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Evidence of many thermodynamic states of the three-dimensional Ising spin glass
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We present a large-scale simulation of the three-dimensional Ising spin glass with Gaussian disorder to
low temperatures and large sizes using optimized population annealing Monte Carlo. Our primary focus is
investigating the number of pure states regarding a controversial statistic, characterizing the fraction of centrally
peaked disorder instances, of the overlap function order parameter. We observe that this statistic is subtly
and sensitively influenced by the slight fluctuations of the integrated central weight of the disorder-averaged
overlap function, making the asymptotic growth behavior very difficult to identify. Modified statistics effectively
reducing this correlation are studied, and essentially monotonic growth trends are obtained. The effect of
temperature is also studied, finding a larger growth rate at a higher temperature. Our state-of-the-art simulation
and variance reduction data analysis suggest that the many pure states picture is most likely and coherent.
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I. INTRODUCTION

Spin glasses are fascinating disordered and frustrated mag-
nets with a wide array of applications in diverse fields such as
biology, computer science, and optimization problems [1,2].
The mean-field Sherrington-Kirkpatrick (SK) model [3] has
an unusual low-temperature phase of many pure states de-
scribed by the replica symmetry breaking (RSB) [4–6]. Here
a pure state refers to a self-sustained thermodynamic state
characterized by a time-averaged spin orientational pattern.
Despite several decades of efforts, it is still an outstanding
problem whether the more realistic Edwards-Anderson (EA)
spin glass [7] in three dimensions has a single pair or many
pairs of pure states. The RSB picture [8,9] assumes that the
mean-field theory is qualitatively correct for the EA model.
On the other hand, the droplet picture [10–14] based on the
domain-wall renormalization group method predicts only a
single pair of pure states much like a ferromagnet. The two
pictures also differ on the geometrical aspect of excitations
(fractals or space-filling) [15] and the existence of a spin-glass
phase in a weak external magnetic field [16]. There are other
pictures as well [2]. The applicability of RSB is of broad inter-
est and is related to, e.g., the Gardner transition in structural
glasses [17,18].

Despite much research aiming at discriminating which
picture is suitable in three (and also four) dimensions, the
problem has not been definitely settled. In this work we
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solely discuss the number of pure states, as a solid an-
swer on one individual property can put stringent constraint
on possible theories. There is mounting evidence that the
disorder-averaged overlap function is nontrivial (correspond-
ing to many pure states) for the sizes available, which have
been steadily growing over time. One exception is the works
focusing on the ground states at zero temperature [19,20].
However, we conjecture that a single pair of ground states is a
strong support for neither a two-state nor many-state picture.
It seems likely what is going on in this case is that there are
nonzero energy gaps between the lowest pure states. In this
way, even O(1) large-scale droplet excitations are forbidden at
T = 0. This is motivated by the observation that the disorder-
averaged central weight [see Eq. (2)] decreases approximately
linearly with decreasing temperature [21]. Next, we turn to the
finite temperatures, which is the focus of this work.

We find the computational controversies regarding the
number of pure states are essentially from investigating new
statistics, new boundary conditions, or a combination of the
two. To our best knowledge, all numerical simulations find
nontrivial disorder-averaged overlap functions under periodic
boundary conditions at a typical low temperature. Therefore,
to argue against many states, it is necessary that one or several
of the conditions have to be altered. The free boundary con-
dition was thought to potentially support a two-state picture
as I (0.2) [see Eq. (2)] is found to rapidly decrease for small
sizes and remarkably agrees with the 1/LθDW scaling, where
θDW is the interface free energy exponent [22]. However, this
was later found to be a finite-size effect from the surfaces [23]
and I (0.2) of the free and periodic boundary conditions run
together for larger sizes, supporting many pure states. This
also suggests that the many pure states are genuinely due to
droplet excitations rather than topologically protected domain
walls. By contrast, various statistics have been proposed other
than I (0.2), but most of these are not very successful; see,
e.g., Refs. [24] and the references therein for a collection of
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examples. One controversial but stimulating statistic is the
fraction of centrally peaked instances [25–27], which we
discuss in detail below. For new statistics and boundary
conditions, a work on sample stiffness in thermal bound-
ary conditions argued against many states [28]. This is also
partially addressed [29], and to fully resolve this problem a
contrast experiment of the SK model should be conducted,
which shall be discussed elsewhere.

