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Klein tunneling of optically tunable Dirac particles with elliptical dispersions
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We have investigated electron tunneling through an atomically smooth square potential barrier for both the
dice lattice and graphene under a linearly polarized off-resonant and high-frequency dressing field. We have
demonstrated Klein tunneling for a nonzero angle of incidence which is due to a nonalignment of optically
controllable elliptical energy dispersions for the dressed states of Dirac particles and the direction of incoming
kinetic particles. This finite angle of incidence has been found to depend on the light-induced anisotropy of
energy dispersion, which is a function of the electron-light coupling strength, as well as the misalignment
between directions of the light polarization and the electron beam incident on the potential barrier. Additionally,
we have discovered much larger off-peak transmission amplitudes for dice lattices in contrast to graphene. We
anticipate that the theoretical predictions could be applied to a wide range of Dirac materials and exploited for
controlling both coherent tunneling and ballistic transport of electrons in the construction of novel electronic,
optical, and valleytronic nanoscale switching devices.
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I. INTRODUCTION

The α − T3 model is one of the most recent and a very
promising system with zero-mass Dirac fermions [1]. Unlike
graphene [2,3], the low-energy electronic states of α − T3 lat-
tices are governed by a 3 × 3 pseudospin-1 Hamiltonian and
described mathematically by pseudospin-1 Dirac-Weyl equa-
tion [4–7]. The resulting energy dispersion is distinguished by
the presence of a completely flat band with infinite degeneracy
exactly at the Dirac point, and also acquires a Dirac cone
structure as in graphene simultaneously. These Dirac cone
bands could open an energy gap or display an anisotropy if
external irradiation with a proper polarization is applied to the
system [8,9].

The lattice structure for the α − T3 model simply consists
of a honeycomb lattice of atoms plus an additional hub atom
at the center of each hexagon. This hub atom couples to one
of the A- or B-sublattice atoms on the rim with its hopping
coefficient equal to a fraction of that between two neighboring
sublattice atoms on the hexagon rim sites. This ratio α varies
from 0, which is equivalent to the model for graphene with a
completely decoupled set of hub atoms, to 1, corresponding
to a dice lattice in which the influence of the extra hub atom
reaches a maximum.
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There has been a great deal of encouraging experimental
evidence for the fabrication [10–14] of dice or α − T3 lattices
based on various atomic and electronic properties of some
known materials [15–19]. One of the most well-known and
widely discussed candidates is the three-layer arrangement
of SrTiO3/SrIrO3/SrTiO3 lattices in which each of three ini-
tial layers possesses a cubic crystal structure. A particularly
useful and complete review on the experimentally fabricated
flat band materials can be found in Ref. [20] and the cited
references therein.

So far, novel α − T3 model has exhibited nontrivial topo-
logical properties [21–24] related to its band structure. This
is due to the presence of a flat band. Also, unique topo-
logical features have been displayed in many of its physical
properties [9,25–30], including both optical [4,31] and mag-
netic [32–35] ones. One fascinating behavior exhibited is the
phase transition from a diamagnetic to paramagnetic phase
transition under a perpendicular quantizing magnetic field as
the α parameter increases from zero [36,37]. Meanwhile, the
electronic [21,38], collective [5,31], and transport [39–41]
phenomena in α − T3 lattices are found unique and remark-
able. Especially, α − T3 materials allow for regular Klein
paradox, [42,43], i.e., unimpeded tunneling for Dirac elec-
trons incident perpendicular to a sharp, atomically smooth
potential barrier [44,45], just as was observed earlier for
graphene [46–50]. Interestingly, such perfect transmission is
independent of the barrier height and width. Klein birefringent
tunneling was also demonstrated for spin-3/2 Dirac fermions
with a double-layered Dirac cone s in Refs. [51,52].

The electronic states and their properties in all these two-
dimensional (2D) materials could be physically modified and
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even fine tuned effectively by employing the so-called Floquet
engineering, i.e., applying an off-resonant and high-frequency
dressing field with various polarizations. The practical use of
such a semiclassical dressing approach with a nonionizing
but intense laser field has only become possible over the
past several years due to significant progress made in mi-
crowave, laser, and teraherz technologies. The modification
of electronic properties based on external irradiation has been
addressed theoretically in an extensive way with the help from
Floquet theory [53–56] for periodically driven quantum sys-
tems [57], covering a wide range of 2D materials [58,59] such
as graphene [8,60], silicene and transitional-metal dichalco-
genides [61,62], phosphorene [63], and purely quantum-spin
systems [64] as well as on the surfaces of three-dimensional
topological insulators [65,66].

The effect due to external radiation on a 2D material de-
pends crucially on its polarization. Circularly polarized light
opens a band gap between the valence and conduction bands
of an isotropic energy spectrum [8] as well as suppression
of Klein tunneling [67,68]. The opened band gap plays an
important role on collective charged carrier properties in
α − T3 lattices [69,70]. In contrast, linearly polarized irradi-
ation creates an anisotropy in the Dirac dispersion [60] or
modifies the existing anisotropy within the phosphorene band
structure [63,71,72], which is equivalent to applying the most
general elliptically polarized dressing field with combined
anisotropies from both material band structure and external
light-field polarization.

The rest of the paper is organized as follows. In Sec. II,
we provide an alternative derivation for the dressed elec-
tronic states in a dice lattice using a rather straightforward
Floquet-Magnus perturbative expansion for an off-resonant
and high frequency periodic dressing field. These electronic
states obtained in Sec. II are further compared with results
derived in our previous work [9] based on a rigorous analytical
solution for k = 0, followed by an expansion with respect to
this complete set for other finite k vectors. The corresponding
derivation of such dressed states for arbitrary direction of lin-
ear polarization is briefly discussed in Appendix B. Equipped
with acquired dressed states of electrons, we investigate elec-
tron tunneling dynamics through a square-barrier potential
under an external linearly polarized dressing field for both
graphene and dice lattice. We demonstrate in Appendix D that
the boundary conditions for a dice lattice will be modified
substantially as long as the direction of light polarization and
that of head-on incidence is not aligned. This is related to
the so-called anomalous Klein paradox. We compute electron
tunneling in a dice lattice or graphene with an anisotropic
Dirac cone in Sec. III and reveal key information on Klein
tunneling. In Sec. IV, we analyze and discuss properties of
numerical results on electron transmission and reflection in
both irradiated graphene and dice lattice, and finally draw
conclusions along with remarks in Sec. V.

II. ELECTRON-DRESSED STATES UNDER LINEARLY
POLARIZED IRRADIATION

In this section, we present an alternative but simplified
derivation of electron dressed states in the presence of exter-
nal linearly polarized irradiation. Using the Floquet-Magnus

perturbation expansion aimed to off-resonant dressing field
with frequency satisfying h̄ω � E0, the characteristic energy
of electrons, we obtain the quasiparticle energy dispersion
relation and closed-form analytic expression for dressed elec-
tron wave functions. Even though this paper focuses on two
opposite limits for graphene with α = 0 as well as dice lattice
with α = 1, we still present relevant discussions on properties
pertaining to the general α − T3 model.

The starting point is the low-energy Hamiltonian for α −
T3 materials under applied linearly polarized radiation with a
vector potential A(L)(t ) and an electrostatic barrier potential
[43] V (x) = VB �(x) �(WB − x), namely,

Ĥτ
0 (φ | x, y) = vF Ŝ(φ) · {−ih̄∇{τ } − eA(L)(t )} + V (x) , (1)

where VB and WB are the height and width of an atom-
ically smooth potential barrier, ∇{τ } = {τ∂/∂x, ∂/∂y} is a
partial derivative operator which depends on the valley
index τ = ±1.

The φ-dependent matrices Ŝ(φ) = Ŝx,y(φ) employed for
constructing the principal Hamiltonian in Eq. (1) are given by

Ŝx(φ) =
⎡
⎣ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎤
⎦ (2)

and

Ŝy(φ) = i

⎡
⎣ 0 − cos φ 0

cos φ 0 − sin φ

0 sin φ 0

⎤
⎦. (3)

It is straightforward to verify that the two matrices presented
above reduce, respectively, to the well-known spin-1/2 Pauli
forms for graphene in the limit of φ → 0, and to the symmet-
ric spin-1 ones �̂(1)

x and �̂(1)
y presented in Eqs. (A1) and (A2)

in Appendix A for the dice lattice in the limit of φ → π/4.
The time-independent potential V (x) introduced in Eq. (1)

only depends on the x coordinate but not on the variable y. We
assume that V (x) is a piecewise-constant profile as commonly
employed for studying Klein tunneling [42,43,46]. Also, we
impose two boundary conditions associated with V (x) at its
two edges, preserving translational symmetry along the y
direction. On the other hand, the physical characteristics of
the carriers, i.e., electrons or holes, within the barrier region
are determined by the sign of E0 − V0, where E0 represents
the kinetic energy of incoming electrons. Since we consider a
positive barrier with VB > 0, there exists only one transition in
the barrier region, i.e., electron → hole, under the assumption
that VB > E0, as illustrated in Fig. 1.

A possible experimental realization for such an arrange-
ment is important and should be pursued at this point. Most
previously reported experimental setups for measuring charge
transport through potential barriers in graphene [73] employed
an array of tapered electrodes mounted on the upper side of
the graphene sheet, while the interface side of the arrangement
consists of several silicon-based substrates.

