
PHYSICAL REVIEW RESEARCH 2, 043237 (2020)

Exploring the non-equilibrium fluctuation relation for quantum mechanical tunneling of electrons
across a modulating barrier
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We study the validity of the fluctuation relation for a non-equilibrium quantum mechanical system, viz.,
electrons quantum mechanically tunneling across a periodically modulating barrier. Experimentally this system
is realized by measuring the fluctuation in the tunneling current between an STM tip and a vibrating gold
film deposited on a piezo crystal. The long time series of tunneling signal shows large positive and negative
fluctuations. The analysis shows that over finite observation time intervals, the probability distribution of the
average rate of work done has a positive mean. About this mean, the distribution is broad and it is spread
over not only positive but also negative values. These positive and negative values correspond to work done
either on the electron by the external drive or work done by the electron against the drive, as it tunnels across
the modulating barrier, respectively. For different driving frequencies, we show that the probability distribution
satisfies the non-equilibrium fluctuation relation (NEFR). Thus, we prove that the NEFR is valid for a driven
quantum mechanical system. For this tunneling process, we determine the large deviation function (LDF), which
is related to NEFR. We see changes in the shape of the LDF as a function of the drive frequency, although NEFR
is valid at all these frequencies. Measuring dissipation associated with microscopic irreversible trajectories in
non-equilibrium quantum mechanical systems is a challenging task. Here we use NEFR also to obtain a measure
of the dissipation associated with the electron tunneling across the modulated barrier.
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I. INTRODUCTION

For systems in equilibrium, there is no net heat ex-
changed between the system and the environment. However,
for driven non-equilibrium (NEQ) steady-state systems, the
applied drive helps to overcome the energy lost from the
system as the dissipated energy flows to the surrounding
environment. However, unlike macroscopic systems, small-
sized driven systems show unusual features, due to their
high susceptibility to fluctuation effects which can irreversibly
modify the trajectories along which the system evolves. For
example, consider a small particle being driven through a
viscous medium. Within a finite time window, heat dissipated
from the driven system is transferred to the surrounding envi-
ronment (medium). However, occasionally, this particle can
also capture some heat from the environment [1,2], which
irreversibly modifies the trajectory of the small particle. Con-
sequently, for such systems, repeated measurements on an
NEQ system prepared with identical protocol over a finite
observation time window shows a probability distribution of
the heat exchanged between the system and the environment.
The heat exchanged can be both positive and negative, de-
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scribing the two-way flow leading to irreversible trajectories.
For describing the behavior of such NEQ systems, one defines
the average entropy production or consumption rate (sτ ), in a
time interval (τ ) as sτ = 1

τ
∫t+τ

t s(t ′)dt ′. The probability dis-
tribution of sτ , viz., P(sτ ), is spread over sτ values which are
both positive (entropy increasing events) as well as negative
(entropy consuming events). The P(sτ ), satisfies some useful
mathematical relations, viz., the non-equilibrium fluctuation
relations (NEFRs). The NEFR, seen in simulations by Evans
and Searles [3] and then proved by Gallavotti and Cohen
[4], is for non-equilibrium steady-state systems with time-
independent driving forces. Subsequently, Shragel and Chou
[5] derived a general form of NEFR for situations involving
time-dependent driving forces to account for forward ( f ) and
reverse (r) paths of the system. This general form of NEFRs
is

Lt
τ→∞

P f (+sτ )

Pr (−sτ )
= eτ sτ . (1)

Equation (1) states that within a duration τ , the probabil-
ity of the positive time-averaged entropy production rate for
the forward path [P f (+sτ ) ] is exponentially larger than the
probability of entropy consumption rate for the reverse path
[Pr (−sτ ) ]. Typically, for macroscopic systems P f (+sτ ) dom-
inates. However, in different NEQ situations, like for driven
small-sized systems, the Pr (−sτ ) is also significant. For a
system with symmetric forward and reverse drive, the f and r
superscripts in Eq. (1) are dropped.

