorted according
to the order of information required about the cost function.
Zeroth-order or direct optimization methods only evaluate the
function itself, first-order methods need access to the gradient,
and second-order optimization need access to the Hessian of
the cost function, or some other metric reflecting the local
curvature of the learning landscape. As direct optimization is
not scalable to problem sizes of relevance we do not include
it in our studies. A parameter update step of the optimizer—
corresponding to one iteration at the algorithmic level—is
called an epoch and corresponds to one execution of the up-
date rules described in the following [see Eqs. (7), (10), (11),
and (13)]. Most optimization algorithms have one or more
hyperparameters, the most common being the learning rate η,
which is a scalar prefactor rescaling the parameter update at
each epoch.

1. First-order gradient descent

Optimization techniques using the gradient of the cost
function are at this point the most widely used in machine
learning. Starting from the simple gradient descent method
that updates the parameters according to the gradient and a
fixed learning rate, a whole family of minimization strategies
has been developed. The improved routines are inspired by
physical processes like momentum, based on heuristics like
adaptive learning rate schedules, or a smart processing of the
gradient information as in the Nesterov accelerated gradient.
A review of this development can be found e.g., in Ref. [7],
here we just present the first-order method we are going to
use, the ADAM optimizer.

ADAM, which was proposed in 2014 [5], is probably the
most prevalent optimization strategy for deep feed-forward
neural networks [6] and has been used in VQE settings as
well [8]. For completeness, we briefly outline the ADAM
optimizer: Given the cost function E (θ ), where θ recollects
all variational parameters, a starting point θ (0) and a learning
rate η, Gradient Descent computes the gradient ∇E (θ (t ) ) at
the current position and accordingly updates the parameters
rescaled by η:

θ (t+1) = θ (t ) − η∇E (θ (t ) ). (7)

As the gradient points in the direction of steepest ascend, the
parameter update is directed towards the steepest descend of
the cost function and for η small enough, the convergence
towards a minimum can be understood intuitively. Small
learning rates yield slow convergence which increases the
cost of the optimization whereas choosing η too large leads
to overshooting and oscillations which might prevent con-

043246-4



AVOIDING LOCAL MINIMA IN VARIATIONAL QUANTUM … PHYSICAL REVIEW RESEARCH 2, 043246 (2020)

vergence. Furthermore, although the optimizer will diagnose
convergence to a minimum due to a vanishing gradient, it
cannot distinguish between local and global minima.

In order to fix both issues, i.e., the need for an optimally
scheduled learning rate and the liability of getting stuck in
local minima, various improvements have been proposed and
ADAM uses several of these upgrades. The first feature is
an adaptive, componentwise learning rate, which was intro-
duced in ADAGRAD [39] and improved in RMSPROP [40] to
avoid suppressed learning. The second feature ADAM uses
is momentum, which is inspired by the physical momentum
of a ball in a landscape with friction. This is realized by
reusing past parameter upgrades weighted with an exponen-
tial decay towards the past and enables ADAM to overcome
some local minima. The final form of the ADAM algorithm
is as follows: Initialize with hyperparameters {η, β1, β2, ε},
momentum m(0) = 0, average squared gradient v(0) = 0 and
initial position θ (0). At the t th step, compute the gradient and
update the momentum and the cumulated squared gradient as

m(t ) = β1 − βt
1

1 − βt
1

m(t−1) + 1 − β1

1 − βt
1

∇E (θ (t ) ), (8)

v(t ) = β2 − βt
2

1 − βt
2

v(t−1) + 1 − β2

1 − βt
2

(∇E (θ (t ) ))�2, (9)

where x�2 denotes the elementwise square of a vector x.
The parameter update then is computed from these updated
quantities via

θ (t+1) = θ (t ) − η
�√

v(t ) + ε
m(t ) (10)

with the square root of v(t ) taken elementwise. Besides the
learning rate η, we identify the hyperparameters β1 and β2

as exponential memory decay factors of m and v respectively
and the small constant ε as regularizer, which avoids unrea-
sonably large updates in flat regions and division by zero at
initialization or for irrelevant parameters.

Because of the advanced features that ADAM uses, it has
been very successful at many tasks and even though there are
applications for which more basic gradient-based optimizers
can be advantageous, we choose ADAM to represent the fam-
ily of local first-order optimizers.

2. BFGS optimizer

The second optimizer we look at is the BFGS algorithm,
which was proposed by its four authors independently in 1970
[9–12]. Using first-order resources only it approximates the
Hessian of the cost function and performs global line searches
in the direction of the gradient transformed by the Hessian
inverse. Therefore it is a global quasi second-order method
using local first-order information and its categorization is not
obvious. The algorithm is initialized with the starting point
θ (0) and a first guess for the approximate Hessian H (0) of
the cost function E , which usually is set to the identity. At
each step of the optimization one determines the gradient,
computes the direction

n(t ) = H (t )−1∇E (θ (t ) ) (11)

and performs a line search on {θ (t ) + η n(t )|η ∈ R} which
yields the optimal update in that direction and can optionally

be restricted to a bounded parameter subspace. Given the new
point in parameter space, θ (t+1), the change in the gradient
D(t ) = ∇E (θ (t+1)) − ∇E (θ (t ) ) is calculated and used to up-
date the approximate Hessian via

H (t+1) = H (t ) + D(t )D(t )T

η(t )D(t )T n(t )
− H (t )n(t )n(t )T

H (t )

n(t )T H (t )n(t )
.

As the parameter updates are found via line searches, the
BFGS algorithm is not strictly local but due to its use of
local higher-order information, the global search is much
more efficient than direct optimization. The method has been
successful in many applications and currently is of widespread
use for VQES [13–18].

3. Natural gradient descent

The third optimization strategy we use is the NatGrad
[19–21], which due to its increased cost per epoch is not
adopted very often in machine learning settings itself but
is connected to some successful methods. As an example,
stochastic reconfiguration which is closely related to Nat-
Grad [41] recently has been shown to work well for training
restricted Boltzmann machines (RBMs) to describe ground
states of spin models [42]. Despite this success, the insights
into why and under which conditions the method works re-
main limited and recent work has been put into understanding
the learning process for the mentioned application of RBMs
and the natural gradient descent [26]. Before discussing Nat-
Grad and its role in the VQE setting, we outline its update
rule. Given a starting point θ (0) and a learning rate η, a step is
performed by first constructing the Fubini-Study metric of the
ansatz class

(F (t ) )i j := Re{〈∂iψ
(t )|∂ jψ

(t )〉} − 〈∂iψ
(t )|ψ (t )〉〈ψ (t )|∂ jψ

(t )〉
(12)

at the current position and then updating the parameters via

θ (t+1) = θ (t ) − η F (t )−1∇E (θ (t ) ), (13)

where we abbreviated |ψ (t ) )〉 := |ψ (θ (t ) )〉 and |∂iψ
(t )〉 :=

∂
∂θi

|ψ (θ (t ) )〉.
The Fubini-Study metric is the quantum analog of the

Fisher information matrix in the classical natural gradient
[20]. It describes the curvature of the ansatz class rather than
the learning landscape, but often performs just as well as
Hessian based methods. In order to avoid unreasonably large
updates caused by very small eigenvalues of F in standard
natural gradient descent η has to be chosen very small for an
unpredictable number of initial learning steps. Alternatively
one can use Tikhonov regularization which amounts to adding
a small constant to the diagonal of F before inverting it, also
see Sec. II E.

