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Decoherence as a detector of the Unruh effect
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We propose a type of the Unruh-DeWitt detector which measures the decoherence of the reduced density
matrix of the detector interacting with the massless quantum scalar field. We find that the decoherence decay
rates are different in the inertial and accelerated reference frames. We show that the exponential phase decay
can be observed for relatively low accelerations, that can significantly improve the conditions for measuring the
Unruh effect.
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All elementary particles, which exist in nature, are the
excitations of the corresponding quantum fields. But even
when these fields are in their quantum vacuum states, a very
complicated dynamics of vacuum fluctuations takes place.
Moreover, as it was shown by Unruh in 1976 [1], in a flat
space-time the state of the quantum vacuum depends on the
motion of observer, and thus the concept of particles, in the
context of quantum field theory, is relative. More specifically,
for the uniformly accelerated observer the vacuum of quantum
fields in the Minkowski space-time is modified to the thermal
state. This result, nowadays known as the Unruh effect, gen-
erated an enormous number of publications. (See Ref. [2] for
a comprehensive review, and references therein.) The effec-
tive temperature of the thermal distribution is T = h̄a/2πckB,
where a is the acceleration, kB is the Boltzmann constant, h̄ is
the reduced Planck constant, and c is the speed of light.

The direct observation of the Unruh effect requires very
large accelerations, e.g., a ≈ 2.5 × 1020 m/s2 for T = 1 K.
These accelerations can be realized only in strong gravita-
tional fields, for instance, produced by the black holes. That is
why the current trend in this field is to propose various types of
detectors which can measure indirectly the Unruh effect [3–7].
In particular, the detector that measures the dependence of the
Berry phase on the acceleration was suggested in Refs. [8,9].
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According to Ref. [8], this detector can significantly reduce
the required acceleration, up to a ≈ 2.5 × 1017 m/s2.

In this article, we propose an alternative type of detector to
probe the Unruh effect. Our detector does not measure directly
the equilibrium distribution of the produced particles, but the
decoherence of the reduced density matrix. We show that this
information can be used for the detection of the Unruh effect
at significantly lower accelerations, even in comparison with
the detector based on the measurement of the Berry phase.
Through the paper, unless stated otherwise, we use the natural
units, h̄ = c = kB = 1.

We assume that the observer moves with an uniform ac-
celeration, a, in the z direction with respect to an inertial
reference frame in the Minkowski spacetime. The transforma-
tion of coordinates,

t = 1

a
eaζ sinh(aτ ), z = 1

a
eaζ cosh(aτ ), (1)

describes the right wedge of the Rindler spacetime with the
metric,

ds2 = e2aζ (dτ 2 − dζ 2) − dx2
⊥, (2)

where we set x⊥ = (x, y). Hereafter, we denote the co-
ordinates in the Minkowski space-time as (t, r), and the
coordinates in the Rindler spacetime as (τ, x), where x =
(x⊥, ζ ).

The conventional Unruh-DeWitt (UDW) detector is pre-
sented as a box containing a non-relativistic particle interact-
ing with a massless scalar field. It is assumed that the detector
is located at the origin of the moving reference frame, and the
particle is in its ground state. The quanta of the scalar field is
detected if the detector is found in an excited state. Since, only
two states are relevant: the ground state and the first excited
state, one can consider the detector as a two-level quantum
system interacting with the scalar field [1,4].
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The entire system, “detector + field”, is governed by the
Hamiltonian, Ht = Hd + Hf + Hint , where Hd is the Hamil-
tonian of the detector, Hf is the Hamiltonian of the free
scalar field, and Hint stands for the interaction Hamiltonian.
The latter can be written as, Hint = ∫

�t
Hint d3r, where Hint

is the Hamiltonian density, and the integral is taken over the
three-dimensional surface, �t , at time t = const.

In the original formulation of the UDW model, the
detector was considered as a pointike particle, with the in-
teraction Hamiltonian being Hint = ∫

�t
δ3(r − r(t ))Hint d3r,

where r(t ), describes the trajectory of the detector. In our pa-
per we consider both cases: a pointlike detector and a detector
of the finite size.

