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One of the potential applications of a quantum computer is solving quantum chemical systems. It is known
that one of the fastest ways to obtain somewhat accurate solutions classically is to use approximations of density
functional theory. We demonstrate a general method for obtaining the exact functional as a machine learned
model from a sufficiently powerful quantum computer. Only existing assumptions for the current feasibility of
solutions on the quantum computer are used. Several known algorithms including quantum phase estimation,
quantum amplitude estimation, and quantum gradient methods are used to train a machine learned model. One
advantage of this combination of algorithms is that the quantum wavefunction does not need to be completely
re-prepared at each step, lowering a sizable prefactor. Using the assumptions for solutions of the ground-state
algorithms on a quantum computer, we demonstrate that finding the Kohn-Sham potential is not necessarily more
difficult than the ground-state density. Once constructed, a classical user can use the resulting machine learned
functional to solve for the ground state of a system self-consistently, provided the machine learned approximation
is accurate enough for the input system. It is also demonstrated how the classical user can access commonly
used time- and temperature-dependent approximations from the ground-state model. Minor modifications to the
algorithm can learn other types of functional theories including exact time and temperature dependence. Several
other algorithms—including quantum machine learning—are demonstrated to be impractical in the general case
for this problem.
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I. INTRODUCTION

Quantum computing has been proposed as an alternative to
classical computing [1], and there are some problems which
can be solved faster than known classical algorithms [2–7].
One of the most sought after and potentially far reaching ap-
plications on a quantum computer is the solution of quantum
chemistry problems [8–13]. Obtaining exact solutions from a
quantum computer efficiently could revolutionize modern ap-
plications including the creation of new medicines, fertilizers,
batteries, superconductors, and more [14–20].

To do this, one important quantity to determine is the
ground-state energy. The energy is a highly useful quantity for
determining properties such as the equilibrium geometry of a
molecule. Yet, the energy is not descriptive enough to fully
characterize all desired properties of a system. For example,
the band structure can be a useful tool to characterize a mate-
rial, but this requires measurements at several k-points [21].
So, many measurements of the wavefunction would be re-
quired for some simple quantities.
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Measurement on the quantum computer is expensive be-
cause the wavefunction must often be reprepared before a
second measurement is performed. It has already been shown
on a quantum computer that obtaining the wavefunction can
be extremely costly [22–25], taking months or years even for
moderately sized systems [24,25], and that the wavefunction
cannot be copied [26]. The wavefunction is therefore a valu-
able commodity and measurements should be minimized [27].

One option to encode many solutions into one measure-
ment is to use a machine learned (ML) model [28]. In general,
ML models can interpolate remarkably well between input
data to give access to many systems, including those not
already solved. In principle, the ML model can be constructed
directly on the quantum computer or from classical data gen-
erated by the quantum computer.

Using ML models would also allow for users of the quan-
tum computer to export solutions to classical users. The
results could then be quickly retrieved classically from the
model and are generally accurate over a training manifold on
which the model was constructed in a desire to generate the
best machine learned model possible.

Finding the full wavefunction would require exponentially
many measurements, so this can be difficult to implement
on a quantum computer. But the same information can be
expressed in a more compact form. So, we can look at alterna-
tive formulations of quantum physics for the most descriptive
model.
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The route pursued here is with density functional theory
(DFT) [29]. Hohenberg and Kohn established that the one-
body density, n(r), is one-to-one with the external potential
v(r) up to a constant shift of the potential. In essence, the den-
sity can replace the wavefunction, but it has fewer variables.

In order to use DFT, we must find some other means of ob-
taining the energy, since the Hamiltonian is not used in DFT.
Instead, the universal functional, F [n], must be found. It was
proven that the universal functional exists and is common to
all problems of the same electron-electron interaction [29,30].

The quantities required for the classical user to find self-
consistent solutions are the exact functional (determining the
energy) and the functional derivative [31]. So, in addition to
finding F [n], we also must find some other quantity such as
the density, n(r), or the Kohn-Sham (KS) potential, vs(r) [30].
With these components, we can fully characterize a quantum
ground state and solve for other measurable quantities.

It has already been established that the density functional
can be successfully modeled with ML methods on the clas-
sical computer [31–45]. Exact quantities at several different
external potentials must be found for the ML models to be
trained. The number of training points needed to construct
accurate models are not prohibitively large. From the ML
functionals, self-consistent solutions can be obtained [38,46–
48]. Numerically accurate ML functionals satisfy all exact
conditions of F [n] [33,49] and escape the common errors of
approximated density functionals [50,51].

To apply the classical ML-DFT methods on a quantum
computer, some additional constraints must be minded. Previ-
ous attempts to obtain functionals from the quantum computer
have relied on many measurements of the wavefunction for
each system of interest [13,52–56]. In our view, a worthy goal
is to avoid both excessive measurements and re-preparations
of the wavefunction especially in the case of time-dependent
quantities [53,57].

This work proposes a feasible algorithm that finds the ML
model for F [n] on the quantum computer if a ground-state
wavefunction is available. The algorithm leaves the wavefunc-
tion largely undisturbed so it can be used as the starting state
for another system, greatly reducing the prefactor required to
solve other systems. This is accomplished by using a state-
preserving quantum counting [58,59] algorithm to extract
descriptive quantities such as the density. Much of the algo-
rithm is kept entirely on the quantum computer to motivate
future improvements for speed, but the counting algorithm
does allow for information to be output classically.

This algorithm is an alternative to running one very long
computation and just measuring one energy, in that each step
of the wavefunction preparation is proposed to solve another
system. Thus, no step from the ground-state solver is wasted
when using the algorithm here.

We also demonstrate that the Kohn-Sham potential can be
solved using a similar strategy as the wavefunction. A gradient
evaluated on a cost function for the KS system allows for
the determination of the exact KS potential. This strategy can
be faster than obtaining the density. Further, we demonstrate
how access to the functional can be used to find approximate
time- and temperature-dependent behavior in a system from
the ground-state functional, and modifications can be added
to obtain exact results.

FIG. 1. One step of the RWMP algorithm for the density. The
next iteration uses the output wavefunction as the starting state for
the next system to reduce the prefactor. A similar procedure can be
used to find the KS potential, replacing n(r) with vs(r) (with a QGA
as an oracle query for the QAE). The ML model may need inputs
from other registers.

One temptation would be to use quantum machine learn-
ing, but long-known bounds on the efficiency of these
methods preclude their use here [60]. This agrees with recent
demonstrations that some known quantum machine learning
algorithms are not universally advantageous [61–64]. We also
discuss general limitations on known algorithms such as quan-
tum machine learning and why these algorithms are expected
to be inefficient here.

Section II presents the algorithm. Section III will discuss
several uses of the resulting functional and considerations
in choosing quantities to solve for. Section IV will discuss
known limitations and justify why the algorithm is con-
structed as presented. Necessary background information on
quantum chemistry, DFT, ML, and quantum computing algo-
rithms is given in the Appendixes.

II. ALGORITHM FOR THE FUNCTIONAL

In order to establish an algorithm for the quantum com-
puter that gives results in quantum chemistry, knowledge of
both fields must be understood. To avoid a lengthy summary in
the main text, we have included relevant background knowl-
edge in the Appendixes in case they are needed. Nearly all of
the computational steps (e.g., machine learning the functional)
have already been demonstrated by us in the references and
the algorithms performed accurately. This section will contain
all the elements of the algorithm and assumes only a back-
ground of algorithms in quantum computing.

We provide Fig. 1 to illustrate the steps necessary for one
iteration of the algorithm, which we will refer to as a recy-
cled wavefunction for minimal prefactor (RWMP) method.
Although many quantities could be produced from this al-
gorithm, we will focus on the components useful for the
density functional. The inputs are the external potential for
some system (|v(r)〉) and initial guess weights for the ML
model (|w(i)〉) represented as classical variables throughout.
The following steps are required to obtain the solution for
a given system and then update the parameters of the ML
model.

(1) We prepare a ground-state wavefunction |�〉
for a given external potential, |v(r)〉, and number of
electrons, Ne.

This can be done by real-time evolution (RTE; see Ap-
pendix D 4). In Fig. 1, this is denoted by a box for RTE. The
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subroutine that obtains the wavefunction here does not have
to be RTE. If another, more advanced solver is developed and
used, then this can be substituted with no change to the rest of
the RWMP algorithm.

Note that the methods to obtain quantities from the result
of classical computations are not available since the quantum
wavefunction has coefficients that are stored in superposition
(a linear combination of |0〉 and |1〉). This means that the
coefficients of the wavefunction cannot be found except with
many measurements. We must first find the energy before
obtaining other relevant quantities.

2. We obtain the ground-state energy |E〉 from the ground-
state wavefunction |�〉 given in the previous step.

Access to the ground-state energy is provided by quantum
phase estimation (QPE, Appendix D 2) or with some other
method like qubitization [65]. On Fig. 1, this step is denoted
by QPE.

The next task is to determine some quantities of interest
without requiring a full measurement of the wavefunction.
The counting algorithm used allows for the wavefunction to
be used again on the next iteration.

3. Given the energy |E〉 and wavefunction |�〉, we gen-
erate some quantity that is denoted here as |n(r)〉 from
a quantum amplitude estimation (QAE; Appendix D 5), a
name which we use interchangeably with quantum counting
throughout.

The symbol used, n(r), is for the density (Appendix B),
but we can substitute this quantity for others. For example,
one could also determine the KS potential |vs(r)〉. This step
is denoted as QAE in Fig. 1. Note that this step may involve
an oracle query such as a quantum gradient algorithm (QGA;
Appendix D 3) or have other subroutines. This is a point we
will expand on in the next section, Sec. II A, when discussing
how to obtain either n(r) or vs(r). For now, we focus on what
to do once the quantity is obtained.

The output wavefunction is slightly modified by the QAE
but remains nearly the same state with a small amount of error.
The procedure to return the wavefunction to its original state
does not completely reprepare the wavefunction and instead
has an iterative set of steps to repair the wavefunction as
explained in Ref. [58] (see also Appendix D 5).

4. The output of the QAE can be used to update the ML
model’s parameters |w(i)〉 to the next iteration, |w(i+1)〉. More
than one ML model can be trained here (e.g., a ML model for
|E〉 and for |n(r)〉).

The typical steps in a stochastic gradient descent (SGD,
Appendix C) of forward and backward propagation can be
used. For backward propagation, the output of a QGA can
be used to update the ML parameters. This step is marked as
ML on Fig. 1. This ML operation may need to be controlled
on |v(r)〉 depending on which quantity is being trained. Note
that the QAE output could also be stored classically and then
machine learned not on the quantum computer, skipping this
step but eliminating the opportunity for an improvement in the
ML box from quantum advantages.