Even though NatGrad is simple from an operational view-
point, it is epochwise the most expensive optimizer of the
three presented here (also see Sec. II C). This is due to the
fact that it not only uses the gradient but, in order to con-
struct the (Hermitian) matrix F for n parameters, one also
needs to evaluate 1

2 (n2 + 3n) pairwise overlaps of the set
{|ψ〉, |∂1ψ〉, . . . , |∂nψ〉} (all but 〈ψ |ψ〉 = 1). Depending on
the gates in the ansatz circuit, each of these overlaps requires
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at least one and possibly many individual circuit executions.
For circuits containing ñ simple one- or two-qubit Pauli ro-
tation gates, the number of circuits required is 1

2 (ñ2 + 3ñ),
independent of the number of shared parameters. Symmetries
of the circuit may reduce the number of distinct terms in which
case fewer quantum machine runs suffice.

Taking the jth parametrized unitary to have Kj Hermitian
generators Pj,k j , e.g., Pauli words up to prefactors {c j,k j }, the
factors in the second expression of F take the shape of an
expectation value [see also Eq. (6)]

〈ψ |∂ jψ〉 = 〈ψ̄ |
j−1∏
l=1

U †
l

⎡
⎣ Kj∑

k j=1

c j,k j Pj,k j

⎤
⎦ 1∏

l= j−1

Ul |ψ̄〉. (14)

The first term in Eq. (12) requires slightly more complex cir-
cuits using one ancilla qubit and a depth which depends on the
indices of the matrix entry [13,17,43,44]. Both for simulation
work and for applications on real quantum machines, the con-
struction of the Fubini matrix is expected to take much more
time than inverting it—in sharp contrast to typical classical
machine learning problems. Given the scaling of the number
of required circuits above and the fact that for a fixed number
of qubits the depth has to grow at least linearly with the
number of parameters, an asymptotic scaling of O(ñ3) is a
lower bound for the construction of the full matrix. Standard
matrix inversion algorithms do not only show smaller or equal
scaling but also exhibit as prefactor the time cost of a FLOP
whereas computing the matrix elements scales with prefactors
based on sampling for expectation values.

As the number of parameters in a typical VQE circuit is
considerably smaller than in neural networks and the circuit
chosen in this work exhibits beneficial symmetries, the high
cost of the method are expected to be less problematic for
our setting and bearable for VQE applications. Indeed, there
have been some demonstrations of the natural gradient descent
and the imaginary time evolution for small VQE instances
[19,45,46] as well as comparisons to standard gradient de-
scent methods and imaginary time evolution for one- and
two-qubit systems [47]. Inspired by the classical machine
learning context and aiming for reduced cost, modifications of
natural gradient descent have been proposed such as a (block)
diagonal approximation to the Fubini-Study matrix [19]. We
will later show that such simplifications have to be performed
with caution and can disturb the optimization.

Finally we want to mention optimizers that treat the vari-
ational parameters sequentially, updating only one parameter
at each epoch. While such algorithms can be designed to use
information about the ansatz class and use the parametrization
directly (see, e.g., Ref. [48]), we expect them to behave differ-
ently than optimizers updating all parameters simultaneously
on which we focus our studies.

C. Optimization cost

To make a fair comparison between the optimization
schemes, we briefly lay out the scaling of the required op-
erations and the resulting cost per epoch.

We will use the following notation during the comparison.
There are n variational parameters in the circuit, KH terms in
the Hamiltonian and on average K = ∑n

j=1 Kj/n Pauli gener-

ators per variational parameter, with an average of NM samples
required for each expectation value. In practice, one of course
would measure whole sets of operators both from the Hamil-
tonian and from the Pauli generator set simultaneously, such
that K and KH essentially are numbers of bases in which
measurements are required. For entries of the Fubini matrix,
we assume Na samples for sufficiently precise measurements,
which has been shown to be smaller than NM numerically;1

for further discussion see Ref. [45]. Finally, we introduce the
timescales

tx := d

x
tgate + twrap (15)

for integers x that capture effects of averaging the depths
of used auxiliary circuits. tgate is the time required by each
layer of parallelized gates and twrap includes the needed time
for initializing and measuring the quantum register. Evalu-
ating the gradient of the energy function can be done with
different methods yielding a trade-off between precision and
cost. On one hand, the analytic gradient can be evaluated
up to measurement precision at the expense of an ancilla
qubit and a scaling prefactor Kn. On the other hand there
is the standard finite difference method, which can be per-
formed symmetrically, asymmetrically or via simultaneous
perturbation stochastic approximation (SPSA) [52], with cost
prefactors 2n, n + 1 and 2, respectively. This means that
robustness to imprecise gradients in general is a relevant
property of any optimization scheme used for VQES because
these gradients are much cheaper to evaluate. Computing
the Fubini-Study metric requires two terms and although the
measurement cost scales with O((Kn)2) for the first and with
O(Kn) for the second, we keep both terms in the overall
cost scaling because the VQE regime implies moderate values
of Kn.

For the scalings presented in Table I, we assume a homo-
geneous distribution of the variational gates in the circuit and
that similar numbers of samples NM are required to measure
expectation values of the Hamiltonian terms within one basis
and each derivative for all gradient methods.

For the full optimization algorithms, the cost are given per
epoch as we do not have access to generic scaling of epochs
to convergence. Using the cost per epoch one can rescale
the optimization cost from epochs to estimated run time on
a quantum computer beyond estimates that are based on the
classical simulation run times. For the BFGS algorithm, we
can not predict the number γ of energy evaluations that are
required for the line searches but our numeric experiments
and the linear scaling of the cost for nonSPSA gradients
suggest that it can be neglected as compared to the gradient
computation.

For the quantum run time scalings shown in Figs. 3, 5
and 8, we give the time in units of teval = NMKHt1, assumed
NM/Na ≈ 10 [45] and approximated t1 ≈ t2 ≈ t3.

1After submission of this manuscript, analytic bounds on the rel-
ative measurement cost of the gradient and the Fubini matrix have
been presented in Ref. [60], underlining the numerical results in
Ref. [45].
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TABLE I. Cost on a quantum computer for selected VQE optimization methods and their subroutines. The optimizer cost are given per
epoch, enabling us to compare the techniques beyond their simulation times with different scaling. We neglected terms which are small for
d, n 	 1 and used the timescales tx defined in Eq. (15). The remaining scaling parameters {NM , K, KH , Na} are defined in the paragraph above
Eq. (15).

Operation Quantum cost

teval Energy evaluation NMKHt1 Depending on measurement bases

Analytic gradient (Kn)NMKHt1 Ancilla qubit required
2(Kn)NMKHt1 Parameter shift rule [27,49,50]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Numeric gradient (sym.) 2nNMKHt1 Sensitive to noise
tgrad Numeric gradient (asym.) (n + 1)NMKHt1

SPSA gradient 2NMKHt1 Additional samples improve precision

tFubini Fubini matrix (Kn)2Nat3 + (Kn)Nat2 Ancilla qubit required{
2(Kn)2Nat3 + (Kn)Nat2 via projective measurements [51]

BFGS tgrad + γ teval γ = O(n0�y<1) expected
ADAM tgrad

NatGrad tgrad + tFubini Cost for inverting F can be neglected

1. Epoch count and quantum run time

When comparing the cost of optimizers that access the
same resources, the epoch count Nepoch is a sufficient figure
of merit. The presented algorithms, however, use distinct sets
of quantities such that the quantum run time tQ is a better
measure to compare them. It is important to keep the system
specific scaling of computing the gradient and the Fubini
matrix in mind. The presented spin chain systems and ansätze
with translation symmetry contain O(1) terms to be measured
in the Hamiltonian leading to O(n) cost for the gradient for
n parameters in the ansatz. The layered structure and the
symmetry of the used circuits leads to O(n3) measurements
for the Fubini matrix, generating a large overhead in NatGrad.
On the other hand, chemical Hamiltonians, which constitute
an important application of VQES, contain O(N4) terms for
N electrons, which can be measured roughly in O(N3) bases
[53,54] implying cost O(nN3) of measuring the gradient.
Meanwhile, typical circuit types contain gates with a mod-
erate constant number of generators, leading to O(n2) cost of
measuring the Fubini matrix, which is considerably smaller
than O(nN3) for any realistic circuit depth.