The Gallavotti-Cohen non-equilibrium fluctuation relation
(NEFR) has been verified for a diverse variety of driven
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systems, like sheared micellar gels in a jammed state [6], a
mechanically driven fluidized medium of inelastic beads [7],
dragging of a Brownian particle using an optical trap [8,9],
electrical circuits [10], RNA stretching, Rayleigh-Bernard
convection [11,12], pressure fluctuations on the surface kept
in a turbulent flow [13], vertically shaken granular beads [7],
Lagrangian turbulence on a free surface [14], liquid crys-
tal electro-convection [15], vortices in superconductors [16],
driven levitating nanoparticles [17], etc. While these verifi-
cations of NEFR have been demonstrated predominantly for
classical driven systems, in our work, we explore the validity
of NEFR for a periodically driven NEQ quantum mechanical
system. Specifically, we are interested in studying NEFR in
the context of an electron tunneling across a modulating po-
tential barrier. While quantum mechanical tunneling across a
static barrier is a popular undergraduate textbook topic [18],
the study of tunneling across a periodically modulated bar-
rier is a complex problem. In such systems, the tunneling
across the modulated barrier itself affects the evolution of
the tunneling wave [19–22]. Such systems involve the ex-
change of energy between the system and the barrier and such
open quantum systems cannot be studied using Schrodinger’s
equations [23–26]. In fact, in recent times, new areas have
emerged in this field, like dissipative phase transition in open
systems [27–32]. While dissipation is important, experimen-
tally measuring it for a NEQ quantum mechanical system is a
challenging task.

Recently we have shown [33] that tunneling between the
scanning tunneling microscope (STM) tip and a conducting
surface (Au film) on a piezo electric crystal vibrating at a
frequency ω, produces a modulation in the tunneling current
at a frequency ω. The modulation in the tunneling current
is because of the modulation in the tunneling barrier at fre-
quency ω. In the present work, we report observing large
positive and negative fluctuations in the long time series of
the tunneling signal. Over finite observation time intervals, the
probability distribution of the average rate of work done has a
positive mean. About this mean, the distribution is broad and
spreads over significantly large values which are positive as
well as a negative value. The positive and negative fluctuations
are related to the work done either on the electron by the
external drive or by the tunneling electron against the drive,
respectively. We show that the probability distribution of this
work satisfies the NEFR for a driven quantum mechanical tun-
neling system. While most earlier studies have been for driven
classical systems, this demonstration of validity of NEFR in
the quantum regime uses a quantum mechanical tunneling
system. We also determine the large deviation function (LDF),
which is associated with the probability of observing large
fluctuation events in a non-equilibrium system and is closely
related to NEFRs. We also use the NEFR to obtain a measure
of the dissipation for the electron tunneling across a barrier,
which is modulated at different frequencies.

II. EXPERIMENTAL DETAILS

We use a Quazar Technologies room-temperature STM
(NanoRev. 4.0). In Fig. 1(a), we show the atomic arrangement
in a highly ordered pyrolytic graphite (HOPG) sample imaged
using this STM. We placed below the STM tip a conducting

gold film deposited on top of a vibrating piezoelectric crystal
which has a diameter of ∼1.4 cm and thickness of ∼0.33 mm.
The piezo is stuck to a glass substrate (1 cm × 2 cm) which is
then stuck to the gold-coated metallic stub of the STM with a
double-sided adhesive tape [see Fig. 1(a)]. The STM circuit is
completed by shorting the top conducting surface of the piezo-
electric crystal with the gold-coated STM metallic stub. For
our STM tip, we use an electrochemically etched Pt-Ir alloy
wire and maintain a constant dc bias Vb = −1.5 V between the
tip and the gold film on top of the vibrating piezo surface. The
STM in our experiment is operated in constant current mode.
The tunneling current modulations can be measured from the
voltage drop across a 1-G� resistor (VT = ITC × 109 �) using
a DSO (digital storage oscilloscope). In our measurement, the
time series of the feedback signal [VFB(t )] from the STM is
measured using a DSO (Yokagawa DL 9000 series) with a
sampling rate of 5 Giga-samples per second. In order to avoid
any ac electrical coupling between the bottom surface of the
piezo (an oscillating voltage is applied to the bottom surface to
vibrate the piezo) with the piezo’s top surface, the top surface
of the piezo crystal [Fig. 1(a)] is grounded through a 10-μF
polar capacitor.