Technological advances involved in these experiments are
being rapidly made at the present time. In a recent paper [74],
a Klein tunneling experiment was proposed for characterizing
the ballistic transport within an Aharonov-Bohm graphene
ring with multigates acting as tunable pn junctions in one
of its arms. The main idea in this paper is that one of the
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FIG. 1. Schematic illustrations of an incident electron with ki-
netic energy E0 tunneling through a rectangular potential barrier
V (x) = VB �(x)�(WB − x), where �(x) is the Heaviside unit step
function. We have chosen the barrier height VB such that 0 < E0 < VB

and the electron-hole-electron transition only occurs between two
edges, x = 0 and x = WB, of the barrier region–2, which is equivalent
to an n-p-n multijunction. In this notation, γ = +1 (or −1) refers
to the Fermi energy located within the upper (lower) Dirac cone.
Additionally, the unit of energy for E0 and VB is the Fermi energy
E (0)

F , while the unit of length for WB is 1/k(0)
F , where k(0)

F = √
πn0 is

the Fermi wave number and E (0)
F = h̄vF k(0)

F with vF and n0 denoting
the Fermi velocity and areal doping density, respectively.

gates was located above the source of the external magnetic
field away from the active 2D layer. Similarly, the top gate
in our design could also be placed above the local source for
electromagnetic radiation.

By taking V (x) = 0 in Eq. (1), due to the presence of
translational symmetry in this system, we acquire a simple
relation, i.e., {∂/∂x, ∂/∂y} → i {kx, ky}, for the wave function
�(x, y) � eikx x eiky y, and then the first term of the Hamiltonian
in Eq. (1) becomes

Ĥα (k | τ, φ) = h̄vF

⎡
⎣0 kτ

− cos φ 0
0 0 kτ

− sin φ

0 0 0

⎤
⎦+ H.c., (4)

where kτ
± = τkx ± iky depends on the valley index τ = ±1.

Here, the geometry phase φ is related to the ratio of the
hopping amplitudes α by φ = tan−1 α for 0 � φ � π/4 (later
we will only consider a dice lattice with α = 1 or φ = π/4)
and +H.c. means adding a Hermitian conjugate of the first
term. From now on, we will only consider a dice lattice with
α = 1 or φ = π/4.

Particularly, for the case of a dice lattice, the Hamiltonian
in Eq. (4) for V (x) = 0 is simplified as

Ĥ1(k | τ ) = h̄vF√
2

⎡
⎣ 0 kτ

− 0
kτ
+ 0 kτ

−
0 kτ

+ 0

⎤
⎦ = h̄vF

2

∑
μ=±

�̂
(1)
−μ kτ

μ ,

(5)

where �̂
(1)
± are derived and explained in Eqs. (A5) and (A6)

of Appendix A.
The main goal of this paper is to determine the electron

dressed states under a linearly polarized dressing field. We
assume the polarization of the dressing field lies in the x
direction, while the general case with an arbitrary polarization
direction is addressed in Appendix B. Under this assumption,

the vector potential takes the form

A(L)(t ) =
[

A(L)
x (t )

A(L)
y (t )

]
= E0

ω

[
1
0

]
cos(ωt ). (6)

This is one limiting case of the most general elliptically polar-
ized light, while the opposite limit of two equal components
of the vector potential corresponds to a circular type of light
polarization. For any type of external dressing field, its wave
vector k in the Hamiltonian in Eq. (5) will be modified accord-
ing to the canonical substitution, kx,y → kx,y − e Ax,y/h̄.

Since the Hamiltonian in Eq. (5) is linear in kx,y, in the
presence of A(L)(t ), it only acquires an additional interaction
term, which yields

Ĥ1(k | τ ) �⇒ Ĥ(L)(k, t ) = Ĥ1(k | τ ) + Ĥ(L)
A (t ), (7)

where the k independent interaction term is

Ĥ(L)
A (t ) = −τ c0√

2
cos(ωt )

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦. (8)

Here, the optical-coupling strength parameter c0 = evF E0/ω

remains the same for all types of light polarizations, which
implies that its effect on the energy dispersions has a similar
magnitude but different features. In fact, the time-dependent
second term in Eq. (7) is the same for all matrix elements of
Ĥ1(k | τ ), which is unique for the linear type of imposed light
polarization.

In this paper, we apply the Floquet-Magnus perturbation
approach to the Hamiltonian in Eq. (7) for a high-frequency
off-resonant dressing field. To serve this purpose, we first
rewrite the time-dependent second term in Eq. (8) into

Ĥ(L)
A (t ) = Ô1(c0, τ ) eiωt + Ô†

1 (c0, τ ) e−iωt , (9)

where the time-independent operator Ô1(c0, τ ) is defined as

Ô1(c0, τ ) = − τ c0

2
√

2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦ = −τ c0

4

(
�̂

(1)
+ + �̂

(1)
−
)
.

(10)

Next, by employing the high-frequency Floquet-Magnus
expansion technique, the time-independent effective part of
the total Hamiltonian in Eq. (7) becomes

Ĥ (L)
eff (k | τ ) = Ĥ1(k | τ ) + 1

h̄ω
[Ô1(c0, τ ), Ô†

1 (c0, τ )]

+ 1

2(h̄ω)2
{[[ Ô1(c0, τ ), Ĥ 1(k | τ ) ],

× Ô†
1 (c0, τ ) ] + H.c.} + · · · , (11)

where the first term in Eq. (11) is just the nonperturbed
Hamiltonian in Eq. (5) in the absence of irradiation, and the
following term [ Ô1(c0, τ ), Ô†

1 (c0, τ )] is zero since Ô1(c0, τ )
is Hermitian. This conclusion holds true only for linearly
polarized light in contrast to all other polarizations and cases
with a finite band gap. The remaining third term in Eq. (11) is
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written as T̂2(λ0 | k, θk ) and calculated to give the result

T̂2(λ0 | k, θk ) = i
λ2

0

4
√

2
h̄vF ky

⎡
⎣ 0 1 0

−1 0 1
0 −1 0

⎤
⎦

= −λ2
0

4
h̄vF ky �̂ (1)

y , (12)

where λ0 = c0/h̄ω is a dimensionless light-matter interaction
parameter.

The Floquet-Magnus effective Hamiltonian in Eq. (11) is
time independent, leading to time-independent eigenvalues,
wave functions, as well as new boundary conditions derived
from T̂2(λ0 | k, θk ). The obtained eigenvalues could be re-
garded as time averaged with respect to a fast oscillating
behavior in the off-resonant limit (i.e., neglecting Rabi oscil-
lations with a very short period and a very small amplitude),
and the fast-oscillating interaction Hamiltonian in Eq. (9) only
acquires a factor of e±iωt for its time dependence subject to
the weak-field approximation with h̄ω � c0 (i.e., neglecting
photon-assisted electron tunneling.

Once the total Hamiltonian for dressed state electrons is
obtained, we are able to solve the corresponding eigenvalue
equation to obtain the energy dispersion relation. In addition
to the flat band εγ=0(λ0, k) = 0, we also have two other en-
ergy bands

ε
γ=±1
1 (λ0, k) = γ h̄vF

√
k2

x +
(

1 − λ2
0

4

)2

k2
y (13)

for the valence (γ = −1) and conduction (γ = +1) dressed
states. We now introduce an anisotropic-dispersion factor

a1(λ0) defined by ε
γ=±1
1 (λ0, k) = ± h̄vF

√
k2

x + a2
1(λ0) k2

y and

find

a1(λ0) = 1 − λ2
0

4
. (14)

Equations (13) and (14) agree with the previous result [9] in
the limit of φ �⇒ π/4 (or α �⇒ 1) for the energy dispersion
of an irradiated α − T3 lattice, given by

εγ=±1
α (λ0, k) = 0 and

εγ=±1
α (λ0, k) = ±h̄vF k

√
F (θk | φ, λ0), (15)

where

F (θk | φ, λ0) = cos2 θk + [J2
0 (2λ0) cos2(2φ)

+ J2
0 (λ0) sin2(2φ)

]
sin2 θk. (16)

Here, J0(x) is the zeroth-order Bessel function of the first kind,
and the anisotropic factor of the dispersion is calculated from
Eq. (16) as

aα (λ0) = 1 − λ2
0

8
[5 + 3 cos(4φ) ]. (17)

Clearly, Eqs. (15) and (17) for φ = π/4 exactly match
Eqs. (13) and (14) for a dice lattice.

As we display in Figs. 2(d)–2(f), the energy disper-
sion in Eq. (13) for a dice lattice exhibits an anisotropy
due to the applied linearly polarized light. In general, the
anisotropic dispersion relation in Eqs. (15) will rely on the

phase φ or parameter α for a general α − T3 lattice, as shown
in Figs. 2(a)–2(c). This anisotropic behavior becomes the
strongest for graphene but the weakest for a dice lattice by
comparing Fig. 2(a) with Fig. 2(e) for fixed λ0 = 0.3. Numer-
ically, we can verify that Eq. (13), which is obtained based
on the expansion in Eq. (11), demonstrates good accuracy
provided λ0 � 0.4. Furthermore, the anisotropy in energy dis-
persion becomes visible for λ0 � 0.1 and larger. All the ovals
are elongated along the y axis for the light polarization along
the x axis, and the anisotropy for the dice lattice is manifested
as the eccentricity of dispersion ellipses increases with λ0 in
Figs. 2(d)–2(f).

The calculations of the electron-dressed state disper-
sion relation and their wave functions were based on the
Floquet-Magnus perturbation expansion for the light-electron
interaction Hamiltonian. This procedure is applicable in the
high-frequency and off-resonance regime for external dress-
ing fields. From a physical point of view, this assumes that the
frequency for the impinging linearly polarized field is much
larger than any characteristic energy of electrons in considered
materials, i.e., the Fermi energy E (0)

F and light-electron inter-
action strength c0 = (evF E0)/ω. Consequently, there are two
relevant quantities, i.e., the intensity of the applied radiation
I0 (power of the light beam per unit area) and its frequency
ω = 2π f , which are required to satisfy this assumption up to
a factor of ×10 in an actual experiment.