In this work we focus on the controversial statistic � of
the fraction of centrally peaked instances [25–27] and find
again that there is no violation of many pure states. This is
significant since � appears to do the best job among the new
statistics supporting the two-state picture [24]. In Ref. [25] it
was found that � at T = 0.42 grows with system size up to
about L = 10, then it levels off or stops growing appreciably.
By contrast, � of the SK model at a similar T/TC grows
prominently for the similar range of sizes. A criticism in
Ref. [26] suggested that comparing T = 0.4TC for different
models has no theoretical basis, and the difference is from the
effective lower temperature of the EA model, i.e., a smaller
central weight I (0.2). Increasing the temperature of the EA
model such that it has a similar I (0.2) as the SK model, it
was found that � also grows prominently in the EA model.
However, the problem was not fully addressed in spite of the
profound insight. An explanation of the irregular low tem-
perature data is missing, and slightly different models were
compared. The former group used Gaussian disorder and a
low temperature [25], while the latter group used ±J disorder
and a relatively high temperature [26].

The main purpose of this work is to resolve this prob-
lem systematically by carrying out a large-scale simulation
of the three-dimensional EA model at the same parameters
using the same model as the original work [25] but including
larger sizes. In light of Ref. [26], data at a higher temperature
are also collected for comparison. Using massively parallel
population annealing Monte Carlo [30–34] and scalable MPI
parallel computing, and taking further advantage of the recent
optimizations of the algorithm [34–36], we have managed
with considerable efforts to increase the largest size from
123 spins [25] to 163 spins. We refer to Ref. [35] for a
discussion of how notoriously the spin glass computational
complexity grows at low temperatures with the number of
spins. Our larger range of sizes crucially enables us to identify
a subtle correlation between �(q0, κ ) and I (q0), showing that
even small I (q0) fluctuations can significantly influence the
behavior of �. Motivated by our observation, we define a
slightly modified � compensating effectively for this correla-
tion effect. The modified � essentially grows monotonically,
providing a coherent many-state picture. Our results also
confirm that the different results of earlier works originate
from the use of different effective temperatures or central
weights [26].

II. MODEL, METHOD, AND OBSERVABLES

We study the three-dimensional Edwards-Anderson
Ising spin glass [7] defined by the Hamiltonian H =
−∑

〈i j〉 Ji jSiS j , where Si = ±1 are Ising spins and the sum is
over nearest neighbors on a simple cubic lattice under periodic
boundary conditions. For a linear size L, there are N = L3

TABLE I. Preliminary parameters of the population annealing
simulation. L is the linear system size, R is the number of replicas,
T0 is the lowest temperature simulated, NT is the number of temper-
atures used in the annealing schedule, NS is the number of sweeps
applied to each replica after resampling, and M is the number of
instances studied. Note that unequilibrated instances were rerun with
(much) larger simulation parameters; see the text for details.

L R T0 NT NS M

4 8 × 104 0.42 101 10 5000
6 1.6 × 105 0.42 101 10 5000
8 4 × 105 0.42 201 10 5000
10 9.6 × 105 0.42 301 10 5000
12 9.6 × 105 0.42 301 10 5000
14 9.6 × 105 0.42 401 20 3500
16 9.6 × 105 0.42 401 40 3424

spins. The random couplings Ji j are chosen independently
from the standard Gaussian distribution n(0, 1). A set of
quenched couplings J = {Ji j} defines a disorder realization
sample or an instance. The model has a spin-glass phase
transition at TC ≈ 1 [37].

