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Chiral resolution by composite Raman pulses
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We present two methods for efficient detection of chiral molecules based on sequences of single pulses and
Raman pulse pairs. The chiral molecules are modeled by a closed-loop three-state system with different signs in
one of the couplings for the two enantiomers. One method uses a sequence of three interaction steps: a single
pulse, a Raman pulse, and another single pulse. The other method uses a sequence of only two interaction steps:
a Raman pulse and a single pulse. The second method is simpler and faster but requires a more sophisticated
Raman pulse than the first one. Both techniques allow for straightforward generalizations by replacing the single
and Raman pulses with composite pulse sequences. The latter achieve very high signal contrast and far greater
robustness to experimental errors than by using single pulses. We demonstrate that both constant-rotation (i.e.,
with phase compensation) and variable-rotation (i.e., with phase distortion) composite pulses can be used, the
former being more accurate and the latter being simpler and faster.
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I. INTRODUCTION

In physics, symmetry (and asymmetry) is vital to under-
standing and predicting the phenomena in the surrounding
world. Symmetry has always played an important role in the
description of how our universe works, but it has become
quintessential after the formulation and proof of Noether’s
theorem [1], which provides the link between symmetry and
conservation laws. As a special type of asymmetry, chirality
is of crucial significance in many branches of contemporary
science, e.g., in chemistry, biotechnologies, and pharmaceu-
tics. A chiral molecule, also called an enantiomer, is one that
cannot be superimposed on its mirror image by translation and
rotation. Such molecule pairs have identical physical proper-
ties, neglecting the small differences due to the electroweak
interaction [2]. Nevertheless, the chemical properties of the
two enantiomers may be entirely different. This is essential
in pharmaceutics, where the chiral purity of a particular sub-
stance may be crucial to the drug efficiency.

Traditionally, enantiomer detection and separation are
based on slow, complicated, and expensive chemical tech-
niques, such as crystallization, derivatization, kinetic resolu-
tion, and chiral chromatography [3]. Alternatively, one may
use chiroptical spectroscopy to break the symmetry of the
enantiomers by interaction with circularly polarized light [4].
Some prevalent chiroptical methods are optical rotary disper-
sion [4], circular dichroism [5], vibrational circular dichroism
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[6,7], and Raman optical activity [6,8]. These methods rely
on the magnetic-dipole interaction between the circularly po-
larized light and the molecules. Furthermore, methods based
on linearly polarized light have been developed, using the
much stronger electric dipole interaction [9]. These methods
make use of the sign difference of some of the transition
dipole moments of the two enantiomers, which is then mapped
onto population differences by using quantum systems with
three or four states driven in closed-loop interaction schemes,
thereby creating interferometric linkages. Another approach
has been developed by Shapiro and coworkers [10], who
used concepts from adiabatic passage methods [11] to detect
and separate enantiomers. Finally, rotational spectroscopy has
been used to develop methods, such as microwave three-wave
mixing [12–14] for chiral analysis in gas-phase samples.

Over the last few years there has been a growing interest
in the topic. Some remarkable results are the determination
of enantiomeric excess, based on chirality-dependent ac Stark
effects [15,16]; a theory on enantiomeric separation in the
presence of spatial degeneracy [17,18]; and a detailed study
of enantioselective three-wave mixing spectroscopy, where it
was shown, by using group theoretical arguments, that three
mutually orthogonal polarizations are needed to achieve chiral
resolution [19,20]. Also, a simple and fast method for chiral
resolution, based on shortcuts to adiabaticity [21], has been
proposed [22].

Recently, we developed a method for optical detection
of chiral molecules, based on simple sequences of resonant
pulses [23]. These allowed for a robust and high-fidelity
optimization using composite pulses (CPs). A CP is a se-
quence of pulses with appropriately chosen relative phases.
These phases are used as control parameters to shape the
excitation profile in a desired fashion. In such a way one
can produce broadband, narrow-band, and passband profiles;
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FIG. 1. Coupling schemes for molecules with left and right
handedness.

robust coherent superpositions; optimized adiabatic tech-
niques; high-fidelity quantum gates; etc.