In summary, we consider the quantum run time tQ to deliver
a more meaningful comparison between different optimizers
but report Nepoch as well to characterize the algorithms in a
less system-dependent measure. Assuming the epoch count to
behave similarly in various VQE landscapes, this enables us
to estimate the relative cost of the optimizers when applied to,
e.g., quantum chemistry.

D. Models

1. Transverse field Ising model

Our main model is the TFIM on a spin chain with periodic
boundary conditions (PBC). Its Hamiltonian reads

HTFI = HS + HB := −
N∑

k=1

Z (k)Z (k+1) − t
N∑

k=1

X (k), (16)

where we identify the sites 1 and N + 1 because of the PBC
and t is the transverse field. For t = 0, the system is the
classical Ising chain, which is also called ring of disagrees and

is a special case of the MAXCUT problem [1,34]. For t 
= 0,

the problem is no longer motivated by a classical optimization
task and for the critical point t = 1, the ground state exhibits
long-ranged correlations.

The ground state of the TFIM is found analytically by
mapping it to a system of noninteracting fermions, where the
transformed Hamiltonian can be diagonalized exactly [55].
The translational invariance of the Hamiltonian is crucial for
this step and it will be important that only a small number
of different (Pauli) terms can be mapped to noninteracting
fermions simultaneously. We show the explicit computation
via the Jordan-Wigner transformation in Appendix A, it can
also be found in, e.g., Ref. [34]. Here we summarize the action
of the mapping on the terms in the Hamiltonian which also
generate the QAOA circuit [see Eq. (20) for the definition
of αq]:

N∑
k=1

Z (k)Z (k+1)

−→ (N − 2r) + 2
r⊕

q=1

[cos αq Z + sin αq Y ], (17)

N∑
k=1

X (k) −→ (N − 2r) + 2
r⊕

q=1

Z (18)

where the expressions on the right are understood in a
fermionic operator basis and the number of fermions is given
by r = �N

2 
. The ground state of HTFI is just the product of the
single-fermion ground states in momentum basis and we can
write out the state and its energy as

E0 = −E ′ − 2
r∑

q=1

√
1 + t2 + 2t cos αq with (19)

αq :=
{

(2q − 1)π/N for N even
2qπ/N for N odd , (20)

E ′ :=
{

0 for N even
1 + h for N odd . (21)
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FIG. 1. The QAOA circuit for the TFIM on 4 qubits including an
overparametrizing layer Ly(κ ). The first numerical experiment is per-
formed without any Pauli Y layers Ly and in the second experiment
overparametrization is investigated using one or two such layers.

Because of the free fermion mapping, we can not only
obtain the exact ground state of the system but also justify
the success of the modified QAOA circuit for the TFIM. As
mentioned in Sec. II A 1 a, the original QAOA proposal would
use the system Hamiltonian and a mixing term as generators
for the parametrized gates. For the TFIM, however, separating
the nearest-neighbour interaction terms HS from the transverse
field terms HB recombines the latter with the mixing unitary
next to it absorbing one variational parameter per block. The
resulting parametrized circuit contains two types of transla-
tionally invariant layers, Lx(ϕ) and Lzz(ϑ ), of one- and two-
qubit rotation gates, respectively. Starting in the ground state
of HB, that is |ψ̄〉 = |+〉⊗N , we alternatingly apply these two
layers p times starting with Lzz. The resulting QAOA circuit is
shown in Fig. 1. In the free fermion picture, this translates to
|ψ̄〉 = |0〉⊗r and to rotations of the r fermionic states about
the z axis (Lx) and an axis eq = (0, sin αq, cos αq)T which
depends on the fermion momentum q (Lzz).

For t = 0, one can prove that this circuit can prepare the
ground state exactly if and only if p � r [14], whereas for
the case t 
= 0 only numerical evidence and a nonrigorous
explanation support this claim [35]. This explanation com-
pares the number of independent parameters, 2p to the number
of constraints from fixing the state of r free fermions, 2r.
While solvability would be implied for a linear system, the
given problem is nonlinear and the argument remains on a
nonrigorous level.

Finally, the equivalence to a system of free fermions has a
practical implication for our simulations of the QAOA circuit:
Storing the state of r free fermions just requires memory
for 2r complex numbers. Applying the entire circuit needs
2pr two-dimensional matrix-vector multiplications, which is
contrasted by 2pN matrix-vector multiplications in 2N dimen-
sions for a full circuit simulation in the qubit picture. Using
the fermionic basis for numerical simulations, results on the
VQE optimization problem for up to N = 200 and p > 120
have been obtained for t = 0 [14].

2. Heisenberg XXZ model

As a second model we consider the 1D XXZM with PBC
which is defined by

HXXZ =
N∑

k=1

[X (k)X (k+1) + Y (k)Y (k+1) + �Z (k)Z (k+1)]. (22)

� is the anisotropy parameter. As in the TFIM, the sites 1 and
N + 1 are identified. The Bethe ansatz reduces the eigenvalue
problem for the XXZM to a system of N/2 nonlinear equa-
tions that can be solved numerically with an iterative scheme
[56,57]. This results in polynomial cost for computing the
ground state energy but does not yield a simple ansatz class
to construct the ground state on a quantum computer or a
simulation scheme of reduced complexity.

We therefore use the XXZM as a second benchmark which
models the application case more closely: We do not know a
finite gate sequence that contains the ground state but instead
employ circuits composed of symmetry-preserving layers
which we found to be relatively successful in experiments.
The ansatz we choose is the first-order Trotterized version
of the unitary time evolution with the system Hamiltonian
applied to a antiferromagnetic ground state:

|ψ (θ )〉 =
1∏

j=L

Lzz(ϑ j )Lyy(κ j )Lxx(ϕ j )|ψ̄〉, (23)

|ψ̄〉 = 1√
2

(|01〉⊗N/2 ± |10〉⊗N/2), (24)

where we only treat even N and |ψ̄〉 is chosen symmetric
under translation for (N mod 4) = 0 and antisymmetric for
(N mod 4) = 2 in anticipation of the exact solution via the
Bethe ansatz. We found this circuit to be more successful at
finding the ground state than the QAOA circuit. Even though
the terms

∑N
k=1 X (k)X (k+1) and

∑N
k=1 Y (k)Y (k+1) do not pre-

serve the magnetization in the Z-basis in general they do so
within the sector of the above ansatz.