In our analysis, we consider the UDW detector as a two-
level system with the transition energy ε. The Hamiltonian
of the detector we take as Hd = (ε/2)σz, where σz is the
Pauli matrix. This form of the Hamiltonian corresponds to the
effective Zeeman interaction of a single spin with a permanent
magnetic field, oriented in the z direction.

We assume that in the uniformly accelerated reference
frame, the detector is located at the origin of the coordinates.
The entire system is governed by the Hamiltonian,

Ht = ε

2
σz ⊗ 1l + 1l ⊗

∑
ω>0

∑
k⊥

ωb†
kbk

+ λ√
V

σz ⊗
∑
ω>0

∑
k⊥

1√
2ω

(gkb†
k + g∗

kbk ), (3)

where λ is a coupling constant and k = (k⊥, ω). The Rindler
creation and annihilation operators, associated with the field
mode, k, obey the standard commutation relations: [bk, b†

k′ ] =
δkk′ , [bk, bk′ ] = 0 and [b†

k, b†
k′ ] = 0. The form factor, gk, is de-

fined as follows: gk = ∫
R3 vk(x) f (x)eaζ dζ d2x⊥. The modes,

vk, are given by Refs. [10–12],

vk =
√

4ω sinh(πω/a)

πa
Kiω/a

(k⊥
a

eaζ
)

eik⊥·x⊥ , (4)

where Kiμ(z) is the Macdonald function of the imaginary
order. The function, f (x), describes the spatial profile of the
detector in the Rindler space.

In Eq. (3), we assume that the interaction term is much
smaller than the effective Zeeman interaction. It is well known
that in this case, only the σz operator can be used in the interac-
tion Hamiltonian. We call the system with the Hamiltonian (3)
energy conserving, because the operator, σz, commutes with
the total Hamiltonian. As a result, the initial probabilities of
population of the detector do not change in time.

We assume that for the entire system, the density operator,
�(τ ), at time τ = τ0, takes the form, �(τ0) = |�0〉〈�0|, with
|�0〉 = |ψ0〉 ⊗ |0M〉. Here, |ψ0〉 = α| ↓〉 + β| ↑〉, denotes the
initial superpositional state of the detector, and |0M〉 stands
for the Minkowski vacuum.

We denote by ρ(τ ) the detector reduced density matrix,
obtained by tracing out all scalar field degrees of freedom. The
time evolution of the matrix elements of the reduced density

matrix can be written as

ρi j (τ ) = 〈i|TrRU (τ )�(0)U −1(τ )| j〉,
(i, j = 0, 1), (5)

where the index i = 0 is associated with the eigenvector |↓〉,
and the index i = 1 is associated with the eigenvector |↑〉 of
the operator σz.

The interaction of the detector with the scalar field does
not excite the detector, and the detection of the Unruh effect
is reduced to the study of the phase decoherence (decay of
the nondiagonal elements of the reduced density matrix) (for
details see the Appendix):

ρ01(τ ) = eiετ−γ (τ )ρ01(τ0). (6)

We say that the full phase decoherence takes place if
ρ01(τ ) → 0 as τ → ∞. Otherwise, we call the phase deco-
herence partial.

The computation of the decoherence function yields (see
the Appendix):

γ (τ ) = λ2

2π3

∫ ∞

0

|gω|2
ω

sinc2
(ωτ

2

)
coth

(πω

a

)
dω, (7)

where |gω|2 = ∫ |gk|2d2k⊥, sinc(x) = sin(x)/x.
Pointlike detector. - For a pointlike detector, the form

factor is

gk =
√

4ω sinh(πω/a)

πa
Kiω/a

(k⊥
a

)
. (8)

The computation of |gω|2 yields, |gω|2 = 8πω2. Substituting
this result in Eq. (7), we obtain,

γ (τ ) = 4λ2

π2

∫ ∞

0
ω sinc2

(ωτ

2

)
coth

(πω

a

)
dω. (9)

As one can see, the integral in Eq. (9) is formally divergent
at ω → ∞, and we have, γ ∝ ln ω. This issue was studied in
Refs. [13–16]. It was shown that the ultraviolet logarithmic
divergence is caused by instantaneous switching on/off of
the detector. This difficulty can be overcome, and the diver-
gence can be removed by a regularization procedure through
the smooth switching function of the detector, or through
its profile (or both) [5,17]. Below we use the regularization
procedure through the detector profile.