In the current paper, we develop this approach further, by
using Raman pulses in addition to the pulses directly coupling
a single transition. In such way we can benefit from a shorter
interaction time, at the cost of using a more sophisticated
implementation. Raman pulses have been used before for
chiral resolution, e.g., in Ref. [14], where they are applied
on resonance, or in Ref. [24], where they are applied off
resonance in order to adiabatically eliminate the upper state.
Our focus now is to use resonant Raman pulses, which allow
us to benefit from the powerful technique of composite pulses,
in order to achieve efficient and robust chirality-dependent
population transfer.

To this end, we model the chiral molecules as a �-type
system, where one of the three couplings, marked as
P, S, and Q, differs in sign in the two enantiomers (see Fig. 1).
In Sec. II we explain our method and show how it can
map this sign difference onto population transfer to different
states. We also discuss in detail the specific pulse sequences,
which can be used for the population transfer. In Sec. III we
demonstrate how constant-rotation composite pulses can be
used to improve the contrast and robustness of the method,
and Sec. IV demonstrates similar features with the simpler
and faster variable-rotation composite pulses. In Sec. VI we
address the detection strategy of our method. Finally, the
conclusions are summarized in Sec. VII.

II. DESCRIPTION OF THE METHOD

We now describe our method to produce chirality-
dependent population transfer, based on two types of se-
quences, both using a combination of single and Raman
pulses. We model the chiral molecules as a �-type system,
which is illustrated by the energy-level scheme in Fig. 1. We
assume that the two enantiomers differ only by the sign of the
|1〉 ↔ |3〉 coupling. The first type of sequences consists of a
single pulse, followed by a Raman pair of pulses, followed by
another single pulse. Such a sequence has been used before,
e.g., in Ref. [14]. In this paper we consider also other similar
sequences, and, more importantly, propose an optimization
by using composite pulses. The second type uses a sequence
of just one Raman pulse pair and one single pulse. Here we
study these sequences in detail, and then we examine how
one can optimize them by using composite pulses. In all
our derivations, we shall assume that the system is initially
in state |1〉.

A. Single-Raman-single sequence

The single-Raman-single sequence consists of three se-
quential separated interactions. The first step is to apply a
single π/2 pulse on the Q transition. This π/2 rotation cor-
responds to the following propagator:

UQ =

⎡
⎢⎣

1√
2

0 ∓i√
2

0 1 0
∓i√

2
0 1√

2

⎤
⎥⎦, (1)

where the ∓ sign corresponds to the L and R chiral molecules.
This transfers the system, initially in state |1〉, to states

1√
2
(|1〉 ∓ i|3〉). In the second step we apply a Raman inter-

action, which consists of two simultaneous P and S pulses,
each of area equal to π/

√
2, where the S pulse has a phase of

π/2 relative to the P pulse. The propagator for this step is

U[P,iS] =

⎡
⎢⎣

1
2

−i√
2

−i
2

−i√
2

0 1√
2

i
2

−1√
2

1
2

⎤
⎥⎦, (2)

which transfers the system into states −i|2〉 and
1√
2
(|1〉 + i|3〉) for the L and R chiralities, respectively.

