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Topological states in disordered arrays of dielectric nanoparticles
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We study the interplay between disorder and topology for localized edge states of light in zigzag arrays of
Mie-resonant dielectric nanoparticles. We characterize the topological properties of the array by the winding
number that depends on both zigzag angle and spacing between nanoparticles. For equal-spacing nanoparticle
arrays, the system may have two values of the winding number, ν = 0 or ν = 1, and it demonstrates localization
at the edges even in the presence of disorder, as revealed by experimental observations for finite-length ideal
and randomized nanoparticle structures. For staggered-spacing nanoparticle arrays, the system possesses richer
topological phases characterized by the winding numbers ν = 0, ν = 1, or ν = 2, which depend on the averaged
zigzag angle and the strength of disorder. In a sharp contrast to the equal-spacing zigzag arrays, the staggered-
spacing nanoparticle arrays support two types of topological phase transitions induced by the angle disorder, (i)
ν = 0 ↔ ν = 1 and (ii) ν = 1 ↔ ν = 2. More importantly, the spectrum of the staggered-spacing nanoparticle
arrays may remain gapped even in the case of a strong disorder.
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I. INTRODUCTION

Topological photonics emerged recently as a novel plat-
form to realize robust optical circuitry protected against
disorder [1]. The initial study of topological effects in photon-
ics was inspired largely by direct analogies with the similar
effects in condensed-matter physics predicted and observed
for topologically nontrivial energy bands of electrons. In pho-
tonics, the concept of topological phases offers nontraditional
approaches in the search for innovative designs of advanced
photonic devices, as well as introducing novel physical ef-
fects and their applications [2]. The existence of spatially
localized topological edge states has been predicted and re-
alized in a variety of photonic systems, including topological
lasers [3], single-photon transport [4], and topological soli-
tons [5]. The study of disorder in topological systems is very
important because robustness against disorder is employed
extensively as a direct measure of topologically protected
features. Anderson localization provides a well-known effect
of disorder in condensed-matter physics [6], which originates
from interference of coherent waves, and it has been ex-
tended from electronic wave functions to other waves such
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as electromagnetic waves [7,8], acoustic waves [9], and mat-
ter waves [10,11]. Strong spatial localization of light due to
disorder can be realized in periodic or quasiperiodic dielectric
structures, and it is represented by photonic band gaps. For
systems with nontrivial topological phases, the interplay of
topology-induced spatial localization (i.e., topological edge
states) and disorder-induced Anderson localization becomes
a very important problem, especially when disorder is no
longer weak. Here, we address this important problem by
studying the effects of disorder in topologically nontrivial
zigzag arrays of coupled subwavelength optical resonators.
Many topological photonic systems are based on the waveg-
uide geometries. A zigzag array of coupled resonators has
emerged as the first nanoscale system with nontrivial topo-
logical properties of light [12], and its topology-driven effects
have been observed experimentally, including lasing from
exciton-polariton nanoscale cavities [3] and third-harmonic
generation from nonlinear arrays of dielectric nanoresonators
[13]. Recently, the study of topological photonic systems at
subwavelength scale has received much interest, including
valley-Hall waveguides [14,15], plasmonic metasurfaces [16],
and metamaterials [17].

In this paper, we study the interplay between disorder and
topology in the zigzag arrays of resonant dielectric nanopar-
ticles in the regime when this system supports nontrivial
topological phases. We consider four types of topological ar-
rays with equidistant and nonequidistant spacing between the
particles, as illustrated in Fig. 1, and we analyze the topologi-
cal phases and disorder-induced topological phase transitions
in such arrays. We also present experimental results for
finite-extent arrays of Mie-resonant dielectric nanoparticles
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FIG. 1. Schematic diagram of four different types of topo-
logically nontrivial zigzag arrays of dielectric nanoparticles. The
Mie-resonant nanodisks are arranged as equal spacing (top) and
staggered spacing (bottom), with no disorder in the zigzag angles
(left) and with disorder in the zigzag angles (right).

which confirm the basic conclusions on the effect of disor-
der on topological properties, within the limitation imposed
by the finite length of the arrays. Remarkably, for the
staggered-spacing arrays, we observe that the topological
spectral gap can survive even in the presence of a strong
disorder.