5. Another external potential is provided (|v + �v〉 (not
shown in Fig. 1) and the wavefunction is reused as the starting
state for the next RTE.

Here, �v is chosen by the user and simply added to the
coefficients of v(r) to give the next potential. Many passes

through a set of potentials must occur to obtain an accurate
ML model.

Recall that the resource estimate given in Ref. [24], several
months may be required for a small molecule with RTE.
The RWMP algorithm allows for a sequence of intermediate
systems to be visited, effectively making use of that time to
obtain data. So, if the system starts in a configuration where
the initial wavefunction is accurate, then this can become the
first data point for the ML model. Each subsequent time step
could be another potential data point for the model.

The second advantage to this strategy is that the sequence
of potentials in the RWMP algorithm can allow for the or-
dering of the next potential to be close by. This allows for the
best starting state for the next system to be used and reduce the
total amount of RTE steps that must be run over all systems.
In summary, the RWMP algorithm here could make use of the
preparation time for a hard to solve system by finding data
from the intermediate steps and reduce the prefactor in the
solution.

The RWMP algorithm repeats until all systems are visited.
The final step is to measure the parameters of the ML model,
|w〉. The model can then be used classically.

In what follows, we discuss which quantities should be
obtained by the QAE for the best description of the ground
state. Then in Sec. III, we discuss aspects of this strategy that
were not absolutely necessary in defining the algorithm and
how a classical user can use the result. Finally, we expand on
many points that were not crucial for the basic understanding
of the RWMP algorithm and explain limits that ultimately lead
to this algorithm (and why other subroutines were not used) in
Sec. IV.

A. Quantities of interest

We move on to discussing which quantities are best to
determine from the wavefunction via the QAE. There are two
main options: the coefficients of the density matrix and the KS
potential. When choosing the quantities of interest, both the
functional and the functional derivative must be determined
with the ML model in order to find solutions on the classical
computer. There are several types of functionals that can be
trained for this, some of which are presented here.

1. Density functionals

In the RWMP algorithm, one option is to find the den-
sity, n(r), since this is proven to be a suitable replacement
for the wavefunction from the Hohenberg-Kohn theorem in
Ref. [29]. The N2 elements of the density matrix are expec-
tation values of the operator ĉ†

i ĉ j (not just diagonal elements;
see Appendix A 1) where ĉ is a fermionic operator defined in
Appendix A 1. Spin indices are ignored for simplicity for now.
Since the expectation value is on the interval [−1,1], we can
use the operator (ĉ†

i ĉ j + 1)/2 (defined on [0,1]) and afterward
shift the result back to the original interval. Using this shifted
operator is a necessary component to using the QAE because
the expectation value can now be related to a probability. The
number of rounds required for the QAE relates to the inverse
of the probability of failure requested [58].

There are several options for the ML model. The ML step
can train directly from n(r) to E or we can take as an input
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v(r) to the model and train both n[v](r) and E [v]. The first op-
tion gives a pure density functional (Appendix B). The second
option gives a potential functional, which is a dual functional
to DFT (Appendix B 2) [66]. Both of these theories can be
solved self-consistently. One can also train the bifunctional
E [n, v] [34].

2. Kohn-Sham potentials

The other main quantity, which has more value, is the KS
potential, vs(r). The defining feature of the KS system is a
noninteracting system that has the same density as a given
interacting system (see more discussion and ways to realize
this potential in Appendix B 1). The potential defining this
noninteracting system is defined as vs(r) which is described
by N parameters.

Two potentials can have the same density if the sys-
tems do not have the same electron-electron interactions, so
as not to violate the Hohenberg-Kohn theorem [29]. The
KS potential is highly valuable since it can be applied
in several other instances. This includes finding time and
temperature-dependent calculations from vs(r) or the KS band
structure [57,67,68].

A central question is whether vs(r) exists for a given
interacting system. This is known as the problem of v-
representability. Since it is proven that the KS potential always
exists on a lattice, vs(r) always exists here [69–72].

The KS potential must be converged to, just as we had to
evolve an initial state in RTE to a final state. The difference in
finding the KS potential is that a gradient is applied instead of
a time evolution operator for the wavefunction.

The KS potential, vs, will satisfy the minimization [73–75]

min
vs

(〈�[v]|T̂ + V̂s|�[v]〉 − 〈�[vs]|T̂ + V̂s|�[vs]〉) (1)

where � is the interacting wavefunction and � is the KS
wavefunction (see Appendix B 1 d for more information).
There are other methods to obtain the KS potential [76–79],
but the method used here is straightforward on a quantum
computer given a close enough starting guess or small enough
molecule (i.e., those solvable by RTE). Many other methods to
find the Kohn-Sham potential would either require numerous
measurements of the wavefunction or large overhead in terms
of qubits for operations that are simple on the classical com-
puter but costly on the quantum computer including addition,
division, etc. [80].

Equation (1) is used as the output of the oracle query in
QAE for the QGA [81,82]. Note that the QGA is particularly
useful for finding the functional derivatives here, notably tak-
ing the variation of all possible vs(r) in one oracle query [81].
The resulting gradient is applied on the coefficients of the
KS potential and the process is repeated sufficient times until
the true KS potential is obtained. An initial guess for the
parameters could be taken from existing semilocal approxi-
mations such as local density approximations [83,84] or using
a classical method [72–79,85]. The other classical methods
where a gradient is used to evolve the potential may be useful,
but the density does not need to be constructed to use Eq. (1).

In order to construct Eq. (1) on a quantum computer, the
eigenvalues of free Hamiltonians, such as the KS Hamiltonian
(T̂s + V̂s) can be mapped to the interval [0,1] for the QAE. The

operator must also be scaled by a constant, but we also note
that shifting the potential by a constant, vs(r) → vs(r) + C, is
allowed to ensure all eigenvalues are positive without chang-
ing the eigenvectors [29]. Further, identifying some upper
bound on the expectation value, εmax, the scaled operator
could appear as 〈�|T̂s + V̂s + C|�〉/εmax.

The expectation value 〈�|T̂s + V̂s|�〉 can be evaluated
in one of two ways. First, it can be computed by di-
agonalizing T̂s + V̂s (determining hk) and taking the sum
〈�̃| ∑k hkĉ†

k ĉk|�̃〉 in the diagonalized basis with �̃ is now
used. This procedure uses QAE to find the expectation value
analogously to finding the coefficients of the density. Alterna-
tively, one could apply a QPE (or qubitization) directly for the
KS system, noting that the gate count is drastically less for the
noninteracting system.

The KS potential as encoded in the ML model can be
expressed as either vs[v](r) or as vs[n](r), where both are well
defined [86].

B. Example for the Kohn-Sham potential

To illustrate further some of the more abstract quantities
in the RWMP algorithm in Sec. II, we provide an expanded
example of the RWMP algorithm of how to obtain the ML-KS
potential.

(1) An initial potential v(r) is chosen.
This can be done by assuming the external potential is a set

of nuclei with a Coulombic interaction, v(r) = ∑
a(−Z/|r −

ra|), where a indexes the positions of the nuclei, ra with
atomic number Z .

(2) A basis set is chosen, ϕk (r).
The model can then be discretized in this basis and the

resulting model has fermionic operators (see Appendix A 1).
(3) RTE is run and the ground state is obtained.
(4) QPE is used to find the ground-state energy, E .
(5) � and E are used in the QAE to find the first term

in Eq. (1). The energy of the noninteracting system is also
obtained for the second term in Eq. (1) using some initial
guess for vs(r). This constructs the oracle in the QGA.

(6) The QGA result is added to the coefficients of the KS
potential and the last step is repeated until the vs(r) a certain
number of times to find the minimum.

(7) The values E and vs(r) are input into a ML model.
The gradient of the parameters in the model are updated with
a QGA by repeatedly computing the gradient and adding it to
the current coefficients.

We can also use the QGA to output E and vs(r) to the
classical user and learn the final set of potentials classically.

(8) A new set of atomic coordinates are provided, r′
a,

the difference �v between the previous and this potential is
computed, and the result is added to the old potential.

We now have the next potential and can start again at step
3 until all systems are visited.

Note that this computation can be restarted at any time (at
the significant cost of re-preparing the wavefunction). Note
that it has been assumed that all systems are run for the same
basis set, although this condition could be relaxed in principle.

One advantage of using this method is that the Kohn-
Sham potential is characterized by N coefficients κk , vs(r) =∑N

k=1 κkϕk (r). This is a factor N less than the density
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required. The evolution of the Kohn-Sham potential from an
initial guess potential by gradients is very similar to how the
wavefunction is evolved with RTE.

III. ADDITIONAL CONSIDERATIONS
AND USE OF THE FUNCTIONAL

In the previous section, an RWMP algorithm for finding the
density functional and Kohn-Sham potential were detailed. It
was also noted that other variations of the density functional
could be found using the same technology.

Several points that could extend the RWMP algorithm—
and other details about what was introduced—are discussed
here. These include resource costs, a comparison between
finding the density and the KS potential, the universality of
the functional, how the functional can be used, applications to
other types of functional theories, and opportunities for near-
term studies. Some points relating to a quantum advantage
that are discussed here are continued in Sec. IV A.

A. Scaling and resources required

The algorithm will require a fully scalable quantum
computer, probably with self-correcting memory. Near-term
examples are available for density functionals, and a full dis-
cussion of the known features of finding the density functional
with this method is given here.

1. Algorithmic scaling

The scaling of the RWMP algorithm for the density func-
tional in terms of the number of basis sets is O(N2) for
one system asymptotically in the number of basis functions
due to time evolution. The actual complexity in practice is
between O(N2) and O(N4) for intermediate system size (see
Appendixes A 2 and D 4). The other subroutines scale at most
as O(N2) (see the Appendixes).

2. Prefactor for convergence of the wavefunction

Even though the scaling in terms of the number of basis
functions is polynomial, the actual cost is significant due to a
prefactor [24].

The prefactor of the algorithmic scaling is problem depen-
dent and will be the dominant cost to obtaining a ground-state
wavefunction. The prefactor will depend on the time used to
prepare �, the number of steps that the QAE algorithm must
be run, and the required number of systems to be visited. Note
that the number of steps that must be run to obtain the correct
time evolution is dependent on how close the starting state is
to the system’s solution, the number of electrons, how strongly
correlated the electrons are, and many other variables.