In a practical experimental setup, we assume I0 =
1 kW/cm2 = 107 W/m2 for the irradiation intensity, while
the frequency lies in the terahertz range, i.e., f � 1012 −
1013 Hz or, equivalently, ω � 1013 − 1014 rad/s. For chosen
I0 = 107 W/m2 and a sample area on the order of �10−15 m2,
we obtain the corresponding energy Eph for a light beam
as Eph � 10−21 J, or a few meV. The electric field ampli-
tude E0 is related to I0 by I0 = ε0E2

0 c/2, where ε0 and c
are the dielectric constant and speed of light in vacuum.
This leads to E0 = 105 V/m. On the other hand, the Fermi
velocity is vF = 106 m/s for all α − T3 materials including
the dice lattice and graphene to ensure a smooth crossover
to the graphene limit for α → 0 from an arbitrary α − T3

lattice. Consequently, the interaction strength parameter c0

is estimated as c0 = evF E0/ω � 10−22 J � 0.1 − 1 meV. The
dimensionless coupling parameter λ0 = c0/(h̄ω) will depend
on two parameters, I0 and ω, and both of them could be easily
tuned at least by one order of magnitude so that λ0 can be
varied from 0.01 to nearly 1.

We also need to bear in mind that λ0 must satisfy the
requirement λ0 � 1 to validate the obtained results, which
are based on the off-resonant dressing-field limit. Practically,
this means that we are able to accept the values of λ0 in the
range between 0.2 and 0.3 or, equivalently, we should limit
the anisotropy factor a0(λ0) around a0(λ0) = 1 − λ2

0 � 0.9
for graphene and a0(λ0) = 1 − λ2

0/4 � 0.97 for dice. In this
paper, each left or central panel in the angular plots displays
the anisotropy effect which could be achieved experimentally
by applying a linearly polarized light field. The maximum
possible angle for the asymmetric Klein paradox, as given
by Eq. (30), could reach up to several degrees, which makes
it possible for detection of this effect in an experiment or a
built-in device. Quantitatively, even if we increase the value
of λ0 up to ×10, the predicted phenomena in this paper are
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FIG. 2. Polar plots for angular dependence of εγ=±1
α (λ0, k) in Eq. (15). The upper row (a)–(c) demonstrates how εγ=±1

α (λ0, k) depends on
the geometry phase φ with various λ0 values, where curves for λ0 = 0.1 (red), 0.2 (blue), and 0.3 (green) are displayed for φ = 0 (a), π/6
(b), and π/4 (c). Meanwhile, the lower row (d)–(f) displays εγ=±1

α (λ0, k) dependence on λ0 with different φ values, where curves for φ = 0
(green), π/6 (orange), and π/4 (red) are shown for λ0 = 0.2 (d), 0.3 (e), and 0.4 (f). Here, we only present the angular dependence of each
dispersion; the size of each oval is not relevant and set different for clarity. The dashed (solid) curve corresponds to the exact (expansion, up to
the order of O(λ2

0 )) calculation of F (θk | φ, λ0) in Eq. (16).

still valid qualitatively. However, we should not fully trust
analytical expressions for anisotropy, wave functions, and
transmission in this case.

In correspondence with the dressed-state energy bands in
Eq. (13), their wave functions are

�
γ=±1
1 (τ, λ0, k) = 1

kλ

⎡
⎢⎣

kx − iτky
(
1 − λ2

0

/
4
)

√
2 γ kλ

kx + iτky
(
1 − λ2

0

/
4
)
⎤
⎥⎦

= 1

kλ

⎡
⎣kx − iτa1(λ0)ky√

2 γ kλ

kx + iτa1(λ0)ky

⎤
⎦,

kλ = 1

h̄vF

∣∣εγ=±1
1 (λ0, k)

∣∣
=
√

k2
x + a2

1(λ0) k2
y . (18)

Equations (18) indicate that the absolute values of each com-
ponent of wave function is identical, and therefore, only their
phases can be changed by the dressing field. This yields

�
γ=±1
1 (τ, λ0, k) = 1

4

⎡
⎣e−i�(1)

S (τ,k | λ0 )√
2 γ

e+i�(1)
S (τ,k | λ0 )

⎤
⎦, (19)

where the phase factor is

�
(1)
S (τ, k | λ0) = tan−1

[
τ

ky

kx
a1(λ0)

]

= tan−1 [τa1(λ0) tan θk]. (20)

The remaining wave function for the flat band is

�
γ=0
1 (τ, λ0, k) = 1

kλ

⎡
⎣ kx − iτa1(λ0)ky

0
−kx − iτa1(λ0)ky

⎤
⎦

=
⎡
⎣ e−i�(1)

S (τ,k | λ0 )

0
−e+i�(1)

S (τ,k | λ0 )

⎤
⎦ . (21)

Here, all the nonzero wave function components in Eqs. (18)
and (21) have the same absolute value and differ only by a
phase factor given by Eq. (20), which is not equal to θk if λ0 �=
0 and depends on the light intensity, frequency, and electron-
light coupling.

We also recall the results from Ref. [60] for graphene (α =
0) under linearly polarized irradiation. The calculated energy-
dispersion relations are ε

γ=0
0 (λ0, k) ≡ 0 and

ε
γ=±1
0 (λ0, k) = γ h̄vF k fθ (λ0) ,

fθ (λ0) =
√

cos2 θk + J2
0 (2λ0) sin2 θk . (22)
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FIG. 3. Schematics for the components of wave vector k and anisotropic energy dispersions of α − T3 lattices under linearly polarized
irradiation. Two frames {x, y} and {x′, y′} are associated with the long axis x̂ of elliptical energy dispersion and the normal direction x̂′ of
potential barrier, respectively. These two frames are connected to each other by an in-plane rotation angle β. Here, V G and k are generally not
aligned (θk �= �V) and the panels (a), (b) correspond to β �= 0 and β = 0.

Since the anisotropy factor a0(λ0) can be found from the rela-
tion ε

γ=±1
0 (λ0, k) = γ h̄vF

√
k2

x + [a0(λ0) ky]2, this gives rise

to a0(λ0) = J0(2λ0) ≈ 1 − λ2
0 + λ4

0
4 + · · · , which matches

Eq. (17) for a general α − T3 lattice in the graphene limit
φ → 0 and is expected to play a crucial role in the calculation
of transmission of dressed electrons in graphene.

Moreover, the wave functions associated with Eqs. (22) for
valence and conduction electrons are

�
γ=±1
0 (λ0, k) = 1√

2

[
1

γ exp
[
i �(0)

S (k | λ0)
]],

�
(0)
S (k | λ0) = 2 tan−1

[
sin θk J0(2λ0)

cos θk + fθ

]

� θk − λ2
0

2
sin(2θk ) + · · · . (23)

The wave functions in Eq. (23) are somewhat similar to those
in Eq. (19) for a dice lattice. Here, two wave-function com-
ponents in Eq. (23) have the same magnitude. A simple phase
relation tan [�(α)

S (k | λ0)]/ tan θk = aα (λ0) becomes a correct
description for all photon-dressed α − T3 materials under lin-
early polarized irradiation up to the order of � λ2

0, including
two opposite limits for graphene and dice lattice. However, an
important difference for graphene is that its wave functions
have no explicit dependence on the valley index τ = ±1.

Generally speaking, the boundary conditions for a dice
lattice with V (x) �= 0, as discussed in the next Sec. III, de-
pend substantially on kx terms which become discontinuous
at two edge boundaries of a potential barrier region. If the
polarization direction of the incident light is not aligned with
the y axis, such a discontinuity appears in the dressed-state
Hamiltonian, as demonstrated in Appendix B. Therefore, the
wave-function boundary condition for a dice lattice must be
modified if anisotropy exists in its energy dispersion.

III. ASYMMETRIC ELECTRON TUNNELING IN
IRRADIATED GRAPHENE AND DICE LATTICES

We now employ the calculated energy-dispersion relation
under linearly polarized irradiation for graphene and dice lat-
tices with V (x) = 0, as well as their wave functions in Sec. II,

to study the electron transmission dynamics through a square
potential barrier. The main focus stays on how to perform
these calculations in the presence of an applied dressing field.

We first consider electron tunneling in irradiated graphene
with the anisotropic dispersion and wave function given by
Eqs. (22) and (23). To some extent, the model system is
similar to the asymmetrical tunneling in multilayer phospho-
rene with anisotropic dispersion [71], where complete Klein
transmission was obtained at a finite incident angle. However,
such a system possesses some unique distinctions since the
anisotropy factor of irradiated graphene relies on the inten-
sity of imposed light (i.e., the electron-light coupling λ0)
and therefore could be tuned within the off-resonance limit
0 < λ0 � 1.

In addition, the polarization direction of the incident light
could also be varied, instead of being parallel to that of a head-
on electron collision (perpendicular to the potential barrier),
which is similar to a rotation of the phosphorene crystal long
axis away from the normal direction of a potential barrier in
Ref. [71]. The detailed formalism for the asymmetric Klein
tunneling is presented in Appendix C. One of the important
consequences of finite anisotropy in Dirac dispersions is that
not only the magnitudes but also the directions of group veloc-
ity V G, spinor vector S, and wave vector k are different from
each other.

As we mentioned above, one can arbitrarily choose the
direction for linear polarization of a dressing field, or the
direction x̂ of long-axis for the elliptical energy dispersions
in Eqs. (22), so it is not aligned with the direction x̂′ for
electron normal incidence on the barrier. Therefore, it is easy
to introduce two nonequivalent coordinate frames {x, y} and
{x′, y′}, corresponding, respectively, to x̂ and x̂′ vectors, as
shown in Fig. 3. The components of a vector, such as the
electron wave vector k, in each of these two frames are
connected by the relation in Eq. (C4), which holds true for
incident and reflected waves in both barrier and zero potential
regions.