The paper is organized as follows. In Sec. II, we intro-
duce our model of a zigzag array of Mie-resonant dielectric
nanoparticles, and then in Sec. III we study the topologi-
cal properties of an ideal (regular) array and its disordered
modifications. In Sec. IV, we use the zero-energy localization
method to probe the disorder-induced topological transitions.
In Sec. V, we generalize our model of the topological zigzag
array from the equal-spacing to staggered-spacing nanoparti-
cle arrays. Finally, Sec. VI concludes the paper.

II. EQUAL-SPACING ZIGZAG ARRAYS

It was established that topologically nontrivial states may
appear in zigzag arrays of nanoparticles with polarization-
dependent interaction between electromagnetic modes
[12,13,18,19]. Here, we follow those earlier predictions and
consider the electric or magnetic polarizations of dielectric
nanoparticles in the x-y plane, as shown in Fig. 2(a), coupled
due to the dipole-dipole interaction. In this experimental
platform [13], the disks are large enough to support the first
two Mie resonances at around 1500–1600-nm wavelength
but are too small to support any significant higher-order
multipoles. Thus higher-order multipoles can be neglected
at the given disk size and operation wavelength. Such
polarization-dependent interaction between two neighboring
nanoparticles can be written in the form [19]

V ( j, j′ ) = t‖�e( j, j′ )
‖ ⊗ �e( j, j′ )

‖ + t⊥�e( j, j′ )
⊥ ⊗ �e( j, j′ )

⊥ , (1)

where �e( j, j′ )
‖ and �e( j, j′ )

⊥ denote the identity vectors parallel and

perpendicular to the link vector �r j − �r j′ , respectively. V ( j, j′ ) =
V ( j′, j), and the coupling decays with the distance between the

FIG. 2. (a) Illustrations of polarization-dependent dipole interac-
tion between nanoparticles. The arrows inside the particle indicate
direction of electric or magnetic polarization. (b) Schematic illus-
tration of the zigzag array. (c) Energy spectrum as a function of
zigzag angle ψ under the OBC. (d) Winding number ν calculated
from Eq. (6).

jth and j′th nanoparticles due to the dipole-dipole interaction.
It is reasonable to keep only the nearest-neighboring interac-
tion [12,13,18,19].

By decomposing the polarization into x and y modes, the
Hamiltonian of such zigzag arrays can be written as

Ĥ =
∑

j,ν

E0a†
j,νa jν +

∑
j,ν,ν ′

a†
j,νV ( j, j+1)

ν,ν ′ a j+1,ν ′ + H.c., (2)

with

V j, j+1
ν,ν ′ =

⎧⎨
⎩

t‖cos2(ψ/2) + t⊥sin2(ψ/2), ν = ν ′ = x
t‖sin2(ψ/2) + t⊥cos2(ψ/2), ν = ν ′ = y
(t‖ − t⊥) sin(ψ/2) cos(ψ/2), ν �= ν ′.

(3)

Here, a†
j,ν and a j,ν are the creation and annihilation operators

for a ν mode at the jth nanoparticle, and ψ is the zigzag
angle, as indicated in Fig. 2(b). E0 is the on-site potential
which causes an overall energy shift and hence is neglected.
The ratio t‖/t⊥ depends on the interaction; for example,
t‖/t⊥ = −2 for the dipole-dipole interaction, and t‖/t⊥ = −4
for the quadrupole-quadrupole interaction. Here, we consider
the case of t‖/t⊥ = −2.