Using this setup under identical ambient conditions, we
measure the time series of the tunneling currents between the
STM tip and the vibrating gold film on the surface of a piezo
crystal which is vibrating with frequency f . The piezo crystal
is vibrated with a sinusoidal ac voltage with a peak to peak
amplitude of 30 V and a frequency f. The tunneling current
has an exponential dependence on the tip to surface distance.
Hence the periodically changing tunneling spacing between
the STM tip and the vibrating Au surface [see schematic in
Fig. 1(b)] produces modulation in the tunneling current. The
modulation in the tunneling current (equivalently in the STM
feedback VFB signal) is at the same frequency with which the
piezo is vibrated, viz., at a few 100’s kHz. These periodic
variations of the tunneling current at the frequency f with
which the piezo crystal is vibrated has been shown before
in Ref. [33]. Thus the VFB signal enters a sensitive detectable
regime which is well above the noise floor of the STM elec-
tronics. Here we begin to sensitively detect the intermittent
large fluctuations in the tunneling signal.

In the constant current mode of STM operation, we mea-
sure the long time series of the STM feedback signal (VFB).
The VFB is directly proportional to the tunneling signal (VT ),
(see Appendix A), which shows the linear relationship be-
tween the measured VFB and VT ). The time series of the
feedback signal [VFB(t)] was captured for different f of the
vibrating piezo crystal, ranging from 100 to 1000 kHz. The
frequency response of our STM circuit shows significant at-
tenuation only beyond 10 MHz [see the frequency response
of our STM in Fig. 5(c) of Ref. [33]]. Initially, before modu-
lating the piezo surface, the mean value of VFB is determined.
This means the VFB value is proportional to the average value
of the tunneling current established between the tip and the
non-vibrating conducting gold film surface. In all subsequent
figures, this mean VFB value is subtracted from VFB(t). Fig-
ures 1(c), 2(a), 2(d), and 2(g) show the long time series of
VFB(t) data captured (for 500 s) for different f . In Fig. 1(c)
the green data points show the fluctuations in VFB(t) when
the piezo crystal is vibrated at 500 kHz. The red data points
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FIG. 1. (a) Atomic resolution image of a HOPG surface captured with our STM, schematic of the STM circuit, and the front and backside
of the piezoelectric crystal used. The abbreviations used in the schematic are GE: gold electrodes; CE: STM control electronics; DSO: digital
storage oscilloscope; W: STM piezo walker; T: STM tip; PC: piezo crystal below tip; I: insulating layer; SG: function signal generator; Gstb:
gold coated stub; VFB: feedback signal of the STM; VT: tunneling voltage signal; Vb: tip to sample bias voltage; Vs: voltage signal from signal
generator. (b) Schematic of the piezo vibrating beneath the STM tip. (c) The electronic noise of the STM (with the tunneling current on and
off) is compared with the fluctuations in the VFB when the piezo crystal is vibrating at 500 kHz. It shows that electronic noise is one order of
magnitude smaller than the feedback signal when the piezo crystal is vibrating. (d) The autocorrelation function for the feedback voltage at
different frequencies of the vibrating piezo. Inset shows the 1

f noise of the 500-kHz signal [shown in Fig. 1(c) green points] in log-log scale.

FIG. 2. (a) Time series of the feedback voltages for a frequency of 500 kHz of the vibrating piezo. (b) The probability distribution functions
(PDFs) of the time series in (a). (c) The R vs Wτ for 500-kHz frequency. (d) Time series of the feedback voltages for a frequency of 700 kHz
of the vibrating piezo. (e) The probability density functions of the time series in (d). (f) The R vs Wτ for 700-kHz frequency. (g) Time series
of the feedback voltages for a frequency of 1000 kHz of the vibrating piezo. (h) The probability density functions of the time series in (g). (i)
The R vs Wτ for 1000-kHz frequency.