All wave functions, including the incoming, reflected (with
amplitudes b and r), and transmitted (with amplitudes a and
t) waves, could be written out explicitly in three separate
regions according to the schematics in Fig. 1. For region 1,
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we have

� (1)
γ (λ0, k)= 1√

2
exp
(
ik(1)

x′ x′)exp(iky′y′)
[

1
γ ei�(1)

S

]

+ r√
2

exp
(
ik(1,r)

x′ x′)exp(iky′y′)
[

1
γ ei�(1,r)

S

]
. (24)

For region 2 within the barrier, we get

�
(2)
γ ′ (λ0, k)= a√

2
exp
(
ik(2)

x′ x′)exp(iky′y′)
[

1
γ ′ei�(2)

S

]

+ b√
2

exp
(
ik(2,r)

x′ x′)exp(iky′y′)
[

1
γ ′ei�(2,r)

S

]
. (25)

Finally, the wave function in region 3 is found to be

� (3)
γ (λ0, k) = t√

2
exp
(
ik(1)

x′ x′)exp(iky′y′)
[

1
γ ei�(1)

S

]
. (26)

In Eqs. (24)–(26), the superscripts 1 and 2 denote the wave
numbers and angles in the regions with VB = 0 and VB > 0,
respectively. Additionally, the superscript r is used for denot-
ing a backward-reflected wave in contrast to the incoming and
transmitted forward-going waves.

We emphasize that all the wave vector components kx′ and
ky′ are given in the {x′, y′} frame since they are related to
the direction of incoming electrons, while the spinor angle
�S and the group velocity angle �V must be defined in the
{x, y} frame and correspond to two axes of elliptical energy
dispersions in Eqs. (22). In other words, we face a situation
where different quantities from individual wave functions in
Eqs. (24)–(26) are defined in two nonequivalent coordinate
systems {x, y} and {x′, y′}, which makes whole mathematical
operations much more complicated.

The four undetermined amplitudes a, b, r, and t in
Eqs. (24)–(26) can be calculated from the proper boundary
conditions at x′ = 0 and x′ = WB. We have derived these
matching conditions in Appendix D by integrating all com-
ponents of the eigenvalue equation for a specific Hamiltonian
over a small interval (−δx′, δx′) and then taking the limit of
δx′ → 0 afterward.

For graphene with anisotropic dispersion relations in
Eqs. (22), the boundary conditions are obtained in the same
way as that for the isotropic case, and therefore we only
match each of two components for the wave-function spinor
at both edges of region 2 [71]. This leads to the following four
equations:

1 + r = a + b,

ei �(1)
S + r ei �(1,r)

S = s
(
a ei �(2)

S + b ei �(2,r)
S
)
,

a ei k(2)
x′ WB + b ei k(2,r)

x′ WB = s t ei k(1)
x′ WB ,

a ei �(2)
S +i k(2)

x′ WB + b ei �(2,r)
S +i k(2,r)

x′ WB = s t ei �(1)
S +i k(1)

x′ WB , (27)

where s = γ γ ′ = sgn(E0) sgn(E0 − VB) = ±1 is the compos-
ite index characterizing the same or different electron-hole
transitions at two edges, and sgn(x) = 1 or −1 for x > 0
or x < 0. Furthermore, the transmission and reflection co-
efficients are obtained as T (E0,�

′ (1)
V | β ) = |t (E0,�

′ (1)
V | β )|2

and R(E0,�
′ (1)
V | β ) = |r(E0,�

′ (1)
V | β )|2, respectively, satisfy-

ing the relation R(E0,�
′ (1)
V | β ) = 1 − T (E0,�

′ (1)
V | β ) for the

conservation of electron number.

To solve the four boundary equations in Eqs. (27), we must
know in advance the spinor angles for incoming and reflected
waves, both outside �

(1)
S , �

(1,r)
S and inside �

(2)
S , �

(2,r)
S the

square-barrier region. These spinor angles are determined
from kx and ky components defined in the {x, y} reference
frame, whereas the electron wave numbers k(r)

x′ , k(1,r)
x′ , k(2)

x′ ,
k(2,r)

x′ and ky′ = const in Eqs. (27) are given in the {x′, y′}
frame. The calculations of these seven unknowns based on
initially given parameters, e.g., kinetic energy E0 of incoming
particle, the height VB of potential barrier, and the angle �

′ (1)
V

between its group velocity vector and x′ axis are provided in
Appendix C.

The next crucial issue in our calculations is the selection
rule which allows for distinguishing the transmitted and re-
flected waves within the barrier region. It is important to
emphasize that it is the group velocity component V γ

G,x′ or its

angle �
′ (1)
V within the {x′, y′} reference frame that determines

the direction of a moving wave. As demonstrated in Fig. 4,
only the x′ component V γ

G,x′ (λ0, k | β ) of the group velocity
vector acquires two opposite (±) solutions in contrast to sim-
ilar components of the wave vector k or the spinor vector
S(λ0, k | β ). Explicitly, these two solutions are found to be

V γ

G,x′ (λ0, k | β ) = ±γ
vF√

2

{
1 + a2

0(λ0) + [1 − a2
0(λ0)

]

× cos(2β ) − 2

[
h̄vF

E0
a0(λ0) ky′

]2 }1/2

. (28)

According to Ref. [71], the Klein tunneling with the perfect
transmission is achieved if k = {k cos β, k sin β} or β = θk
(k‖x̂′), which implies that θ ′

k = θk − β = 0. In this case, how-
ever, the angle of incidence �

′ (1)
V for perfect transmission is

not equal to −β as expected, but is determined by

�
′ (1)
V = �

(1)
V − β = tan−1

[
a2

0(λ0) tan θk
]− β

= tan−1
[
a2

0(λ0) tan β
]− β . (29)

Therefore, �
′ (1) max
V in Eq. (29) can be reached when β =

tan−1[1/a0(λ0)], leading to

�
′ (1) max
V = tan−1

(
1 − λ2

0

)− tan−1

(
1

1 − λ2
0

)

� − λ2
0 − λ4

0

2
− λ6

0

6
+ · · · , (30)

which is valid for both graphene and dice lattice.
We now turn our attention to electron tunneling in an ir-

radiated dice lattice with the anisotropic dispersion given by
Eq. (13). We first note that the geometry of Dirac cones, both
isotropic and anisotropic, are exactly the same for graphene
and dice lattice apart from the existence of a flat band.
Therefore, all the reasoning and derivations for electron wave
vectors, spinor, and group velocity angles are also applicable
for dice lattice, including Eqs. (C1) and (C5) as well as a
similar expression for the barrier region. We will not use the
flat-band wave function to avoid the situation with zero kinetic
energy in all three regions because of its infinite degeneracy
for electron wave numbers.
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FIG. 4. V γ

G,x′ (λ0, k | β ) [(a), (c)] from Eq. (28) and k(1)
x′ [(b), (d)] solved from Eq. (C5) for a0(λ0) = 0.6 as a function of the incidence angle

�
′ (1)
V [(a), (b)] and a function of rotation angle β [(c), (d)]. In panels (a) and (c), the upper four curves correspond to the incident wave, while

the lower four are for the reflected one. Two V γ

G,x′ (λ0, k | β ) components for the incident and reflected waves are always with opposite signs,

which is, however, not true for two k(1)
x′ components. In panels (a), (b), different curves correspond to β = 0, 10 o, π/6 and π/4, while �

′ (1)
V = 0

and π/6 are taken for two curves in plots (c), (d).

For a dice lattice, we want to find wave functions in all
three regions shown in Fig. 1. Specifically, in region 1 we have

� (1)
γ (λ0, k) = 1

4
exp
(
ik(1)

x′ x′)exp(iky′ y′)

⎡
⎢⎣e−i�(1)

S√
2 γ

ei�(1)
S

⎤
⎥⎦

+ r

4
exp
(
ik(1,r)

x′ x′)exp(iky′ y′)

⎡
⎣e−i�(1,r)

S√
2 γ

ei�(1,r)
S

⎤
⎦,

(31)

where γ = +1 for electrons and −1 for holes and the spinor
angle �S(k | λ0) has been presented in Eq. (20). Similarly, we
find the wave function in region 2 as

�
(2)
γ ′ (λ0, k) = a

4
exp
(
ik(2)

x′ x′)exp(iky′y′)

⎡
⎣e−i�(2)

S√
2 γ ′

ei�(2)
S

⎤
⎦

+ b

4
exp
(
ik(2,r)

x′ x′)exp(iky′y′)

⎡
⎣e−i�(2,r)

S√
2 γ ′

ei�(2,r)
S

⎤
⎦,

(32)

and the wave function in region 3 to be

� (3)
γ (λ0, k) = t

4
exp
(
ik(1)

x′ x′)exp(iky′y′)

⎡
⎣e−i�(1)

S√
2 γ

ei�(1)
S

⎤
⎦. (33)

It is straightforward to verify that for the case of an isotropic
dispersion with a1(λ0) = 1 and β = 0, the spinor angle �S

is the same as the wave-vector angle θk. Meanwhile, we
also acquire �

(1,r)
S → π − θ

(1)
k and �

(2,r)
S → π − θ

(2)
k in this

case. Furthermore, the electron wave numbers for the for-
ward and backward waves become k(1,r)

x′ → −k(1)
x , k(2,r)

x′ →
−k(2)

x , k(1)
x′ → k(1)

x , and ky′ → ky. Finally, Eq. (C5) gives

rise to k(1)
x →

√
(E0/h̄vF )2 − k2

y with the conserved wave

number ky in scattering events. In this way, all previously
obtained expressions for the electron tunneling in graphene
[3,46] can be transformed into corresponding ones for dice
lattice [43].