The R state is an eigenstate of the Raman Hamiltonian and
is therefore unaffected by the evolution. Finally, the third
step is identical to the first one. As seen from Eq. (1), the
L-handed system stays in state −i|2〉, as it is an eigenstate
of the Q-part Hamiltonian, while the R-handed one is
transferred to state i|3〉. The total propagator of this sequence
is U = UQU[P,iS]UQ, which, after some trivial calculations,
becomes

U(L) =
⎡
⎣

0 0 −i

−i 0 0

0 −1 0

⎤
⎦, U(R) =

⎡
⎣

0 −i 0

0 0 1

i 0 0

⎤
⎦. (3)

Therefore, chiral resolution is achieved by using this three-
step procedure. We can write this sequence as

Q

(
π

2

)[
P

(
π√

2

)
, iS

(
π√

2

)]
Q

(
π

2

)
, (4)

where the pulses in the square brackets constitute the Raman
interaction. Other similar sequences with different signs of the
Q pulses, leading to chiral resolution, are listed in Table I (top)
and illustrated in Fig. 2. In the next subsection we describe
an even simpler procedure, consisting of just two steps, for
achieving our goal of chiral-dependent population transfer.

We note that we have chosen the π/2 phase shift to be
attached to the S field. However, chiral resolution can be
achieved if it is attached to one of the other two fields, P or Q.

B. Raman-single sequence

The Raman-single sequence is made of the following two
steps. First, we apply a Raman pulse, consisting of two si-
multaneous resonant pulses on the P and S transitions, where
the P pulse has an area of ξ1π , while the S pulse has an area
of ξ2π , and a relative phase of π/2. Here ξ1 =

√
2 + √

2 and
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TABLE I. Sequences of pulses and corresponding final states for
the L and R enantiomers, with initial state equal to |1〉. The numbers
in the round brackets correspond to the pulse area of the pulse of
the corresponding P, S, or Q transitions, including a specific phase,

if applicable, with ξ1 =
√

2 + √
2 and ξ2 =

√
2 − √

2. The square
brackets indicate simultaneous (Raman) pulses. The first four cases
are depicted in Fig. 2 and the last two cases in Fig. 3.

Final Final
Pulse sequence state (L) state (R)

Q( π

2 )[P( π√
2

), iS( π√
2

)]Q( π

2 ) 2 3

Q( π

2 )[P( π√
2

), iS( π√
2

)] − Q( π

2 ) 2 1

−Q( π

2 )[P( π√
2

), iS( π√
2

)]Q( π

2 ) 1 2

−Q( π

2 )[P( π√
2

), iS( π√
2

)] − Q( π

2 ) 3 2

[P(ξ1π ), iS(ξ2π )]Q( π

2 ) 3 1

[P(ξ2π ), iS(ξ1π )]Q( π

2 ) 1 3

ξ2 =
√

2 − √
2. The propagator for this step is

U[P,iS] =

⎡
⎢⎣

−1√
2

0 −i√
2

0 −1 0
i√
2

0 1√
2

⎤
⎥⎦, (5)

and, therefore, the system, which initially was in state |1〉,
is now transferred to the equal-superposition state −1√

2
(|1〉 −

i|3〉). During the second step we apply a single π/2 pulse
on the Q transition. Because of the different signs in the Q
coupling, this leads to a differentiation between the final states
for the L and R molecules. The propagator for this step is given
by Eq. (1), which, as can be easily calculated, transfers the
system into i|3〉 for the L chirality and −|1〉 for the R chirality.
Explicitly, the final propagators are

U(L) =
⎡
⎣0 0 −i

0 −1 0
i 0 0

⎤
⎦, U(R) =

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦. (6)

FIG. 2. Examples of sequences of two π/2 pulses with a Raman
pulse in between, leading to chiral-dependent population transfer.
The numbers π/2 and π/

√
2 indicate the temporal area on the

respective pulse.

FIG. 3. Examples of sequences of a Raman pulse and a π/2 res-
onant pulse after it, leading to chiral-dependent population transfer.
The Q pulse has a temporal area of π/2. On the left, the P pulse has
an area of ξ1π , while the S pulse has an area of ξ2π , and a relative

phase of π/2, with ξ1 =
√

2 + √
2 and ξ2 =

√
2 − √

2. On the right,
the P pulse has an area of ξ2π , while the S pulse has an area of ξ1π ,
still with a relative phase of π/2.

