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Minimally entangled typical thermal states algorithm with Trotter gates
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We improve the efficiency of the minimally entangled typical thermal states (METTS) algorithm without
breaking the Abelian symmetries. By adding the operation of Trotter gates that respects the Abelian symmetries
to the METTS algorithm, we find that a correlation between successive states in Markov-chain Monte Carlo
sampling decreases by orders of magnitude. We measure the performance of the improved METTS algorithm
through the simulations of the canonical ensemble of the Bose-Hubbard model and confirm that the reduction of
the autocorrelation leads to the reduction of computation time. We show that our protocol using the operation of
Trotter gates is effective also for the simulations of the grand canonical ensemble.
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I. INTRODUCTION

One-dimensional (1D) systems are exceptional in the sense
that it is tractable with classical computers to simulate their
quantum many-body physics. The entanglement of a pure
state in a quantum system is often quantified using the en-
tanglement entropy of a subsystem that consists of a left (or
right) half of the system. It is widely known that in 1D the
entanglement of a ground state is not extensive, i.e., as a
function of the system size it is constant in a system when
the energy of the lowest excitation is gapped or increases
only logarithmically in a gapless system [1–3]. Thanks to the
low entanglement, a ground state of a generic 1D quantum
system can be represented efficiently by matrix product states
(MPS) [4] and can be numerically obtained via some smart
optimization algorithms, including the density matrix renor-
malization group [5,6] and imaginary-time evolution using
the time-evolving block decimation (TEBD) [7–10]. More-
over, the MPS representation has been applied for analyzing
real-time evolution of a pure state [7–12] and a system at
finite temperature described by a mixed state [13–18]. In
general, however, since highly excited states with extensive
entanglement entropies are involved in such MPS simulations
of real-time dynamics and finite-temperature systems, one
needs some ways to circumvent the infeasibility of directly
representing such states in terms of MPS.

For the MPS simulations of finite temperature systems,
there exist two major approaches: the purification method in
an enlarged Hilbert space [14,15] or the sampling method
known as the minimally entangled typical thermal states
(METTS) algorithm [16,17]. In the former method, a mixed
state is represented as a pure state in the enlarged Hilbert
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space. Because of the enlargement, the computational cost
of the purification method increases polynomially but quickly
as the matrix dimensions of MPS, namely bond dimensions,
increase. Since the bond dimensions increase for decreasing
the temperature, the approach is efficient at high temperatures.
Besides, a variant specialized for low-temperature systems has
also been proposed [19]. At intermediate temperatures, the pu-
rification method often requires a tremendous computational
cost.

In the METTS algorithm, a mixed state is represented via a
Markov-chain Monte Carlo (MCMC) sampling of pure states
in the original Hilbert space, and one does not have to treat the
enlarged Hilbert space. Moreover, the most computationally
expensive operation is the imaginary-time evolution of MPS
in the original Hilbert space, and thus the METTS algorithm
does not suffer from a tremendous cost in systems where the
ground state algorithm by imaginary-time evolution works
well. Thanks to these advantages, the METTS algorithm is
expected to be able to access more variety of systems and
a broader temperature range compared to the purification
method. Nonetheless, thus far, there have been more appli-
cations of the purification method [19–31] than those of the
METTS algorithm [30,32–36]. Moreover, it has been reported
that the METTS algorithm is less efficient than the purification
method because of statistical errors induced by the sampling
[37].

One of the major roots of the inefficiency is the autocor-
relation of successive samples which reduces the effective
number of samples [16,17,37]. There exists a remedy to re-
duce the autocorrelation in the METTS algorithm [16,17].
However, this remedy changes the total magnetization or
particle numbers during simulations, i.e., it disregards the
Abelian symmetries. In a viewpoint of statistical mechanics,
the unfixed quantum numbers only mean that statistical en-
semble is the ground canonical ensemble and do not bring a
significant problem as long as a system size is large enough.
On the contrary, the disregard of the Abelian symmetries
dramatically spoils the numerical efficiency [4,35].

In our previous work [36], in order to simulate a
finite-temperature dynamics of the Kondo model [38] in a
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quasiexact manner, we have improved the METTS algorithm
by introducing a unitary operation represented as a series of
Trotter gates. This approach is a variant of the symmetric
METTS algorithm developed by Binder and Barthel [39] and
is more flexible thanks to the controllability of the time step
and the Hamiltonian constructing the Trotter gates. Our ap-
proach has allowed us to access the logarithmic temperature
dependence of the transport, which is a characteristic feature
of the Kondo effects [36,38].