III. WINDING NUMBER

A. Ideal arrays

We start with the study of an ideal system without disorder.
In this case, an infinite system is translationally invariant.
Under the periodic boundary condition (PBC), the Bloch
Hamiltonian reads [18]

H (K ) =
(

0 Q(K )
Q†(K ) 0

)
, (4)

with

Q(K ) = h0 + �h(K )�σ . (5)

Here, h0 = t (1 + e−iK ), and �h(K ) ≡ (hx, hy, hz ) =
[�

2 e−iK sin ψ, 0, �
2 (1 + e−iK cos ψ )] are components of
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FIG. 3. (a)–(d) Band structure (left column) and det[Q(K )] (right
column) for different values of the zigzag angle ψ . (a) and (b) ψ =
0.2π : the system is gapless, and the curve of det[Q(K )] lies exactly
on the origin. (c) and (d) ψ = 0.44π : the system is gapped, and the
winding number is well defined.

an effective magnetic field with t = (t‖ + t⊥)/2 and
� = (t‖ + t⊥). �σ ≡ (σx, σy, σz ) are the Pauli matrices.

According to the classification of topological insulators
and superconductors, this system belongs to the so-called
BDI class [20], meaning a certain “Cartan label” given to the
corresponding symmetric space in Élie Cartan’s classification
scheme dating back to 1926. The topological invariant of such
systems is presented by the winding number,

ν = 1

2π i

∫ π

−π

dK Tr
[
Q−1(K )∂K Q(K )

]

= 1

2π i

∫ π

−π

dK
d ln {det [Q(K )]}

dK

= − 1

2π

∮
d arg {det [Q(K )]}. (6)

According to bulk-boundary correspondence, the nontrivial
topological invariant in a bulk is always accompanied by
the existence of topological edge states at the boundaries.
Under the open boundary condition (OBC), the energy spec-
trum with respect to the zigzag angle is shown in Fig. 2(c).
The spectrum can be either gapless or gapped, where in-gap
zero-energy states appear only in the gapped case, imply-
ing topologically nontrivial properties. To confirm this, we
calculate the winding number as a function of the zigzag
angle; see Fig. 2(d). Indeed, in the gapless case the wind-
ing number vanishes, while in the gapped case the winding
number is equal to 1. Our results are consistent with earlier
studies [18], where the topologically nontrivial phase was pre-
dicted for |ψ − π/2| < ψthre with the threshold value ψthre =
arcsin |(t‖ + t⊥)/(t‖ − t⊥)|/2.

We notice here that the original winding number (6) is ill
defined in the gapless case. When the energy bands are gap-
less, the trajectory of det Q in the complex plane crosses the
original point where its angle is ambiguous; see Figs. 3(a) and
3(b). However, a tiny perturbation without breaking the chiral
symmetry does not change the topological property. To some
extent, these gapless cases are effectively “trivial” because

they share similar topological properties to the trivial phase
and exhibit significant difference from the gapped topological
phase. To fix this problem, in numerical calculations we need
to shift det Q(K ) and redefine ν ′ = ν mod2 to avoid this ambi-
guity [18]. For completeness, we also show the energy bands
and the trajectory in the complex plane for the gapped case;
see Figs. 3(c) and 3(d). det Q is always nonvanishing, and the
winding number is 1.

B. Disordered arrays

Next, we study the effects of disorder on the zigzag array.
When the zigzag angle between nanoparticles experiences
random variations, we may expect the well-known Anderson
localization to occur. At the same time, in the topologically
nontrivial case characterized by the winding number ν = 1,
we expect topological edge states, which are localized expo-
nentially at one or two edges. Since the zigzag-angle disorder
can be realized experimentally [13], we study the interplay be-
tween topology-induced edge localization and the Anderson
localization. In the following, we keep t‖ = 2, t⊥ = −1 fixed
and assume that disorder is applied to the zigzag angle, ψ =
ψ0 + δψi, with averaged zigzag angle ψ0 and δψi = W εi,
where εi is a random number distributed uniformly within
[−π/2, π/2] and W is dimensionless. Such disorder affects
only the coupling, and it will not break the chiral symmetry.
As the range of zigzag angles ψ is limited [see Fig. 5(a)], the
strength of random angles δψi should be limited within δψ ∈
[−π/2, π/2]. Thus the strength of disorder in this context is
restricted to the domain W ∈ [0, 1]. Based on the degree of
distortion, we may say that the disorder on the zigzag angle is
weak when W → 0 and the disorder is strong when W → 1.
This can be seen from the experimentally measured data in
Appendix A.