Hence, we can achieve chiral resolution of the two enan-
tiomers by a sequence of only one Raman pulse and one single
pulse. A similar sequence, where the pulse areas of the P
and S pulses are interchanged, can also be used. These are
schematically illustrated in Fig. 3, and the resulting population
transfer is shown in Table I (bottom). This protocol for chiral
separation is an alternative method, which uses only two steps
at the cost of larger pulse areas.

In the next section, we describe how we can use composite
pulses to improve the described procedures and achieve very
high efficiency and robustness to experimental errors.

III. OPTIMIZATION BY COMPOSITE PULSES

A. Composite single-Raman-single sequences

We now show how our approach can be made robust to er-
rors by replacing the single and Raman pulses with composite
sequences. First, we study the single-Raman-single method.
To be specific, we look at the sequence (4), consisting of two
single Q pulses and a Raman [P, iS] pulse in between.

There are generally two types of CPs. The first type are
the so-called variable rotations, for which the moduli of the
propagator elements (i.e., the square roots of probabilities) are
robust to errors in the experimental parameters but the phases
of the propagator are not. In the second type of CPs, which
are called constant rotations, both the moduli and the phases
of the propagator elements are robust to errors. Clearly, we
need to use the second type for our method in order to obtain
robust excitation profiles with high fidelity because the precise
phase relations are essential for its operation.

The shortest CP which offers constant π/2 rotation that can
replace the Q( π

2 ) pulse is [25]

A′
φ1

Bφ2 A′
φ1

, (7)

where A′ = 0.6399π (1 + ε), B = π (1 + ε) is a nominal π

pulse, and the pulse phases are φ1 = 1.6558π and φ2 =
0.4413π . This CP compensates pulse area errors up to order
O(ε) and has a total nominal pulse area of about 2.28π . Here
we have introduced the dimensionless parameter ε, which is
used in this paper as a measure of the deviation from the
perfect value of the corresponding pulse area.
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FIG. 4. Population P2 vs pulse area deviation for the single-
Raman-single sequence (top left frame) and when the constant π/2
rotations from Eq. (10) are used to replace the single and Raman
pulses. In frames CP1, CP2, and CP3 we have used the CPs (7), (8),
and (9), respectively.

Another symmetric constant-rotation π/2 CP is

A′′
φ1

Bφ2 Bφ3 Bφ2 A′′
φ1

, (8)

where A′′ = 0.45π (1 + ε), φ1 = 1.4494π , φ2 = 0.0106π ,
and φ3 = 0.8179π . It has a larger total nominal area of 3.9π

but provides second-order error compensation O(ε2). The
third example is the famous asymmetric BB1 sequence of
Wimperis [26]:

A0BχB3χ B3χBχ , (9)

where A = π (1 + ε)/2 is a nominal π/2 pulse, and χ =
arccos(−1/8) ≈ 0.5399π . It has a total area of 4.5π and
offers second-order error compensation O(ε2).

The P and S pulses in the Raman interaction should also
be replaced by a composite sequence, which is a more de-
manding task because CPs have been developed primarily for
two-state systems. Nevertheless, CPs in multistate systems
have been studied in the literature, and here we shall make
use of the results obtained in Refs. [27,28]. Namely, by using
the Majorana decomposition [29] we map the initial three-
state configuration to a much simpler two-state system. By
applying this approach, it is straightforward to substitute the
single pulses with CPs and use the standard theory of two-
state CPs [27,28]. We can again use one of the constant π/2
rotations (7), (8), or (9), to produce a composite Raman π/

√
2

pulse, where the P and S pulses in the Raman interaction
[P( π√

2
), iS( π√

2
)] should be replaced with one of the following

sequences:

ξπ/2 → (ξA′)φ1
(ξπ )φ2

(ξA′)φ1
, (10a)