However, the boundary conditions for an anisotropic dice
lattice, as derived in Appendix D, are different from those
for graphene (i.e., we cannot simply match individual compo-
nents of a wave function) or even not equivalent to those for an
isotropic dice lattice since the additional kx′-dependent term in
the dressed-state Hamiltonian leads to additional instances of
discontinuity at the boundaries of a barrier region. The new
composite boundary conditions are

ϕ2(−δx′) = ϕ2(δx′) (34)

and

c+
τ (λ0, β ) ϕ1(−δx′) + c−

τ (λ0, β ) ϕ3(−δx′)

= c+
τ (λ0, β ) ϕ1(δx′) + c−

τ (λ0, β ) ϕ3(δx′), (35)

where c±
τ (λ0, β ) = τ cos β ± i a1(λ0) sin β.

The new boundary conditions in Eq. (35) for a dice lattice
with anisotropic Dirac cone dispersion represent one of the
key results of the present paper. Consequently, the equations
derived from the above boundary conditions can be utilized
to determine the transmission and reflections amplitudes with
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explicit equations given by

1 + r = s(a + b),

cos
[
�

(1)
S − ατ (β, a1)

]+ r cos
[
�

(r,1)
S − ατ (β, a1)

]
= a cos

[
�

(2)
S − ατ (β, a1)

]+ b cos
[
�

(r,2)
S − ατ (β, a1)

]
,

a exp
(
i k(2)

x′ WB
)+ b exp

(
i k(2,r)

x′ WB
) = t s exp

(
i k(1)

x′ WB
)
,

a cos
[
�

(2)
S − ατ (β, a1)

]
exp
(
i k(2)

x′ WB
)

+ b cos
[
�

(r,2)
S − ατ (β, a1)

]
exp
(
i k(2,r)

x′ WB
)

= t s cos
[
�

(1)
S − ατ (β, a1)

]
exp
(
i k(1)

x′ WB
)
, (36)

where ατ (β, a1) = τ tan−1 [a1(λ0) tan β] and s = γ γ ′ =
sign(E0) sign(E0 − VB) = ±1 is a composite index charac-
terizing a possible electron → hole → electron transition,
similarly to what we have obtained for graphene. From
Eqs. (36), we know that once k and �S are known, the trans-
mission and reflection amplitudes, t and r, could be calculated
in a straightforward way.

Although we do not consider any collective effects or
Fermi surface here, it is convenient to express all quan-
tities and their numerical values in terms of a single
unit corresponding to a typical Fermi momentum k (0)

F of
graphene electrons. Specifically, we set k (0)

F = √
2π n0 �

104 − 105 cm−1 for a standard, or rather dilute, 2D elec-
tron density n0 = 108 − 1010 cm−2. Therefore, we are able
to measure all lengths, such as barrier widths, in terms
of l0 = 1/k (0)

F � 10−5 cm � 100 nm, while the unit for en-
ergy can be taken as E0 = h̄vF k (0)

F � 1 meV. In fact, such
a low-electron energy is required so as to satisfy the off-
resonant condition for the dressing field with a terahertz
frequency.

IV. NUMERICAL RESULTS AND DISCUSSION

The particular features for electron tunneling, transmis-
sion, and reflection amplitudes in a given irradiated material
are mainly governed by its band structure, as well as the prop-
erties of dressed-state wave functions of electrons. For both
graphene and dice lattice, linearly polarized irradiation creates
anisotropy between in-plane components of the electron wave
vector and modifies the phase factors of individual wave-
function components, while magnitudes for the components
of wave functions remain unchanged.

Such light-induced modifications of material properties are
found to be quite different for graphene and dice lattice mainly
due to the presence of the flat band in the energy dispersions of
the dice. However, the preserved symmetry of wave functions
results in the occurrence of anomalous or asymmetric Klein
paradox in both materials.

Klein paradox, a complete transmission of incoming par-
ticles independent of barrier height and width, has become
one of the most important and well-studied topics in 2D
Dirac cone lattices. This phenomenon is distinguished from
the resonant Fabry-Perot tunneling resulting from constructive
interference between incoming and reflected waves on both

sides of a barrier region and is not possible for a step with
only one potential discontinuity.

The transmission peaks of both types could be easily re-
solved and identified for the case of a standard isotropic Dirac
spectrum since the Klein paradox only occurs for the head-on
collision of incoming particles on a potential barrier. In fact,
the following approximate expression for electron transmis-
sion through a high potential barrier VB � E0 [3],

T0
(
E0, θ

(1)
k

∣∣β = 0
) ≈ cos2 θ

(1)
k

1 − cos2
(
k(2)

x WB
)

sin2 θ
(1)
k

, (37)

suggests that the Klein paradox with complete transmission
and zero reflection are always present for the head-on collision
with θ

(1)
k = 0, but there also exists a number of other res-

onances of unimpeded tunneling corresponding to k(2)
x WB =

π × integer with their peak locations depending on the bar-
rier width WB and the longitudinal wave number k(2)

x within
the barrier region. The latter quantity is determined from the
relation involving the kinetic energy E0 of incoming particles
and the barrier height VB.

In the case of asymmetrical tunneling, it it difficult to de-
termine which peak of electron transmission is associated with
the Klein paradox, while all the other peaks represent different
types of transmission resonances and are beyond the focus of
our current investigation. For this reason, we always display
transmission results with different potential barrier widths
and heights in each polar plot, as presented in Figs. 5–10
for both graphene and dice lattice. In this way, the posi-
tion of the anomalous Klein paradox can be unambiguously
determined.

The results for transmission depend on various parame-
ters, related to material properties of each considered lattice,
strength and frequency of the applied irradiation, angle β

between the x and x′ axis discussed above, which could accept
values within (−π/2, π/2) range disregarding of the intensity
of a dressing field, the barrier height VB and width WB. Each of
these quantities has a unique and rather complicated effect on
electron transmission, which makes presentation in this paper
quite lengthy and elaborate.

In an effort not to overload readers with many different
cases and parameters, we only provide some representative
examples for electron transmission with emphasis on low
anisotropy a(λ0), which could be induced and tuned by ex-
ternal irradiation, and rather small angles β, which leads to
maximized asymmetry in the Klein paradox [75].

From the perspective of practical applications, the
anisotropy in electron dispersions might be tuned externally
by varying the intensity of applied linearly polarized electro-
magnetic radiation as seen from the electron-light coupling
parameter λ0. Apart from that, we also change the angle β be-
tween directions of the potential barrier (a perpendicular) and
the long axis of elliptical energy dispersions, i.e., changing the
linear-polarization direction of the imposed dressing field. All
these factors can greatly affect the location and properties of
anomalous Klein tunneling.

If the misalignment angle β between the electron wave
numbers kx and kx′ is zero, the observed Klein peak is sym-
metric and corresponds to the head-on collision, like in regular
graphene [46] or a dice lattice [43]. However, the off-peak
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FIG. 5. Angular plots for transmission T (E0,�
′ (1)
V | β ) as a function of the group velocity direction �

′ (1)
V of the incident particles in

graphene. Each panel is related to a specific value of a0(λ0) = 1.0 for (a), (b); 0.9 for (c), (d); 0.6 for (e), (f). Panels (a), (c), (e) demonstrate
the transmission by black, red, and green curves for k(0)

F WB = 5, 7, 10, and VB/E0 = 2, as well as for VB/E0 = 2, 3, 5 and k(0)
F WB = 5 in (b),

(d), (f). The direction of the shifted non-head-on Klein paradox is indicated by the red arrow in each panel. Here, misalignment angle β = 10 o

is set for all panels.

transmission curves are distorted toward a narrow peak with
a lower transmission, as we demonstrate and explain in the
Supplemental Material [75]. If angle β is made finite, on the
other hand, we will always find a shift of the Klein peak for
any level of anisotropy a(λ0), and the results become rather
different by comparing graphene with a dice lattice, as shown
in Figs. 5–8.

First, for graphene we find that the direction of anoma-
lous Klein paradox angle �

′ (1)
V is gradually shifted downward

away from the head-on collision direction with increasing β,
or when the anisotropy in energy dispersions of electrons
is enhanced, as can be verified from (e) and (f) of Fig. 5.
Moreover, such a unique feature persists when β is further
increased, as can be seen by comparing panels (e) and (f) of
Fig. 5.

Next, for dice lattices, the variation of angle �
′ (1)
V with

enhanced anisotropy by a reduced a1(λ0) becomes less
significant due to appearance of a very broad anomalous-
Klein-paradox peak in this case, as shown in panels (e) and
(f) of Figs. 6. However, the angle deviation from �

′ (1)
V = 0

still increases with β for dice lattices. Moreover, the direction
of anomalous-Klein-paradox peak is found fixed in various

panels of Fig. 6, although the angle distributions of other
resonant-tunneling peaks do change with barrier width WB or
barrier height VB.

Furthermore, we consider the transmission with a spe-
cific rotation angle β = tan−1[1/a{0,1}(λ0)] in Fig. 7 for
graphene and Fig. 8 for dice lattices, which leads to the
biggest deviation angle between the anomalous Klein tun-
neling direction and the direction of head-on incidence. In
this case, we find that the angle for anomalous Klein tun-
neling increases with decreased a{0,1}(λ0) value, but the
resulting variation becomes noticeable only for a larger
anisotropy with a{0,1}(λ0) = 0.6. However, we also notice that
the condition for a{0,1}(λ0) = 0.6 cannot be met by apply-
ing an off-resonant dressing field and, therefore, the results
presented in Figs. 7 and 8 are only for the purpose of
comparison.