The winding number (6) is obtained generally in
translation-invariant systems, and usually the straightfor-
ward definition fails for disordered systems. If disorder does
not break the essential discrete symmetry, i.e., the chi-
ral symmetry, the winding number can still be extracted
via a real-space formula [21,22]. Calculation of the real-
space winding number relies on the homotopically equivalent
flat-band Hamiltonian Q̂ = P̂+ − P̂−, in which

P̂+ =
∑

n∈{En>0}
|ϕn〉〈ϕn|,

(7)
P̂− =

∑
n∈{En<0}

|ϕn〉〈ϕn|

are the projectors onto the subspace with positive or nega-
tive energies, respectively. It can be found that Q̂ shares the
same eigenstates with the Hamiltonian Ĥ [20,23]. For chiral-
symmetric systems, Q can be composed by Q = QAB + QBA,
with QAB = �AQ�B, QBA = �BQ�A. Here, �A and �B are
the projectors onto the two sublattices, labeled by A and B,
respectively. Then, the winding number ν can be calculated in
real space via the formula [21,24,25]

ν = −Tr{QBA[X, QAB]}, (8)

where X is the position operator. This formula remains valid
even in the presence of disorder [21,22,24,26], and it has been
used widely in studies of disorder and topology [27–31].
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FIG. 4. Winding number for different zigzag angles ψ0 and
strength of disorder W . The cases (a)–(d) are calculated for
62, 122, 162, and 202 nanoparticles, respectively.

As the topological property originates from the bulk, the
PBC is more suitable than the OBC to capture the bulk prop-
erty. Besides, it is convenient to impose the PBC to avoid
the effect of edge states. In this case, the position operator
should be constructed carefully for the periodic boundary
[32]. Therefore, in the following context, we shall use the PBC
to calculate the winding number by default.

In our system, the gapless regime results in ambiguity
when we calculate the winding number. However, when dis-
order is present, this quantity is shown to be valid even if the
gap is closed [21,33]. We calculate the phase diagram of the
winding number in the parameter space (ψ0,W ); see Fig. 4.
As it turns out, the topology of such a system is nontrivial for
a large area where W > 0. The appearance of a small area of
the trivial phase can be understood as the finite-size effect, and
it will tend to disappear in the thermodynamic limit L → ∞.
This analysis suggests that the system may become topologi-
cal when disorder of the zigzag angle is added. In the regular
case (W = 0), the gapless region |ψ0 − π/2| > ψthre is topo-
logically trivial. Once the disorder is added, it immediately
changes to topologically nontrivial. Hence the case W = 0
can be understood as a critical point of the phase transition for
the region |ψ0 − π/2| > ψthre. When disorder is present, the
system is pushed towards a topological phase. This is by anal-
ogy with the metal-insulator transition induced by disorder
according to Anderson’s theory [6,34]. The difference is that
the system is a topological Anderson insulator when disorder
is present. We will discuss the property of localization in the
next section.

IV. ZERO-ENERGY LOCALIZATION LENGTH

Above, we have found that our system is topologically
nontrivial when the angle disorder is included. We notice
that, for one-dimensional chiral-symmetric systems, a topo-
logical transition is usually accompanied by a divergence of
the localization length at E = 0 [21,35,36]. The Lyapunov
exponent, which is related to the inverse of the localization
length, will vanish at the point of the topological transition,
and then it changes its sign. This important quantity has

been used widely to probe the topological phase transition
[21,29,33].