043237-3



SIVANANDA, ROY, MAHATO, AND BANERJEE PHYSICAL REVIEW RESEARCH 2, 043237 (2020)

show the fluctuations in VFB(t) when the tip is positioned over
a non-vibrating substrate. The black data points in Fig. 1(c)
show the bare STM electronics noise floor voltage fluctuations
when no tunneling current exists between the STM tip and
the surface (viz., when the tip is retracted to a position far
away from the gold surface). A comparison of the above
signals shows that although the fluctuations in the VFB(t) from
a non-vibrating substrate (red data points) are above the STM
electronics noise floor level (black points), the fluctuations in
the red data points are an order of magnitude lower than that
of the green data points. Also, for the non-vibrating case (red
data points) the statistics of the fluctuations above the noise
floor are far lower than that for the vibrating surface case
(green data points).

Figure 1(d), main panel, shows the autocorrelation function
[C(t)] of VFB(t) data [shown in Figs. 2(a), 2(d), and 2(g)] cap-
tured for f = 500, 700, and 1000 kHz. The C(t) calculated
using, C(t ) =〈VFB (t+t ′ )VFB(t )〉

V 2
0

where V0 is the mean of VFB(t) and

〈...〉 = 1
T ∫ T

0 ...dt ′ shows that the fluctuations in VFB(t) signals
are uncorrelated beyond tens of milliseconds. We would like
to emphasize that the large fluctuations observed in the time
series of the feedback signal [Fig. 1(c)] is not an artefact of
a measurement technique. To show this consider the follow-
ing: Had the observed fluctuations been an artefact of the
measurement, then we should observe a strong correlation
between the fluctuations with f . However quite contrary to
this expectation, Fig. 1(d) shows, for f varying from 500 to
1000 kHz, C(t ) → 0 by few tens of milliseconds, uniformly.
Hence the fluctuations are intrinsic. Equation (1) is valid for
this choice of time intervals τ , over which the fluctuations
are uncorrelated. For our subsequent NEFR analysis, the C(t)
analysis limits our choice of τ to be larger than a few tens
of milliseconds. The inset of Fig. 1(d) shows the behavior
of the Fourier transform of |C(t )|2 for the 500-kHz data
[power spectrum S( f )] as a function of frequency on a log-log
scale. The inset of Fig. 1(d) shows that the power spectrum of
the noise has a non-shot-noise type behavior, viz. S( f ) ∝ 1

f α

where α = 0.7 ± 0.1 [recall that the Flicker noise is charac-
terized by S( f ) ∝ 1

f ]. The absence of the shot-noise feature
suggests that the large fluctuations in tunneling signal are
not related to the discreet nature of the tunneling process,
viz., discrete electronic charges tunneling across the barrier.
Clearly, the long time series picks up large fluctuation events
for electrons tunneling across the modulating tunneling gap.

We would like to mention here that as we are using a
symmetric, sinusoidal drive, the forward and reverse drives
are symmetric, and hence we drop the superscripts f and r
in Eq. (1). In Fig. 2(a) we show the VFB(t) signal for f =
500 kHz. In Fig. 2(b) we analyze the time series in Fig. 2(a) in
terms of P(Wτ ). Here the P(Wτ ) is the probability of observing
an event of magnitude Wτ within an observation time interval
of τ . For our analysis, VFB(t) is broken up into a series of time
bins each of width τ where we calculate Wτ as per Eq. (2),

Wτ= sτ

〈s(t )〉=
1
τ

∫ t+τ
t IT (t ′)Vbdt ′

Vb〈IT 〉 . (2)

Here IT is the tunneling current, and Vb is the constant dc STM
bias voltage applied between the STM tip and base. Note that
IT ∝ VT where VT is the tunneling voltage and VFB ∝ VT (see

Appendix A). Therefore,

Wτ= sτ

〈s(t )〉=
1
τ

∫ t+τ
t VFB(t ′) Vbdt ′

Vb〈VFB〉 , (3)

where 〈VFB〉 is the average value of the VFB(t) signal within
an observation time interval τ .Wτ is the average work done
within the time interval τ , for electrons tunneling between
the STM tip and the vibrating Au film on the piezo crystal’s
surface.