We emphasize that the most general configuration is con-
sidered here for the square-barrier transmission of electron
states with anisotropic Dirac cone dispersions. In principle,
there are multiple ways to achieve such states apart from
applying linearly polarized light. For example, one can use a
2D substrate with anisotropic electronic states, such as phos-
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FIG. 6. Angular plots for transmission T (E0, �
′ (1)
V | β ) as a function of the group velocity direction �

′ (1)
V of the incident particles in dice

lattices. Each panel relates to a specific value of a1(λ0) = 1.0 for (a), (b); 0.9 for (c), (d); 0.6 for (e), (f). Panels (a), (c), (e) demonstrate the
transmission by black, red, and green curves for k(0)

F WB = 5, 7, 50, and VB/E0 = 5, as well as for VB/E0 = 3, 5, 10, and k(0)
F WB = 20 in (b),

(d), (f). The direction of the shifted non-head-on Klein paradox is indicated by the red arrow in each panel. Here, misalignment angle β = 10 o

is set for all panels.

phorene, which could induce an anisotropy in the 2D layer
at any desired levels. If new experimental methods become
available for inducing a strong anisotropy in graphene or dice
lattice, the current theory on transmission will definitely be
applicable to these cases.

The dashed arrows shown in Figs. 7 and 8 mark the loca-
tions of the transmission peaks corresponding to β = 40 o (see
last two figures in the Supplemental Material). In doing this,
we intend to demonstrate that such a β angle, corresponding
to tan β = a(λ0), results in the largest asymmetry for Klein
transmission peaks and the difference in angular distribution
of Klein peak is noticeable even if these two angles are 40 o

and 48 o in panels (c) and (d). That is, for any values of
anisotropy factor a(λ0), there exists a specific critical angle
β for the largest asymmetry of the central Klein transmission
maximum.

Very importantly, we have compared the results for trans-
missions in graphene and dice lattice and shown some
noticeable distinction between them due to the fact that one
need employ new boundary conditions for a dice lattice which
are different from directly matching each wave-function com-
ponents, as we discussed in Sec. III. Indeed, we have found

that the transmission for a dice lattice is considerably larger
than that for graphene under similar conditions, as seen es-
pecially well from the density plots in Figs. 9 and 10 for a
significantly expanded bright region. This happens due to the
so-called magic case, i.e., a complete transmission occurs for
the full range of incident angles �

′ (1)
V if the incoming par-

ticle energy satisfies E0/E (0)
F = 1/2, which remains in place

for anisotropic dispersions as well as a finite rotation angle
β �= 0.

The angular distributions of other resonant peaks (not
related to Klein paradox) also vary significantly between
graphene and dice lattices, in addition to widened transmis-
sion peaks of the latter. In contrast, graphene exhibits sharp
satellite peaks under similar external conditions. Figures 9 and
10 for graphene and dice lattices clearly demonstrate that the
angle for anomalous Klein paradox does not depend on the
kinetic energy E0 of incoming particles, which is in agreement
with our theoretical model.

Meanwhile, the transmission results in Fig. 8 for dice
lattices do not display any dependence on the valley index
τ = ±1 even though τ appears in the boundary conditions in
Eqs. (36). Such a conclusion is not expected to be the case for
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FIG. 7. Angular plots for T (E0, �
′ (1)
V | β ) as a function of �

′ (1)
V in graphene. Each panel relates to a specific value of a0(λ0) = 1.0 for (a),

(b); 0.9 for (c), (d); 0.6 for (e), (f). Panels (a), (c), (e) demonstrate the transmission by black, red, and green curves for k(0)
F WB = 5, 7, 10, and

VB/E0 = 2, as well as for VB/E0 = 2, 3, 5 and k(0)
F WB = 5 in (b), (d), (f). The direction of the shifted non-head-on Klein paradox is indicated

by the red arrow in each panel. Here, tan β = 1/a0(λ0) is set for all panels, and then, β = 45 o, 48 o, 59 o correspond to (a), (b); (c), (d); (e),
(f), respectively.

general α − T3 lattices with more complicated dependence on
index τ in its wave functions and transmissions.

As a whole, there are several independent parameters in
this problem, and the effect of each of them on electron tun-
neling has been carefully examined. We have investigated how
a nonzero angle for Klein-paradox depends on the anisotropy
factor a(λ0) due to a linearly polarized dressing field, as well
as on the misalignment angle β between crystal long axis and
the normal of a potential barrier. These two parameters could
be independently controlled by the direction of polarization
for irradiation and its intensity. For a given a(λ0), there ex-
ists a specific β value at which the angle for Klein paradox
reaches a maximum value in graphene and dice lattice, as
shown in Figs. 7 and 8. The plots of numerical results for
nonzero Klein-paradox angle faithfully represent the analytic
expression in Eq. (30) for both graphene and dice lattice.

V. CONCLUDING REMARKS

In this paper, we have investigated the non-head-on, or
asymmetrical, Klein tunneling in graphene and a dice lat-
tice in the presence of a linearly polarized dressing field.
Such anomalous Klein tunneling results uniquely from the

misalignment of optically controlled elliptical dispersion for
Dirac dressed states and the direction of incident particles.
Specifically, we have performed a careful theoretical inves-
tigation on the electron tunneling across a square finite-width
potential barrier in graphene, as well as in a pseudospin-1 dice
model, with laser-induced anisotropic energy dispersions in
their valence and conduction bands. Such a tunable anisotropy
can be induced in a 2D material by applying a linearly polar-
ized irradiation with polarization direction different from the
long axis of elliptical energy dispersion of Dirac cone dressed
states. Klein tunneling is really important and one of the most
thoroughly investigated quantum phenomena in all recently
discovered 2D Dirac materials.

The electron dynamics of optically controllable dressed
states have been explored theoretically by using Floquet-
Magnus perturbative expansion approach for electron-light
interaction Hamiltonians. In particular, we have found that the
effect of high-frequency linearly polarized irradiation for both
graphene and dice lattice can lead to an intensity-dependent
modification to the quantum phases of dressed states, which
is characterized by a spinor angle different from the incident
angle of incoming particles. Here, the direction of incident
particles is measured with respect to the surface normal of
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FIG. 8. Angular plots for T (E0,�
′ (1)
V | β ) as a function of �

′ (1)
V in dice lattices. Each panel relates to a specific value of a1(λ0) = 1.0 for

(a), (b); 0.9 for (c), (d); 0.6 for (e), (f). Panels (a), (c), (e) demonstrate the transmission by black, red, and green curves for k(0)
F WB = 5, 7, 50

and VB/E0 = 5, as well as for VB/E0 = 3, 5, 10, and k(0)
F WB = 20 in (b), (d), (f). The direction of the shifted non-head-on Klein paradox is

indicated by the red arrow in each panel. Here, tan β = 1/a1(λ0) is set for all panels, and then β = 45 o, 48 o, 59 o correspond to (a), (b); (c),
(d); (e), (f), respectively.

a potential barrier, while the direction of the spinor vector
of a dressed-state wave-function is quantified with respect
to the semimajor axis of the elliptical energy dispersion of
electrons. Therefore, two individual coordinate frames of
reference must be introduced specifically for these two differ-
ent directions. However, there exists an angle misalignment
between these two frames due to the presence of intensity-
dependent anisotropy in the energy dispersion of dressed-state
electrons under linearly polarized irradiation.

Making use of the unique electronic properties from these
linear-polarization coupled electron dressed states in graphene
and dice lattice, we have investigated their transmission and
found the so-called anomalous Klein paradox with a peak
in the angular distribution of transmission away from the
head-on direction for incoming particles. This finite incident
angle depends on the degree of anisotropic energy dispersion
a{0,1}(λ0) or the electron-light coupling constant λ0, as well as
the misalignment angle β between the surface normal of a po-
tential barrier and the semi-major axis of the elliptical energy
dispersion of dressed-state electrons. Moreover, the maximum
angle deviation for anomalous Klein paradox is achieved
as β = tan−1[1/a{0,1}(λ0)], somewhat similar to the case of
phosphorene [71] with material-based anisotropic band struc-
tures. However, the phenomena which we have investigated

are unique because both the light-induced anisotropy and the
misalignment angle β are tunable and could be varied exter-
nally.

We have calculated the x′ components (perpendicular to
the potential barrier) of electron wave vector, spinor vector,
and group velocity in barrier regions and consequently deter-
mined that only the last quantity has two opposite solutions.
Therefore, only the longitudinal component of electron group
velocity should be used to distinguish different solutions cor-
responding to transmitted and reflected electron waves. The
analytic expression for the x′ component of the group velocity
vectors for incoming and reflected waves could also be of
special interest.

Apart from the location of the angle for anomalous Klein
paradox, the angular distributions of other resonant peaks in
both transmission and reflection probabilities appear to be
quite different for graphene and dice lattice. Quantitatively,
a dice lattice can acquire much larger off-peak transmission
amplitudes compared to graphene under the same conditions,
and in particular, the magic case for complete transmission
covering the full range of incident angle is seen at E0 = VB/2
for both graphene and dice lattices, independent of the de-
gree of anisotropy a{0,1}(λ0) and the value of misalignment
angle β.
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FIG. 9. Density plots for T (E0, �
′ (1)
V | β ) as functions of �

′ (1)
V

and E0/E (0)
F in graphene with VB/E (0)

F = 4. Panel (a) is for a0(λ0) =
1, while panels (b) and (d) are for a0(λ0) = 0.6. Upper plots (a),
(b) correspond to β = 0 o, but lower plots to β = 40 o. Panels (c),
(d) are plotted for the same values of a0(λ0) and β and, therefore, dif-
fer only by the energy range for display. Particularly, plot (d) shows
the transmission for the range of E0 above the barrier height VB.

Compared to the known boundary conditions for graphene
with pseudospin-1/2 Hamiltonian in Eqs. (D6), the derived
boundary conditions for a dice lattice with pseudospin-1
Hamiltonian acquire additional terms, as seen in Eq. (35).
Such a modification seems counterintuitive and largely un-
expected since this is never the case in studying familiar
pseudospin–1/2 Dirac materials. The derivation of mixed
boundary conditions in this paper could be utilized by others
in matching the wave functions with anisotropic dispersions
in all sorts of α − T3 materials, including a dice lattice, such
as an irradiated SrTiO3/SrIrO3/SrTiO3 trilayer.