Detector of the finite size. - To avoid the ultraviolet diver-
gence, we consider the form factor in the form

gk = e−lω/2

√
4ω sinh(πω/a)

πa
Kiω/a

(k⊥
a

)
, (10)

where, l , is the characteristic size of the detector. The ex-
ponential cutoff eliminates the logarithmic divergence in the
limit of ω → ∞. Using the inverse transformation, one can
reconstruct the detector profile as follows:

f (x) = 1

(2π )3

∫
gkv

∗
k(x) d3k. (11)

For the detector at rest in Minkowski space, the computa-
tion yields the spherically symmetric profile:

f (r) = l

π2(l2 + r2)2
. (12)
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FIG. 1. The detector profile. Left: an accelerated observer, with
the acceleration being taken as, a = 5 × 1026m/s2. Right: an inertial
observer (a = 0).

One can show, that at l → 0, the function f (r) → δ(r). Thus,
the detector becomes a pointlike particle, and we return to the
expression (9) for the decoherence function.

The choice of the magnitude of the cutoff is dictated by the
minimal size of the detector. We assume here that it cannot be
less than the size of the hydrogen atom, and set l ≈ r0, where
r0 is the Bohr radius.

Due to the acceleration, in the Rindler spacetime the detec-
tor modifies its shape as follows:

f (x) = le−aζ ln(u + √
u2 − 1)

π2
√

u2 − 1
(
l2 + 1

a2 ln2(u + √
u2 − 1)

)2 , (13)

where u = a2(x2 + y2)e−aζ /2 + cosh(aζ ).
In Fig. 1, we compare the detector shape in the inertial

reference frame with its shape in the accelerated reference
frame, for the observer moving with the acceleration, a =
5 × 1026m/s2. Such high acceleration can be sustained by
using current laser technologies [2,18].

With the modified form factor, the decoherence function
takes the form

γ (τ ) = 4λ2

π2

∫ ∞

0
ωe−lωsinc2

(ωτ

2

)
coth

(πω

a

)
dω. (14)

Performing the integration, we obtain

γ (τ ) = 2λ2

π2
� ln(1 + iτ/l )

− 4λ2

π2
� ln

(
�(1 + al/2π + iaτ/2π )

�(1 + al/2π )

)
, (15)

where �(z) is the Gamma function.
Returning to the physical units, we find that in the

limit of aτ/2πc � 1, one can approximate the decoherence
function as

γ (τ ) ≈ 2λ2

π2
ln(cτ/l ) + λ2aτ

π2c
. (16)

As one can see, the detector exhibits the full phase decoher-
ence, even for an inertial motion. However, the decay process
is very slow, γ ∝ ln τ . In the limit of large accelerations, one
can neglect the contribution of the first term in Eq. (16), and
recast the decoherence function as, γ (τ ) ≈ �dτ , where �d =
λ2a/(π2c) denotes the decoherence decay rate. We conclude
that the decoherence effect is insensitive to the choice of the
cutoff and is highly sensitive to the choice of the coupling
constant, λ.

In Figs. 2, and 3, we present the results of numerical sim-
ulations for the trial coupling constant, λ = 10−3. In Fig. 2,

FIG. 2. The exponential decay function, e−γ (τ ) vs τ and a (λ =
10−3).

the exponential decay function is depicted as a function of
the acceleration and proper time of the accelerating observer.
In Fig. 3, we plot the exponential decay function as a func-
tion of time and for different choices of the acceleration:
a = 0, a = 1013 m/s2, a = 1014 m/s2, a = 1015 m/s2, a =
1016 m/s2 and a = 1017 m/s2.

Setup for the Gedanken experiment. - We consider two
identical detectors coupled to the scalar field in both inertial
and accelerated reference frames. The experiment consists
of comparing the decoherence for inertial and accelerated
observers.