In this paper, we present more extensive and quantita-
tive analyses of the improved METTS algorithm. Since the
METTS approach can be applied to many kinds of 1D quan-
tum many-body systems, it is important to investigate how
and why the performance of the METTS algorithm is im-
proved. We discuss how to utilize the flexibility of the unitary
operation composed by Trotter gates in order to remove the
autocorrelation problem in systems with large gaps such as a
strongly interacting Bose-Hubbard model. We also find that
our protocol can be combined with the hybrid approach of
the purification method and the METTS algorithm, which has
been developed very recently [40,41]. Taking the 1D Bose-
Hubbard model as a specific example, we present benchmark
tests for the approaches developed in this work.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the METTS algorithm and introduce its
generalization including the basis transformation made by the
operation of Trotter gates. In Sec. III, we present performance
tests with the Bose-Hubbard model. In Sec. IV, we summarize
the results.

II. MINIMALLY ENTANGLED TYPICAL THERMAL
STATES ALGORITHM

A. Minimally entangled typical thermal states algorithm
and its autocorrelation problem

The objective of the METTS algorithm is to compute the
thermal expectation value of an operator Ô at inverse temper-
ature β, which is given by

〈Ô〉 = 1

Z
Tr[e−βĤ Ô]

=
∑

i

〈i|e−βĤ |i〉
Z

〈i|e− β

2 Ĥ Ôe− β

2 Ĥ |i〉
〈i|e−βĤ |i〉 ,

(1)

where the summation takes over an orthonormal basis |i〉, Z =∑
i 〈i|e−βĤ |i〉, and Ĥ is the Hamiltonian of the system. Since

the number of |i〉 increases exponentially with system size, it
is impossible to perform the summation over all |i〉 in large
systems. Hence, one has to introduce a sampling method.

The METTS algorithm efficiently performs this sampling
utilizing the fact that MPS,

|ψ〉 =
∑

σ

Aσ1
1 Aσ2

2 . . . AσL
L |σ〉 , (2)

can efficiently represent low-entangled states [2,4]. Here, σm

is the index of the local Hilbert space at site m, L is the number
of lattice sites, |σ〉 = |σ1, σ2, . . . , σL〉, and

∑
σ means the

summation over all possible configurations of σi. The matrix
dimensions of matrices Aσm

m are called bond dimensions. In the
METTS algorithm, one takes classical product states (CPS) as

the orthonormal basis [16,17]: |i〉 = |σ〉. Each CPS state can
be represented by MPS with bond dimension χ = 1.

Basic procedure of the METTS algorithm is as follows.
Starting from a certain initial CPS |i〉 = |σ〉, one calculates
a state

|φ(i)〉 = e− β

2 Ĥ |i〉√
〈i|e−βĤ |i〉

(3)

by imaginary-time evolution and the expectation value
〈φ(i)|Ô|φ(i)〉. The state |φ(i)〉 is subsequently projected into
a new CPS | j〉 with the probability

pi→ j = |〈 j|φ(i)〉|2 (4)

and one repeats the imaginary-time evolution and the observa-
tion. This is a MCMC algorithm and its stationary distribution
�i is given as the left eigenvector with eigenvalue 1 of a
transition matrix whose elements are defined by pi, j = pi→ j

[42]. One can easily confirm that the canonical ensemble

�i = 〈i|e−βĤ |i〉
Z

, (5)

is the stationary distribution of the Markov chain generated by
the METTS algorithm as follows:

∑
i

�i pi, j =
∑

i

〈i|e−βĤ |i〉
Z

〈i|e− β

2 Ĥ | j〉〈 j|e− β

2 Ĥ |i〉
〈i|e−βĤ |i〉

= 1

Z

∑
i

〈 j|e− β

2 Ĥ |i〉〈i|e− β

2 Ĥ | j〉

= � j . (6)

The METTS algorithm efficiently simulates the thermody-
namic properties of spin-rotationally invariant spin systems
[16,17]. However, it has been reported that a strong correlation
of successive samples arises when the METTS algorithm is
applied to the Bose-Hubbard model with particle-number con-
servation [35]. The existence of such a severe autocorrelation
problem can be inferred from Eqs. (3) and (4) by taking a
small inverse temperature β. At a small β, |φ(i)〉 has large
overlap with |i〉 so that the probability for choosing |i〉 again
is very high. A severe autocorrelation problem also arises
when a CPS has large overlap with one of eigenstates of
Ĥ . In SU(2)-symmetric spin systems, these problems can be
eliminated by changing the spin axis of CPS, e.g., |φ(i)〉 is
projected into a CPS with X axis for odd steps and projected
into a CPS with Z axis for even steps [16,17]. Although a CPS
projected into X axis is a superposition of states with different
magnetization in Z axis, the CPS is in a symmetric sector of
magnetization in X axis and the Hamiltonian conserve the
magnetization in X axis. In other words, the Abelian sym-
metry can be utilized. If this procedure is straightforwardly
applied to particle systems, on the contrary, a resulting state is
a superposition of states with different numbers of particles
and there exists no Abelian symmetry that can be utilized
unlike SU(2)-symmetric spin systems. Hence, numerical sim-
ulations become very inefficient.
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B. Symmetric bases given by real-time evolution

In order to relax the autocorrelation problem of the METTS
algorithm with the Abelian symmetry respected, Binder and
Barthel have incorporated the use of different symmetric
bases for different Monte Carlo steps [39]. Here, “symmetric”
means that states in a symmetric basis lie within a certain sub-
space, in which the eigenvalue of an operator associated with
an Abelian symmetry is fixed. In this section, we generalize
their approach and introduce an easy way to obtain various
symmetric bases.