Population annealing cools gradually a population of R
random replicas starting from β = 0 with alternating re-
sampling and Metropolis sweeps until reaching the lowest
temperature. In a resampling step, when the inverse tem-
perature is increased from β to β ′, a replica i is copied
according to its energy Ei with the expectation number ni =
exp[−(β ′ − β )Ei]/Q. Here Q = (1/R)

∑
i exp[−(β ′ − β )Ei]

is a normalization factor to keep the population size approxi-
mately the same as R. In our simulation, the number of copies
is randomly chosen as either the floor or the ceiling of ni

with the proper probability to minimize fluctuations. After
the resampling step, Monte Carlo sweeps are applied to each
replica at the new temperature. Population annealing is used
because it is both efficient and massively parallel [33,36,38].
Our equilibration criterion is based on the replica family en-
tropy S f = −∑

i fi log( fi), where fi is the fraction of replicas
descended from replica i of the initial population. We require
S f � log(100) at the lowest temperature for each individual
instance [28,33]. The preliminary simulation parameters are
summarized in Table I, and unequilibrated instances were
rerun with larger parameters until equilibration is reached.
It should be noted that the hard instances may require sub-
stantially more work than a typical instance. For example, our
typical top 5% hard instances at L = 16 require approximately
R ∼ 107 replicas, NT = 501 temperatures, and as large as
NS = 200 sweeps on each replica per temperature; cf., the
preliminary parameters in the table. Finally, our data readily
pass the disorder-average based equilibration test of [39] at
the lowest and a higher temperature (T = 2/3) for all sizes.

Our primary observable is the spin overlap distribution
function PJ (q) where the spin overlap q is defined as

q = 1

N

∑
i

S(1)
i S(2)

i , (1)

where spin configurations “(1)” and “(2)” are chosen inde-
pendently from the Boltzmann distribution. We have collected
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the distributions at two typical low temperatures T = 2/3 and
T = 0.42. Other regular observables like energy, free energy,
and the replica family entropy are collected at all tempera-
tures.

We further introduce two statistics of the individual overlap
function: the central weight and central peakedness [25]:

IJ (q0) =
∫ q0

−q0

PJ (q) dq, (2)

�J (q0, κ ) = θ

(
max
|q|�q0

([PJ (q) + PJ (−q)]/2) − κ

)
. (3)

Here q0 characterizes the half length of a chosen interval
around q = 0, κ is a chosen threshold to determine whether or
not an instance is centrally peaked, and the Heaviside function
θ (x) = 1 if x � 0 and 0 otherwise. The statistic �J takes
either 0 or 1. When the subscript is dropped, we refer to the
disorder-averaged quantity. Hence, � refers to the fraction
of centrally peaked instances. � should decrease to 0 for a
two-state picture, while it should increase to 1 for a many-state
picture in the thermodynamic limit.

III. RESULTS

The disorder-averaged overlap function and the central
weight I (0.2) at both T = 2/3 and 0.42 are shown in Fig. 1.
The central weight is essentially flat up to fluctuations as a
function of the system size, in agreement with numerous pre-
vious results [25,33,40,41]. This result is well known, except
that we here further extend it to two larger system sizes at low
temperatures. The result is in excellent agreement with RSB,
but is strikingly different from the 1/LθDW (θDW ≈ 0.2) droplet
scaling. To our best knowledge, there is no straightforward
way to explain this as a finite-size effect, because the interface
free energy scales well with this exponent for the same range
of sizes. Finally, the weights of T = 0.42 are smaller than
those of T = 2/3 as expected, as the effective number of
“active” pure states is suppressed at lower temperatures.

Next, we discuss the statistic � in detail. The results of
�(0.2, 1) and �(0.4, 1) are shown in the top left panel of
Fig. 2. At first sight, the data look quite irregular as observed
in Ref. [25]. There appears to be a growing trend in gen-
eral, and the trend is much clearer at T = 2/3 than at the
lower temperature T = 0.42. We shall discuss the effect of
the temperature below, and first focus on the origin of the
irregular low temperature data. We take the �(0.2, 1) as an
example without loss of generality. After an increasing trend
at small sizes, the grow from L = 10 to 12 is very marginal
(marginal or slightly negative depending on disorder realiza-
tions; here we call them collectively marginal), in agreement
with Ref. [25]. Then we observe a noticeable increase from
L = 12 to 14, a somewhat promising result for many pure
states. But the statistic subsequently grows rather marginally
again from L = 14 to 16, resulting in a rather confusing situa-
tion. This puzzle is finally understood when we recognized
a subtle correlation between � and the central weight. As
illustrated in Fig. 1, I (0.2) drops slightly from L = 10 to 12;
this is where the corresponding � has a marginal increase.
Then I (0.2) increases slightly from L = 12 to 14 and then
drops slightly at L = 16, explaining the correlated trend in �.
This together with other similar observations throughout our