Let us denote by σ the magnitude of the decoherence
function that can be measured in the experiment. Then,
the time required to make the measurement, can be esti-
mated as follows: τi ≈ (l/c) exp(π2σ/λ2) for the detector at
rest in Minkowski space, and τa = σ/�d for the uniformly
accelerated detector. By choosing σ = 10−4, we find τi ∼
e103

s, and τa ≈ 3 × 1011/a [s]. Then, for the acceleration,

FIG. 3. The exponential decay function, e−γ (τ ) vs τ (λ = 10−3).
From the top to the bottom: a = 0 (cyan), a = 1013 m/s2 (red), a =
1014 m/s2 (green), a = 1015m/s2 (orange), a = 1016 m/s2 (blue),
a = 1017 m/s2 (black). Inset: zoom of the main figure.
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a = 1013 m/s2, we obtain, τa ≈ 30 ms, and τa ≈ 3 μs for a =
1017 m/s2.

Dependence on the coupling constant. In Figs. 2 and 3, we
have chosen the dimensionless coupling constant, λ = 10−3,
as the characteristic trial value. The value of λ can vary
depending on particular situations. For example, in Ref. [8],
λ ≈ 10−7 was chosen, for the microwave field in the resonator
with the frequency, �a = 2 GHz, and with a similar frequency
of the two-level atomic transition (detector, as in our case). If
we choose, σ = 10−8, the acceleration, a = 1015m/s2, can be
measured for τa ≈ 3s. It is two orders of magnitude better than
in Ref. [8], where the Berry phase was used for measurement
of the Unruh effect. Many other factors should be taken into
account to make the proper estimates for real experiments.

Laboratory bounds. - Due to the Lorentz contraction of
time, for the high accelerations, one might expect a significant
difference between the decoherence time for the accelerated
observer and for the inertial one. Indeed, while for non-
relativistic velocities, the observation time in the laboratory
system is, �t ≈ τ , where τ denotes the decoherence time for
the accelerated observer, for the ultrarelativistic motion, one
might expect, �t � τ . This imposes strong restrictions on the
upper limit of the observation time in the Rindler space-time.

For definiteness, let us consider two cases: (1) nonrel-
ativistic motion with v � 0.2 c; (2) ultra-relativistic motion
with v � 0.95 c. In the first case, we obtain �t1 ≈ τ1, and
τ1 � 0.2c/a. In the second case, we find �t2 ≈ 1.8τ2 and
τ2 � 2c/a. Substituting τ1,2 in Eq. (16), we obtain γ (τ1) ≈
0.02λ2, and γ (τ2) ≈ 0.2λ2.

Our approach has limitations related to the decoherence
observation time from the perspective of an inertial observer
at rest in the Minkowski space-time. Note that the same
restrictions are valid for any detector based on the indirect
measurement of the Unruh effect.

Concluding remarks. - We demonstrated that the informa-
tion about the presence of the Unruh effects is encoded in
the decoherence; the exponential decay of the nondiagonal

elements of the reduced density matrix. In principle, for large
enough interaction constant, the phase decay of the reduced
density matrix can be observable for the accelerations as low
as 1013 m/s2. Such accelerations should be sustained only
for a time ≈100 μs. For small enough interaction constant
(λ ≈ 10−7 [8]), we demonstrated that the improvement by two
orders of magnitude is possible, which allows one to measure
the accelerations as low as 1015 m/s2.

Based on the decoherence measurement, our method can
be considered as one of the many discussed possibilities. We
hope that our approach can be useful for detecting the Unruh
effect with modern and near-future technologies.
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APPENDIX: EVOLUTION OPERATOR AND
BOGOLYUBOV TRANSFORMATIONS

1. Evolution operator

To proceed with calculations of evolution operator, we use
the interaction picture writing the interaction Hamiltonian as,

HI (τ ) = e−iHf τ Hsd eiHf τ , (A1)

where Hf = l ⊗ ∑
ω>0

∑
k⊥ ωb†

kbk and,

Hsd = ε

2
σz ⊗ 1l

+ λ√
V

σz ⊗
∑
ω>0

∑
k⊥

1√
2ω

(gkb†
k + g∗

kbk ). (A2)