Note that if the first system in the RWMP algorithm is ex-
actly equal to the initial wavefunction (e.g., the well-separated
limit for a neutral molecule where each separated piece is
a hydrogen atom with one electron and where Hartree-Fock
is exact for one-electron systems), then the time to make the
first solution is zero and each subsequent motion of the atoms
closer together will be another data point that may not require
too many time steps to obtain.

3. Convergence of the machine learned model

In order to aid the convergence of the ML model, it would
be useful to have several quantum computers running at once.
This would mean that more than one system can be used to
construct a mini-batch update for the cost function of the gra-
dient descent, making the resulting update to the ML model
more accurate. One also can save the output quantities as
future training points at the cost of extra registers. Once an
accurate ML model is generated, the problem does not need
to be solved again.

4. Resources required

The RWMP algorithm presented in this work requires
4 + ζ qubit registers for ζ quantities of interest that are not
the energy [e.g., learning E and vs(r) implies ζ = 1]. There
will also be overhead for the QAE and other parts of the
RWMP algorithm. One can also divide the parameters in the
ML model into separate registers for each additional quantity
of interest since the model spaces between them should be
sparse.

The number of qubits required is clearly large and depen-
dent on the specific steps of the RWMP algorithm used. This
means the RWMP algorithm is best suited for a fully working
quantum computer that is expected in the future. There are
many ways to reduce the steps necessary. For example, in
one way, by outputting the QAE to a classical user. However,
we want to maintain the flexibility that a quantum advantage
could be realized here as discussed next in Sec. III B.

B. Structure of the neural network

In a neural network, the form of the nonlinear function, S
(see Appendix C), is often chosen so that it is easily differen-
tiable. On the quantum computer, determining the gradients
are accomplished in one oracle query (see Appendix D 3), so
the traditionally used functions on a classical computer (e.g.,
sigmoids) can be swapped out for another function that may
be lead to better performance or faster convergence. It is not
clear if this will produce any detectable advantage.

The number of coefficients required to obtain an accurate
ML model can be very high, but some guidelines can reduce
this number for a given quantity [87]. For the problem at
hand, note that the training is done in the same basis as the
problem is expressed. In this case, the connectivity of the
neural network can be constrained on physical arguments.
Known bounds on the structure of local correlations as proved
by Hastings [88] apply to densities that was originally shown
by Kohn et al. [89,90]. This means that perturbations on the
density decay exponentially with distance for gapped systems
and as a power law for gapless systems [91]. Then, the neural
network models for the density do not need to account for
arbitrarily long ranged connections and can remain local. In
essence, the connectivity of edges on the graph for the neural
network would be similar to the structure of a multi-scale
entanglement renormalization ansatz [92] (scaling as N log N)
but in three dimensions. Note that this estimate is a minimum,
and it may still be advantageous to add more hidden layers
or connectivity. Note that we will expect that gradient-free
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methods (Appendix C 1) will not necessarily be more useful
in training the ML model.

Not all quantities will have a local structure. The vs(r)
is fully nonlocal due to the Hartree potential (see Ap-
pendix B 1 a) and can require all-to-all connectivity between
subsequent hidden layers in the neural network.

Note that it is not required to train the ML model on the
quantum computer. One can determine the quantities of inter-
est for each system and output the results with the QAE from
the quantum computer to the classical computer [58]. But we
give the option here to train the neural network on the quantum
computer in case a quantum advantage can be realized. Using
the RWMP algorithm as presented in Sec. II would still avoid
excessive measurement; meanwhile, outputting to classical
variables will reduce the amount of overhead needed to store
ML parameters.

C. Comment on the universal versus exact functional

ML functionals are very accurate over the training man-
ifold on which they were constructed [47]. We have chosen
the appropriate adjective (exact or universal) describing the
functional very carefully in each use here. The procedure we
describe here is not truly universal since the accuracy of the
ML functional is limited to the training manifold of potentials
that we have explored for the ML model. For example, trying
to solve a model trained for solutions with Ne electrons with
a new potential in the training manifold with Ne + 1 electrons
will try to project the solution back onto the Ne solutions.

The resulting ML functional can be numerically exact,
however, for a given problem. This functional will be called
the exact functional, implying that it is accurate for some
systems but not all possible systems.

To complete the discussion, one can have a universal but
not exact functional. For example, if one estimated the energy
to be a fixed value for all systems, this would be universal but
not very useful.

D. Comparing the search for the density and Kohn-Sham
potential

To actually compare the true cost of the O(N2) operations
to find the density with the O(T N ) coefficients for the KS
potential, one would need to know the number of times T a
gradient must be applied. This depends on the system studied
and starting KS potential. It is therefore not clear as a general
guideline if directly finding the coefficients of the density
matrix is always better than starting from a KS potential that
is close and applying the gradients. The key difference in
the two cases is that the KS potential relies on a suitable
starting state and the density does not. The assumption for the
KS potential—that a good starting state is required—is very
similar to the restriction on RTE itself to find the ground state,
so all assumptions are consistent.

The fact that the KS potential is competitive with finding
the density here is more a comment on the overhead required
for the density (which is far greater than on the classical com-
puter) than the KS potential being any easier to find. There is
one advantage to using the minimization for vs(r) here in that
the QGA is much more efficient than the classical computer.

In addition to comparing the scaling, the nature of the KS
problem requires a large basis set to obtain the proper KS
potential and avoid any Gibbs oscillations that would appear
in a truncated basis set [78]. So, the N required for an accurate
density or energy might be smaller than for an accurate KS
potential in practice.

Regardless, any effort to find vs(r) is worth it since vs(r) is
far more descriptive and gives access to useful quantities.

E. Use of the functional

The algorithmic cost in Sec. III A is paid only once. When
the model is given to a classical user, a separate cost must be
paid to solve it for the ground state. Given the ML model, the
classical user can solve the ML functional self-consistently
by determining the Euler-Lagrange equation to minimize the
functional (see Appendix B 1 f). This requires that a projec-
tion back into the training manifold must occur to ensure
the functional derivative is accurate [34,46]. This projection
is estimated to scale as O(N2) but can be machine learned
separately to speed up computation [33,34,34,46].

Finding the pure density functional has better scaling for
the classical user, scaling like the number of basis functions,
N . Note that even though we can learn F [n], the external
potentials (as well as particle numbers and polarizations) over
which the ML model is accurate must also be given to the
classical user so it is understood what the training manifold
is.

The KS system scales as the cube of the number of basis
functions formally, N3, since it is a noninteracting problem.
Note that when solving the KS system with the exact func-
tional, convergence is proven [72,93].

If a bifunctional, E [n, v], is used, then a self-consistent
solution is not necessary [34].

Once the model is trained sufficiently accurately, one can
always retrain for another type of functional (e.g., from the
KS potential, the density can be obtained and a pure density
functional can be trained).

Finding the density functional—and using it to compute
quantities—is preferable to generating a library of system
properties and machine learning those properties. From the
DFT model, the other quantities can be constructed.

As an example application, if trained over enough external
potentials, this method could efficiently evaluate molecular
dynamics problems giving accurate results on laptops instead
of supercomputers [94].

F. Other types of functional theories

There are many other types of functional theories that are
related to DFT that can be obtained with these methods. The
most easily extended method is density matrix functional the-
ory (DMFT) [95]. Since our method of obtaining the density
was to actually obtain the coefficients of the density matrix
(see Appendix A), the density matrix functional is learned.

Extensions of DFT can also be solved with this method
including the motion of nuclei,[96] time dependence (TD-
DFT) [57,97–99], thermal properties [100], superconducting
functionals [101,102], quantum electrodynamics-
DFT [103–105], ensembles [106,107], and others
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[66,108–112]. In each case, the solution on the quantum
computer is modified in some way. For example, a
superconducting functional theory can be found if the
pairing potential [113] is also computed and learned.

Two of the methods in the above list (time- and
temperature-dependent methods) deserve extended discussion
in the subsequent subsections since both exact and approx-
imate functionals can be found from both. Note that the
approximate methods only require the ground-state functional
in both cases.

1. Time evolution

Given an accurate enough ML approximation for the KS
potential, one can time evolve the system [44]. If the system is
adiabatically time evolved with a weak enough perturbation,
this would be available immediately from just the KS system
at zero time [see Eq. (B25) in Appendix B 3]. The adiabatic
approximation is often sufficient for many physical processes.

For time evolution beyond the adiabatic limit, an exchange-
correlation kernel denoted as fxc (see Appendix B 3) would
need to be found. Full evaluation of fxc could be accomplished
with the QGA (Appendix D 3 a); however, one can estimate
the kernel via back propagation in the neural network (see Ap-
pendix C). An accurate functional derivative will be required
in this case [46]. One can also time evolve on the quantum
computer and use expectation values at various times for other
quantities [56,65,114,115].

2. Finite temperature calculations

For temperature-dependent processes, one approximation
that is available from the ground-state KS potential is the
Fermi-weighted KS technique [116]. In this method, occupied
and unoccupied orbitals found at zero-temperature can be
weighted with a Fermi-Dirac distribution to obtain a finite
temperature density.

For exact computations at finite temperature, Appendix B 4
discusses the temperature-dependent KS potential (which is
very similar to the ground-state case) and can be found if a
finite temperature wavefunction is provided [114,117].

Other theories may require computation of other quanti-
ties, including those not relevant to quantum chemistry. Yet,
they can follow the same strategy as the RWMP algorithm
(i.e., reuse of the wavefunction and QAE) to find the relevant
quantities.

G. Nondensity functional quantities

Note that the RWMP algorithm is not specific to the den-
sity, the KS potential, or even a density functional. Many
quantities of interest can be obtained. To see how the con-
tinued fraction representation of the Green’s function can be
obtained, see Ref. [59].

H. Reduced examples for testing

Throughout, it is implied that many qubits will be required,
but we view this as similar to requiring sufficient memory on
the classical computer. However, there are test systems that
are used to provide insight into DFT and may be useful for
proofs of principle [118–126]. A simple model that may be

within reach of existing quantum computers is the two-site
Hubbard model, which has been used to study simplified
DFT [127–135].

Each individual algorithm has been tested in cases of
relevant interest for other problems, many of which by the
authors. Citations to many of the tests of these algorithms are
included near their description.

IV. LIMITATIONS OF KNOWN ALGORITHMS

This section discusses limitations on the types of al-
gorithms that could have been used to machine learn the
functional and how future improvements in algorithms must
continue to improve the performance on quantum computers.
We hope that a clear and complete discussion of the current
hurdles for quantum computation motivate future algorithms
and provide a consistent account.