0

1

2

3

-1 -0.8 -0.6 -0.4 -0.2 0

P
(q

)

q

0 0.2 0.4 0.6 0.8 1
q

L = 4
L = 6
L = 8
L = 10
L = 12
L = 14
L = 16

0

0.02

0.04

0.06

0.08

0.1

4 6 8 10 12 14 16

I
(0

.2
)

L

T = 2/3

T = 0.42

(a)

(b)

FIG. 1. (a) The disorder-averaged overlap function for different
system sizes L at typical low temperatures T = 2/3 (left) and T =
0.42 (right), respectively. (b) The central weight I (0.2) is approxi-
mately independent of the system size L for both temperatures, in
agreement with the many-state picture. Note that the maximum size
is L = 16, compared with L = 12 of [25].

data collection process strongly suggest that the two statistics
are correlated. Then � is presumably a growing function
with increasing system size, but the growth is very sensitively
affected by the fluctuations of the central weights, producing
an irregular growth trend. This also partially explains why
the data at a higher temperature have a clearer growth trend,
as the relative fluctuation of the central weights with respect
to the size-averaged mean is smaller at higher temperatures.
An additional reason is that � has a larger growth rate at
higher temperatures; note the crossings of the data at the two
temperatures.

The correlation between � and I is reasonable from the
following argument. The central weight is like a supply of
peaks, and higher weights supply more peaks, which tend to
statistically produce more peaked instances. Take two extreme
examples: if I (0.2) = 0, it is clear that �(0.2, 1) is bounded to
be zero. On the other hand, if IJ (0.2) for an instance is large,
there is almost certainly a peak present, at least when the size
is large. The more detailed sample-wise correlation is further
illustrated in the Appendix. Moreover, it is found therein the
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FIG. 2. The statistics �(0.2, 1) and �(0.4, 1) as a function of L at two temperatures T = 2/3 and T = 0.42 (a). While � appears to have
a growing trend, it is not fully regular. We find that � is subtly influenced by the central weight; cf., Fig. 1. To illustrate this correlation, two
windows of the same size but of very different weights are studied at T = 0.42, and the Window B with a larger weight also has consistently
larger � (b). This correlation can be effectively reduced by looking at the statistic �/I as shown in panel (c). Similarly, the modified � as
shown in panel (d) has a much cleaner growth trend and is in fact remarkably monotonic. Here 〈I〉 is the average of I over the sizes. See the
discussion for more details.

correlation becomes stronger at larger sizes and lower temper-
atures, as the system moves closer to the δ-peaks regime. This
is reasonable as in this regime, the absence or presence of the
central weight would directly correspond to �J = 0 or 1, re-
spectively. Since the fluctuation of I has a profound influence
on �, we next look for modified statistics to compensate this
correlation effect by a variance reduction method.

We define a slightly modified statistic of weighted � as
�(q0, κ )[〈I (q0)〉/I (q0)], where the angular bracket is an aver-
age over the system size. While this definition assumes in the
first place I is approximately constant, it has strong numerical
supports as mentioned previously and it only slightly modifies
the � data. Nevertheless, we shall present below another
statistic which is similar in spirit but does not have this “prob-
lem.” First, we look at an example to motivate the weighted �

using two windows that have very different weights, showing
that it is effective for comparing � with different weights.
From the overlap functions, it is clear that at the lower tem-
perature there are wide q ranges where the major qEA peaks
have little influence. In addition, the weight density is higher
at larger q than at the neighborhood of q = 0. Therefore, we