For a chosen material, its low-energy Hamiltonian and
the set of its lattice parameters are unique and cannot be
reproduced exactly in any other lattice. This leads to specific
electronic states and unique material properties addressed in
this paper, such as the electronic and ballistic transport. On the
other hand, the difference between a dice lattice and graphene
can be attributed to the presence of a flat band in the energy
spectrum of the former, and a variety of consequences from its
presence as well, such as a specific form of the wave function
and its components and additional electron transitions from or
to this flat band.

The theoretical results could be practically implemented
into an extremely wide range of recently discovered Dirac
materials either with a built-in anisotropic energy dispersion
or with an externally tunable anisotropy due to incident ir-
radiation. In the absence of anisotropy in energy dispersion,

FIG. 10. Density plots for T (E0, �
′ (1)
V | β ) as a function of �

′ (1)
V

and E0/E (0)
F in dice lattices with VB/E (0)

F = 4. Panel (a) is for
a1(λ0) = 1, while panels (b) and (d) are for a1(λ0) = 0.6. Upper
plots (a), (b) correspond to β = 0 o, but lower plots to β = 40 o.
Panels (c), (d) are plotted for the same values of a1(λ0) and β and,
therefore, differ only by the energy range for display. Particularly,
plot (d) shows the transmission for the range of E0 above the barrier
height VB.

this system behaves much like n-p-n multijunctions with an
additional electric gate to control an electrically injected cur-
rent by a positive base voltage for tuning barrier height VB.
In the presence of laser-tunable anisotropic energy disper-
sion, on the other hand, an antenna-coupled incident laser
can be employed as an optical gate to control both the mag-
nitude and direction of an injected ballistic current through
the angle-dependent electron transmission T (E0,�

′ (1)
V | β ).

The closed-form analytic expressions obtained in this paper
are the most valuable and desirable for researchers in the
fields of low-dimensional condensed-matter physics and opto-
electronics, especially for experimentalists. Undoubtedly, the
electronic properties of both coherent tunneling and ballistic
transport of electrons explored and demonstrated in this paper
will find their applications in developing optical and electronic
nanoscale switching devices.
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APPENDIX A: PSEUDOSPIN-1 α-DEPENDENT
PAULI MATRICES

In this paper, we mostly focus on dice lattice with φ = π/4
so the matrices in Eqs. (2) and (3) reduce to regular 3 × 3
Pauli matrices:

�̂(1)
x = 1√

2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, (A1)

�̂(1)
y = i√

2

⎡
⎣0 −1 0

1 0 −1
0 1 0

⎤
⎦. (A2)

Sometimes, the third Pauli matrix,

�̂(1)
z =

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, (A3)

is also employed to introduce an energy gap for a pseudospin-
1 Hamiltonian [76].

Since all matrices, including additional interacting Hamil-
tonian terms derived in the next Appendix B, are Hermitian, it
is convenient to introduce two new matrices

�̂
(1)
± = �̂(1)

x ± i �̂(1)
y , (A4)

which have the following structure:

�̂
(1)
+ =

√
2

⎡
⎣0

0 Î2

0 0 0

⎤
⎦ =

√
2

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦, (A5)

�̂
(1)
− =

√
2

⎡
⎣0 0 0

Î2
0
0

⎤
⎦ =

√
2

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦. (A6)

Here, Î2 is a 2 × 2 unit matrix corresponding to pseudospin-
1/2 system, i.e.,

Î2 =
[

1 0
0 1

]
. (A7)

Importantly, the obtained matrices �̂
(1)
± satisfy the

simple commutation relations [�̂(1)
+ , �̂

(1)
− ] = 2 �̂(1)

z and
[�̂(1)

z , �̂
(1)
± ] = ±�̂

(1)
± .

APPENDIX B: HAMILTONIAN OF ELECTRONS IN DICE
LATTICE WITH ARBITRARY DIRECTION FOR

LIGHT POLARIZATION

In contrast to the derived Eq. (12), we now consider an
arbitrary direction for light polarization. We aim to obtain
the dressed states of electrons in a dice lattice under linearly
polarized light with its vector potential:

A(L)(ξ0, t ) =
[

A(L)
x (ξ0, t )

A(L)
y (ξ0, t )

]
= E0

ω
cos(ωt )

[
cos ξ0

sin ξ0

]
. (B1)

Particularly, the case for light polarization along the x axis
is simply obtained by setting ξ0 = 0. In the presence of
light irradiation, the new Hamiltonian is acquired by the
standard substitution of kx,y → kx,y − (e/h̄) A(L)

x,y (ξ0, t ) in the
noninteracting Hamiltonian for both components of the vector
potential A(L)(ξ0, t ).

Since the noninteracting Hamiltonian in the absence of
irradiation is linear with respect to wave vector k of electrons,
the effect of imposed irradiation can be included by

Ĥ1,τ (k) �⇒ Ĥ(L)(k, t | β ) = Ĥ1,τ (k) + Ĥ(L)
I (ξ0, t ), (B2)

where subscript-index 1 is associated with α = 1 for the
dice lattice. Moreover, the interaction Hamiltonian term in
Eq. (B2) is given by

H(L)
I (ξ0, t ) = −τc0√

2
cos(ωt )

⎡
⎣ 0 e−iτξ0 0

eiτξ0 0 e−iτξ0

0 eiτξ0 0

⎤
⎦,

(B3)

where τ = ±1 represents the valley index and the coupling
constant c0 = evFE0/ω remains the same for all types of light
polarizations. This implies that the light-polarization effect on
energy dispersion of electrons becomes similar in magnitude
but different in features.

Explicitly, the periodic time dependence in the interaction
Hamiltonian term Ĥ(L)

A (ξ0, t ) in Eq. (B3) could be cast into
the following form:

Ĥ (L)
I (ξ0, t ) = Ô1,τ (ξ0) eiωt + Ô†

1,τ (ξ0) e−iωt , (B4)

where the operator Ô1,τ (ξ0) and its conjugate Ô†
1,τ (ξ0) are

time independent. Then, it is straightforward to find the oper-
ator Ô1,τ (ξ0) from Eq. (B3), yielding

Ô1,τ (ξ0) = − τc0

2
√

2

⎡
⎣ 0 e−iτξ0 0

eiτξ0 0 e−iτξ0

0 eiτξ0 0

⎤
⎦, (B5)

and it is equivalent to Eq. (B3) except for the prefactor. More-
over, matrix Ô 1,τ (ξ0) itself is Hermitian, which is unique for
linearly polarized light but not for the case of any other types
of elliptical polarization, including the circular one.

By using Eqs. (B2) and (B4), the effective time-
independent Hamiltonian under the high-frequency and
off-resonant limits can be derived based on the standard
Floquet-Magnus expansion approach, leading to

Ĥeff = Ĥ1,τ (k) + 1

h̄ω
[Ô1,τ , Ô

†
1,τ ] + 1

2(h̄ω)2

×{[[ Ô1,τ , Ĥ1,τ (k)], Ô†
1,τ ] + H.c.} + · · · ,

(B6)

where the first term in the expansion is just the noninteracting
Hamiltonian, while the second term [Ô1,τ , Ô

†
1,τ ] is zero since

matrix Ô1,τ is Hermitian. However, this conclusion holds true
only for linearly polarized light but not for any other types of
polarization or a finite band gap. The third term T̂2(λ0 | k, θk )
in Eq. (B6) for a dice lattice has been calculated as

T̂2(λ0 | k, θk )

= i
λ2

0

4
√

2
h̄vF {ky cos ξ0 − τkx sin(τξ0)}

×
⎡
⎣ 0 exp(−iτ ξ0) 0

−exp(iτ ξ0) 0 exp(−iτ ξ0)
0 −exp(iτ ξ0) 0

⎤
⎦

043245-15



ANDRII IUROV et al. PHYSICAL REVIEW RESEARCH 2, 043245 (2020)

= λ2
0

4
√

2
h̄vF {ky cos ξ0 − τkx sin(τξ0)} { sin(ξ0τ ) �̂ (1)

x

− cos ξ0 �̂ (1)
y

}
. (B7)

Here, we would like to emphasize that if the polarization
direction of imposed radiation differs from the x axis (ξ0 �= 0),
there exists an additional kx related term in Eq. (B7) which
leads to a discontinuity for electron tunneling at two bound-
aries of a barrier region. As a result, the boundary conditions
for the components of dressed-state wave functions in a dice
lattice must be modified accordingly.

APPENDIX C: ANISOTROPIC ELECTRON
DRESSED-STATE TUNNELING IN GRAPHENE AND

A DICE LATTICE

As one of the important consequences of finite anisotropy,
we find that the directions of group velocity V G and spinor
vector S are given by

Sγ (λ0, k) = γ√
k2

x + [a0(λ0)ky]2

[
kx

a0(λ0) ky

]
, (C1)

V γ

G(λ0, k) = 1

h̄

[
∂/∂kx

∂/∂ky

]
ε

γ

0 (λ0, k)

= γ vF√
k2

x + [a0(λ0)ky]2

[
kx

a2
0(λ0) ky

]
, (C2)

which are aligned neither with each other nor with the elec-
tron wave vector k. Here, vector Sγ is proportional to the
spinor wave function in Eq. (23) and switches its direction
to opposite one for hole states with γ = −1 in comparison
with electron ones having γ = +1. Meanwhile, V γ

G speci-
fies the direction for incident particles. The angles of the
two vectors in Eqs. (C1) and (C2) relative to the x axis are
determined by the relations tan �S(λ0) = (ky/kx ) a0(λ0) and
tan �V(λ0) = (ky/kx ) a2

0(λ0) or, alternatively, tan �V(λ0) =
a0(λ0) tan �S(λ0) = a2

0(λ0) tan θk.
The crystal long axes for anisotropic energy dispersion (or

x̂ direction) and the normal direction of a potential barrier
(or x̂′ direction) are generally not aligned with each other.
Therefore, we need to introduce two coordinate frames: {x, y}
for the x̂ vector while {x′, y′} for the x̂′ vector, as depicted in
Fig. 3 in the main text.