A. Feasibility of obtaining the starting state

In the previous section, we omitted a discussion of how
to prepare the initial state in superposition and how it is con-
verged. The time it takes to obtain a wavefunction is known
to be inefficient with current techniques. For some algorithms,
the ideal input would have been a superposition of solutions
that would include all combinations of particle numbers and
spin polarizations for all external potentials.

In this section, we consider the complications for even
preparing a suitable state in superposition and known limits.
We will discuss the RTE algorithm in the context of its scaling,
why the large prefactor can prohibit its use on some systems,
comparing the implementation of RTE on the classical and
quantum computer, and limitations to constructing a superpo-
sition of all solutions with any method. This last point will
address the feasibility of finding the original starting state for
the QML.

Some other algorithms that were not used as subroutines in
the RWMP method are also discussed.

1. General considerations for real time evolution

One of the primary motivations for making the RWMP
algorithm for the density functional is to recycle the ground-
state wavefunction, reducing the cost of RTE. It is true
that RTE scales only polynomially (Appendix A 2) with the
number of orbitals. In comparison, the full configuration inter-
action (FCI) gives the exact results but scales as O(Ne!) [136].
So, RTE has a scaling advantage over FCI; however, the
prefactor matters.

The exact same RTE algorithm can be run on a classical
computer. The reason that quantum chemistry computations
are not run with RTE is that the prefactor equal to the number
of time steps is large [24,137] This is especially problematic
for large systems and those where a near-degeneracy must be
avoided, necessitating a small step size. But this is exactly
where quantum computers are hoped to be applied.

Note also that the Trotterization of the time evolution op-
erator is suited for planar molecules since interactions are
comparatively localized, which is the same reason that matrix
product states prefer these geometries [91,138,139] further
limiting the usefulness of RTE.
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Further comment becomes far more complicated because
these alternative, smaller wavefunction ansatzs on the clas-
sical computer may display all the same features of the true
ground state and accurate energy. These solvers typically have
systematic errors that are studied, can solve systems faster,
and have led to solutions of large systems [140] and new
discoveries [141]. So, it is not clear if a quantum computation
can beat all classical representations in terms of efficiency.
Note that on the classical computer, another solver can be used
(e.g., tensor networks [91,138], quantum Monte Carlo [142],
random phase approximation [143,144], or many, many other
methods [145]). The number of choices here is vast and sto-
ried, so we leave more discussion for others [145,146].

In summary, the time complexity of solving the quantum
computation should be expected to be larger than classical
solvers. Quantum computers can represent a reduction in the
amount of space required to store a wavefunction, but it is not
clear if this will always beat every classical representation.
Improved methods of finding the ground state would be highly
valuable.

2. Choice of basis sets for algorithms

It is true that the quantum computer provides a different
representation of the wavefunction. In some representations
for classical algorithms, the memory will grow considerably
with system size. For example, a coupled cluster calculation
can have many coefficients as in the number of operations
may become exponentially large [147]. This is due to the
need to store more coefficients for a given basis. The quantum
wavefunction on the quantum computer may have some ad-
vantage here since coefficients are stored in superposition on
each qubit. However, there are many wavefunction ansatzes
to consider in comparison because some methods can find
accurate answers with considerably less coefficients, and the
time needed for the quantum computer’s wavefunction can be
lengthy.

Some recent efforts on the quantum computer have sought
to impose specific conditions to reduce the amount of op-
erations required. The strategies that are pursued are to use
different basis sets and generate criteria for removing terms
from the Hamiltonian. For example, plane waves lead to a
sparse Hamiltonian (see also Appendix A 2) [148]. Such sys-
tematic methods for this should be expected to be as difficult
as (or more so than) solving the wavefunction outright.

The proper comparison between RTE on a quantum com-
puter with a plane-wave basis set and RTE on a classical
computer is that that the classical computer can handle any
basis. So, a comparison with a plane-wave basis set on a
quantum computer should be compared to a RTE on the clas-
sical computer with some other basis set (e.g., Gaussians).
The difference in the number of orbitals required to accu-
rately simulate matter for plane waves can be much higher
than other basis sets due to cusps in the wavefunction that
require large numbers of plane waves to resolve [145,149–
151]. So, restricting the basis to plane waves at best matches
the classical equivalent in terms of operations required (see
also Appendix A 2).

Wavelets have appeared in some references recently sug-
gesting that these functions can provide a systematic way

to compress a Hamiltonian, but in the 30-year existence of
these functions (for more information, see the references in
Ref. [152]), they have been demonstrated to scale poorly to
large system sizes due to the curse of dimensionality [153].
These methods typically give access to three or fewer elec-
trons when not approximating the Fock operator. To use these
functions, a compression ratio of nearly 100% would be re-
quired. Using these functions beyond one dimension faces
significant hurdles in the general, interacting case.

In conclusion, restrictions to a particular basis set or pro-
cedures to remove terms in a Hamiltonian is not a cure-all for
computation in general. The task of identifying which terms of
the Hamiltonian without first solving the problem is typically
complicated, and the resulting answer is not necessarily exact
anymore. Approximated calculations are essentially the strat-
egy of classical methods which leave out some effect or terms,
and it is not clear how to do this systematically in general, nor
if any simple strategy can be expected. A single method or
change in basis is not a panacea to making the solution on a
quantum computer less complex.

3. Limits on solutions in superposition

With regard to applying any generic algorithm to find a
superposition of solutions, we can place a limit on finding the
initial state required for algorithms that need this superposi-
tion of solutions.

Theorem IV.1. A quantum computer cannot efficiently
generate a superposition of solutions for all potentials nec-
essary for F [n] unless BQP=QMA-complete.

Proof. It is also known that at least one of the systems
contained in the universal functional is in the computational
class QMA-complete to solve [154]. This is not efficient on
the quantum computer to compute objects in this complexity
class. So, no algorithm should be able to obtain all solutions
efficiently. �

Thus, some elements should be expected to be uncon-
verged in a superposition unless the algorithm is run for an
impractically long time. Note that algorithms requiring a su-
perposition generally require more than one solution, so the
superposition is not run just once.

4. Alternative algorithms to real time evolution

We do not rule out that some improvement may allow RTE
(or some other method) to receive a quantum advantage. If a
superior algorithm is developed (e.g., the tools exist to make
imaginary time evolution [155], perturbation theory [156],
preparation of projected entangled pair states [157], or a
very expensive version of the density matrix renormalization
group [138,158,159] at the present time), it is likely that it
will rely on converging from some initial state. Also, any
algorithm like exact diagonalization for general systems is not
expected to be efficient since this problem is not contained in
the BQP complexity class [154,160,161]. This creates more
motivation to focus on algorithms that converge.

We do note that progress through the decades on quantum
chemistry has been difficult to find a unifying principle that
would help in algorithm design [146], but perhaps quantum
computing may motivate a new way to look at the problem
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for cases of interest since the prospects of finding a general
algorithm are prohibitive.

B. Other methods and quantum machine learning

In regards to other methods to train the ML model, we
had investigated using alternative subroutines using a super-
position of solutions. Algorithms that we considered included
Grover’s algorithm [4,7], quantum walks [162,163], and oth-
ers. Each of these requires a solution of a superposition
of systems, some means of identifying the correct solutions
through a phase kickback, undoing the superposition of sys-
tems, and then repeating the process until the error is low
enough to ensure the correct solution is determined to some
high probability.

The limitations described in Theorem IV.1 are one hurdle,
but in our view, these strategies of uninformed search were too
lengthy even on the quantum computer. Since the improve-
ment in the number of steps required is only by a square root
factor, searching the exponentially sized database causes the
algorithm to run for far longer than other classical algorithms
for electronic structure.

The variational quantum eigensolver (VQE) [164] might
be adapted to finding, for example, the Kohn-Sham potential
with a method from Refs. [72–79], but it is not clear if errors
can be kept small in a reasonable amount of time, and we wish
to keep focus on finding the exact KS potential. The VQE
would also require the exact density from another method, but
it could in principle be adapted. The main question is how well
this suggestion would perform on a quantum computer based
on current hardware.

1. Quantum machine learning

Quantum machine learning (QML) algorithms were also
not suitable since known bounds on the number of oracle
queries imply that there is only a polynomial speedup for
QML algorithms. See Ref. [60] and experimental proof on
a simple case in Ref. [165]. A confirming statement is also
found in in Ref. [166].

Lacking an exponential speedup, it is likely too expensive
for the quantum computer to run in a reasonable amount of
time here.

Existing statements in the literature on the hardness of
determining the universal functional can lead to limits on the
types of QML algorithms we expect can exist. We formalize
the relevant limits in some statements here [167].

Theorem IV.2. No QML algorithm can discover the uni-
versal functional in polynomial time unless QMA-complete
reduces to the complexity class BQP.

Proof. The functional is proven to be QMA-complete to
learn [161]. If an algorithm determined the functional in poly-
nomial time, then BQP=QMA-complete. �

Note that this says nothing about whether QML can do
slightly better than the classical algorithm, but typically a step
in a QML algorithm is to reprepare the wavefunction and this
is one of the main issues we want to avoid here. Because the
functional is known to be QMA-complete to learn, finding
the exact and universal functional with the RWMP algorithm
would require an exponential amount of time to visit all sys-
tems, as expected [154,160,161,168]. We continue on to make
a connection with some statements about learnability.

Theorem IV.2 also implies limits on how learnable the
universal functional is by any method. In Ref. [60], under the
probably approximately correct (PAC) [169] model of ML,
only a polynomial reduction in oracle queries (training points)
is possible with QML.

Lemma IV.3. The assumed limitations on the number of
oracle queries (quantum and classical learning differ by only
polynomial factors) required to discover F [n] with QML are
the same as those under the PAC model [60].

This is a consequence of the hardness of finding the func-
tional. If this were not true, we could find a QML algorithm
that could discover F [n] in exponentially fewer steps, which
is a violation of both Theorem IV.2 and Ref. [60]. So, there
can be no exponential speedup for QML under the PAC model
here.

While there may be cases that lie outside of the PAC
model [170–174], we have we no evidence that the functional
is not subject to the PAC assumptions. There is also good
evidence to suggest that simple systems—at least—obey the
limits of the PAC model [165].

In summary, the difficulty of finding the universal func-
tional on a quantum computer places limits on the ability for
many-body solvers on the quantum computer and QML as
well. Note the generality of the statements here for all QML
algorithms. Recent works have shown that some existing
QML algorithms are not as efficient as once thought [61,62],
but the arguments here apply to QML in general for this
problem.