Often for experimental studies, the non-equilibrium fluc-
tuation relation (NEFR) of Eq. (1) is restated in terms of Wτ

[6,7] as

R = 1

τ
ln

(
P(+Wτ )

P(−Wτ )

)
= sτ = Wτ 〈s(t )〉. (4)

Here, s(t ) = IV/kBTeff [6,7,15], where I(t)V is the instanta-
neous power flux into the system, and Teff is an effective
temperature scale for the NEQ system, and it is not related
to the equilibrium temperature of the system. Note that for
proving the validity of the NEFR for our quantum mechanical
tunneling situation, as per Eq. (4), we should demonstrate a
linear relationship between R versus Wτ with a unique slope
[= 〈s(t )〉] whose value should not depend on the choice of τ .
The Teff is calculated from 〈s(t )〉, where

〈s(t )〉 = 〈IV 〉/kBTeff . (5)

Here I ∼ 10−12 A, V = 1.5 V, and the slope of the R versus
Wτ curve is calculated from Fig. 2.

From the long time series of the VFB(t) signal in Fig. 2(a)
we determine Wτ (for different choices of τ ) using Eq. (3).
Note that the τ values are larger than the time interval of
a few tens of milliseconds beyond which C(t ) → 0 [recall
Fig. 1(d)], as discussed earlier. We then determine the proba-
bility distribution of Wτ values, viz., P(Wτ ). The P(Wτ ) versus
Wτ curve in Fig. 2(b) for each τ has a Gaussian nature (the
solid line is the Gaussian envelope) for small Wτ (�4), but the
distribution deviates from the Gaussian curve for larger Wτ .
The distribution has a peak near a 〈Wτ 〉 value of ∼1.1. An
important feature of the P(Wτ ) distribution is that although it
has a positive mean, it shows that along with positive work
events there also exists a significant probability of negative
work events (i.e., −Wτ events). While the positive Wτ events
represent the usual entropy increasing events, the significant
probability of the occurrence of the unusual negative −Wτ

events represent tunneling electron trajectories which do work
against the bias drive. These negative events are the character-
istic signatures of the non-equilibrium irreversible trajectories
discussed earlier. All of the above features, which are seen in
Fig. 2(b) for f = 500 kHz excitation, are also seen at f = 700
and 1000 kHz as well [see Figs. 2(e) and 2(h)].

Figure 2(c) shows a plot of R versus Wτ for different
choices of τ , for the 500-kHz data. We see a linear relation
between R versus Wτ for 0 < Wτ � 4. We also see that for
different choices of τ , all the (R versus Wτ ) data scale onto one
single curve which doesn’t depend on τ , and this is consistent
with the NEFR relation in Eq. (4). To justify the scaling of the
R versus Wτ data, in Appendix B we have shown the unscaled
behavior if one does not plot R versus Wτ . In Fig. 2(c) the
best-fit curve through the data points (within the error bars),
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FIG. 3. F (Wτ ) curves for different τ for (a) 500 kHz, (b) 700 kHz, and (c) 1000 kHz of the vibrating piezo. Solid (black) line represents
the data fitted with a form a0(Wτ − 〈Wτ 〉)2, where the constant a0 is 0.033 (500 KHz), 0.020 (700 kHz), and 〈Wτ 〉 = 1.1 for 500 kHz and
700 kHz. At 1000 kHz the F (Wτ ) cannot be fitted to a quadratic form.