E. Simulation details

The simulations of the QAOA circuit for the TFIM are done
in the free fermion picture yielding a quadratic scaling of the
energy evaluation in N . The circuits including Ly layers and
for the XXZM do not obey the same symmetries and therefore
are implemented as a full circuit simulation using PROJECTQ

[58]. The depth of the QAOA circuit for the TFIM is fixed to
the smallest value containing the exact ground state p = N/2,
which gives us N variational parameters with one added per
Ly in the second main experiment. For the XXZ model, we
choose p = N resulting in 3N variational parameters. All cir-
cuit simulations are performed exactly, i.e., without noise or
sampling. Furthermore we use the SCIPY implementation [59]
of the BFGS algorithm and in-house routines for ADAM and
NatGrad. All variational parameters are initialized uniformly
i.i.d. over the interval [0.0001, 0.05] as this corresponds to
initializing the circuit close to the identity and symmetric ran-
domization around 0 has shown slightly worse performance in
our experiments.

We bound the BFGS optimization to one period of the rota-
tion parameters as this improves the line search efficiency and
found only a small dependence on the position of the interval.
For the ADAM optimizer we fixed β1 = 0.9, β2 = 0.999, and
ε = 10−7 and vary η in [0.005, 0.5] trying to build heuristics
for the particular problems. We found nontrivial behavior of
ADAM with respect to the learning rate, observing a strong in-
fluence on the optimization duration, for details see Sec. III A.
Furthermore, an increased regularization constant ε did not
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yield any improvements of ADAM. For NATGRAD, we use
learning rates of 0.5, 0.05, and 0.2 and fix the Tikhonov reg-
ularization constant to εT = 10−4 and 10−3 for the TFIM and
XXZM, respectively. This is a choice based on numerical exper-
iments in which we explored the hyperparameter spaces of the
optimizers. Even though we did not perform a full study on the
impact of εT regarding the convergence quality or duration,
we gained the following intuitive insight on the regularization:
Choosing εT to be very small or even deactivating the regu-
larization may lead to very large eigenvalues of F−1, which
ultimately are bounded artificially by the method of (pseudo-)
inverting F . Consequentially, the Natural Gradient might lead
to unreasonably large updates when choosing a fixed moderate
learning rate η. We confirmed this numerically and observed
the jumps generated by this effect to significantly degrade the
optimization quality. Choosing a strong regularization on the
other hand reduces the impact of the Fubini-Study metric and
the (renormalized) limit εT → ∞ corresponds to the standard
gradient descent in Eq. (7). We therefore chose εT such that
NatGrad did not perform excessive jumps in our preliminary
experiments while maintaining a significant contribution of F
to the optimizer.

Employing (block) diagonal approximations to the Fubini-
Study matrix as suggested in [19] was not successful due to
long-range correlations between the variational parameters in
the circuit.

III. MAIN RESULTS

In this section, we state and assess the main numerical re-
sults of the paper. For a detailed description of the optimizers
and circuit models, see the Methods section above (Sec. II).

A. QAOA circuits for the TFIM

We start our numerical investigation with the QAOA circuit
for the TFIM on N qubits with critical transverse field t = 1
and analyze the accuracy, speed and stability of all three
optimizers BFGS, ADAM and NatGrad (see Sec. II A 1 a for
the ansatz and Sec. II D 1 for the model). We consider cir-
cuits with a depth of p = N/2 blocks corresponding to n = N
parameters, which are sufficiently expressive to contain the
ground state and respect the symmetries of the Hamiltonian.
For each system size, we sample 20 points close to the ori-
gin in parameter space and initialize each optimizer at these
positions (see Sec. II E for simulation details). This leads to
statistically distributed performances of the algorithms and as
we perform exact simulations without sampling and noise it
is the only source of stochasticity. The minimal relative error
δmin and the number of required epochs for each initial point
and optimizer are shown in Fig. 2.

Before we analyze the results, recall that the optimization
problem can be solved exactly, i.e., the ansatz contains the true
ground state. This enables us to identify optimization results
with precisions δmin � 10−3 as local minima and we consider
them to be unsuccessful as they deviate from the ground state
on a physically relevant scale. In practical applications, the
precision reached in both local and global minima would
be much lower and in particular results with δ ≈ 10−10 are
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FIG. 2. Relative error δmin and epoch count Nepoch for the three
optimizers initialized at 20 randomly chosen points close to the
origin for the QAOA circuit with n = N variational parameters.
The ADAM optimizer is chosen with a learning rate of η = 0.06.
(a) NatGrad reaches the ground state for all instances and all system
sizes, while BFGS and ADAM start systematically getting stuck in
local minima close to the first excited state (dashed line) beyond a
system size of N = 20. (b) The monomial fits to the mean number
of epochs to global minimization yield the scalings N2.1 (BFGS),
N2.3 (ADAM), and N2.1 (NatGrad). ADAM experiences a transition
around N = 22 qubits, where the number of epochs to convergence
jumps by an order of magnitude (separated by dotted line).

unreasonable to measure in quantum machines. This choice of
benchmark is made in order to clearly reveal intrinsic features
of the optimizers. For realistic applications, a systematic study
of noise needs to be taken into account as well.

Our first observation is that the BFGS optimizer systemat-
ically fails to converge for systems sizes larger than N = 20.
For small system sizes, however, it reaches a global minimum
in the smallest number of epochs and at low cost per epoch
(see Table I). The fast convergence is preserved for failed runs,
which demonstrates that BFGS gets stuck in local minima,
and can be attributed to the flexible parameter update size
based on the line search subroutine. The runs of BFGS in-
terrupted at a δ < 10−6 level could be improved to reach the
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goal of δ = 10−10 by tuning the interrupt criterion. Therefore
these runs are considered successful.

For ADAM, we here show the optimization results with
η = 0.06, which similarly display a deterioration in accuracy
for system sizes beyond N = 26. It is important to note that
the failed ADAM runs are interrupted after 5 × 104 epochs
and convergence with additional run time is not excluded in
general. The question is then: How many update steps are
needed for convergence? We observe a polynomial scaling of
the required epochs in the system size up to a transition point
N∗(η), which depends on the chosen learning rate. Above this
system size both successful and failing runs take much longer
and exceed the set budget of 5 × 104 epochs.

The learning rate η imposes two main effects on the run
time of the ADAM optimizer: On one hand, the transition
point described above marks the system size at which a given
learning rate leads to unpredictably high epoch numbers and
increasing η shifts this point to smaller system sizes. On
the other hand, a reduced learning rate slows down the op-
timization significantly, prolonging the optimization duration
unnecessarily for all N < N∗(η). This makes the choice of
the learning rate for ADAM a system-dependent fine tuning
problem, requiring additional heuristics and hyperparameter
optimization. We present a more detailed analysis of the in-
fluence of the learning rate on the performance of ADAM in
Appendix B.

In Fig. 2, we present the ADAM runs for a medium learn-
ing rate in order to demonstrate the described behavior but not
the best possible performance of the ADAM optimizer.

NatGrad shows reliable convergence to a global minimum
for all sampled initial parameters. The number of epochs to
convergence scales polynomially with the system size and
there is little variance in the required number of epochs.

For most of the unsuccessful runs, the relative error is very
close to the (relative) gap of the Hamiltonian demonstrating
that these local minima of the energy landscape correspond to
excited states. This has been observed before in the context
of digitized quantum annealing and QAOA [4] where the
transition from ground to excited state is caused by a small
energy gap of the (time-dependent) annealing Hamiltonian.
The convergence to a local minimum reproduces this transi-
tion and demonstrates that the failed optimization runs yield
deviations from the ground state not only on a level of numer-
ical imprecisions but on a physically relevant scale, leading
to wrong results of the VQE. For transverse fields other than
t = 1, the similarity between the gap and the error due to
local minima was not confirmed (see Appendix C) and, in
particular, the latter is too small for the presented optimizer
comparison for t > 1 and the optimization becomes too easy
for t < 1.