select the following two windows and study the behaviors of I
and � at T = 0.42: Window A as q ∈ [−0.1, 0.1] with a small
weight and Window B as |q| ∈ [0.4, 0.5] with the same length
but a noticeably larger weight. Here I and � are measured
in the respective supports. The two statistics as a function of
the system size for these two windows are shown in the top
right panel of Fig. 2. Since Window B has consistently larger
weights I , it also has consistently larger � as expected. The
ratio �/I is shown in the bottom right panel, and this simple
statistic brings the two � data sets much closer particularly
for the pertinent large sizes. Similar behavior is also found
for the higher temperature, despite that Window B is slightly
affected by the qEA peaks. These demonstrate that �/I is
an effective statistic to reduce the correlation effect from the
weights, despite that it may not fully remove it.

The modified � is shown in the bottom left panel of Fig. 2.
It is remarkable that this simple statistic has a clean growth
trend, i.e., the growth trend is not only improved but also
monotonic. We have carried out a quantitative growing trend
test to leading linear order using a linear fit, as nearby data
variations can be within error bars. The computed slopes are
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0.0034(5) (low T, q0 = 0.2), 0.0062(4) (high T, q0 = 0.2),
0.0067(6) (low T, q0 = 0.4), 0.0138(5) (high T, q0 = 0.4),
respectively. These values, especially the high-temperature
data, are all significantly larger than 0, suggesting a collective
growing trend of this statistic. We conclude therefore that
the seemingly nonmonotonic growth of � is a result of its
sensitivity to the fluctuations of the central weight. From this
perspective, the statistic � is not as good as the central weight
in discriminating the number of pure states due to its discrete
nature as it amplifies fluctuations.

We now comment on the effect of the temperature on the
growth rate of �. The modified � suggests that the growth
rate at the higher temperature is noticeably larger than at the
lower temperature. There is also an interesting crossing in
� for each interval despite that I has no crossing, showing
the complex quantitative relations of I and � in general.
Nevertheless, the crossings can be qualitatively understood by
the two peak-sharpening mechanisms mentioned above either
by increasing the system size or by lowering the temperature.
When the system size is sufficiently large or the correlation
is sufficiently strong, i.e., typical peaks regardless of the tem-
perature are sharp and tall with respect to κ , the order of I
should sufficiently determine the order of � as the temper-
ature is tuned. Then the � at the higher temperature should
be larger as the weight is larger. This is found numerically
in Fig. 2, as the red points exceed the blue points when the
size is increased. On the other hand, the impact of the tem-
perature on � for small sizes is, however, more complex. In
this regime, correlation may strongly increase with decreasing
temperature, i.e., typical peaks are wide and short at high tem-
peratures and sharp and tall at low temperatures. Meanwhile,
the weight decreases with decreasing temperature. Therefore,
as the temperature decreases, these two effects compete with
each other. This provides a possibility that � may increase
in a temperature interval as the temperature is decreased, and
Fig. 2 suggests that this is actually realized, e.g., at L = 4.
Fortunately, it is not computationally hard to study the small
size in detail in a wide range of temperatures. To this end, we
have conducted an additional set of simulation to study the
evolution of �(T ) and I (T ) at L = 4 down to T = 0.1. Our
picture is numerically confirmed, and the results are shown in
Fig. 3. In a broad range of temperatures, here approximately
0.3 � T < 0.8, � grows with deceasing temperature. When
typical peaks are sufficiently narrow and tall at low temper-
atures T � 0.3, similar to the large size regime, the weight
effect takes over and � decreases along with decreasing I ,
converging to 0 as T → 0. The opposite trends in the small-
and large-size regimes strongly suggest that the growth rate of
� is an increasing function of temperature in this wide tem-
perature range 0.3 � T < 0.8, if we reasonably assume the
growth is approximately linear particularly for the weighted
�. This is also in line with Refs. [25,26], and our argument
indicates that � should grow even slower and become more
irregular at a slightly lower temperature, e.g., T = 0.3.