In a similar way, the same incident-electron wave vector
k can be decomposed either as {kx, ky} or as {kx′ , ky′ } in two
different frames, but its magnitude k should always be the
same. These two frames are related to each other by an in-
plane rotation angle β, and the corresponding rotation matrix
R̂(β ) is

R̂(β ) =
[

cos β − sin β

sin β cos β

]
. (C3)

Consequently, we arrive at θk = θk′ + β or �V = �′
V + β,

and the wave vector k in these two reference frames are related
by [

kx

ky

]
= R̂(β )

[
kx′

ky′

]
. (C4)

The obtained relation in Eq. (C4) remains true for both inci-
dent and reflected waves within the barrier and zero potential
regions. The reason behind introducing another reference
frame {x′, y′} comes from the conservation of transverse wave
number ky′ across the potential barrier for all regions.

We first note that all unknowns in Eqs. (27) are associated
with both {x, y} and {x′, y′} reference frames. For the fixed
kinetic energy E0 of an incident particle in region 1, from
Eq. (22) we find {k(1)

x , k(1)
y } in the {x, y} frame, i.e.,

[
k(1)

x

]2 + [a0(λ0) k(1)
y

]2 =
( E0

h̄vF

)2

. (C5)

In region 2 with a finite potential barrier VB, we obtain a simi-
lar relation between the wave-vector components k(2)

x,y and the
anisotropy a0(λ0), except that the incoming particle energy E0

is replaced by E0 − VB. Knowing {k(1)
x , k(1)

y } and {k(2)
x , k(2)

y } in

the {x, y} frame, we are able to determine �
(1)
S and �

(2)
S from

the angle definitions of spinor and group velocity vectors,
involving energy-dispersion anisotropy.

Physically, it is the group velocity component V γ

G,x′ or its
angle �′

V within the {x′, y′} reference frame that determines
the direction of a moving wave [71]. We know that there
exist two solutions within the {x′, y′} frame from Eq. (C5)
in both region 1 and region 2, corresponding to the forward
(V γ

G,x′ > 0) and backward (V γ

G,x′ < 0) moving waves, respec-
tively. The frame-rotation matrix in Eq. (C3) can project these
found solutions for {k(1,2)

x′ , k(1,2)
y′ }± back to {k(1,2)

x, , k(1,2)
y }± in

the {x, y} frame, from which the spinor angles �
(1)
S,± and �

(1,r)
S,±

in region 1, as well as �
(2)
S,± and �

(2,r)
S,± in region 2, can be

computed.
Two unknown components of the same group velocity vec-

tor V γ
G(λ0, k) in the {x′, y′} frame can be obtained from its

two known components in the {x, y} frame by using Eq. (C4),
yielding

[
V γ

G,x′ (λ0, k)
V γ

G,y′ (λ0, k)

]
= R̂(−β )

[
V γ

G,x(λ0, k)
V γ

G,y(λ0, k)

]

= γ vF√
k2

x + [a0(λ0) ky]2
R̂(−β )

[
kx

a2
0(λ0) ky

]
.

(C6)

We solve Eq. (C6) in conjunction with Eq. (C5) for
V γ

G,x′ (λ0, k) and express two solutions explicitly in terms of
the known ky′ as

V γ

G,x′ (λ0, k|β ) = ±γ
vF√

2

{
1+a2

0(λ0) + [1 − a2
0(λ0)

]
cos(2β )

− 2

[
h̄vF

E0
a0(λ0) ky′

]2 }1/2

, (C7)

which have opposite signs but equal magnitudes, indicat-
ing forward (+) and backward (−) waves, respectively. We
emphasize that the relation in Eq. (C7) does not apply to
wave-vector components, such as kx or kx′ , as demonstrated in
Fig. 4. In the absence of rotation (β = 0) between two frames,
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Eq. (C7) reduces to

V γ

G,x′ (λ0, k | β → 0) = ±γ vF

√
1 −

[
h̄vF

E0
a0(λ0) ky′

]2

(C8)

or

V γ

G,x′ (λ0 → 0, k | β ) = ±γ vF

√
1 −

(
h̄vF

E0
ky′

)2

(C9)

if the electron-light interaction and anisotropy are turned off
with λ0 = 0, which is independent of angle β.

APPENDIX D: BOUNDARY CONDITIONS FOR
ANISOTROPIC HAMILTONIAN

For a pseudospin-1 dice lattice including a barrier region,
we address relevant boundary conditions for the case with an
anisotropic Dirac cone and noncollinear kx and kx′ axes. In

contrast to graphene, we find that the boundary conditions for
a dice lattice change significantly with a finite anisotropy in
energy dispersion.

We begin with the anisotropic pseudospin-1/2 graphene
Hamiltonian, given by

Ĥ0(λ0, k) = h̄vF
(
�̂(1/2)

x kx + a0(λ0) �̂(1/2)
y ky

)
, (D1)

where �̂(1/2)
x and �̂(1/2)

y are the 2 × 2 Pauli matrices, related
to Eqs. (A1) and (A2). Here, we consider two frames, {x, y}
and {x′, y′}, in which the former relates to the long axis of
an elliptical energy dispersion for dressed states of electrons
while the latter to the normal direction of a potential barrier.
As a result, the decomposition of a wave vector k in these
two frames can be written as {kx, ky} or {kx′ , ky′ }, respectively,
which are related to each other by a rotation matrix R̂(β ) in
Eq. (C4). To find the proper boundary conditions, we need
to transform the kx,y−dependent Hamiltonian into the {x′, y′}
frame, integrate each of relevant equations over a small inter-
val from −δx′ to δx′, and take the limit of δx′ → 0 afterwards
[42,43].

Let us start with the transformed dressed-state Hamiltonian for anisotropic graphene within the {x′, y′} frame, given by

Ĥ0(λ0, k) = h̄vF k

[
0 cos(θ ′

k + β ) − ia0(λ0) sin(θ ′
k + β )

cos(θ ′
k + β ) + ia0(λ0) sin(θ ′

k + β ) 0

]
, (D2)

where θk = θ ′
k + β, tan θk = ky/kx. For the case with a0(λ0) = 1, the transformed Hamiltonian in Eq. (D2) within the {x′, y′} is

simplified to

Ĥ0(λ0, k) = h̄vF

[
0 k−e−iβ

k+eiβ 0

]
, (D3)

where k± = kx′ ± iky′ . Since the discontinuity related to ∂/∂x′, due to the existence of potential barrier, is associated with the x′
coordinate, by using kx′ → −i ∂/∂x′ we generalize the Hamiltonian in Eq. (D3) into

Ĥ0(λ0 | x′, k′
y ) = h̄vF

[
0 (−i ∂/∂x′ − iky′ ) e−iβ

(−i ∂/∂x′ + iky′ ) eiβ 0

]
, (D4)

while all other continuous terms on both sides of the eigenvalue equation approach zero in the limit of δx′ → 0, i.e.,

∫ δx

−δx
VB �(x) ϕ j (x) → 0,

∫ δx

−δx
E0ϕ j (x) → 0, (D5)

where ϕ j (x) with j = 1, 2 represents one of the two wave-function components. As a result, only the terms containing kx′ →
−i ∂/∂x′ make nonzero contributions to the boundary conditions, leading to

∫ δx

−δx
−i

∂

∂x′ [cos β − i a0(λ0) sin β]ϕ2(x′) = 0 → ϕ2(δx′) = ϕ2(−δx′) ,

∫ δx

−δx
−i

∂

∂x′ [cos β + i a0(λ0) sin β]ϕ1(x′) = 0 → ϕ1(δx′) = ϕ1(−δx′) . (D6)

These obtained results are equivalent to those for the earlier considered isotropic graphene, therefore, the anisotropy and the
rotation R̂(β ) do not affect boundary conditions.

The situation changes drastically for a dice lattice with the pseudospin-1 Hamiltonian. We once again rewrite the Hamiltonian
in Eq. (1) within the {x′, y′} frame, leaving out all the continuous terms involving kinetic energy E0, piecewise potential VB �(x),
and constant ky′ . As a result, we only keep the terms including −i ∂/∂x′ and are left with

Ĥτ
1 (x′) = h̄vF√

2

(
−i

∂

∂x′

)⎧⎨
⎩
⎡
⎣0 τ cos β − ia1(λ0) sin β 0

0 0 τ cos β − ia1(λ0) sin β

0 0 0

⎤
⎦+ H.c.

⎫⎬
⎭. (D7)
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Correspondingly, the boundary conditions are found to be

ϕ2(−δx′) = ϕ2(δx′), c+
τ (λ0, β ) ϕ1(−δx′) + c−

τ (λ0, β ) ϕ3(−δx′) = c+
τ (λ0, β ) ϕ1(δx′) + c−

τ (λ0, β ) ϕ3(δx′), (D8)

where

c±
τ (λ0, β ) = τ cos β ± i a1(λ0) sin β . (D9)

In the case with a1(λ0) = 0 and collinear x and x′ (β = 0), c±
τ (λ0, β = 0) = τ , and then we immediately recover the previously

obtained boundary conditions for a dice lattice [43]:

ϕ2(−δx) = ϕ2(δx), ϕ1(−δx) + ϕ3(−δx) = ϕ1(δx) + ϕ3(δx). (D10)

For an isotropic Dirac cone but with β �= 0 (kx �= kx′), c±
τ (λ0 → 0, β ) → τ e±iτβ , and the boundary conditions must be modified

accordingly.
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