These general arguments do not prohibit a quantum ad-
vantage if another algorithm can be found to solve systems
in a more specific case or restricted class of systems. Re-
cent progress on finding classical algorithms that are superior
to quantum algorithms illustrate the need for caution when
proposing an efficient QML algorithm, however [64]. Still,
QML does not seem to be a feasible way forward for the
problem of interest here.

C. Summary

The main take-away from these statements is that an ex-
ponentially more efficient algorithm for the most general
case is ruled out when discussing the solution on a quan-
tum computer. Reducing the prefactor, therefore, becomes
highly beneficial. This does not preclude algorithms on more
restricted systems, but there is no hint of how exactly to
construct such an algorithm or that this is any easier than a
straightforward solution.

The RWMP method avoids repeated measurement, reduces
the prefactor to solve each system iteratively and allows for
more systems to be solved with RTE or some other method.

V. CONCLUSION

It has been demonstrated that a combination of algorithms
applied to a wavefunction on the quantum computer can
yield the Kohn-Sham potential, energy, and density matrix
coefficients without completely re-preparing the ground-state
wavefunction each time. The determined quantities can be
used to train a machine learned model using gradient-based
methods either on the quantum computer or classically. The
ground-state wavefunction was used as the starting point for
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the next system, reducing the prefactor and avoiding an ex-
pensive computation of the ground state at each step. This
efficiency was also used for the Kohn-Sham potential with a
minimization condition.

Once a model is created, a classical user can extract the rel-
evant quantities from the machine learned model and use it for
ground-state, time-, and temperature-dependent calculations.
Finding the Kohn-Sham potential is especially useful here
since it gives access to many properties of the ground state; in
addition, there was some indication that the Kohn-Sham po-
tential might scale better in some cases as opposed to finding
the density. Known limitations on the complexity of finding
the universal functional and quantum machine learning have
constrained the choice of subroutines in the algorithm here.
A better method to solve for the ground state on the quantum
computer must be a focus of future research to make quantum
chemistry studies feasible, but this algorithm will allow for
solutions to exported to many users.
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APPENDIX A: QUANTUM CHEMISTRY

In this section, we review some background information on
quantum chemistry.

1. Many-body problems

The problem of interest is to solve the many-body problem
expressed by the Hamiltonian [175]

H =
∑
i jσ

[
ti j ĉ

†
iσ ĉ jσ +

∑
k
σ ′

(
Vi jk
ĉ†

iσ ĉ†
jσ ′ ĉ
σ ′ ĉkσ

)]
(A1)

with fermionic operators ĉ on discretized lattice sites (or ba-
sis functions) indexed by i, j, k, 
 ∈ {1, . . . , N} (for N basis
functions) with spin σ . Note the order of indices [175,176].
The one-electron integral is

ti j =
∫

ϕ∗
i (r)

[
−1

2
∇2 + v(r)

]
ϕ j (r) dr, (A2)

which is the kinetic plus external potential terms. The two-
electron integral is

Vi jk
 = 1

2

∫∫
ϕ∗

i (r)ϕ∗
j (r′)vee(r − r′)ϕk (r)ϕ
(r′) dr dr′,

(A3)
where vee(r − r′) = 1/|r − r′| for the case of a Coulomb
interaction and that this expression assumes the orbitals for
both spin-up and spin-down electrons are the same. Note
that a Hubbard model is an approximation with only the
most diagonally dominant terms of the Coulomb opera-
tor, Vi jk
 = Uδi jδ jkδk
 for Hubbard interaction U [177]. We
have restricted our consideration to the Born-Oppenheimber
approximation [178], even though the discussion can be gen-
eralized to the motion of nuclei [96].

Solving the entire many-body problem is known to be
difficult if not impossible. However, approximate methods can
yield results that are accurate to what is known as chemical ac-
curacy (1 mHa) or a stricter limit applies in some cases [145].

2. Basis sets

We can note that Eq. (A1) has been written in the second
quantized form since we expect to need a basis to truncate the
problem to a more manageable size. One may, for example,
choose Gaussian orbitals [179] so that Eqs. (A2) and (A3)
can be evaluated analytically and chemical accuracy can be
obtained with only a few functions. Other basis functions can
also be chosen [145].

It is known that Eq. (A3), when represented in a local basis,
reduces to [145]

lim
loc.

Vi jk
 = 1

2

∫∫
|γik (r, r′)|2vee(r − r′) dr dr′ ∼ O(N2)

(A4)
for a density matrix γ where the limit is taken for well
separated, local orbitals at large distances. This reduces
the computational complexity from O(N4) to O(N2) in the
asymptotic limit, although the true scaling lies somewhere
in-between depending on the details of the system [24]. This
argument applies only to orbitals that drop off sufficiently
quickly with distance from the origin.

a. The curse of dimensionality and other limitations
in pointlike basis sets

We note that the reduction in Eq. (A4) happens immedi-
ately when using purely local basis sets, with no spatial extent,
is used. In that case, we would reduce to a sum over only
the diagonal elements of the two-electron integral, Vi jk
, if the
orbitals were pointlike. However, using only these localized
orbitals (e.g., grid points, plane-waves, wavelets, etc.) comes
at a steep price.

In particular, note that wavelets are very expensive for
large-scale quantum chemistry problems. It has been known
for some time now that a curse of dimensionality shows
that the number of functions in one dimension scales as
Nd

1D for d dimensions with a number of functions in one
dimension, N1D [153]. Due to the large number of basis func-
tions, wavelet based functions have only been able to solve
two- and three-electron systems maximum in the general
case [180], although these functions can be efficient for larger
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noninteracting or single Slater-determinant theories or other
cases of very particular interest [181]. Wavelets are simply
not expected to be efficient for real three-dimensional systems
of any meaningful size based on preexisting works unless the
problem is converted to a noninteracting theory or a special
geometry is chosen. For more information, see the references
in Ref. [152].

For plane-wave functions, many thousands of functions
are required to resolve the electron-electron cusp (e.g., the
behavior of the wavefunction at the nucleus in a hydrogen 1s
orbital) [145,149–151]. We will not consider pointlike basis
functions further here to concentrate on the general case,
although plane waves can be useful for periodic systems. With
respect to the density matrix (which is a highly important
quantity in Sec. B), the full double sum will be taken [see
Eq. (B3)] and not just diagonal elements.

In summary, even though the scaling of the two-electron
operator is better for pointlike basis sets, many more basis
functions will be required to obtain accurate results except in
special cases. So, choosing a pointlike basis function will not
represent a general strategy for all types of quantum chemical
problems that we may wish to solve.

APPENDIX B: DENSITY FUNCTIONAL THEORY

The foundations of density functional theory (DFT),
including the Kohn-Sham system and other variants, are in-
troduced here.

A compact representation of the quantum ground state is
the one-body density. In DFT, the ground-state wavefunction
is replaced with the density. It was proven in Ref. [29] that the
one-body density, defined as

n(r) =
∫

. . .

∫
|�(r, r2, . . . , rNe )|2dr2 . . . drNe (B1)

is sufficient to characterize the ground state. Note that in order
to obtain this quantity on the lattice, the one-body reduced
density matrix must be obtained for Ne electrons,

ρ̂(r, r′) =
∫

. . .

∫
�∗(r, r2, . . . , rNe )

×�(r′, r2, . . . , rNe ) dr2 . . . drNe (B2)

and is related to the density in the limit where r → r′

n(r) = 1

2

∑
i j

ϕ∗
i (r)ρi jϕ j (r), (B3)

where ρi j = 〈�|ĉ†
i ĉ j |�〉. A spin index has been suppressed,

signifying a spin degenerate ground state. However, exten-
sions to ground states without spin degeneracy are also
available [51].

Having replaced the wavefunction for the more compact
density, the Hamiltonian must be substituted for another math-
ematical object that acts on the density. In general, an object
that maps a function to a scalar value is known as a func-
tional [182]. In DFT, a functional maps the one-body density
to a scalar energy value.

In order to find the ground-state energy, we can use a
minimization over all densities [183]

E = min
n

(
F [n] +

∫
n(r)v(r) dr

)
, (B4)

although it is impractical to search for the ground-state density
with this formulation. The second term in Eq. (B4) is the
external potential functional (often denoted as V [n]) and has a
known form. Contrastingly, the universal functional, F [n], is
defined as the search over all wavefunctions � constrained to
give the density [50,51],

F [n] = min
�→n

〈�[n]|T̂ + V̂ee|�[n]〉 (B5)

and is common to all systems since it does not depend on the
external potential. Clearly, the minimization is not an efficient
way to find the functional, but it is useful as a mathematical
tool.

Because F [n] is unknown explicitly (its existence is proven
by contradiction), it requires approximation to use [30]. Some
limiting cases are known, such as one- or two-electron cases,
the uniform gas via a fitting procedure, and one dimen-
sion [184–187] Many exact properties of the functional are
known from rigorous mathematical statements [188,189] or
limited test cases [93,125]. One common way to design new
functionals is to build in exact conditions [190–192].

Note that to solve a problem with F [n], the functional
derivative can be used and is defined as [50,51]∫

δF [g(x)]

δg(x)
ϒ(x) dx ≡ lim

η→0

{
F [g(x) + ηϒ(x)] − F [g(x)]

η

}
(B6)

=
{

d

dη
F [g(x) + ηϒ(x)]

}∣∣∣∣
η=0

, (B7)

where ϒ is an arbitrary test function, g is the function we
wish to evaluate F around, and η is a small parameter.
The first functional derivative is best known from classical
physics, where it is used to minimize the Lagrangian via
Euler-Lagrange minimization [193]

In order to find the minimal density, a functional derivative
can be taken. This is synonymous with the Euler-Lagrange
equations in this case [194]

δF [n]

δn(r)
+ v(r) = μ, (B8)

where a constant chemical potential μ was added as a La-
grange multiplier for the total particle number. This equation
is then used to solve for orbital-free DFT.