A symmetric basis |i〉g with respect to an operator Ĝ is an
eigenbasis of Ĝ with an eiganvalue g, i.e., Ĝ|i〉g = g|i〉g for any
i. Another symmetric basis |i′〉g with the same eigenvalue can
be obtained by a unitary transformation Û , i.e., |i′〉g = Û |i〉g.
One can easily confirm that the basis |i′〉g is also an eigenbasis
with the same eigenvalue as long as the unitary operator Û
commutes with the operator Ĝ:

Ĝ|i′〉g = ĜÛ |i〉g

= Û Ĝ|i〉g

= g|i′〉g. (7)

By representing a unitary operator as

Û = e−iτ Â (8)

with a real parameter τ and a hermitian operator Â, the con-
dition for the commutability of Û and Ĝ can be recast into
that of Â and Ĝ. In other words, real-time evolution via any
Hamiltonian commuting with Ĝ gives a new symmetric basis.
Changing the operator Â and the parameter τ , one can obtain
many symmetric bases. This variety of bases is one advantage
of our proposed symmetric bases given by real-time evolution.
Another advantage of our protocol for creating symmetric
bases is that it is easy to implement. More specifically, since
a time-evolution method such as the TEBD is required in the
METTS algorithm for obtaining a state |φ(i)〉 of Eq. (3), the
operation |i′〉g = e−iτ Â|i〉g can be implemented immediately.
Hereafter, we consider only symmetric bases of a certain
operator and drop the subscript g.

As a specific procedure for utilizing the creation protocol
of a symmetric basis to reduce the autocorrelation problem,
we project an imaginary-time evolved state into a CPS |i〉 for
even steps of the MCMC sampling and into a transformed
state |i′〉 = Û |i〉 for odd steps. This procedure does not change
the stationary distribution of the Markov chain as shown in
the followings. From Eq. (4), the transition probability from a
CPS |i〉 to a transformed state |k′〉 in odd steps is given as

qi→k =
∣∣〈k′|e− β

2 Ĥ |i〉∣∣2

〈i|e−βĤ |i〉

= 〈k|Û †e− β

2 Ĥ |i〉〈i|e− β

2 ĤÛ |k〉
〈i|e−βĤ |i〉 . (9)

Similarly, the transition probability from a transformed state
|k′〉 to a CPS | j〉 in even steps is given as

rk→ j =
∣∣〈 j|e− β

2 Ĥ |k′〉∣∣2

〈k′|e−βĤ |k′〉

= 〈 j|e− β

2 ĤÛ |k〉〈k|Û †e− β

2 Ĥ | j〉
〈k|Û †e−βĤÛ |k〉 . (10)

Considering the two steps as one step, the transition probabil-
ity from a CPS |i〉 to a CPS | j〉 is given as

pi→ j =
∑

k

qi→krk→ j . (11)

One can confirm that the canonical ensemble �i (5) is the
stationary distribution of the Markov chain with this transition
probability as follows:∑

i

�i pi, j = 1

Z

∑
i,k

〈k|Û †e− β

2 Ĥ |i〉〈i|e− β

2 ĤÛ |k〉rk→ j

= 1

Z

∑
k

〈 j|e− β

2 ĤÛ |k〉〈k|Û †e− β

2 Ĥ | j〉

= � j . (12)

On the other hand, the transition probability from a trans-
formed state |i′〉 to a transformed state | j′〉 is given as

p′
i→ j =

∑
k

ri→kqk→ j (13)

and one can confirm that the stationary distribution of the
Markov chain defined by this transition probability is also the
canonical ensemble in |i′〉 basis,

�′
i = 〈i|Û †e−βĤÛ |i〉

Z
. (14)

Thus the stationary distribution of a CPS |i〉 in odd steps is �i

and that of a transformed state |i′〉 in even steps is �′
i. It should

be noted that the thermal expectation values do not depend on
bases because of the similarity invariance of the trace. Hence,
samples in both odd and even steps can be used to estimate
the thermal expectation values.

If a state Û †e− β

2 Ĥ |i〉 is the superposition of many CPS with
similar weights, the above-mentioned procedure significantly
reduces the autocorrelation problems. This is because the
probability qi→k (9) has also similar values to many ks so
that a correlation of successive samples is small. However,
there is a trade-off. While more efficient reduction of the
autocorrelation requires Û †e− β

2 Ĥ |i〉 to consist of many CPS,
i.e., to be more entangled, manipulations of highly entangled
MPS are numerically expensive. Hence, a controller to adjust
the entanglement induced by Û is necessary and we introduce
the parameter τ for this purpose. In a typical situation, larger τ

makes the entanglement larger but the computation of a single
Monte Carlo step more costly.