Next we look at an alternative method for variance
reduction [42] by considering � − I . The modified � above
assumes I is approximately constant, but this statistic does
not need such an assumption. The results are shown in the top
panels of Fig. 4. Similar to the modified �, this statistic also
has a clean growth trend, in agreement with many pure states.
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FIG. 3. Different from the large-size regime, the effect of the
temperature on � for small sizes is complex because the rapidly
increasing correlation and decreasing weight I compete with each
other as the temperature is decreased. The top panel (a) shows the
Pearson correlation coefficient, and the bottom panel (b) shows �

and I for L = 4. Here a local maximum of � is observed. As T
decreases, � first increases due to the rapidly growing correlation
or peak sharpening between 0.3 � T < 0.8. When typical peaks are
sufficiently narrow and tall T � 0.3, the weight effect takes over
and � decreases with I , converging to 0 as T → 0. The figure also
illustrates clearly the fluctuation of � is systematically larger than
that of the central weight due to its discrete nature and thus amplifies
fluctuation.

By contrast, this statistic should converge to 0 for a two-state
picture, as the two terms should separately converge to 0.
The data are clearly running above 0 and are still growing,
and should reach finite limits if there are many pure states. In
addition, this statistic can be further refined using the control
variate analysis [43,44]. This method utilizes a parametrized
control variate estimator � − λI where λ is a free parameter.
In order to minimize the variance of this statistic, it is
straightforward to show that λ = (σ�/σI )C(�J , IJ ).
The optimum λ(T, q0) depends on the temperature and
the specific � window and varies reasonably slowly
with the system size. The size-averaged estimates
are approximately λ(2/3, 0.2) = 1.51, λ(0.42, 0.2) =
2.34, λ(2/3, 0.4) = 0.97, and λ(0.42, 0.4) = 1.85,
respectively. These refined statistics are shown in the bottom
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FIG. 4. (a, b) A more traditional statistic � − I to decorrelate
� and I; the left (a) and right (b) panels are for q0 = 0.2 and 0.4,
respectively. The statistic shows a growing behavior as the modified
�, in agreement with the many-state picture. By contrast, the statistic
should converge to 0 for a two-state picture. (c, d) The same as above
but for a refined statistic � − λI using the control variate analysis
with a size-averaged parameter λ. The data appear more regular as
the error bar is further suppressed, showing again a growing behavior.

panels of Fig. 4, showing similar behaviors, and it seems
that the data are even more regular, as the error bar is further
suppressed particularly at the low temperature. Note that
� − I remains important, despite its larger error bar, as it
clearly runs above 0. Therefore, the statistics I , modified �,
� − I , and � − λI are all coherently in agreement with the
many-state picture.

Our results are in full qualitative agreement with
Refs. [25,26]. The former group found a small growth rate of
� at a low temperature, while the latter group found instead a
much larger growth rate by operating at a higher temperature.
The size of the central weight again has a significant impact
on the growth behaviors of � [25]. Our large range of sizes
is crucial in identifying this subtle correlation. Therefore,
we interpret the low-temperature irregular � as fluctuations
because of a small growth rate, rather than a genuine onset
of the two-state picture. We conclude that the statistic � has

no evidence of violating many pure states, and instead it is
consistent with a coherent many-state picture [26]. We cannot
rule out the possibility that the two-state picture behavior is
realized at yet much larger sizes currently not accessible, but
we cannot glimpse such a trend, and it appears an unlikely
scenario.

Finally, we briefly discuss the difficulties of the two-state
picture with current numerical results. (1) In the same range of
sizes, we clearly get a finite domain-wall exponent θDW yet a
flat I (0.2). It is unclear what finite-size effect is responsible
for a flat central weight in the droplet framework. (2) The
θDW exponent is a growing function of dimensionality [45],
and even the SK model has a positive exponent [46] which is
clearly described by RSB. It seems likely that θDW > 0 is not
capable of excluding large-scale O(1) droplet excitations as
suggested by the droplet picture, which assumes that droplet
and domain-wall excitations are similar; see, e.g., Ref. [29]
for an interesting possibility of how a positive domain-wall
exponent and many pure states can coexist. Otherwise, an
explanation should be provided on why this argument does not
apply to, e.g., the SK model. These difficulties in our opinion
must be addressed for a two-state picture to be consistent.