1. Kohn-Sham density functional theory

One useful alternative formulation of F [n] is KS-DFT. This
reformulation of DFT proposes an external potential whose
solution resulting one-body density is equivalent to obtaining
the one-body density of the fully interacting system. The
original goal of DFT was to propose a purely wavefunction-
free method to characterize the quantum ground state, but it
is difficult to find suitable approximations that are accurate
enough.
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It can be noted that approximating F [n] is a large approxi-
mation on the total energy. In this alternative formulation, one
introduces an easy to solve, noninteracting, auxiliary system
to make the required approximation a smaller fraction of the
overall energy. Obtaining the KS potential gives insight to
many more physical quantities than just the density, and the
orbitals of the noninteracting system can be used in a variety
of other contexts.

a. Finding the Kohn-Sham potential

To formalize the KS system, what is known as the adiabatic
connection can be used to transform from the original problem
to the final noninteracting problem [195]. Equation (A1) can
be rewritten as[196]

Hλ = T̂ + λV̂ee + V̂ (λ), (B9)

where an express dependence on the coupling constant λ has
been introduced. The tuning parameter λ can vary between
the KS system (λ = 0, where V̂ (λ=0) = V̂s) and the original
system (λ = 1). Note that the external potential operator (V̂ =
v(r)) has received an implicit coupling constant dependence,
but there is no simple analytic form for V̂ (λ). The constraint
given in this problem is that the density must be the same for
any λ,

n(r) ≡ n(λ=1)(r)
!= n(λ=0)(r), (B10)

which is difficult to construct in practice. Note that the other
limit of λ → ∞ can also be used to base a functional the-
ory [197].

b. Components of the functional in the Kohn-Sham system

The form of the universal functional for the KS case is

F [n] = Ts[n] + U [n] + Exc[n]. (B11)

This form is known from perturbative expansions of the many-
body system [30,175]. Note that the subscripted “s” on the
kinetic energy is to signify that Ts is evaluated over noninter-
acting wavefunctions, φ, but has the same form as the same
kinetic energy operator in Eq. (A2). This term shows that
the KS scheme is not a pure density functional but one that
relies the auxiliary noninteracting orbitals. The cost to solve
the noninteracting system is larger than pure-DFT, but still
smaller than many other approximations.

In addition to the kinetic energy, another known energy in
Eq. (B11) is the Hartree energy,

U [n] = 1

2

∫∫
n(r)n(r′)
|r − r′| dr dr′, (B12)

which is fully nonlocal.
The unknown term in Eq. (B11) is the exchange-correlation

energy, Exc, which is not known as a density functional and
requires approximation in practice. If the exact Exc is used,
then the theory is exact. The usefulness of defining the KS
system is that the approximation to the total energy is small
for many systems of practical interest.

c. Kohn-Sham potential by functional derivatives

The KS potential is explicitly

vs(r) = δ

δn

{
U [n] + Exc[n] +

∫
n(r)v(r) dr

}
= vH[n](r) + vxc[n](r) + v(r), (B13)

where a functional derivative is taken over the relevant energy
terms, for example,

vH[n](r) = δU [n]

δn
=

∫
n(r′)

|r − r′| dr′ (B14)

for the Hartree potential, and the form of vxc[n](r) is not
known explicitly. In summary, by regrouping the nonkinetic
energy terms in the Hamiltonian, U [n] + V [n] + Exc[n], the
resulting system will appear as noninteracting. The electron-
electron term is contained in the resulting potential of the
noninteracting system.

d. Variational principle for the Kohn-Sham potential

The Kohn-Sham potential also satisfies the minimization
of the quantity[73]

T� [vs] = 〈�[v]|T̂ + V̂s|�[v]〉 − 〈�[vs]|T̂ + V̂s|�[vs]〉,
(B15)

where we follow Refs. [73–75] closely. Note that
�(r, r2, . . . , rNe ) is not an eigenstate of T̂ + V̂s but that
�(r) is. So,

〈�[v]|T̂ + V̂s|�[v]〉 > 〈�[vs]|T̂ + V̂s|�[vs]〉 (B16)

by the variational principle [198]. The functional derivative of
Eq. (B15) with respect to vs(r) is [73]

δT� [vs]

δvs
= n� (r) − n�(r) (B17)

and equals the difference in the densities of the two systems,
one computed from � (n�) and the other density from �

(n�) [73]. When this difference is zero, the condition for the
Kohn-Sham potential is found given in Eq. (B10).

e. v-representability

The KS scheme is exactly defined provided that v-
representability is satisfied. In common practice, this is not a
concern since it was proven on a grid that the system must be
v-representable since the kinetic energy is regularized [70,71].
So, we always expect v-representability here.

f. Minimization of the Kohn-Sham functional

Note that the Euler-Lagrange minimization of the func-
tional yields the KS equations[

−∇2

2
+ vs(r)

]
φ j (r) = ε jφ j (r) (B18)

for some KS energy eigenvalues ε j and KS orbitals φ j (r). The
density is then the sum over occupied orbitals equivalent to

n(r) =
∑
j∈occ.

|φ j (r)|2, (B19)

043238-12



DENSITY FUNCTIONALS AND KOHN-SHAM POTENTIALS … PHYSICAL REVIEW RESEARCH 2, 043238 (2020)

which can be found from Eq. (B3) by noting that the excita-
tions are orthogonal. One recovers Eq. (B3) with an additional
index for the excitations when φ is decomposed into a chosen
basis.

g. Relationship between the energies of the Kohn-Sham and the
fully interacting system

The adiabatic connection from Sec. B 1 a does not conserve
energy. The relation between the ground-state energy of the
interacting system, E , and the energy of the KS system (the
sum of eigenvalues of the noninteracting system,

∑
j∈occ. ε j)

is [50]

E =
∑
j∈occ.

ε j − U [n] + Exc[n] −
∫

n(r)vxc(r) dr (B20)

for Hartree energy U , exchange correlation energy Exc, and
exchange-correlation potential vxc, Note that Eq. (B20) shows
it is not sufficient to have only the KS potential to find E ,
although perturbation theory on the density can be used [199].

2. Potential functional theory

When examining Eq. (B4), it is natural to ask if a dual
theory can be formulated based on v(r) instead of n(r) since
both are one-body quantities. This question stems from notic-
ing that functional derivatives of n(r) yield equations that
can be solved for the density, resulting in the Euler-Lagrange
minimization for the density functional from Eq. (B8).

To the question: Can we instead take a functional derivative
with respect to v(r) instead? The answer is yes. It was proven
in Ref. [66] that the dependence on the functional in terms
of the external potential was sufficient to describe the ground
state. In this theory, the density must be determined from v(r)
directly as n(r) → n[v](r). The resulting energy becomes

E = min
n[v]

(
F [v] +

∫
n[v](r)v(r) dr

)
, (B21)

where

F [v] = min
�→n[v]

〈�[v]|T̂ + V̂ee|�[v]〉, (B22)

which is similar to Eq. (B5).

a. Why the functional derivative is also necessary

Very importantly, one cannot determine the entire character
of the ground state [i.e., find n(r) or equivalent] with only
E [v]. To see this, note that the Euler-Lagrange equation for
potential functional theory is [112]

δF [v]

δv
+

∫
δn[v](r)

δv(r′)
v(r′) dr′ = 0, (B23)

where a derivative of the density with respect to the external
potential in the second term of the left-hand side must be
determined to solve this equation and find the density. In sum-
mary, one can formulate potential functionals, E [v], provided
that n[v](r) is known [86,111]. In other words, the functional
derivative is also necessary to perform self-consistent calcula-
tions if only the energy is known for a given potential.

3. Time-dependent density functional theory

In a time-dependent DFT (TD-DFT), one may simply
propagate the KS potential according to Schrödinger’s equa-
tion for time evolution [57,194]

i
∂

∂t
φ j (r, t ) =

{
−∇2

2
+ vs[n,�0](r, t )

}
φ j (r, t ) (B24)

with an initial starting state �0. A formal justification for the
existence of TD-DFT is available [97,98].

Computing response functions is also necessary if a per-
turbation to vs(r) is applied. Knowing just the KS orbitals
is sufficient to determine the response function for the KS
system [57],

χs(r, r′, ω) = lim
η→0+

∞∑
k, j=1

(ξk − ξ j )
φ∗

k (r)φ j (r)φ∗
j (r′)φk (r′)

ω − (ε j − εk ) + iη

(B25)

with occupation numbers ξ j , eigenvalues ε j , frequency ω, and
small parameter η. Hence, knowing all eigenvalues of the
vs(r) at t = 0 gives the KS response function. One can also
relate χs to the interacting response function χ via a kernel
(ng.s. is the ground-state density)

fxc[n](r, t, r′, t ′) = δvxc[n](r, t )

δn(r′, t ′)

∣∣∣∣
n=ng.s.

(B26)

and the relation

fxc(r, r′, ω) = χ−1
s (r, r′, ω) − χ−1(r, r′, ω) − vee(r − r′),

(B27)
which is similar to a Dyson’s equation. Many cases of interest
obtain sufficiently accurate answers with only the adiabatic
approximation, however. TD-DFT can be used to find excited
states [99].

4. Density functional theory at finite temperature

In order to incorporate finite temperature effects into the
density functional, an entropy term can be added following the
original treatment by Mermin [100], one can write the grand
canonical free energy as

�̂ = H − τ Ŝ − μN̂ (B28)

for temperature τ , chemical potential μ, number operator N̂ ,
and entropy operator

Ŝ = −kB ln �̂, (B29)

where [200]

�̂ =
∑
Ne,i

pNe,i|ψNe,i〉〈ψNe,i| (B30)

with
∑

{Ne,i} pNe,i = 1, 0 � pNe,i � 1, and states ψNe,i indexing
excitations over a particular number of particles Ne.

The minimum of �̂ is (and adding descriptive indices)

�̂τ
v,μ = min

n

{
F τ [n] +

∫
n(r)(v(r) − μ)dr

}
(B31)

and

F τ [n] ≡ min
�̂→n

{T [�̂] + Vee[�̂] − τS[�̂]}. (B32)
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In summary, if a system is solved at a given temperature,
one can solve for the KS potential analogously to the ground
state with an extra term −τ Ŝ (and a term for the particle
number) representing the entropy in the functional. Note that
the ground-state density is replaced by the �̂ object which is
akin to a density matrix and that extra weights must be solved.
In order to find this, several states ψNe,i must be used.

5. Comment on density functional approximations

There are many functionals that can be used to approximate
Exc. Each performs with its own set of systematic deficiencies.

The most pertinent approximations for this paper are the
ML functionals [31,33–38,41–45]. The general strategy of
fitting a functional may be unpalatable [83], but the generic
strategy of fitting exact data is not unique to ML function-
als. The simplest approximation to the functional—known as
the local density approximation—is a fit of highly accurate
quantum Monte Carlo data [201,202]. Further, coefficients
present in hybrid functionals are also fit to existing data [203],
among other examples. The ML functionals simply represent
a more robust approximation that can interpolate well pro-
vided the system solved is close to the training manifold.
This strategy would capture the exact conditions of the exact
functional [33,49–51,204].