Using the scalings as discussed in Sec. II C and taking
the translation symmetry of the TFIM into account, we show
the expected optimization durations on a quantum computer
in Fig. 3. Due to the increased cost per epoch and a similar
scaling of the number of epochs for all optimizers, the cost
for NatGrad are considerably higher than those for BFGS and
ADAM in the regimes in which they converge and ADAM
does not suffer from the sudden increase in required epochs.
We expect the scaling for ADAM, which is truncated in
Fig. 2 due to our epoch budget, to yield quantum run times
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FIG. 3. Estimated run times tQ on a quantum computer for the
optimization runs shown in Fig. 2 based on the scalings in Table I.
We note that none of the ADAM optimizations for N � 30 attained
the full precision of 10−10 such that the scaling is truncated based on
the epoch budget.

comparable to those of NatGrad. As we show in Appendix B,
reducing the learning rate makes bigger system sizes accessi-
ble to ADAM, but also rather drastically increases run times
because of slower convergence.

In summary, we find the BFGS optimizer to run into con-
vergence problems already for medium sized systems, ADAM
to take a large number of epochs with a transition into unpre-
dictable cost at a certain system size and NatGrad to exhibit
reliable convergence. While the estimated cost for running
NatGrad on a real quantum computer are high, the number
of epochs is much smaller than for ADAM. This implies
that in applications like quantum chemistry which exhibit a
more favourable scaling for measuring the Fubini matrix as
compared to the gradient, NatGrad can be expected to be
significantly cheaper overall (cf. Sec. II C 1).

Furthermore, the success of both commonly used opti-
mizers, BFGS and ADAM, strongly depends on the initial
parameters whereas NatGrad shows stable convergence and
a small variance of the optimization duration.

B. Overparametrization by adding Y layers

We now extend the optimal QAOA circuit for the TFIM

by adding redundant layers of Pauli Y rotations. These addi-
tional rotations can be deactivated by setting their variational
parameter κ to zero. This means in particular that the new
ansatz classes still contain the ground state and simply in-
troduce a form of overparametrization. Alternatively one can
introduce additional degrees of freedom to the circuit by using
more blocks in the QAOA circuit than minimally required,
maintaining the symmetry of the model, which is shown in
Sec. III C.

As single-qubit Pauli Y rotations cannot be represented in
the free fermion basis of the Hamiltonian [see Eq. (17)], the
overparametrized class can be seen as breaking a symmetry.
This means that for any given κ 
= 0, the ansatz state will not
be a global minimum and it will be crucial for an optimization
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algorithm to find the subspace with κ = 0. This is clear for
a single additional layer of gates, but we expect it to hold
for multiple nonadjacent layers as well. Although the present
situation is artificially constructed and the broken symmetry
is manifest, similar behavior is expected in systems where we
do not have an analytical solution. More generally, even for
an ansatz class which is suitable to express the ground state
a very specific configuration of the variational parameters
is necessary to find that state and the chosen optimization
algorithm consequentially should be resilient to local minima.

Our choice of overparametrization leads to such local min-
ima, constructing an optimization problem that can be used
as a test for the resilience of the optimizer. It furthermore is
comparable to overparametrizing a classical neural network
respecting translational symmetry but outside of the sector
equivalent to free fermions as presented in, e.g., Ref. [42]. The
presented experiment thus can be used to compare the opti-
mizer performance for classical machine learning of quantum
states and VQES.

We look at two configurations of the extended cir-
cuits with y-rotation layers included at positions {�N

4 
} and
{�N

4 
, �N
2 
 − 1}, respectively. With this choice we avoid spe-

cial points in the circuit and expect these setups to properly
emulate the problem of (additional) local minima.

Again we sample 20 positions in parameter space close to
the origin and initialize the three optimizers at these points,
resulting in the precisions and success ratios shown in Fig. 4
together with the estimated quantum computer run times in
Fig. 5. We observe a clear distinction between the optimiza-
tions that succeed to find a global minimum and those which
converge to a local minimum only, which makes the success
ratio for this numerical experiment well-defined. In contrast
to the results for the minimal QAOA circuit, no intermediate
precisions caused by a finite epoch budget occur. All optimiz-
ers suffer from the introduced gates as they show convergence
to local minima for system sizes they tackled successfully
without overparametrization. The error of these attained local
minima lies on a relevant scale but is smaller than the gap of
the model by a factor of ∼0.4.

For BFGS, this effect appears for some system sizes for
one layer of Pauli Y rotations but is much stronger for two
additional layers, reducing the fraction of globally minimized
runs to less than 50% for multiple system sizes. We do not
claim a scaling behavior with the system size but note an
alternating pattern for the configuration with two Y layers,
demonstrating large fluctuations of the success ratio (cf. in
particular system sizes 10 and 12 for two Y layers).

For the ADAM optimizer, we use a comparably small
learning rate of η = 0.02, which pushes the jump of the op-
timization duration that we observed before well out of the
treated system size range. Nonetheless, we observe runs stuck
in local minima already for small systems without exceeding
the epoch budget so in contrast to Sec. III A allowing for a
longer run time would not improve the performance. Also for
ADAM, the fraction of successful instances fluctuates with the
system size but in particular for two Pauli Y rotation layers the
effect becomes stronger for bigger systems and no successful
runs were observed for N � 14.

The performance of NatGrad on the other hand, for which
we reduced the learning rate to η = 0.05, is more reliable
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FIG. 4. (a) Achieved precisions δmin and (b) fraction of success-
ful optimizations out of 20 runs with the three optimizers on QAOA
circuits extended by one or two Pauli Y -rotation layers. Successful
optimization runs and those only converging locally are separated by
a gap in the attained minimal precision, which is smaller but on the
scale of the gap of the model, and in contrast to Fig. 2 the epoch
budget is almost never consumed entirely. Instead the optimization is
completed, yielding either a global or a local minimum.

and the success rate is the best for most of the circuits, with
few exceptions. In particular, there are only few system sizes
with local convergence for one and two additional degrees of
freedom each and overall the success rate of NatGrad does
not drop below 60%. For 10 and 18 qubits and two additional
layers, NatGrad solves 85% and 60% of the task instances,
respectively, while BFGS and ADAM fail in all of them.

For all optimizers, we confirm that successful runs deac-
tivate the additional Pauli Y rotation layers by setting the
corresponding parameters to 0 and that all optimizations with
worse precision failed to do so, leading to a local minimization
only. The quantum run times demonstrate the expected scaling
with NatGrad as the most expensive optimizer, where the
small epoch count compensates the increased cost per epoch
for small systems. However, the increased effort is rewarded
with significantly higher success rates, making NatGrad a
strong choice for (potentially) overparametrized VQE opti-
mization. We want to stress that the relative cost of the Fubini
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FIG. 5. Estimated run times tQ on a quantum computer for the
optimizations in Fig. 4 based on Table I and the same assumptions as
in Fig. 3. For the ADAM optimizer the lower branch of data points
corresponds to successful minimizations.

matrix are high for spin chain systems and that the reduced
number of epochs required by NatGrad will have a bigger
impact in other systems (see also Sec. II C 1).