As the operator Â, any choice might be effective as long as
an operator respects the Abelian symmetry. A straightforward
choice for Â is the Hamiltonian of the system Ĥ and this
choice is sufficient for most cases. However, in the case that
there are some CPS being overlapped largely with some of the
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eigenstates of Ĥ , this straightforward choice might be ineffec-
tive because τ is required to be rather large for creating a state
composed of many CPS. Examples include the Bose-Hubbard
model with integer filling and the strong on-site interaction,
and the strongly anisotropic Heisenberg model. In such cases,
one should choose another Hamiltonian like that of the free
bosons or the isotropic Heisenberg model.

Since the real-time evolution of MPS is a numerically
expensive tasks in general, how to implement the application
of an operator Û is also important for numerical efficiency. We
here emphasize that what is necessary for conducting our pro-
cedure is not real-time evolution via a certain Hamiltonian but
a unitary operation that makes the state optimally entangled.
Therefore the application of the Trotter decomposed operator

ÛT(τ ) = e−iτ Ĥeven e−iτ Ĥodd , (15)

is sufficient for this purpose. Here, we assume that Ĥeven and
Ĥodd consist of a sum of 2-site hermitian operators commuting
with one another such that we can accurately compute the
application of ÛT by using the TEBD method [7–10]. As
long as Ĥeven and Ĥodd respect the Abelian symmetry, the
application of ÛT gives a symmetric basis. The number of
CPS generated by a single application of the Trotter gates is
limited. Hence, we also use [ÛT(τ/n)]

n
with some integer n

in order to remove this limit. The parameter τ is optimally
chosen so that the truncation errors are not severe.

C. Compatibility with the hybrid approach

Recently, the hybrid approach of the purification and
the sampling has been proposed [40,41]. In this approach,
the local Hilbert space of some sites is enlarged likewise the
purification approach and the sampling is taken with respect to
other sites. In the hybrid approach, the consequent sampling
of a subsystem results in larger fluctuation of projected states
in comparison with that of the METTS algorithm, and thus
the autocorrelation problem relaxes. Furthermore, fluctuations
of the particle number of the Bose-Hubbard model and the
total magnetization of the Heisenberg model are automatically
introduced even though each state in the METTS sampling has
fixed values of the conserved quantities. In other words, one
can simulate the grand canonical ensemble with the Abelian
symmetries respected. A price to pay for the hybrid approach
is the enlargement of local Hilbert spaces in some sites. As
the number of sites with the enlarged Hilbert space increases,
the autocorrelation decreases but the computational cost for
obtaining one sample increases [40].

Combining the hybrid approach with the above-mentioned
procedure for reducing the autocorrelation problem, one can
reduce the price and enjoy the access to the grand canonical
ensemble. Specifically, we enlarge the local Hilbert space of
the two edge sites. By separating the enlarged space into
physical and ancilla sites, we can represent the L-site system
as a (L + 2)–site system shown in Fig. 1. With the alignment
in Fig. 1, one can apply any operators to physical sites in the
same way as in a system without ancilla sites. The ancilla sites
do not introduce unnecessary entanglement or long-range
interactions unlike other alignments. With only two en-
larged sites, the decrease of the autocorrelation by the hybrid

FIG. 1. The alignment of physical sites (blue circles) and ancilla
sites (orange squares) which does not require any additional changes
of operators for enlarging local Hilbert spaces of edge sites.

approach is limited [40] but one can decrease the autocorrela-
tion further by the applications of the Trotter gates.

D. Model for performance tests

For the performance tests of our approach, we use the
L-site 1D Bose-Hubbard model at unit filling,

Ĥ = −J
L−1∑
m=1

(b̂†
mb̂m+1 + H.c.) + U

2

L∑
m=1

n̂m(n̂m − 1). (16)

Here, J is the hopping integral, U is the on-site Hub-
bard interaction, b̂m (b̂†

m) annihilates (creates) a boson at
site m, and n̂m = b̂†

mb̂m. We set L to be even. When
we simulate the grand canonical ensemble by the hybrid
approach, we replace Ĥ to Ĥ − μ

∑
m b̂†

mb̂m with the chemical
potential μ. For Ĥeven and Ĥodd, we define

Ĥeven = − J
L/2−1∑
m=1

(b̂†
2mb̂2m+1 + H.c.)

+
L−1∑
m=2

U ′

4
n̂m(n̂m − 1) (17)

and

Ĥodd = − J
L/2∑
m=1

(b̂†
2m−1b̂2m + H.c.)

+
L∑

m=1

U ′

4
(1 + δm,1 + δm,L )n̂m(n̂m − 1), (18)

where δi, j is the Kronecker delta. The coefficients (1 + δm,1 +
δm,L ) are introduced to treat the on-site terms at the boundaries
which are present only in Ĥodd. We project an imaginary-time
evolved state into a CPS |i〉 for even steps of the MCMC
sampling and into a symmetric base [ÛT(τ/n)]

n|i〉 for odd
steps.