ξπ/2 → (ξA′′)φ1
(ξπ )φ2

(ξπ )φ3
(ξπ )φ2

(ξA′′)φ1
, (10b)

ξπ/2 → (ξπ/2)0(ξπ )χ (ξπ )3χ (ξπ )3χ (ξπ )χ , (10c)

with ξ = √
2, corresponding to the CP sequences (7), (8), and

(9).
The performance of the method is illustrated in Fig. 4,

where we plot the population of state |2〉 as a function of the
pulse area error. The implementation with single pulses (top

left) achieves chiral resolution in a narrow range around zero
error (ε = 0). Using composite pulses broadens this range
considerably, even for the shortest CP (top right) of Eq. (7).
The longer five-pulse sequences of Eqs. (8) and (9) further
broaden the high-contrast range. In such a way, we obtain
high-contrast chiral separation of the L and R molecules,
which is very robust to experimental imperfections in the
pulse area, which may derive from intensity fluctuations or
improper pulse duration.

B. Composite Raman-single sequences

Now we consider the Raman-single method and, to be
specific, we study the sequence

[P(ξ1π ), iS(ξ2π )]Q

(
π

2

)
. (11)

In order to replace the Raman pulses with composite se-
quences, in the case when the P and S pulses have different
pulse areas, one can use the Morris-Shore (MS) transfor-
mation [30]. It has been shown in Ref. [28] that a Raman
interaction with pulse areas of AP = ξ1π and AS = ξ2π trans-
lates into a 2π pulse in the MS basis (see the Appendix for
a brief derivation). Furthermore, a common phase shift in the
pump and Stokes Rabi frequencies in the original basis maps
to the same phase shift in � in the MS basis [27,28]. Hence,
we can use the phases for a composite 2π pulse (constant
rotation) in order to produce a robust Raman coupling. For
example, two such CPs are [31]

B0B2π/3C0B2π/3B0, (12a)

B0B2π/5B6π/5B2π/5C0B2π/5B6π/5B2π/5B0, (12b)

where C = 2π (1 + ε) is a nominal 2π pulse. Therefore, we
replace the P and S fields from the Raman coupling in the
sequence (11) with CPs having phases, taken from Eq. (12a).
Explicitly, we have

ξ1,2π → (ξ1,2π/2)0(ξ1,2π/2)2π/3(ξ1,2π )0

(ξ1,2π/2)2π/3(ξ1,2π/2)0. (13)

Finally, the π/2 Q pulse is replaced with one of the constant
π/2 rotations of Eqs. (7), (8), or (9), as we did in the single-
Raman-single case.

The excitation profile for the CP implementation of the
Raman-single scenario is compared with the single-pulse case
in Fig. 5. As in the single-Raman-single approach in Fig. 4,
the single-pulse implementation is again sensitive to pulse
area errors and works well only for zero errors, ε = 0 (top
left). The robustness of the method is greatly improved by
using composite pulses. Even the shortest three-pulse CP of
Eq. (7) delivers a significant enhancement in contrast and error
range, and the five-pulse CPs of Eqs. (8) and (9) offer further
improvement.

IV. IMPLEMENTATION WITH VARIABLE-ROTATION
COMPOSITE SEQUENCES

Up to now, we have shown how to replace the single and
Raman pulses with constant composite rotations in order to
achieve chiral resolution with high fidelity and robustness.
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FIG. 5. Population P3 vs pulse area deviation for the Raman-
single sequence (top left frame) and when composite sequences are
used to replace the single pulse and the Raman pulse. The Raman
pulse is replaced with the CP from Eq. (12a), as shown in Eq. (13),
while the single Q(π/2) pulse is replaced with the CPs (7), (8), and
(9) (frames CP1, CP2, and CP3, respectively).