Overall our numerical experiments with the extended
QAOA circuits for the TFIM demonstrate the fragility of the
three tested optimizers to perturbations of the ansatz class.
A significant decrease in performance is caused by over-
parametrization outside of the symmetry sector of the model
and the QAOA ansatz class. All algorithms were successful
for the original QAOA circuits on the considered system sizes
implying that the reduced success ratio can directly be at-
tributed to the extension of the ansatz class. This is in contrast
to machine learning settings where heavy overparametrization
is essential to make the cost function landscape tractable to
local optimizers like ADAM. The strong fluctuations over the
tested system sizes indicate that more repetitions of the opti-
mization would be required to resolve systematic behavior.

We note that the BFGS algorithm in some instances con-
verges to a local minimum although it has access to nonlocal
information via its line search subroutine. In particular, in the
presence of two misleading parameters in the search space, the
local information determining the one-dimensional subspace
does not seem to suffice any longer to find the global mini-
mum, even though the approximated Hessian is used. For the
ADAM optimizer, the initial gradient leads to an activation of
symmetry breaking layers and due to the restriction to local
information the algorithm is not able to leave the resulting
sector of the search space with local minima it enters initially.
NatGrad also is affected by the limitation to local information
but because of the access to geometric properties of the ansatz
state class it was on average less likely to leave the Pauli
Y -rotation layers activated. We attribute this to the fact that
NatGrad performs the optimization in the locally undeformed
Hilbert space by extracting the influence of the parametriza-
tion. As a consequence the optimizer does not follow the
incentive to activate the Pauli Y rotations at the beginning
when given the same gradient as ADAM, but stays within
the minimal parameter subspace. A better foundation for this
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FIG. 6. Minimal attained relative errors δmin for the TFIM as
in Fig. 2 but with the enlarged QAOA circuit containing 2 addi-
tional blocks. The empty markers show the results from Fig. 2 for
comparison.

intuition and the observed exceptions will be subject to further
investigations of NatGrad.

Our results also hint at possible hurdles for adaptive
optimization strategies which construct the circuit ansatz it-
eratively: to obtain viable scaling with the problem size and
parameter count, such algorithms have to rate the available
gates based on local information in order to estimate their
usefulness for the VQE. This rating however might suggest
gates which introduce problematic local minima as in the case
demonstrated here. When testing ADAPT-VQE [16] for the
TFIM we indeed observed that rating gate layers by their gra-
dient suggests using Ly, which—as demonstrated above—is
harmful for the VQE.

C. Symmetry-preserving overparametrization

Here we discuss the effect of overparametrizing the QAOA
ansatz for the TFIM with symmetry-preserving layers, i.e., by
choosing the number of blocks p bigger than the minimum
�N

2 
 required to achieve the exact solution. To this end, we
optimized the QAOA ansatz on the critical TFIM with two
additional blocks, corresponding to four additional variational
parameters while keeping all hyper- and simulation parame-
ters fixed and present the attained relative precisions in Fig. 6.

All optimizers perform similarly to the optimizations of
the minimal QAOA circuit (displayed with empty markers).
The BFGS optimizer achieves slightly less precise results,
ADAM obtains similar precisions within statistical fluctu-
ations, showing singular improved convergence but many
results with worse precision, and NatGrad solves all instances
to requested precision as before. In particular, this means that
overparametrization does not facilitate the optimization task
but even tends to make it more difficult for the established
optimizers. For the BFGS algorithm, this is in accordance with
the intuition for large systems which links the poor perfor-
mance to the high dimensionality of the parameter space and
the unfit information access via line searches (see Sec. III A).
For ADAM however, the results show a decisive difference
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FIG. 7. (a) Minimal achieved precisions and (b) epoch count
of the three optimizers and 20 runs on the ansatz in Eq. (23) for
the XXZM at depth p = N . The circuit contains n = 3N parameters
and the learning rates are 0.03 and 0.2 for ADAM and NATGRAD,
respectively. The epoch count is displayed on a logarithmic scale for
these results.

between the classical machine learning setting and VQE as
ADAM thrives on overparametrization in classical cost func-
tions but struggles to exploit additional degrees of freedom in
the ansatz circuit. Results of experiments on smaller systems
(up to N = 24) indicate, that the optimizers behave as de-
scribed above for stronger overparametrization (up to n = 4N

3 )
as well.

D. Results on the Heisenberg model

To complement the study on scaling and overparametriza-
tion in the integrable TFIM, we present here numerical results
on the XXZM with the ansatz discussed in detail in Sec. II D 2.
The performance of the three optimizers, again initialized at
20 distinct points close to 0, is shown in Fig. 7 together with
the number of epochs.

The BFGS optimizer shows problems in convergence for
increasing circuit sizes but there seems to be a continuous
transition between local and global minimum precisions such
that a success rate can not be defined as easily. The low

number of epochs to convergence required by BFGS—for
both global minima and low-quality results—makes it the
cheapest optimizer but the unreliable optimization outcomes
underline its infeasibility for large-scale VQES.

The behavior of ADAM is comparable to the one observed
on the TFIM when using sufficiently small learning rates (cf.
Appendix B): while the target precision of 10−5 is reached
systematically for all problem sizes, the epoch count exhibits
a rapid increase. It does not only appear to be exponential but
additionally shows abrupt jumps e.g., when increasing the size
from 6 to 8 and from 10 to 12 qubits.

The number of variational parameters at which the loss
of precision of BFGS and the increase in epochs for ADAM
occur is similar to that in the TFIM: The BFGS optimizer starts
failing to reach the target precision at n = 24 and n = 22 for
the XXZM and the TFIM, respectively. Likewise the cost of
ADAM in Fig. 7 jumps abruptly at n = 24 and n = 36 and
the runs with comparable learning rate for the TFIM show
(less clear) transitions at n = 26 and n = 30 (see Fig. 9).
The Hilbert space dimension however clearly differs at the
transition points. While it is intuitively clear that the main
influence should be due to the properties of the parameter
space, the physical system size in general could affect the
performance, too.

The reliable performance of NatGrad was confirmed for the
XXZM, failing to converge globally only once for 10 qubits.
These high quality results were obtained by modifying the
regularization constant εT from 10−4 to 10−3 and setting
the learning rate η = 0.2. This improvement is based on the
observation that runs with a smaller learning rate and regu-
larization were interrupted prematurely due to slow learning.
We would like to emphasize that the presented choice is not
the result of an extensive hyperparameter optimization but the
best of a few tested settings, out of which only two were
benchmarked on the full set of optimization tasks. The epoch
count for the NatGrad optimizer shows more fluctuations than
before but is much smaller than for ADAM. For 14 qubits,
ADAM takes between 8721 and 20 000 epochs, while the
count for NatGrad ranges from 132 to 361.

For a fair comparison of the optimizer cost, we again look
at the estimated quantum computing run times tQ in Fig. 8.
Due to the small epoch count and comparably low cost per
epoch, the unsuccessful BFGS runs clearly are cheapest. More
interestingly, the difference in the number of epochs between
NatGrad and ADAM discussed above equalizes the overhead
in the cost per epoch of NatGrad due to the Fubini-Study
matrix computation. This trend was indicated in the minimal
QAOA circuit results for the TFIM (cf. Fig. 3) but distorted by
the finite epoch budget.