IV. CONCLUSIONS

In this work we carried out a state-of-the-art simulation
of the Gaussian Ising spin glass in three dimensions and
examined the statistic � in detail. Our results reveal that the
nonmonotonic growth of the statistic with system size is a re-
sult of its sensitivity to the fluctuations of the central weight I .
By looking at a modified � and also � − I compensating for
this correlation effect, we find essentially monotonic growth
of the statistics. Combining with the relatively flat central
weight, we conclude that the statistic � is in full agreement
with the many-state picture but not with the two-state picture.

The spin-glass literature is overall currently far from con-
clusive, our investigation of the number of pure states benefits
from running state-of-the-art simulations and using variance
reduction data analysis. Since simulating much larger system
sizes is currently not an option, it is highly motivated to carry
out careful statistical analysis of the data to reduce the fluc-
tuations in the observed quantities, as we have demonstrated
here. To ultimately decide between different pictures might
require considerably larger simulations that are presently out
of reach, but our results suggest that the many pure states
picture is most likely.
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FIG. 5. The left column of top panels (a) shows the scatter plot
of �J vs IJ for q0 = 0.2 at T = 2/3. Note the empty top left
and bottom right regions in the scatter plot, suggesting sample-wise
correlation. To further illustrate the scatter plot, the histograms of
IJ for the �J = 0 and 1 classes are shown in the second and third
columns, respectively. Similar correlations are found for q0 = 0.4
(b), as well as the lower temperature T = 0.42 in the corresponding
panels (c, d). Other system sizes show very similar features.

APPENDIX: CORRELATION BETWEEN �J AND IJ

In this Appendix, we characterize the correlation between
�J and IJ in detail at the sample-wise level. The scatter

TABLE II. Pearson correlation coefficient C(�J , IJ ) for differ-
ent system sizes L, temperatures T , and overlap intervals [−q0, q0].
Here the pair represents (T, q0). The correlation is stronger at the
lower temperature and larger sizes, where typical peaks are narrow
and tall.

L (2/3, 0.2) (2/3, 0.4) (0.42, 0.2) (0.42, 0.4)

4 0.485(17) 0.351(14) 0.751(13) 0.685(14)
6 0.556(16) 0.413(14) 0.787(12) 0.740(11)
8 0.629(15) 0.508(13) 0.808(10) 0.772(09)
10 0.677(13) 0.548(11) 0.833(09) 0.800(08)
12 0.717(11) 0.616(10) 0.838(09) 0.805(08)
14 0.733(14) 0.646(11) 0.840(09) 0.829(08)
16 0.751(12) 0.670(10) 0.861(08) 0.832(08)

plot of these two quantities of L = 16 at both temperatures
and intervals is shown in Fig. 5. Since � is a discrete binary
statistic, the conditional distributions of I for �J = 0 and 1
are illustrated. These plots, and also those of other system
sizes, have very similar features.

In the scatter plot, there is an interesting shift of IJ to larger
values when �J steps from 0 to 1. This means that when the
central weight is close to 0, it is almost surely �J = 0. At
the opposite end, samples of the largest central weights have
almost surely �J = 1. In the histograms, the central weight
conditional distribution has a very biased distribution towards
0 for the class �J = 0, while it is approximately Gaussian
distributed for the class �J = 1. Note that a sizable fraction
of samples have IJ close to 0, indicating the correlation is
prominent. The fraction of small weighted samples increases
as the temperature is decreased, suggesting that the correlation
should be stronger at lower temperatures.

In order to characterize the correlation more quantitatively,
we have calculated the Pearson correlation coefficient, and the
results are summarized in Table II. First, all coefficients are
significantly larger than 0, confirming the strong positive cor-
relation between the two statistics. Moreover, the correlation
becomes stronger at larger sizes and the lower temperature. A
more detailed study of the size L = 4 down to T = 0.1 (see
Fig. 3) suggests that the correlation is an increasing function
of the decreasing temperature. It should be noted that in both
cases the system is moving closer to the δ-peaks regime. This
trend is reasonable as in this regime, the absence or presence
of the central weight would directly correspond to �J = 0 or
1, respectively.
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