is a straight line with a unique slope [this is shown as the
solid green line in Fig. 2(c)]. A similar validation of NEFR
as per Eq. (4), for f = 700 and 1000 kHz is seen in Figs. 2(f)
and 2(i). From Figs. 2(c), 2(f), and 2(i) we see that for Wτ

values greater than 4 to 5, the linear relation between R and
Wτ no longer holds, and we also observe the breakdown of
the scaling feature of the data. Note that past experiments
on classical driven systems have also validated the NEFR
[Eq. (4)] within a limited range of Wτ [6,7,15–17]. The above
is an experimental validation of NEFR for a non-equilibrium
process involving quantum mechanical tunneling across a pe-
riodically modulated barrier. The validity of NEFR indirectly
shows that the tunneling trajectories across the modulating
barrier are irreversible.

For these fluctuations in work, we try and determine
the large deviation function (LDF), which is a measure
of the probability of observing large fluctuation events, where
the value of an observable is much greater than the mean
value of the observable [34,35]. The NEFR is closely related
to the LDF, viz., it is related to the symmetry property of the
LDF [34,35]. To analyze the shapes of the P(Wτ ) curves in
Figs. 2(b), 2(e), and 2(h) we plot the LDF function F (Wτ )
[6,16,34,35] which is determined using

F (Wτ ) ∝ − ln [P(Wτ )]. (6)

If P(Wτ ) has a Gaussian form then, as per Eq. (6),
F (Wτ ) ∝ (Wτ − 〈Wτ 〉)2 viz., F (Wτ ) has a quadratic depen-
dence on Wτ . Using the P(Wτ ) data of Fig. 2(b) and Eq. (6)
we determine F (Wτ ) by taking the natural logarithm of P(Wτ )
[see Fig. 3(a)]. The solid line in Fig. 3(a) shows that F (Wτ )
behaves as (Wτ − 〈Wτ 〉)2 for |Wτ | � 5. Note that for large
Wτ (> ±5) the F (Wτ ) has a non-quadratic nature. A similar
feature is also seen for 700-kHz data in Fig 3(b). At 1000 kHz
[(Fig. 3(c)] we see that the F (Wτ ) is non-quadratic for all Wτ ,
however, R versus Wτ still obeys NEFR quite well [see Eq. (4)
and Fig. 2(i)]. Thus, it seems that the quadratic symmetry of
LDF isn’t a prerequisite for validation of NEFR.

From the slope of the linear R versus Wτ curve, using
Eq. (5) we determine 1

Teff
. The Teff associated with the non-

equilibrium tunneling trajectories between the STM tip and
the vibrating surface turns out to be very high, Teff ∼ 1011 K.
It may be noted that Teff values determined for other NEQ
systems have also been found to be quite high, ∼106–1016 K

[6,7,15,16]. Instead of using the slope of R versus Wτ curve
as a measure of an effective temperature, it is convenient to
describe it as an effective energy scale. We interpret the slope
as a measure of the inverse of average dissipation (δ−1) as-
sociated with our driven quantum tunneling system. In Fig. 4
we plot the slope (∝δ−1) versus f . Beyond f = 400 kHz, the
dissipation associated with the quantum tunneling trajectory
increases with the increasing barrier modulation frequency.
The dissipation we have obtained using NEFR is a sensitive
function of the modulation frequency. In Appendix C, we
show I-V curves measured of the Au film vibrating at different
frequencies. The similarity of the I-V curves shows that there
are no changes in the density of states of the film due to
the vibration. Hence the results we have obtained cannot be
ascribed to any changes in the density of states of the film
below the STM due to its vibration.