However, if we are not aiming for ultrahigh fidelity, it turns out
that we can also use variable-rotation CPs. Ultrahigh fidelity
is typically needed in order to implement error-correction
protocols in quantum information processing. In contrast, in
most experiments, fidelities >0.98 are usually sufficient. This
is the case, for instance, in drug separation for pharmaceutical
needs. Therefore, variable-rotation CPs may be a felicitous
alternative to the constant rotations. Composite variable ro-
tations are shorter, and hence faster, than constant rotations,
which is important if decoherence is present on the time scales
of the process.

For instance, in the sequence (4) we can replace the con-
stituent pulses with the variable-rotation π/2 CP [32]

(A)−π/2(B)π/4(A)π/2, (14)

instead of using the constant-rotation CPs. By exploiting the
symmetry of the underlying propagators, it can be shown that
this CP can also lead to robust chiral resolution, despite the
fact that it is of the variable-rotation type. To demonstrate this,
we can approximate the propagator for the π/2 Q pulse as

UQ ≈

⎡
⎢⎢⎣

eiα√
2

0 ±eiβ√
2

0 1 0
∓e−iβ√

2
0 e−iα√

2

⎤
⎥⎥⎦, (15)

and for the Raman [P, S] pulse as

U[P,iS] ≈

⎡
⎢⎢⎣

eiγ1

2
eiγ4√

2
e−iγ3

2

eiγ2√
2

0 −ie−iγ2√
2

eiγ3

2
ie−iγ4√

2
e−iγ1

2

⎤
⎥⎥⎦, (16)

where the phases α, β, and γi (i = 1, . . . , 4) are parameters
which reflect the symmetry properties of the corresponding
propagators. These approximations are based on the assump-
tion that for small errors (ε ≈ 0) the absolute values of the
propagator elements stay fixed and only the phases can vary.
This is a reasonable assumption, since we are using variable-

FIG. 6. Population P2 vs pulse area deviation for the single-
Raman-single sequence (top frame) and when variable-rotation CPs
(14) are used to replace the single pulses (bottom frame). The inset
frame compares the L population of the single-Raman-single com-
posite sequence with the CP1 and CP2 sequences from Fig. 4.

rotation CPs, which keep the absolute values robust, but allow
the phases to deviate from the ε = 0 values. By taking the
product U = UQU[P,iS]UQ, after some simple algebra we ob-
tain

U21 = 1
2 e−i(γ2+β )[±i + ei(2γ2+α+β )]. (17)

Hence, we find that if the condition

2γ2 + α + β = π/2 (mod 2π ) (18)

is fulfilled chiral resolution is obtained. It can be shown that
by using the CP sequence (14) this condition can be approxi-
mately fulfilled over a wide region of pulse area deviation ε.
For this purpose, we need to pay attention to the order of the
pulses. Namely, we need to apply the CP in the same order as
in (14) when substituting the Q pulses, and in reverse order
when substituting the P and S pulses in the [P, iS] Raman
interaction.

In Fig. 6 we illustrate the population transfer when this
variable-rotation CP is used. As seen from the figure (see
inset), the fidelity is not as high as when constant-rotation CPs
are used (Figs. 4 and 5), at least in the ultrahigh fidelity range.
However, we are using smaller pulse areas and still have much
better results than with single pulses.

Similar arguments can be used also for the Raman-single
case, where we can substitute the Q pulse with the CP (14) (in
reversed order) instead of using constant-rotation CPs. The
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FIG. 7. Population P3 vs pulse area deviation for the Raman-
single sequence (top frame) and when the variable-rotation CP (14) is
used to replace the single Q pulse and the CP (12a) is used to replace
the P and S pulses in the Raman [P, iS] interaction (bottom frame).

performance of this scenario is shown in Fig. 7. We can see
from the figure that the fidelity of the Raman-single protocol
is boosted by using the variable-rotation CPs.