APPENDIX C: TRAINING A MACHINE LEARNING
MODEL WITH STOCHASTIC GRADIENT DESCENT

Machine learning methods rely on the minimization of
some cost function. Here we describe the most basic version
of this, the stochastic gradient descent (SGD). If a function
must be minimized, some procedure for the minimization is
necessary. We can define a cost function, g, that could take
the form

g =
∑
ι,x

[nŵ(x(ι) ) − n(ι)]
2 (C1)

for some observable n with known values of n(ι) (called a
training set) indexed by ι with some coefficients for the weight
ŵ and bias b in the form

x(i+1) = S
(
ŵ(i) · x(i) + b(i)

)
(C2)

for a level i of the neural network with a nonlinear function S
with a given input x(ι). The final level of the neural network
will be the final quantity of interest, nŵ(x(ι) ).

In order to minimize g and therefore construct the best
approximation to the known values, a gradient descent can be
performed. The basic idea is to ensure that any evolution of
the coefficients ŵ occur along the steepest negative gradient
in the system. In order to ensure that the gradient is negative,
we can start from a consequence of Gauss’s law which states
that a gradient of a scalar (here, g) along the direction of
changing ŵ (denoted δŵ) is equivalent to the Laplacian of g,
�g = ∇ŵg · δŵ where ∇ŵg = (∂w1 g, ∂w2 g, . . .).

If the form of the update from iteration over a time δt
(which can also be expressed in the discrete case as earlier)
is chosen as

ŵt+δt = ŵt − η∇ŵg (C3)

for some small parameter η (called a learning rate), then
then applying ∇ŵg to each side with a dot product gives
�g = −η|∇ŵg|2 < 0. In other words, the Laplacian of g is
guaranteed to be negative for a small enough η such that g
is linear on a small neighborhood. The argument was shown
for the weights of the neural network, but the same argument
applies to the biases.

Evaluating Eq. (C1) for all ι provided can be very costly
since the resulting gradient is very noisy. To speedup the
gradient descent, a randomly sampled subset of the provided
training data, called a mini-batch. This can be one or more
selected points. Since the points are randomly selected at each
step, the gradient descent is taken stochastically.

Even though the cost function evaluated over the mini-
batch must be negative, the entire cost function evaluated
over all training points does not need to decrease. However,
on average, the observable’s value is lowered over several
SGD steps. The condition is 〈∂t g〉 < 0 for a mini-batch in the
general case but would be ∂t g < 0 if all points are used.

There are two steps required when training a ML model
with SGD: forward and backward propagation. In forward
propagation, Eq. (C2) is applied straightforwardly from the
input to the output layers of the neural network. The backward
propagation requires that a derivative of Eq. (C2) from the out-
put to input layers. Repeating this constructs the cost function
and then applies the gradient to all weights and biases in the
network until the model is more converged.

More advanced algorithms can also be used to converge
gradient descents as well [205].

1. Gradient-free methods

This section has been focused on training ML models with
gradients. Another class of method, one that uses random
walks [206–215], is also available. However, these methods
of training that involve a random walk typically only perform
well on small numbers of parameters. In fact, these methods
perform better than gradients in some cases for these small
systems. If the problem is too large, then a gradient-based
method is generally better [211]. There may also be oppor-
tunities to combine the two [216,217], although this may
require that the wavefunction is re-solved to implement on the
quantum computer. We were not able to find any evidence that
random walks can reliably compete with gradient-based train-
ing methods; however, if one could use such an algorithm, a
quadratic speedup is available on the quantum computer for
training with the random walk [162].

We also note that kernel based methods can be used to
train the neural network but that they are not as “choice-free”
since a functional form of the kernel must be selected. The
minimization of the coefficients with a kernel does not require
gradients [48].

APPENDIX D: QUANTUM ALGORITHMS

On a quantum computer, both the method of manipulating
and storing information is different from a classical computer.
On a classical computer, electrons are moved around and rep-
resent different information based on where they are placed.
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In a quantum computer, the quantity that we manipulate is
the spin of an electron or some other quantity that is allowed
to exist in a superposition of states [1]. We will refer to qubits
in this work but note that one can extend the ideas to qudits
where more than two states are possible. It is not possible to
determine all coefficients of a wavefunction in a superposition
without an exponential number of measurements to find them
(i.e., measuring the spin for the both |0〉 and |1〉 states for
each qubit individually). To manipulate the state of a quantum
wavefunction, we can apply operators, specifically operators
that are unitary. Often, the operators are applied to a specified
qubit and also another auxiliary qubit to keep required opera-
tions unitary.

Sequences of these unitary operators can be cast as a tensor
network diagram. Each line of the diagram represents a single
qubit or a group of qubits called a register. Each block is a uni-
tary operation that manipulates the state of one or more qubits.
Note that the allowed operations on the quantum computer
maintain the number of lines and do not involve truncations
of the space at any point. This is qualitatively different from
other uses of tensor network diagrams used for “tensor net-
work methods” which can refer to a class of algorithms that
solve for the ground state of a quantum system on classical
computer [91]. So, there is a subtle distinction between the
tensor network methods and the tensor network diagrams we
draw here even though the general properties of the diagrams
is the same in both. The main difference here is that no form
of truncation or a connection with a renormalization group is
taken explicitly.

One example of a useful gate that will appear in several
places is the Hadamard gate,

H = 1√
2

(
1 1
1 −1

)
, (D1)

which is written in the {|0〉, |1〉} qubit basis states. Applying
this gate on a |0〉 state will give an equal superposition over
the |0〉 and |1〉 states,

H |0〉 = (|0〉 + |1〉)/
√

2, (D2)

which can be applied identically to more qubits as denoted by
the ⊗ operator.

We present some common algorithms in the context of
solving quantum chemistry problems [218]. The quantum
gradient algorithm (QGA) is used to find derivatives of a func-
tion, generically. Meanwhile, the quantum phase estimation
(QPE) determines the phase of a given state. An important
sub-algorithm in the QGA and QPE is the quantum Fourier
transform (QFT) which is detailed first [1]. Real-time evo-
lution (RTE) in addition to quantum amplitude estimation
(QAE) are also discussed.

Note that everywhere we use the symbol N for the number
of qubits in this section. Many times in the literature, the
number of qubits may also implicitly mean N registers with
r qubits each for r digits of precision. If this is the case, the
same concepts would apply, regardless.

1. Quantum Fourier transform

The QFT begins with a set of input data recorded on an
initial set of registers, which we denote as |y〉. The end result

of the QFT is to change the data |y〉 into |x〉 according to the
discrete Fourier transform [219]

|x〉 = 1

2N/2

2N −1∑
y=0

exp(i2πxy/2N )|y〉 (D3)

for N qubits with a normalization factor 2−N/2 coming from
the prefactor in Eq. (D1). The key first step is to understand
how Eq. (D3) can be reexpressed in binary instead of integers
integer y. A number y can be reexpressed in base 2 with
the digits (assuming value either 0 or 1, corresponding to
the states of a qubit) y0y1 . . . yN−1 where N is the maximum
number of (qu)bits we allow for the binary number. In full, y
relates to the binary digits as

y = 2N−1y0 + 2N−2y1 + · · · + 2yN−2 + yN−1. (D4)

A similar form can be written for using a qudit where a
different basis is used (e.g., trinary).

To express the binary representation of |y〉 as qubits, let us
express the state as

|y〉 = |y0 . . . yN−1〉 = |y0〉 ⊗ . . . ⊗ |yN−1〉 ≡
N−1⊗

=0

|y
〉 (D5)

with each of the subindices representing another digit of y’s
binary representation (y
 ∈ {0, 1}).

We can substitute y for its binary representation as using
the previously defined expressions in Eq. (D4) to find [1]

|x〉 = 1

2N/2

N−1⊗

=0

1∑
y
=0

exp
(
iπxy
/2


)|y
〉, (D6)

where the sums in Eq. (D3) are rewritten for the binary repre-
sentation as

2N −1∑
y=0

≡
N−1⊗

=0

1∑
y
=0

=
1∑

y0=0

1∑
y1=0

· · ·
1∑

yN−1=0

(D7)

for simplicity. Noticing that each term is factorizable, this
becomes

|x〉 = 1

2N/2

N−1⊗

=0

{
|0〉 + exp

(
iπx/2


)|1〉
}

, (D8)

where for a given 
, the division by a power of 2 in the
argument of the exponential will reveal one digit of the binary
representation of the integer x [1].

The operators necessary to perform a QFT on a quantum
computer can be identified in Eq. (D8). Note that applying the
Hadamard gate on a qubit written in an arbitrary binary form
is

H |xk〉 = [|0〉 + exp(iπxk )|1〉]/
√

2 (D9)

as can be verified by noting that xk is either 0 or 1. So, a
Hadamard will rotate each bit of x into a basis that is only
different from an individual term in Eq. (D8) by a phase on
the |1〉 state. If we apply the phase rotation gate of the form

R
 =
(

1 0
0 eiπ/2


)
(D10)
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FIG. 2. Circuit diagram of the quantum Fourier transform. Note
that the rotation operator is about the z axis, and the Hadamard is
about the x axis. So, they cannot commute nor can they be placed in
a different order.

after the Hadamard, then this will constitute the most basic
operation in the QFT. That is, applying H and then R
 a certain
number of times will generate terms required in Eq. (D8).
More than one R
 gate may need to be applied depending on
which bit of x we are acting on. The structure of gates is shown
in Fig. 2. The next qubit has all but the first register’s rotation
matrix applied. We then continue to the next qubit, applying
one less set of gates, and continue until we apply only the
Hadamard on the last qubit. If a swap operation is applied, the
qubits will appear in order, and this completes the QFT.

Note that the overall cost of this algorithm scales as O(N2)
but that a cheaper O(N log N ) is also available [220]. Note
also that since we cannot efficiently obtain all coefficients
from the superposition, the algorithm does not provide a
useful speedup over the classical algorithm which scales ex-
ponentially, not polynomially. However, the time to measure
all elements is exponentially long, so this quantum advantage
is not truly advantageous. Still, the QFT can be useful as a tool
in other subroutines.

2. Quantum phase estimation

Given an input state, |ψ〉, we want to determine the as-
sociated eigenvalue of the form exp(i2πϕ) for some real ϕ

denoting a phase. For this algorithm, we must first have the
initial state, |ψ〉, and a number of auxiliary qubits at least
equal to the number of digits that the phase must be accurate
to.