Finite-temperature properties of this model including
nonequilibrium dynamics are experimentally accessible with
ultracold gases. In a standpoint of numerical simulations, the
METTS algorithm is a good candidate to access the finite-
temperature dynamics of 1D quantum many-body systems
and to describe quantitatively such experiments. Nevertheless,
it has been reported that the METTS algorithm of the model
has a severe autocorrelation problem when U/J is large [35].
Relaxing the autocorrelation of this model is important for
accurate numerical description of quantum many-body dy-
namics in ultracold-gas systems.
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FIG. 2. The τ dependence of the upper bound for autocorrelation
time −1/ ln |λ2| in the 1D unit-filled Bose-Hubbard model with
U/J = 1.0 at inverse temperature βJ = 0.25. The system size L is
set to six. For the parameters of the unitary operator [ÛT(τ/n)]

n
,

we use (n,U ′) = (1,U ) (blue solid line), (n,U ′) = (2,U ) (orange
dashed line), and (n,U ′) = (2, 0) (green dashed-dotted line).

III. PERFORMANCE TESTS

A. Analysis with the second largest magnitude eigenvalue

For large lag t , the autocorrelation

C(t ) = 1

M − t

M−t∑
i

XiXi+t −
(

1

M

M∑
i

Xi

)2

(19)

is expected to decay exponentially [42] as

C(t ) ≈ C(0)e− t
τexp . (20)

Here, M is the number of samples and Xi is some observed
value of sample i. The exponential autocorrelation time τexp

is bounded by the slowest relaxation mode of the Markov
chain which is determined by the second largest magnitude
eigenvalue (SLME) of a transition matrix λ2 as [42]

τexp � − 1

ln |λ2| . (21)

Since one already knows that the transition probability of our
approach is given by Eq. (11), the SLME can be obtained
as long as the dimension of the Hilbert space is small for
numerical diagonalization.

Figure 2 represents the τ dependence of the upper bound
for autocorrelation time −1/ ln |λ2| in the 1D Bose-Hubbard
model of Eq. (16) with ν = 1, U/J = 1.0, and βJ = 0.25.
Here, ν denotes the filling factor and we set the system size
L to be six. The dimension of the Hilbert space is only 462
with this setting, and thus one can construct explicitly the
Hamiltonian and transition matrices. Since the temperature
of the system is high, −1/ ln |λ2| is accordingly large in the
simple METTS algorithm (τ = 0); around one hundred of
samples can be correlated, therefore one may get an indepen-
dent sample from several hundred samples. As τ increases,
−1/ ln |λ2| decreases almost exponentially and reaches order
of unity around τJ = 1.0. One can also see the limitation

FIG. 3. The τ dependence of the upper bound for autocorrelation
time −1/ ln |λ2| in the 1D unit-filled Bose-Hubbard model with
U/J = 20.0. For the parameters of the unitary operator [ÛT(τ/n)]

n
,

we use (n,U ′) = (1,U ) (blue solid line), (n,U ′) = (2,U ) (or-
ange dashed line), (n,U ′) = (2, J ) (green dashed-dotted line), and
(n,U ′) = (2, 0) (red dotted line). Except the Hubbard interaction,
any other parameters are taken to be the same with those in Fig. 2.

of a single application of the Trotter decomposition Eq. (15)
by comparing n = 1 and n = 2 data. It should be noted that
large τ does not necessarily mean small autocorrelation as is
clearly indicated in the revival behavior of the U ′ = 0 case
(green dashed-dotted line). Thus one can significantly reduce
the autocorrelation time by the application of [ÛT(τ/n)]

n
with

n > 1 and optimally chosen τ .
Next, we turn our attention to a system where there are

some CPS being overlapped largely with some of the eigen-
states of Ĥ . Figure 3 represents the τ dependence of the

FIG. 4. The ratio R as a function of the block size Nb obtained
from the six-site unit-filled 1D Bose-Hubbard model with U/J = 1.0
at inverse temperature βJ = 0.25. For the parameters of unitary
operators, we use (τ, n,U ′) = (0.25J−1, 1,U ) (orange dashed line)
and (τ, n,U ′) = (1.0J−1, 2,U ) (green dashed-dotted line). The solid
blue line corresponds to a simulation without the Trotter gate.
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upper bound for autocorrelation time −1/ ln |λ2| at U/J =
20.0. Except the Hubbard interaction, any other parameters
are taken to be the same with those of the U/J = 1.0 case.
Likewise the U/J = 1.0 case, the application of the Trotter
gates significantly reduces the upper bound autocorrelation
time. Although the operators with U ′ = U can reduce the
autocorrelation of samples with not so large τ , the operator
with U ′ = 0 clearly outperforms the U ′ = U cases for small
τ and an almost uncorrelated Markov chain can be achieved
around τJ = 1.0 though the revival behavior stemming from
its noninteracting character can be seen. By introducing not
so large interaction U ′ = J to the Trotter gates, this revival
behavior is suppressed without increasing the autocorrelation.
This result exemplifies that it is efficient to choose a Hamil-
tonian other than that of the system as an operator Â when
some of the eigenstates of the system’s Hamiltonian are well
approximated as CPS.