V. NUMERICAL OPTIMIZATION

It turns out that, by combining sequences of single and
Raman pulses with numerical optimization, we can derive
even better chiral separation, which uses shorter interaction
to achieve higher robustness. For instance, we can use a com-
posite sequence with two single and two Raman pulses:

Q0(A1)Qφ2 (A2)[Pφ3 (A3), Sφ4 (A3)][Pφ5 (A4), Sφ6 (A4)], (19)

where the subscripts φk and Ak indicate the relative phase and
the pulse area of the corresponding interaction. The parame-
ters φk and Ak can be used to numerically optimize the final
excitation profile by pushing it into the desired shape, while
keeping the total pulse area as small as possible. In this way,
we obtain the values

(A1, A2, A3, A4)

= (0.4569, 0.9230, 1.3524, 0.6677)π, (20a)

(φ2, φ3, φ4, φ5, φ6)

= (0.5953, 1.0229, 1.8849, 0.4165, 1.2527)π. (20b)

FIG. 8. Population P2 vs pulse area deviation for the numerically
derived sequences (19) (top frame) and (21) (bottom frame).

Another sequence, which contains two single and three
Raman pulses, is

Q0(A1)Qφ2 (A2)[Pφ3 (A3), Sφ4 (A3)]

× [Pφ5 (A4), Sφ6 (A4)][Pφ7 (A5), Sφ8 (A5)], (21)

where the derived values for the parameters are

(A1, A2, A3, A4, A5)

= (0.4244, 0.8836, 1.1547, 1.1626, 0.5747)π, (22a)

(φ2, φ3, φ4, φ5, φ6, φ7, φ8)

= (0.5978, 1.3797, 1.6983, 1.1580,

1.3318, 0.4725, 0.5785)π. (22b)

We call the derived sequences Num1 and Num2 and we illus-
trate their performance in Fig. 8.

In Table II we compare the performance of some of our
pulse sequences, both from this paper and from Ref. [23]. We
have chosen those sequences that provide high robustness and
short total duration. As seen from the table, the numerically
optimized sequences outperform the other CPs with respect to
short interaction time and robustness.

VI. POTENTIAL DETECTION SCHEMES

For detecting the chiral dependent population transfer, we
envision monitoring the transfer of population in the enan-
tiomers by combining a resonantly enhanced multiphoton
ionization (REMPI) scheme to selectively ionize molecules
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TABLE II. Comparison of the performance of different com-
posite pulse sequences in terms of total interaction duration and
high-fidelity range. The top part of the table contains information
about the T5, T6, and T9 pulse sequences from Ref. [23]. The second
part covers the CP1 and CP2 pulses from Fig. 4. The third part shows
the performance of the single-Raman-single variable-rotation CP, the
excitation profile of which is depicted in Fig. 6. The bottom part cor-
responds to the numerically derived sequences (19) and (21). The last
two columns show the ε range, over which high fidelity is preserved,
namely, population higher than 0.99 and 0.98, respectively.

CP Duration (1/�) ε0.99 ε0.98

T5 5π (−0.19, 0.19) (−0.23, 0.23)
T6 6π (−0.26,0.26) (−0.30,0.30)
T9 9π (−0.34,0.34) (−0.38,0.38)

CP1 7.78π (−0.23, 0.26) (−0.27, 0.32)
CP2 13.32π (−0.37, 0.42) (−0.41, 0.46)

s-R-s 6.83π (−0.25, 0.25) (−0.31, 0.31)

Num1 3.4π (−0.36, 0.42) (−0.39, 0.46)
Num2 4.2π (−0.44, 0.60) (−0.47, 0.67)

ending up, e.g., in state 3, with the high efficiency detection
of single ions either by an electron-multiplier detector or an
ion trap [33]. The advantage of such REMPI-based methods
compared to technics applied in previous experiments relying
on induced microwave field detection is the ultimate detection
of a single specific enantiomer molecule.