A. Transfer-matrix approach

First, we start with the transfer-matrix method and employ
it for our system. According to the theory of Anderson local-
ization [6,34], a one-dimensional lattice system becomes an
insulator as long as any, even weak, disorder appears, and the
electron wave function decays exponentially characterizing a
localized state,

|ϕ(r)| ∼ exp

(
−|r − r0|

ξ

)
, (9)

where ξ is called the “localization length.” By employing
the transfer-matrix technique [37,38], we calculate the local-
ization length of our one-dimensional system. The discrete
Schrödinger equation for the eigenstates of our model reads

t i,i+1
x ϕx

i + t i+1,i+2
x ϕx

i+2 + t i,i+1
xy ϕ

y
i + t i+1,i+2

xy ϕ
y
i+2 = Eϕx

i+1,

t i,i+1
y ϕ

y
i + t i+1,i+2

y ϕ
y
i+2 + t i,i+1

xy ϕx
i + t i+1,i+2

xy ϕx
i+2 = Eϕ

y
i+1,

where ϕx and ϕy are the wave functions of the x and y polar-
ized modes at the ith site, respectively. t i,i+1

σ (σ = x, y) is the
coupling strength between the ith and (i + 1)th particles,

tx ≡ t‖cos2ψ/2 + t⊥sin2ψ/2,

ty ≡ t‖sin2ψ/2 + t⊥cos2ψ/2, (10)

txy ≡ (t‖ − t⊥) sin ψ/2 cos ψ/2.

Equation (10) can be written in a matrix form

i+1 = Mii, i =

⎛
⎜⎜⎜⎜⎝

ϕx
i

ϕ
y
i

−t i,i+1
x ϕx

i+1 − t i,i+1
xy ϕ

y
i+1

−t i,i+1
xy ϕx

i+1 − t i,i+1
y ϕ

y
i+1

⎞
⎟⎟⎟⎟⎠, (11)

where the matrix Mi,

Mi =

⎛
⎜⎜⎝

0 0 ty/t‖t⊥ −txy/t‖t⊥
0 0 −txy/t‖t⊥ tx/t‖t⊥
tx txy Ety/t‖t⊥ −Etxy/t‖t⊥
txy ty −Etxy/t‖t⊥ Etx/t‖t⊥,

⎞
⎟⎟⎠, (12)

is the so-called transfer matrix between the ith and (i + 1)th
sites; we use the fact that txty − t2

xy = t‖t⊥ from Eq. (10) and
also apply a constraint det(Mi) = 1. Thus we are able to know
the Lth wave function of the entire system by multiplying
iteratively the transfer matrices,

L =
L−1∏
i=1

Mi1. (13)

The Lyapunov exponent λ, which is the inverse of localiza-
tion length λ ≡ 1/ξ , can be calculated from the eigenvalue
problem

M =
⎡
⎣ lim

L→∞

(
L∏

i=1

Mi

)(
L∏

i=1

Mi

)†
⎤
⎦. (14)
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FIG. 5. (a) Schematic of disordered zigzag array. (b) Inverse localization length 1/ξ , obtained from the transfer-matrix method, vs the
disorder strength W and the zigzag angle ψ0. Black lines are the contours of 1/ξ . Due to the symmetry about ψ0 = π/2, we only show the
results of ψ0 ∈ [0, π/2]. (c) The inverse localization length of ψ0 = π/2, 0 vs disorder strength W . (d) Density distributions of the eigenstates
which are the closest to E = 0 for different disorder strengths. Upper and lower panels correspond to ψ0 = π/2 and ψ0 = 0, respectively.
In our calculations, we choose 40 particles and average over 500 random realizations. The density of each particle is the summation of the
squared absolute value of the x- and y-mode wave function.

Here, we employ the efficient numerical method of
Refs. [39,40] to calculate the localization length.