Historically the phenomenon of tunneling across a period-
ically modulated barrier came into focus with experiments
showing the ionization of a neutral atom due to tunneling
when placed in an alternating electric field [18,36]. It was
found that the tunnel ionization probability depends on both
the frequency and the amplitude of the drive. Within the

FIG. 4. Variation of slope (∝ 1
Teff

) with the frequency of the
vibrating piezo. The solid line is a guide to the eye.
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FIG. 5. Variation of the feedback signal with the tunneling volt-
age in the STM.

wave picture, it has been suggested that for the periodically
modulated barrier, a part of the wave function tunnels across
the barrier while a part of it remains back within the barrier.
Thus, the part which is left back evolves within the modulated
barrier while a part of it tunnels across the modulated barrier
[22]. Typically for a barrier modulating at a frequency f ,
the solutions for the reflected and transmitted waves not only
have the usual stationary wave solution, but also have waves
which are reflected and transmitted at frequency f [36–41].
To understand the positive and negative fluctuations in the
tunneling event, we propose a scenario. Tunneling creates
in its wake trapped electron waves within the barrier, with
quantized energy levels [36]. Interaction of an impinging tun-
neling electron with the modulating barrier with states inside
it can cause resonant excitations between levels within the
barrier. Often this results in some loss of energy (dissipa-
tion), which is given up to the barrier as the electron tunnels
through it, resulting in the positive entropy event. However,
occasionally, due to the electron being temporarily trapped
within the barrier, one would occasionally get reverse events.
An incoming electron would temporarily see a higher barrier
potential due to the added repulsive Coulombic potential due
to the electrons temporarily inside the barrier. This temporary
higher effective barrier height reduces the tunneling proba-

bility. Furthermore, at the barrier, the incoming electron may
also pick up energy from the states already present inside
the barrier. Consequently, instead of tunneling through, the
incoming electron may occasionally reflect back by picking
up some energy from the barrier. This enables it to do work
by moving opposite to the bias voltage direction, resulting in
negative entropy events. For such a NEQ quantum mechanical
tunneling electron system where energy is exchanged between
the tunneling electron and the modulating barrier, the work
fluctuations obey the NEFR.

In conclusion, unlike most earlier studies done for NEQ
classical systems, here we show that the NEFR is valid even in
the quantum regime, viz., for a dissipating quantum tunneling
trajectory across a modulating barrier. The NEFR provides
a useful way to measure and quantify dissipation associated
with non-equilibrium dissipating trajectories in quantum me-
chanics. More future experimental and theoretical studies are
needed to explore the complex behavior of NEQ quantum
systems.
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APPENDIX A: RELATION BETWEEN VFB AND VT

Figure 5 shows that the feedback voltage has a linear re-
lationship with the tunneling voltage, which shows that the
VFB is proportional to the tunneling signal (VFB ∝ VT ). From
this we can see that the VFB is also a faithful representation of
the VT .

APPENDIX B: NON-SCALING FEATURE OF R VERSUS Wτ

DETERMINED FOR DIFFERENT CHOICES OF τ

Recall Eq. (4) in the text which we mention below:

R = 1

τ
ln

(
P(+Wτ )

P(−Wτ )

)
= sτ = Wτ 〈s(t )〉. (B1)

In Fig. 6(a) for 500-kHz time series data, we plot ln( P(+Wτ )
P(−Wτ ) )

versus Wτ for two very different values of choice of τ . The

FIG. 6. (a) Unscaled data for τ = 2 and 5 sec. (b) Scaled data for τ = 2, 3.6, 4, 4.2, and 5.2 sec for piezo vibrating frequency of 500 kHz.
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figure clearly shows that the data for 2 and 5.2 sec do not over-
lap. Figure 6(b) shows that the analysis becomes independent
of the choice of τ and all the data scale onto a single curve by
plotting R versus Wτ [which follows from Eq. (B1)]. We see
that within 0 < Wτ < 4 , the best-fit curve through the scaled
data in the plot in Fig. 6(b) is a straight line with a unique
slope.

APPENDIX C: I-V CURVES

We show in Fig. 7 that the local I-V of the Au film (on top
of the piezo) measured with the STM for different vibrating
frequencies are identical, suggesting that the states of the Au
film into which the electrons are tunneling into are identical
at different frequencies. Hence, any change in the density of
electronic states of the film is not responsible for the observed
features in the VFB(t).

FIG. 7. Comparison of the I-V curves on a piezo vibrating at
different frequencies.
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