VII. CONCLUSIONS

In this paper we developed two methods for robust
high-contrast chirality-dependent population transfer in chiral
molecules. The methods use sequences of single pulses and
Raman pulse pairs applied to a closed-loop three-state system,
which has identical properties for the two enantiomers except
the opposite signs of one of the couplings. The closed-loop
pattern creates a phase-sensitive interferometric linkage which
allows us to map the different coupling signs onto different
populations.

In one of the methods we use a sequence of three in-
teraction steps: a single pulse, a Raman pulse, and another
single pulse. The other method uses only two interaction
steps: a Raman pulse followed by a single pulse. Both tech-
niques are generalized by replacing the single and Raman
pulses with composite pulse sequences of two types: constant
and variable rotations. The composite-pulse implementations
achieve very high signal contrast and much greater robustness
to experimental errors than single pulses. Constant rotations
feature phase stability and deliver more accurate chiral reso-
lution. Variable rotations use simpler and shorter (i.e., faster)
pulse sequences, which can be important if decoherence is
present on the time scale of the process. In our derivation,
we have used composite-pulse sequences which compensate
errors in the pulse area. This type of error is most common
in real experiments, and may be due to spatial distribution
of the intensity over an ensemble, or pointing error in single
molecules. Compensation of detuning errors was not stud-
ied in this paper, due to the following arguments. First, an

arbitrary detuning error in the Raman system maps into a
corresponding phase factor, which alters the relative phases of
the composite pulse, used as control parameters. Therefore,
if a fixed static detuning is present in the system, we can
easily adjust the relative phases in order to account for it.
However, compensation of arbitrary detuning with a single set
of phases is a nontrivial task in the context of Raman systems.
Fortunately, an experimental realization of our method would
only need to deal with the former type of detuning error.
Also, the composite phases are presented with four digits after
the decimal point, which is a precision that can be actually
achieved with radio-frequency and microwave fields. Still, our
simulations show that a random error in the phases on the
order of 1–2% leads to an excitation profile which is almost
undistinguishable from the perfect one. Finally, when using
long pulse sequences one always needs to consider the effect
of decoherence. However, as typical coherence time in most
molecules is in the range of milliseconds up to seconds, and
the interaction duration of a single pulse is on the order of
10−6–10−5 seconds [13], this would not be a problem for our
approach.
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APPENDIX: MORRIS-SHORE TRANSFORMATION

The Hamiltonian of the [P, S] Raman interaction can be
written as

H(t ) = h̄

2

⎡
⎣ 0 �P(t ) 0

�P(t ) 0 �S (t )
0 �S (t ) 0

⎤
⎦, (A1)

where �P,S (t ) are the Rabi frequencies of the P and S transi-
tions, which are required to share the same time dependence,
�P = ξ1 f (t ) and �S = ξ2 f (t ). Without loss of generality, we
assume that

∫
f (t )dt = π . We also introduce the root-mean-

square pulse area:

�(t ) =
√

�P(t )2 + �S (t )2 = ξ f (t ), (A2)

where ξ =
√

ξ 2
1 + ξ 2

2 . We then make a basis change (the
Morris-Shore transformation), with the matrix

B =
⎡
⎣ ξ2/ξ 0 ξ1/ξ

0 1 0
−ξ1/ξ 0 ξ2/ξ

⎤
⎦, (A3)

which decomposes the initial three-state system into a decou-
pled (dark) state |d〉 and a two-state system, consisting of a
bright state |b〉 and the original state |2〉, where

|d〉 = 1

ξ
(ξ2|1〉 − ξ1|3〉), (A4a)

|b〉 = 1

ξ
(ξ1|1〉 + ξ2|3〉). (A4b)
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The transformed Hamiltonian in the MS basis reads

HMS(t ) = B†H(t )B = h̄

2

⎡
⎣0 0 0

0 0 �(t )
0 �(t ) 0

⎤
⎦, (A5)

and, therefore, we have reduced the initial Raman system
to only two coupled states. This property is used to take
advantage of the two-state CP theory and apply it in the more
complicated Raman system.
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