B. Topology and localization length

In Fig. 5(b), we show the phase diagram of the inverse
localization length 1/ξ with respect to (W, ψ0) at E = 0. In
the gapped case, the zero-energy localization length is ex-
actly the length of localization of the edge state. Disorder
will increase the localization length; see the blue curve in
Fig. 5(c). In the gapless case, the zero-energy localization
length diverges, and disorder will result in a decrease of the
localization length; see the red curve in Fig. 5(c). We find that
divergence of the localization length occurs only in the gapless
region |ψ0 − π/2| > ψthre when W = 0, and we do not find
any divergence of the localization length when W > 0. This
implies that the system remains in the same topological phase
apart from the region (|ψ0 − π/2| > ψthre,W = 0). Thus we
may conclude that the topologically nontrivial system remains
topological when W > 0.

As we find that the winding number of the system remains
nontrivial for W > 0, the system should present topologically
nontrivial phenomena. One of the features in one-dimensional
topological systems is the appearance of topological edge
states [41]. In Fig. 5(d), we show the density distribution of
the eigenstates with E ≈ 0 under different strengths of dis-
order. We find that the topological edge states with averaged
zigzag angle ψ0 = π/2 are preserved as the value of W grows.
Meanwhile, with an increase of disorder strength, there appear
localized states for the zigzag angle ψ0 = 0. For a weak disor-
der W ≈ 0, the localization length of the edge state is so large

that the edge state is difficult to distinguish for a small number
of nanoparticles. However, the edge-localization effect will
become distinct when the system size is increased. We would
like to emphasize that when the system is topological, the edge
state will appear in each random realization; see Appendix B
for more information.

C. Experimental results

We have verified our theoretical predictions experimen-
tally. For the experiment, we fabricate many different types
of disordered zigzag arrays of nanodisks placed on a glass
substrate, as shown in Figs. 6(a)–6(d). The samples are ob-
tained with the same platform and techniques as described
earlier in Ref. [13]. To map topological states, we excite
zigzag arrays by femtosecond laser pulses and observe the
generation of a third-harmonic signal, this being a tool for
mapping strongly spatially localized distributions of light in
the arrays. We set different strengths of the angle disorder,
as shown in the examples in Figs. 6(a)–6(d) and also in Ap-
pendix A, Fig. 10. We analyze the edge localization via the
third-harmonic field in the zigzag arrays composed of 11 nan-
odisks with the averaged zigzag angle ψ0 = π/2 and different
angle disorder. We find that the number of distinguishable
edge states decreases when the disorder strength increases
[see Fig. 6(e)]; however, some of the edge is clearly observed
for most of the cases. The reduction in the edge localization
observed experimentally corresponds directly to the effect
predicted numerically, and it can be understood as follows.
The localization length increases with the strength of disorder
W for the averaged zigzag angle ψ0 = π/2; see Fig. 5(d).
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FIG. 6. Experimental results for disordered nanoparticle arrays. (a)–(d) Scanning electron microscopy (SEM) image of fabricated zigzag
arrays of Mie-resonant dielectric nanodisks with disordered strengths δψ = 5◦, 45◦, 60◦, and 90◦, respectively. The averaged zigzag angle
is ψ0 = π/2, which is the same setup as in Ref. [13]. (e) Edge-localization ratio extracted from experimental observations as a function of
disorder angle.

When the localization length of the edge state exceeds the
length of the array, we are not able to distinguish it from
other states, as similarly observed for the trivial case when
ψ0 = 0; see Fig. 5(d). For example, the localization length of
the edge state is about ξ = 10 at W = 0.5 (this corresponds to
the disorder angle δψ ≈ π/4). This is almost the same length
as the extension of the 11-disk nanoparticle arrays employed
in our experiment. Thus, while in general we confirm the basic
prediction of the theory about the character of the topology-
induced localization and its interplay with the disorder, it
becomes difficult to recognize the edge states and their local-
ization for stronger disorder when W > 0.5 with finite-extent
arrays.