From these SLME analyses, we see that our symmet-
ric bases created by the application of the Trotter gates

can significantly reduce the autocorrelation of samples. In
the next section, we show that the reduction of the au-
tocorrelation indeed leads to the reduction of computation
time.

B. Computation time

The application of the Trotter gates significantly decreases
the autocorrelation of samples. However, with only this fact,
we cannot conclude that this approach reduces computation
time because the application of operators to a MPS is a
numerically expensive task in general. In this section, we
show the benchmark results of MPS simulations, focusing on
computation time required to obtain one uncorrelated sample.

The number of correlated samples R is estimated from
the blocking analysis [43]. When autocorrelation of suc-
cessive samples is present, the usual standard error of the
total energy

σ = 1√
M

√√√√√ 1

M

M∑
i=1

(
〈φ(i)|Ĥ |φ(i)〉 − 1

M

M∑
j=1

〈φ( j)|Ĥ |φ( j)〉
)2

, (22)

underestimates the one-sigma uncertainty of the total energy since the effective number of independent samples should be smaller
because of the autocorrelation. In the blocking analysis, the average of successive Nb samples are treated as one blocked sample,
and the autocorrelation of the blocked samples is reduced by increasing the block size Nb. If the block size Nb is much larger than
the number of correlated samples, the blocked samples can be regarded to be independent and the standard error of the blocked
samples

σb =
√

Nb

M

√√√√√Nb

M

M/Nb∑
i=1

(
1

Nb

Nb∑
j=1

〈φ(Nb(i − 1) + j)|Ĥ |φ(Nb(i − 1) + j)〉 − 1

M

M∑
j=1

〈φ( j)|Ĥ |φ( j)〉
)2

, (23)

converges to the true one-sigma uncertainty. From the fact
that the one-sigma error bar is proportional to the inverse
of the square root of the effective number of independent
samples, one can estimate the number of correlated samples
R as R = σ 2

b /σ 2 with converged σb. As shown in Fig. 4, the
ratio R increases when the block size Nb increases to approach
a saturated value. This saturated R corresponds to the number
of correlated successive samples.

From R at the saturation and the averaged time elapsed
to obtain one sample tsamp, we define the time required to

obtain one uncorrelated sample tunc as tunc ≡ Rtsamp. We set
the maximum occupation number of boson per site to six and
the truncation error to 10−10. The initial CPS is a classical
unit-filled Mott state

∏
i b†

i |0〉, where |0〉 is the vacuum state.
For the imaginary-time evolution of MPS, we use the TEBD
method [7–9] with the optimized Forest-Ruth-like decompo-
sition [44]. We set the imaginary time step to 0.0625J−1.
We perform all the simulations in this section on a single
thread of Intel Xeon E5–2683 v4 processor and use the same
pseudorandom number sequence.

TABLE I. Performance tests of simulations for the 1D Bose-Hubbard model with L = 6, ν = 1, U/J = 1.0, and βJ = 0.25. Here, τ , n,
and U ′ are the parameters which determine the unitary operator [ÛT(τ/n)]

n
. R is the square of the ratio of the standard errors of blocked

uncorrelated and bare correlated samples, σ 2
b /σ 2, at the saturation with respect to Nb and indicates the effective number of correlated samples.

tsamp is the averaged time for obtaining one sample. tunc is the estimation of the time required to obtain one uncorrelated sample. 1σ is the
one-sigma uncertainty of 〈Ĥ〉, and Nsamp is the number of samples used to estimate the average and the one-sigma uncertainty of 〈Ĥ〉. The
thermal expectation value obtained by the exact diagonalization is 〈Ĥ〉/J = −0.9373.

τ (1/J) n U ′ R tsamp (s) tunc (s) 〈Ĥ〉/J 1σ/J Nsamp

0 38.9 4.57 × 10−2 1.78 −0.9550 1.2 × 10−2 1 048 576
0.25 1 U 5.99 6.39 × 10−2 0.383 −0.9400 4.5 × 10−3 1 048 576
1.0 2 U 1.84 8.96 × 10−2 0.165 −0.9382 2.4 × 10−3 1 048 576
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TABLE II. Performance tests of simulations for 1D Bose-Hubbard model with L = 50, ν = 1, U/J = 1.0, and βJ = 0.25. The symbol �
means that R does not converge with Nsamp samples and we can estimate only a lower bound. See the caption of Table I for the definition of the
other symbols.