The strategy will be to generate, from an initial wavefunc-
tion ψ , the binary digits of the phase of ϕ—as defined in
Appendix D 1—and then perform an inverse QFT to obtain
the phase on an auxiliary register.

Let a gate U [= R1 from Eq. (D10)] be one such that
when applied to ψ , and controlled on one of the auxiliary
qubits, it produces a phase that is the jth value of the binary
representation,

U2 j
H |0〉 j |ψ〉 = 1√

2

(|0〉 + ei2π2t− jϕ|1〉) j |ψ〉, (D11)

where |0〉 j is the jth qubit and t is the total number of qubits
that this operator will be applied to.

The gate U is applied as in Eq. (D11) to a register of
auxiliary qubits and to ψ as in Fig. 3. The resulting state is
then

1

2t/2

t⊗
j=1

(|0〉 + e2π i2t− jϕ|1〉) = 1

2t/2

2t −1∑
y=0

ei2πϕy|y〉, (D12)

FIG. 3. Circuit diagram of the quantum phase estimation algo-
rithm. The input is an auxiliary register and the initial wavefunction.
The output is the phase corresponding to the eigenvalue and the
original waevfunction. Essentially, one obtains the associated energy
for an input wavefunction.

where the same conversion to and from a binary representation
in Appendix D 1 is used. Once an inverse Fourier transform is
applied on the last step, we obtain |ϕ〉 and have then repre-
sented the phase on a set of qubits.

In order to construct the unitary operator U , we simply
must obtain the representation of the exponentiated Hamil-
tonian as exp(−iHt ) [11]. The energy of the wavefunction
(ϕ related to E ) is then related to the time applied and may
involve other predetermined constants [11]

In order to apply the exponentiated Hamiltonian, one op-
tion is to use the Trotter-Suzuki decomposition [221] to
decompose the exponential into a product of exponentials with
fewer terms [24].

By expanding the number of qubits used in the auxiliary
register, we can increase the accuracy of the final result. We
will defer detailed analysis of this point to Ref. [1], but it is
worth noting that some error in this algorithm can be reduced
with more resources. The total error can be reduced arbitrarily
to 1 − η for some small number η.

Note that improvements can be applied to the algorithm to
generate more methods of QPE [222]. A recent improvement
known as qubitization can bring down the gate count for the
determining the phase. We will defer to the discussion in
Ref. [65].

3. Quantum gradient algorithm

Given an oracle for a function f , its gradients can be com-
puted in one query of the oracle instead of m + 1 classically
for m grid points [81].

We start with three multiqubit registers. One is used for the
computation of f . The other contains an equal superposition
over all states (representing the infinitesimal directions that
f can be shifted for an eventual gradient). The last receives
a QFT (on initial register set to 1 while the others are set to
zero). This final register will be used for a phase kickback.
The purpose of the phase kickback is to modify the phases
of the QFT. When the inverse QFT is applied, we obtain the
gradient similar to how the phase was obtained for the QPE.

The steps of this algorithm are shown in Fig. 4. The
Hadamard gate produces

H⊗N |0〉⊗N = 1√
2N

N⊗

=1

1∑
δ
=0

|δ
〉 ≡ 1√
2N

∑
δ

|δ〉, (D13)

where N is the number of qubits contained in the second
register.
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FIG. 4. Circuit diagram of the quantum gradient algorithm. One
could write the function f with a control to a fourth register with
input c for the point that f is evaluated on.

When calling the oracle query as controlled on the equal
superposition in Eq. (D13), f is evaluated on all arguments δ


giving f (c + δ), having perturbed an initial coordinate by δ or
some similar function [82].

On the third register in Fig. 4, a QFT has been applied on
an initial value of 1, giving an output of

1

2Np/2

∑
w

ei2πw/2Np |w〉, (D14)

which is similar to Eq. (D3). The number of qubits in this
register, Np, are enough to allow a pending bitwise addition to
be carried out properly.

The state of the full quantum wavefunction is then

|ψ〉 = 1√
2N 2Np

∑
δ

∑
w

ei2πw/2Np |w〉| f (c + δ̃)〉|δ〉, (D15)

where

δ̃ = L(δ − N/2)/2N (D16)

and N is a vector of (2N , 2N , . . .) and provides the offset factor
to convert integers to real numbers. M and L are assigned
meaning in the following. The factor M scales the maximum
amount of ∇ f to keep this quantity expressed as an integer.
The parameter L is a neighborhood over which the derivative
is accurate to first order, for example in one dimension

∂x f ≈ f (x + L/2) − f (x − L/2)

L
(D17)

is the decomposition in one dimension.
The next step is to add (bitwise addition denoted by ⊕)

the first register to the third under the addition w → w ⊕
(2N 2Np f )/(ML) mod 2Np so that the register and phase are
shifted as

|ψ〉 = 1√
2N 2Np

∑
δ

∑
w

e
i2π

[
w+ 2N 2Np

ML f (c+δ̃)
]
/2Np

× |w〉| f (c + δ̃)〉|δ〉, (D18)

where this trick is often called a phase kickback. In a small
neighborhood, L, around the central point c of the oracle query
the vectors δ can be thought of as perturbations on this point.
Expanding the function according to a Taylor expansion gives∑

δ

ei2π 2N

ML [ f (c)+ L
2N (δ− N

2 )·∇ f ]| f (c + δ̃)〉|δ〉

= ei2π 2N

ML f (c)ei 2π
M

N
2 ·∇ f

∑
δ

ei 2π
M δ·∇ f | f (c + δ̃)〉|δ〉. (D19)

Recall that, by inspection from Eq. (D3), applying the
inverse Fourier transform will give

⊗
k

∣∣∣∣2N

M
(∇xk f )

∣∣∣
c

〉
. (D20)

So, given a continuous function f , we obtain a gradient ∇ f .
The representation on the qubits for both f and ∇ f is in the bi-
nary representation of their continuous values. Improvements
to this algorithm have been noted [82].

a. Functional derivatives with quantum gradient algorithms

The QGA can be used to evaluate the functional derivative,
Eq. (B6). The test field ϒ(x) can be provided by hand or by
Hadamard transformation with each resulting state giving the
same result. Evaluating the derivative as before on η produces
the functional derivative. This could be applied to a variety
of functionals, such as the density functional or the partition
function (although this last object would be very difficult to
compute before taking the functional derivative due again to
the curse of dimensionality) [223]. There are other ways to
get the functional derivative, such as with a chain rule if an
alternative form is required.

4. Real-time evolution

While it is possible in theory to implement a more ad-
vanced classical algorithm on the quantum computer, there
may be sizable overhead. It is generally accepted in the lit-
erature to use the real-time evolution (RTE) method which we
choose to introduce here [224].

The initial state of qubits can be initialized into a state
consisting of a single-particle Hamiltonian’s, H0, eigenstate.
This could be the Hartree-Fock solution for some number
of electrons, Ne [11]. The Hamiltonian is then given a time
dependence such that t = 0 is H0 and t = tmax. is the full
Hamiltonian,

H(t ) = H0 + λ(t )H1 + C (D21)

for some time-dependent function λ(t ) and interaction term
H1. By tuning the time parameter slowly enough, the new
ground state can be found. A constant C is added in antic-
ipation of the QPE and is simply taken into account when
converting the output phase to the energy [224].

The final state of the RTE must be a close approximation
to the true ground state for QPE to work properly [1,225].
In order to evolve the initial state to the ground state, the
error in the Trotter step must be no more than the allowed
accuracy for a computation [23]. For the case of molecular
systems, this is 1 mHa (although this can be even lower for
some applications). A variable number of steps is required to
fully evolve the initial wavefunction to the ground state, but
this may be on the order of a number of thousands and the
entire process can take months or much, much longer [24].

There are also other algorithms that could be
used [138,155–159], but these may have a large overhead.
Just as with phase estimation, we present the most widely
known algorithm here for ease of presentation. The RWMP
method of the main text can interchange subroutines for the
best algorithm.
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5. Quantum amplitude estimation (quantum counting)

A way to obtain useful quantities from a wavefunction
without measuring it is to use QAE [226] as described
by Ref. [5] (although we follow the state-preserving quan-
tum counting algorithm used in Ref. [58] and also note
Ref. [59,227]). One can envision the application of an oper-
ator Ô onto the wavefunction (e.g., ĉ†

i ĉ j onto |�〉) as being
represented in a superposition of the original function � and
all other states that are perpendicular, �⊥, as

Ô|�〉 = α0|�〉 + α⊥|�⊥〉. (D22)

We will simply assume some process exists to apply the
operator of interest is available. The goal is to estimate α0

which is the expectation value. A series of steps is required
to find this coefficient. The fraction of times that the fol-
lowing is successful will give α0. Before performing any of
the subsequent steps, we assume that the energy of � has
been obtained via phase estimation beforehand on a separate
register. In total, four registers are required: one for �, one for
the saved ground-state energy, one for the check energy, and
one for the pointer qubit.

One iteration of the full algorithm is the following:
(1) An operator is applied to �

(2) The energy of the resulting state is determined; the
energy is in a superposition over all states

(3) The newly found energy is compared to the saved
energy of the original wavefunction

(4) The difference is represented as a single bit (called a
pointer qubit)

(5) (Accept) The pointer qubit is measured. The algorithm
then branches: if the measurement of the single pointer qubit
gives a success, implying the energies match and the original
� was recovered, we repeat the steps starting from step 1
here after returning the state to the original configuration. A
separate counter is incremented by one each time this step is
reached.

(6) (Reject) If the pointer measurement results in a failure,
then the wavefunction found is not the original. We must re-
cover the original wavefunction by undoing the QPE, undoing
the operator applied (Ô†), applying the operator again, and
again finding the energy difference. We return to step 1.

More details and diagrams can be found in
Refs. [5,58,228]. Intuitively, we are counting the number of
times the starting wavefunction is recovered when applying
an operator. The ratio of accepted counts to the total number
of times the operator is applied is related to the coefficient
on the ground state, α0. While the description here involves a
measurement and therefore gives classical data, the algorithm
can be used as an oracle query for the QGA (as stated in
Ref. [58] at the cost of additional auxiliary qubits).

In order to see how the algorithm will converge when the
reject step is activated, we can analogize with the half-life of
radioactive isotopes to envision when the rejection procedure
must eventually recover the correct ground state. A detailed
analysis of the convergence of the rejection step shows the
number of steps required to find the original � is related
to 1/ε for some probability of failure, ε, and is found in
Refs. [5,58].
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