V. STAGGERED-COUPLING ZIGZAG ARRAYS

Above, we have found theoretically that disorder-induced
topological transitions may happen only in the gapless
case when |ψ0 − π/2| > ψthre. Here, we consider a gener-
alized model, explore richer topological phases, and predict
disorder-induced topological phase transitions. We notice that
the coupling between particles strongly depends on the dis-
tance between nanoparticles [12], and in our model discussed
above all nanoparticles are equally spaced. In this section,
we consider a staggered-spacing array in which the relative
distance between nanoparticles alternates for odd and even
bonds, as shown in Fig. 7(a). In this case, the generalized
Hamiltonian reads

Ĥ2 =
∑
j,ν,ν ′

(1 + �( j) )a†
j,νV ( j, j+1)

ν,ν ′ a j+1,ν ′ + H.c., (15)

where �( j) = 0 for an even bond and �( j) = � for an odd
bond.

A. Ideal arrays

We start with an ideal array when disorder is absent. Chiral
symmetry is still preserved in the presence of the extra term,

and the topological property is still characterized by the wind-
ing number equation (6). The phase diagram of the winding

FIG. 7. (a) Schematic of a staggered-spacing zigzag array. �d
indicates a larger (or less) space at the odd bond. (b) Phase diagram
of winding number ν with respect to the bias � and the zigzag angle
ψ . (c) and (d) Two typical energy spectra under the OBC and the
corresponding winding number vs the zigzag angle. The winding
number is determined from Eq. (6).
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FIG. 8. Top row: Localization length. Calculation of the transfer matrix iterated at least 106 times. Bottom row: Winding number. Change
of the topological transition boundary for � < 0 is similar to �, and thus we have omitted other cases for simplicity. In our calculations, we
use 202 particles under the PBC and average over 200 random realizations.

number is obtained by varying the averaged zigzag angle and
disorder strength; see Fig. 7(b). We uncover three topologi-
cally different phases characterized by the winding numbers
ν = 0, 1, 2. When � = 0, the generalized model becomes the
original model of the zigzag array discussed above.

In Figs. 7(c) and 7(d), we show two typical energy spec-
tra under the OBC and the corresponding winding numbers.
When there is no zero-energy edge mode, the topological
phase is trivial, and therefore ν = 0. When zero-energy edge
modes appear, the zero-energy edge states are degenerate, and
their numbers nedge = 2 and nedge = 4 correspond to ν = 1
and ν = 2, respectively. This reflects the well-known bulk-
edge correspondence.

B. Disordered arrays

Next, we study the effects of disorder in zigzag angles. In
Fig. 8, we show the phase diagram of the localization length in
the parameter space (ψ0,W ) as � changes (see the top row).
For each fixed �, we find a narrow yellow line in the dia-
gram with an extremely large localization length, indicating a
boundary of a topological phase transition. We also calculate
the phase diagram of the winding number using Eq. (8), as
shown in the bottom row in Fig. 8. The boundary of the phase
transition coincides with the one shown in the diagram of the
localization length. Besides, we notice that the region of trivial
winding numbers shrinks to W = 0 when � vanishes. This
is consistent with the case of � = 0 discussed above, where
the system is topologically nontrivial in the presence of angle
disorder for any W > 0.

As stated above, we observe three topologically distinct
phases characterized by ν = 0, 1, 2. Besides the disorder-
induced topological transition between ν = 0 and ν = 1, there
is also the transition between ν = 1 and ν = 2 when � < 0.
The phase diagram of � < 0 is similar to that of � > 0; see
the last column in Fig. 8. Next, we compare two examples
of � > 0 and � < 0 in Fig. 9. We identify a disappearance

of twofold degenerate edge states in Fig. 9(a), corresponding
to the transition from ν = 1 to ν = 0. In Fig. 9(b), we find
that twofold degenerate edge states are transformed into four-
fold degenerate edge states, which characterizes the transition
from ν = 1 to ν = 2. A change in the number of zero-energy
edge states is a result of a topological transition, and the
number of zero-energy edge states coincides with the winding
number in Figs. 9(c) and 9(d).