τ (1/J) n U ′ R tsamp (s) tunc (s) 〈Ĥ〉/J 1σ/J Nsamp

0 �78.4 0.741 �58.1 −11.461 � 9.7 × 10−2 262 144
1.0 2 U 3.52 4.96 17.5 −11.500 5.4 × 10−2 32 768
1.0 2 0 4.12 4.49 18.5 −11.512 5.0 × 10−2 32 768

At first, we simulate the 1D Bose Hubbard model with
L = 6, ν = 1, U/J = 1.0, and βJ = 0.25 in order to confirm
the results of the SLME analysis summarized in Fig. 2 and
compare the thermal expectation value of Ĥ obtained by the
METTS algorithm to that obtained by the exact diagonaliza-
tion. Table I shows the summary of the simulations. In order
to obtain precise numerical data, we sample much more states
than the dimension of the entire Hilbert space. The order of
the estimated number of correlated samples R is consistent
with the SLME analysis in Fig. 2. Several tens of samples are
correlated in the simulation without the Trotter gates and there
exists little autocorrelation in the simulation with the Trotter
gates with τJ = 1.0. Consequently, tunc in the simulation with
the Trotter gates is roughly one tenth of that in the simulation
without the Trotter gates. The values of 〈Ĥ〉/J in the simula-
tions with the Trotter gates agree with the exact value within
one-sigma uncertainty.

Next, in order to demonstrate that our approach is efficient
in large systems, we perform the same simulations with L =
50. Table II shows the performance of simulations for the 1D
Bose-Hubbard model with ν = 1, U/J = 1.0, and βJ = 0.25.
The values of 〈Ĥ〉/J computed by the three METTS simula-
tions agree within one-sigma uncertainty. This result confirms
that the use of the symmetric basis created by the operation
of the Trotter gates does not affect the stationary distribution.
As expected, the application of the Trotter gates increases
tsamp roughly by six times. On the contrary, it substantially
decreases the effective number of correlated samples R by
at least one twentieth. Consequently, tunc reduces roughly to
one third of the value of the METTS algorithm without the
Trotter gates. Thus we can conclude that the application of
the Trotter gates noticeably reduces the computation time of
the METTS algorithm. Comparing the case of U ′ = U with
that of U ′ = 0 in Table II, there is no significant difference.
The absence of the difference is consistent with the SLME
analysis summarized in Fig. 2.

We also investigate the performance of the METTS algo-
rithm with the Trotter gates for the 1D Bose-Hubbard model
with L = 50, ν = 1, U/J = 20.0, and βJ = 0.25, where there
are some CPS being overlapped largely with some of the
eigenstates of the system’s Hamiltonian. Table III shows
the performance tests of simulations for this case. With this
setting, the effective number of correlated sample R in the
METTS algorithm without the Trotter gates is larger than five
hundred. It should be noticed that since this value is only a
lower bound estimated from 262144 samples, it is possible
that the true number of correlated samples is much larger. The
application of the Trotter gates reduces such a very large R to
28.1 with U ′ = U , to 8.49 with U ′ = 0, and to only 7.08 with
U ′ = J , which means a tough autocorrelation problem can be
significantly relaxed with the Abelian symmetry respected.
One can also confirm the superiority of the Trotter gates with
U ′ = J , which is consistent with the SLME analysis summa-
rized in Fig. 3. Although tsamp increases roughly by four times
due to the application of the Trotter gates with U ′ = J , tunc

reduces roughly by one twentieth. This improvement means
that error bars in the METTS algorithm with the Trotter gates
with Û ′ = 0 are about four time smaller than those in the
ordinary METTS algorithm with the same computation time.

C. Hybrid approach

In addition to the canonical ensemble, we check the per-
formance of the combination of the application of the Trotter
gates and the hybrid approach for the simulations of the grand
canonical ensemble. We take the strong U limit and treat
bosons as hard-core bosons which do not occupy the same
site. A strong advantage of taking the hardcore boson limit
is that the system can be mapped on to free fermions [45],
where exact diagonalization with a large system is feasible.
Hence, we can carry out the performance tests of the METTS
algorithm on the basis of the comparison with the results
obtained by using the exact diagonalization.

TABLE III. Performance tests of simulations for the 1D Bose-Hubbard model with L = 50, ν = 1, U/J = 20.0, and βJ = 0.25. See the
caption of Tables I and II for the definitions of symbols.

τ (1/J) n U ′ R tsamp (s) tunc (s) 〈Ĥ〉/J 1σ/J Nsamp

0 �552 0.764 �422 55.62 �1.00 262144
1.0 2 U 28.1 2.66 74.7 54.70 0.60 32768
1.0 2 J 7.08 2.74 19.4 53.69 0.36 16384
1.0 2 0 8.49 2.80 23.8 53.98 0.41 16384
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TABLE IV. Performance tests of simulations for the 1D Bose-Hubbard model with L = 50 and βJ = 5.0 in the strong U limit. The
chemical potential μ is set to be −2.0J . Here, κ is the compressibility, 1σ is the one-sigma uncertainty estimated from the jackknife analysis.
The exact numerical value of the compressibility κ is 11.866J−1. See the caption of Tables I for the definitions of the other symbols.