Then, in the interaction picture, the evolution operator,

U (τ ) = T̂ exp ( − i
∫ τ

0 dt ′HI (t ′)), can be written as [19]

U (τ ) = exp

(
−iν(τ )1l + i

ε

2
σz ⊗ 1l + σz ⊗

∑
k

(b†
kξk(τ ) − bkξ

∗
k (τ ))

)
, (A3)

where

ν(τ ) = i

2

∑
k

∫ τ

0

(
ξ ∗

k (t )ξ̇k(t ) − ξk(t )ξ̇ ∗
k (t )

)
dt, ξk(τ ) = λgk

1 − e−iωτ

√
2V ω3/2

. (A4)

The results of the action of the evolution operator (A3) on an arbitrary pure initial state of the entire system, can be described
by the expressions

U (τ )| ↓〉 ⊗ |ψF 〉 =e−iν(τ )−iετ/2| ↓〉 ⊗
∏

k

D(−ξk(τ ))|ψF 〉, (A5)

U (τ )| ↑〉 ⊗ |ψF 〉 =e−iν(τ )+iετ/2| ↑〉 ⊗
∏

k

D(ξk(τ ))|ψF 〉, (A6)

where |ψF 〉 is an initial state of the scalar field, and D(ξk )
denotes the displacement operator [20]:

D(ξk ) = eξkb†
k−ξ∗

k bk . (A7)

The density operator, �(τ ), for the entire system, at time
τ = τ0, is taken in the form, �(τ0) = |�0〉〈�0|. Here, |�0〉 =
|ψ0〉 ⊗ |0M〉. The wave function, |ψ0〉, denotes the initial state
of the detector, and |0M〉 stands for the Minkowski vacuum.
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The reduced density matrix of the detector, ρ(τ ), is obtained
by tracing out all scalar field degrees of freedom. Its matrix
elements are given by

ρi j (τ ) = 〈i|TrRU (τ )�(τ0)U −1(τ )| j〉, (i, j = 0, 1), (A8)

where the index i = 0 is associated with the eigenvector | ↓〉
and the index i = 1 is associated with the eigenvector | ↑〉. Us-
ing Eqs. (A5) and (A6), one can show that ρ00(τ ) = ρ00(τ0),
ρ11(τ ) = ρ11(τ0), and,

ρ01(τ ) = eiετ−γ (τ )ρ01(τ0). (A9)

2. Bogolyubov transformations

The relations between the creation and annihilation opera-
tors in the Rindler space-time and in the Minkowski spacetime
are determined by the Bogolyubov transformations: b̂k =∑

p(αkpâp − β∗
kpâ†

p). Note that, while the operators b̂k anni-
hilate the Rindler vacuum, |0R〉, the operators âp annihilate
the Minkowski vacuum, |0M〉. The computation of the Bo-
golyubov coefficients yields [2]

b̂ωk⊥ = â−ωk⊥ + e−πω/aâ†
ω−k⊥√

1 − e−2πω/a
. (A10)

Using the Bogolyubov transformations, one can easily calcu-
late the mean number of the particles in the mode ω:

n̄ω = 〈0M |b†
kbk|0M〉 = 1

e2πω/a − 1
. (A11)

In order to obtain the decoherence function, γ (τ ), we
employ the Bogolyubov transformations. Substituting (A10)
in Eq. (A7) and using Eqs. (A5), (A6), and (A8), after some
algebra we obtain

γ (τ ) = 2
∑

k

|ξk (τ )|2(1 + 2n̄k )

= 2
∑

k

|ξk (τ )|2 coth
(πωk

a

)
. (A12)

In the continuous limit, the sum over k is replaced by the
integral,

∑ → V/(2π )3
∫

d3k, and the decoherence function
is defined by the integral

γ (τ ) = λ2

4π3

∫ ∞

0

|gω|2
ω

sinc2
(ωτ

2

)
coth

(πω

a

)
dω, (A13)

where, |gω|2 = ∫ |gk|2d2k⊥ and sinc(x) = sin(x)/x.
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