FIG. 9. (a) and (b) Energy spectrum with respect to the strength
of disorder W near E = 0 with � = +0.3 and � = −0.3, respec-
tively. Here, the averaged zigzag angle is ψ0 = π/2. Zero-energy
edge modes in (a) are twofold degenerate. Zero-energy edge modes
in (b) are twofold degenerate in the clean limit W = 0 and then turn
into fourfold degenerate after the phase transition. (c) and (d) are the
winding numbers of (a) and (b), respectively. All results are averaged
over 200 random realizations.
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When the deviation |�| is small, the spectral gap will be
closed when disorder becomes stronger. Intuitively, this hap-
pens because the disorder becomes dominating, and it “wipes
away” the details of the staggered-spacing distribution. How-
ever, in both these cases in Fig. 9, we observe that the spectral
gap does not vanish for a strong disorder. This result differs
from the common belief that stronger disorder will force a
spectral gap to close [21] or topological transitions occur due
to disappearance of energy gaps. Our finding may help to
better understand the nature of disorder-induced topological
transitions.

VI. CONCLUSIONS

We have studied the effect of disorder on topological
properties of zigzag arrays of nanoparticles with polarization-
dependent interaction. For equal-spacing arrays, we have
found that the system will remain in the topological regime
even in the presence of an angle disorder supporting highly
or weakly localized edge states, and this feature was found
to be in agreement with experiments for finite-extent ar-
rays of silicon nanoparticles with an introduced disorder. For
staggered-spacing arrays, we have found richer topological
phases and observed that the angle disorder may induce topo-
logical phase transitions. Remarkably, in this latter case the
spectral gap remains open even for a strong disorder, and we

believe this system provides an example of a topologically
nontrivial system with disordered parameters.
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APPENDIX A: DETAILED EXPERIMENTAL DATA

We present in Fig. 10 results on experimentally accumu-
lated statistics of field distributions in zigzag chains with
angular disorder varying from δψ = 5◦ to δψ = 90◦. All
chains are 11 disks long, and their configurations are schemat-
ically shown in the left-hand columns. The field distributions
along the chains are studied via nonlinear imaging: The chains
are excited by short-pulse, high-peak-power laser pulses at
1590-nm wavelength, and generation of a third-harmonic

FIG. 10. Experimentally observed field distributions in 60 realizations of disordered zigzag arrays illuminated by linearly polarized light.
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signal is imaged onto a camera. The corresponding distribu-
tions of the third harmonic are shown as false-color images in
the right-hand columns. In the chosen experimental configu-
ration, the topological state is expected to occur at the bottom
left edge of the chains. Experimental realizations in which the
formation of the edge state was not observed are highlighted in
red. As the level of disorder increases, the localization length
of the edge states increases, reaching and further surpassing
the length of the 11-disk chains. Large localization length in
highly disordered zigzags reduces the probability of observing
edge states in finite-length chains.

APPENDIX B: EDGE STATE IN SINGLE REALIZATION

We have mentioned in the main text that when a sys-
tem is in a topologically nontrivial phase, there appears an
edge state with zero energy. This can be accounted for by
the bulk-edge correspondence principle. To show this, we
present the energy spectrum as a function of disorder strength
W in single random realization {εi}; see Fig. 11. We calcu-
late the edge occupation nedge = ∑

l∈edge nl to examine if the
zero-energy state is localized around the edge. The results
show that the zero-energy state is indeed an edge state. This
implies that the bulk-edge correspondence principle applies
for each random realization if the system is in a topological
phase.

FIG. 11. Energy spectrum as a function of disorder strength W
in a single realization {εi}. (a) and (b) show two different random
realizations when ψ0 = π/2, and (c) and (d) show two different
random realizations when ψ0 = 0. The length of the system is 402
particles, and the area of the edge is set to be the leftmost and
rightmost 50 particles. Other parameters are the same as in Fig. 5.
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