τ (1/J) n R tsamp (s) tunc (s) κJ 1σJ Nsamp

0 224.6 1.72 386 11.85 0.74 65536
3.6 2 68.3 2.04 139 11.60 0.47 65536

In the grand canonical ensemble, one can obtain the fluctu-
ations of the total number of particles which are related to the
compressibility κ as

κ = ∂
〈∑

i n̂i
〉

∂μ
= β

(〈(∑
i

n̂i

)2〉
−

〈∑
i

n̂i

〉2)
. (24)

Table IV shows the performance tests of the simulations of
the grand canonical ensemble where we take the 1D Bose-
Hubbard model in the strong U limit at L = 50, μ/J = −2.0,
and βJ = 5.0. These simulations are also performed on a
single thread of Intel Xeon E5–2683 v4 processor and use
the same pseudorandom number sequence, and we use the
second order Suzuki-Trotter decomposition with the time step
0.025J−1 for imaginary-time evolution. We estimate the un-
certainty of κ from the jackknife analysis [43]. The estimated
values of κ are consistent with the exact value within the
one-sigma error, thus confirming that the grand canonical en-
semble is simulated properly. Moreover, the computation time
required for one uncorrelated data tunc is reduced roughly by
one-third by thanks to the Trotter gates. In short, our approach
based on the application of the Trotter gates is effective in the
hybrid approach.

FIG. 5. The chemical potential μ–dependencies of the filling
factor ν (top), the internal energy per site 〈Ĥ〉/(JL) (middle), and
the compressibility κ (bottom) of the 1D Bose-Hubbard model in the
large U limit calculated by using the METTS algorithms with and
without the Trotter gates. The inverse temperature β is 5.0J−1. For
the parameters characterizing the Trotter gates, we use τJ = 3.6 and
n = 2. The expectation values and the one-sigma error bars of the
METTS results are estimated from successive 8192 samples.

Let us compare the efficiency of the simulations of the
grand canonical ensemble with that of the canonical ensem-
ble. Specifically, we simulate the canonical ensemble of the
1D Bose-Hubbard model in the strong U limit at L = 50,
ν = 0.08, and βJ = 5.0 by using the METTS algorithm with
the Trotter gates. For the comparison, the filling factor ν is
determined to be close to that of the grand canonical ensemble
simulated in Table IV, ν = 0.074, and we use the same Trotter
gates. In the canonical ensemble, the estimated number of
correlated samples R is 9.2, which is around one-seventh of
the value in the grand canonical ensemble 68.3. Therefore
the canonical ensemble is preferred unless one wants to com-
pute observables converted from the fluctuations of conserved
quantities, such as the compressibility and the magnetic sus-
ceptibility. The inefficiency of the grand canonical ensemble
can be attributed to the fact that while the sampling space
is much larger than that in the canonical ensemble, the total
particle number can change only by at most two in one Monte
Carlo step in our setting, where there are only two ancilla
sites. Although increasing ancilla sites reduces the number of
correlated samples but also increases the numerical cost of
obtaining one sample [40].

Figure 5 represents the chemical potential μ dependencies
of the filling factor ν, the internal energy per site 〈Ĥ〉/(JL),
and the compressibility κ obtained by using the METTS al-
gorithm with and without the application of the Trotter gates.
The expectation values and the one-sigma error bars are esti-
mated from successive 8196 samples. For the filling factor and
the internal energy, both of the METTS algorithms with and
without the Trotter gates give sufficiently precise and accurate
values for the entire region of the chemical potential. On the
contrary, as for the compressibility, the deviation from the
results obtained by using the exact diagonalization is visible
in both algorithms. Nevertheless, the error bars of the METTS
algorithm with the Trotter gates are smaller than those of
the METTS algorithm without the Trotter gates, especially
at μ/J = −1.8, where the compressibility takes a maximum
value. This result indicates that the application of the Trotter
gates to the METTS algorithm allows for a more efficient
description of the grand canonical ensemble.

IV. SUMMARIES

We improved the minimally entangled typical thermal
states (METTS) algorithms by adding the operation of a series
of Trotter gates which transforms the symmetric basis [39].
We performed the analysis using the second largest magni-
tude eigenvalue of a transition matrix for the one-dimensional
Bose-Hubbard model with unit filling in order to show that
a correlation of successive samples significantly decreases by
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applying the Trotter gates. From the performance tests for the
same model, we confirmed that the reduction of the autocor-
relation leads to the reduction of computation time and thus
improves the numerical efficiency of the METTS algorithm.
We showed that the application of the Trotter gates can be
combined with the recently proposed hybrid approach [40,41]
and improves the efficiency of simulations of the grand canon-
ical ensemble. Therefore the improved approach relaxes the
autocorrelation problem of the METTS algorithm without
breaking the Abelian symmetries. The improved METTS al-
gorithm is applicable potentially to many problems at finite

temperatures, such as transport, quench dynamics, and the
magnetization curve.
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