The results for the Heisenberg model overall confirm the
observations on the TFIM: NatGrad exhibits a favourable scal-
ing in the epoch count which remedies the increased effort per
epoch that is required to determine the Fubini matrix as com-
pared to ADAM. Meanwhile, ADAM shows unpredictable
behavior in its optimization cost but consistently attains the
target precision whereas BFGS suffers from high dimensional
search spaces, rendering it a cheap but unreliable method for
VQES. We emphasize that the relative cost for measuring the
Fubini-Study matrix in NatGrad is smaller for Hamiltonians
with many terms as discussed in Sec. II C 1. This means that
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FIG. 8. Estimated quantum run times tQ for the optimization
tasks in Fig. 7 based on Table I and the same assumptions as in Fig. 3
and 5.

the quantum run times for NatGrad can be significantly better
for such systems and the relative scaling of tQ is comparable
to the drastic distinction seen for Nepoch in Fig. 7 as the cost
per epoch approach the ones for any gradient-based method.

IV. CONCLUSION

Our first main result shows that the BFGS optimizer, while
quick and reliably for small systems, has an increased chance
getting stuck in local minima already in medium sized VQES

that are comparable to present day and near future NISQ
devices. This may be surprising as it has access to nonlocal
information due to its line search subroutine. We suspect that
this aspect of the algorithm becomes less helpful for finding
a global minimum because of its sparsity in high-dimensional
parameter spaces.

The ADAM optimizer on the other hand is able to find
global minima also in larger parameter spaces (up to 42) for
suitably small learning rates but this comes at the cost of a
quickly increasing number of epochs to complete the opti-
mization. In particular we observed two effects of the learning
rate η on the run time of ADAM: On the one hand, there
is a threshold size of the parameter space that depends on η

above which the epoch count rapidly increases, which means
that a small enough value of the learning rate is essential to
avoid extremely long run times. On the other hand, the opti-
mization duration for sizes below the threshold is significantly
increased when reducing η making it undesirable to choose
the learning rate smaller than strictly necessary. It thus appears
that tedious hyperparameter tuning is necessary to balance
these two effects.

The NatGrad optimizer recently proposed for VQE shows
very reliable convergence to a global minimum for all tested
system sizes within fewer epochs but at high cost per epoch.
The problem of jumping into barren plateaus even after a suit-
able initialization can be fixed via Tikhonov regularization,
which can be tuned with a continuous parameter to gradually
trade the benefit from the information geometry for stability.
This makes the algorithm a promising, although more ex-

pensive, candidate for the optimization of future VQES. The
increased cost for determining the Fubini matrix at each step
have a particularly strong effect on the estimated quantum
run time for spin chain systems, for other systems with more
favourable scaling NatGrad might not only be more reliable
but additionally exhibit lower cost.

Our second main experiment treats overparametrization
in VQE ansatz classes including an example of additional
rotation gates that break the symmetry of the Hamiltonian as
well as symmetry-preserving overparametrization. The BFGS
optimizer fails to find a global minimum in some instances
even for very small systems and in general exhibits a strongly
fluctuating performance which decreases considerably with
the number of additional gate layers.

Also ADAM showed strong susceptibility to the additional
degrees of freedom. Beyond the implications on applications,
this is interesting because overparametrization is heavily used
in machine learning to make the cost function tractable for
optimizers like ADAM and we therefore appear to observe
a fundamental difference between classical machine learning
and VQES.

Finally, NatGrad showed some failed optimization runs for
selected system sizes as well but mostly remained successful
even for multiple additional gate layers. It therefore rewards
its increased cost per epoch with higher success rates and is
the only tested optimization strategy that showed resilience
to both big search spaces and local minima caused by over-
parametrization.

We therefore conclude that overparametrization which ex-
tends the effective Hilbert space is a serious problem for
standard optimizers and even NatGrad as most resilient algo-
rithm is disturbed by this issue. The simulation cost restricted
the maximal system size for this second experiment but there
is no reason to assume that a stronger overparametrization
with more symmetry breaking layers would resolve these
problems. This implies difficulties for adaptive ansatz tech-
niques because standard rating strategies cannot detect this
property and the gate set therefore has to be minimal in order
to prevent this type of overparametrization.

For overparametrized ansatz classes within the symme-
try sector of the TFIM, all optimizers behave similar to the
minimal parametrization or show slightly worse convergence.
This demonstrates that the optimization problem within VQES

differs significantly from optimizations in classical machine
learning, where overparametrization enhances the perfor-
mance of ADAM.

In general, one could expect the cost function of VQES to
behave differently than those in common machine learning
models as the parameters enter in a very nonlinear manner
via rotation gates. The restriction of NISQ devices to rather
shallow circuits implies much smaller numbers of variational
parameters than in machine learning and therefore NatGrad
can be considered a viable option for VQE optimization while
using second order resources.

The extension of our analysis to the XXZM confirmed the
problems of the BFGS optimizer with big search spaces and
the rapid run time growth for ADAM. NatGrad performed
reliably on the XXZM as well and the reduced number of
epochs compensates the cost per epoch such that the cost of
the convergent optimizers ADAM and NatGrad are similar for
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the tested system sizes. Additional experiments are in order to
show further generalization to nonintegrable models, which
would imply that a full VQE optimization on big systems in
general is most affordable using NatGrad.

Our investigations have shown that NatGrad might enable
VQES to solve more complex and bigger problems as it per-
forms well on a test model with challenges representative of
those in potential future applications of VQES. If reliability is
more important than minimizing the quantum run time of a
single optimization run we recommend NatGrad as optimizer
of choice. Alternatively, whenever the Hamiltonian of interest
contains many terms and thus is expensive to measure, the
relative additional cost of obtaining the Fubini matrix become
small (see Sec. II C 1) and the high reliability and low number
of required epochs of NatGrad again make it the best method.

The observed differences between classical machine learn-
ing and VQES show that insights and heuristics from the former
do not necessarily apply in the latter case and demonstrate
the importance of understanding the optimization problem in
VQES and the properties of the optimization algorithms.
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APPENDIX A: EXACT SOLUTION OF THE TFIM

Here we derive the analytic solution of the TFIM by map-
ping it to noninteracting fermions, also see Ref. [15]. We start
with the linear combinations ak := 1

2 (Z (k) + iY (k) ), which ful-
fill

X (k) = 2a†
kak − 1 , Z (k) = a†

k + ak (A1)

and map them to the operators

bk :=
k−1∏
l=1

Nl ak , Nl := exp[iπa†
l al ], (A2)

which satisfy fermionic anticommutation relations:

{b†
k, bl} = δkl , {bk, bl} = {b†

k, b†
l } = 0. (A3)

For the transformation of the Hamiltonians HS and HB, which
comprise both the TFIM Hamiltonian and the generators for the
unitaries in the QAOA ansatz, note that

N 2
l = 1 , N †

l = Nl = N−1
l , (A4)

Nkbk = bk , Nkb†
k = −b†

k . (A5)

Using Eq. (A1) and the above properties the transformed
Hamiltonians read

HS = −
[

N−1∑
k=1

(b†
k − bk )b†

k+1 − (b†
N − bN )b†

1 G
]

+ H.c.,

(A6)

HB = −t
N∑

k=1

2b†
kbk − 1, (A7)

where we denote by G := ∏N
l=1 Nl the gauge factor in the

term generated by the periodic boundary conditions and the
nonlocal transformation (A3), which also has a reversed sign.
G interacts with the initial state of the QAOA ansatz |ψ̄〉 and
the Hamiltonian terms in the following way:

G|ψ̄〉 = exp

[
iπ

2

(
−1

t
HB + N

)]
|+〉⊗N = eiπN |ψ̄〉, (A8)

[G, HB] = 0 = [G, HS], (A9)

where we used the ground state energy −tN of HB and
Eq. (A5). This means that the reversed sign is canceled for
odd N . Therefore we introduce an additional phase via the
transformation

ck := eikνbk , ν :=
{
π/N for N even
0 for N odd , (A10)

HS = −
[

N∑
k=1

eiν
(
c†

kei2kν − ck
)
c†

k+1

]
+ H.c. , (A11)

HB = −t
N∑

k=1

2c†
kck − 1, (A12)

where we defined ν such that the result holds for both odd and
even N . The last mapping we perform is a Fourier transforma-
tion with shifted momenta:

dq := 1√
N

N∑
k=1

e2π i(q−1)k/N ck , (A13)

HS = −
[

N∑
q=1

e−iαq d†
q d†

−q − eiαq dqd†
q

]
+ H.c. , (A14)

HB = t
N∑

q=1

2d†
q dq − 1 (A15)

with mode-dependent angles and relabeled Fourier modes

αq :=
{

(2q − 1)π/N for N even
2qπ/N for N odd , (A16)

d−q :=
{

dN+1−q for N even
dN+2−q for N odd . (A17)

We finally can split up the sums, recollect the terms corre-
sponding to the pairs {dq, d−q} and rewrite the Hamiltonians

043246-15



WIERICHS, GOGOLIN, AND KASTORYANO PHYSICAL REVIEW RESEARCH 2, 043246 (2020)

in a fermionic operator basis:

HS = H ′
S − 2

[
r∑

q=1

cos αq
(
d†

q dq − d−qd†
−q

)

− i sin αq
(
d†

q d†
−q − d−qdq

)]
(A18)

= −2
r∑

q=1

(
d†

q d−q
)( cos αq −i sin αq

i sin αq − cos αq

)(
dq

d†
−q

)
+ H ′

S,

(A19)

HB = H ′
B − 2t

r∑
q=1

d†
q dq − d−qd†

−q (A20)

= H ′
B − 2t

r∑
q=1

(
d†

q d−q
)(1 0

0 −1

)(
dq

d†
−q

)
, (A21)

where H ′
B = H ′

S = 0 and HB/t = H ′
S = −1 for even and odd

N , respectively, using d†
1 d1|ψ̄〉 = 1 and d1d†

1 |ψ̄〉 = 0 for the
odd case.

In this shape, the simple structure of the model becomes
apparent as we identify r = �N

2 
 pairs of fermionic modes in
momentum space which interact within but not between the
pairs. The Hamiltonian can thus be written as a direct sum

HTFI = −2
r⊕

q=1

(t + cos αq)Z + sin αqY

− (1 + t )(N − 2r). (A22)

Due to the fact that HB and HS not only constitute HTFI but
also generate the (modified) QAOA ansatz, the simulation
of the circuit can be carried out on a 2r-dimensional space
that decomposes into the direct sum above. On the Bloch
spheres of the free fermions, the two time evolution operators
e−iϑHS and e−iϕHB correspond to rotations about the individ-
ual axes eq = (0, sin αq, cos αq) and the z axis, respectively.
Furthermore we can manually solve for the ground state of
the TFIM by computing the ground state in each subspace
individually:

E0 = E ′ − 2
r∑

q=1

Eq, |ψ0〉 =
r⊕

q=1

|ψq,0〉, (A23)

Eq =
√

1 + t2 + 2t cos αq, (A24)

|ψq,0〉 = 1√
2Eq(Eq − cos αq − t )

(
i sin αq

Eq − cos αq − t

)
(A25)

where E ′ is the eigenvalue of H ′
B + H ′

S .

APPENDIX B: LEARNING RATE INFLUENCE ON
PERFORMANCE OF ADAM

In order to evaluate the systematically large optimization
durations of the ADAM optimizer for the QAOA circuit of the
TFIM, we tested it at multiple learning rates from the interval
[0.005, 0.1] observing a major influence on the run time,
see Fig. 9. For a given learning rate η, the required number
of epochs grows polynomially with the system size up to a
size N∗ above which ADAM takes much longer, exceeding

2 6 10 14 18 22 26 30 34 38
N

102

103

104

N
e
p
o
c
h

(b)
η = 0.1
η = 0.06
η = 0.02
η = 0.005

2 6 10 14 18 22 26 30 34 38
N

10−9

10−7

10−5

10−3

δ m
in

(a)
η = 0.1
η = 0.06
η = 0.02
η = 0.005

FIG. 9. Minimal attained relative errors δmin and epoch count
Nepoch for the ADAM optimizer initialized at 20 distinct points close
to zero and with different learning rates η. (a) The threshold size
beyond which ADAM fails can be shifted by reducing η, delaying
local convergence and output of an excited state (dashed line) to
bigger systems. (b) The shown fits are based on filtered data in order
to determine the apparent scaling for small system sizes and thus
do not aim at describing the entire data. The biggest system size
partially included in the fit is marked. For the shown learning rates in
descending order, we obtain the exponents 2.3, 2.3, 1.9, and 1.4 but
prefactors 1.8, 1.9, 7.3, and 74.7.

the budget of 5 × 104 epochs. In this second phase, we find
the optimizer to require excessively many epochs both when
succeeding and when getting stuck in a local minimum (see,
e.g., η = 0.06), which prevents us from systematically dis-
tinguishing the two cases before convergence. The observed
transition point N∗(η) can be shifted towards bigger system
sizes by decreasing the learning rate, i.e., N∗(η) is monotoni-
cally decreasing. Meanwhile, reducing η increases the epoch
count significantly for smaller system sizes without disrupting
the convergence as is expected for well-behaved systems.
Even though the scaling exponent is smaller for lower learning
rates the optimization requires more epochs which is due to a
large prefactor, increasing the cost for all system sizes before
the jump. The observed dependencies of the run time on η

result in a system size dependent optimal learning rate which
trades off the systematically increased epoch counts for small
η against the position of the jump in optimization duration.
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FIG. 10. Minimal attained relative errors δmin for the TFIM at sub-
(t = 0.5) and supercritical (t = 2) transverse fields and energy gap �

of the supercritical model.

This demonstrates that heuristics for ADAM are needed in
order to achieve systematic global optimization and that the
required number of optimization steps can be unpredictably
large depending on the hyperparameters.

APPENDIX C: NONCRITICAL TFIM

In this section, we present numerical results for the opti-
mization of the QAOA ansatz for the noncritical TFIM and
demonstrate why the critical transverse field strength was
chosen for the main investigations. As these experiments are
performed for exploratory purposes, the maximal system size
is reduced to 30, we choose one field strength for each phase
and we sample 5 (instead of 20) initial parameter positions.
As shown in Fig. 10, all optimizers succeed in finding global
minima to the required precision for the subcritical transverse
field strength but the supercritical model is harder to solve
than both the sub- and the critical model. Convergence to local
minima is observed at t = 2 for systems as small as 10 spins.
However, we found that the error caused by convergence to
local minima is three to five orders of magnitude smaller than
the gap of the model, whereas optimizations for the critical
model show errors very close to the gap (see Fig. 2). This im-
proved separation of successful and failed optimization runs
in the critical model makes it more suitable for the optimizer
comparison.
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