
PHYSICAL REVIEW RESEARCH 2, 043228 (2020)

Signatures of topological ground state degeneracy in Majorana islands

Jukka I. Väyrynen ,1,2 Adrian E. Feiguin,3 and Roman M. Lutchyn2

1Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
2Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA

3Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

(Received 25 March 2020; accepted 28 October 2020; published 13 November 2020)

We consider a mesoscopic superconducting island hosting multiple pairs of Majorana zero-energy modes.
The Majorana island consists of multiple p-wave wires connected together by a trivial (s-wave) superconducting
backbone and is characterized by an overall charging energy EC ; the wires are coupled to normal-metal leads
via tunnel junctions. We calculate the average charge on the island as well as nonlocal conductance matrix as a
function of a p-wave pairing gap �P, charging energy EC , and dimensionless junction conductances gi. We find
that the presence of a topological ground-state degeneracy in the island dramatically enhances charge fluctuations
and leads to the suppression of Coulomb blockade effects. In contrast with conventional (s-wave) mesoscopic
superconducting islands, we find that Coulomb blockade oscillations of conductance are suppressed in Majorana
islands regardless of the ratio EC/�P or the magnitude of the conductances gi. We also discuss our findings in
relation to the so-called topological Kondo effect.
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I. INTRODUCTION

The effect of quantum fluctuations in mesoscopic islands
of superconducting metals has been extensively studied in
the last two decades [1–7]. In a conventional (s-wave) su-
perconducting island connected to normal leads, the charge
Q on the island varies in discrete steps as a function of
an applied gate voltage Vg. When superconducting gap � is
larger than the charging energy on the island EC , the charge
Q is 2e periodic and the ground state is formed out of
different numbers of Cooper pairs. Superconducting charge
fluctuations smear out the transition between adjacent charge
states, i.e., Q and Q + 2e. In the limit of weak island-lead
tunneling, superconducting charge fluctuations are not strong
enough to suppress Coulomb blockade effect [8,9]. Another
way to probe properties of Coulomb-blockaded islands is to
measure two-terminal tunneling conductance G. Away from
charge degeneracy points (known as the valley), tunneling of
Cooper pairs across the superconducting island is suppressed
at low temperatures T , i.e., G ∝ T 2 [10,11]. This conclusion
holds for any number of normal-metal (noninteracting) leads
connected to the island.

The situation is different in the case of topological super-
conductors when an island hosts Majorana zero-energy modes
(MZMs). The presence of these low-energy states drastically
changes thermodynamic and transport properties [12–25].
This can already be seen in the case of two Majoranas
coupled to two (M = 2) [12–15] leads where resonant tunnel-
ing through a Majorana state (elastic cotunneling) dominates
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the conductance in the valley and leads to a finite contribution
at T = 0. Indeed, for M = 2, one finds G/G0 ∼ (g�P/EC )2

for g�P � EC , where 0 � g � 1 is the junctions’ normal state
dimensionless conductance, �P is the topological pairing gap
(i.e., p-wave gap), EC is the charging energy, and G0 = e2/h is
the conductance quantum. Thus, the strength of the supercon-
ducting charge fluctuations is controlled by the ratio �P/EC

as well as the normal-state dimensionless conductance g.
The M = 2 case is quite special because the charge on

the island and fermion parity are locked by the charging
energy removing the underlying ground-state degeneracy. In
the M-terminal islands with M > 2, MZMs charging energy
fixes the overall fermion parity sector but it does not remove
ground-state degeneracy, i.e., Majorana degrees of freedom
form a SO(M ) impurity “spin.” It was proposed in Refs.
[26–29] that the remaining topological ground-state degener-
acy can be used for quantum information processing. When
such an island is coupled to normal leads, one can show that
the topological ground-state degeneracy manifests itself in a
number of different ways: The superconducting charge fluc-
tuations are enhanced, suppressing Coulomb blockade effect;
the conductance Gi j between leads i and j reaches a universal
value Gi �= j = 2e2/(Mh) at T = 0 independent of the applied
gate voltage.

In this paper, we show that the suppression of Coulomb
blockade effect can be used as a signature of topological
ground-state degeneracy. To draw general conclusions, we
developed a theoretical framework which is suitable for an
arbitrary ratio of �P and EC and treats superconducting and
charge fluctuations on equal footing. Our microscopic model
for Majorana islands allows one to calculate observable quan-
tities of interest (e.g., charge on the island and multiterminal
conductance matrix) in terms of measurable parameters such
as normal-state junction conductance g, EC , �P and ap-
plied dimensionless gate voltage Ng. We note that previous
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works [16–25] have considered the limit of �P → ∞ in the
weak tunneling regime. Using existing experimental data on
semiconductor-based Majorana islands [30–32], one can set
an upper bound on topological gap of 50 μeV, indicating that
the �P/EC � 1 regime is more experimentally relevant.

Our work can be placed in the context of the so-called
topological Kondo effect [16–25]. In this exotic Kondo effect,
the Coulomb island of M MZMs forms the impurity spin
with a 2

1
2 M−1-fold degenerate ground state in the Coulomb

valley (the MZMs come in pairs, which makes M even). The
impurity spin is screened by M normal metal leads, each one
tunnel coupled to a different MZM. The topological Kondo
effect drives the system to a strongly coupled low-temperature
fixed point where the conductance Gi j reaches the universal
value quoted above. The finite-temperature corrections δGi j

to this result vanish with a universal non-Fermi-liquid power-
law exponent: δGi j ∝ T 2(1− 2

M ). The scaling of the nonlocal
conductance with temperature can be used to detect Majorana-
induced ground-state degeneracy in the island. Furthermore,
multiterminal conductance depends on the number of attached
leads M and cutting off one of the leads (by tuning the tun-
nel gate) should change the conductance (i.e., M → M − 1).
Note that once M = 2, the system would cease to flow to the
topological Kondo fixed point and conductance will become
dependent on �P/EC as explained above.

The structure of this paper is as follows: In Sec. II, we
begin with the qualitative discussion of the main results. In
Sec. III, we introduce the microscopic model which is then
mapped to a low-energy model of quantum Brownian motion
(QBM). In Secs. IV–V, we perform renormalization group
(RG) analysis of the QBM model in the respective limits of
large (�P � EC) and small (�P � EC) topological gaps. By
using the identified leading relevant or irrelevant operators
and their scaling dimensions, we then proceed to evaluate the
average charge and the conductance of the island in Sec. VI.
We compare our model to the ones studied in the context of
the multichannel Kondo problem in Sec. VII and then draw
conclusions in Sec. VIII.

II. QUALITATIVE DISCUSSION OF THE MAIN RESULTS

We consider a Majorana island shown in Fig. 1, consisting
of an array of proximitized semiconductor nanowires tuned
(by magnetic field and/or gate voltages) to the topological
regime with the corresponding p-wave gap �P. In the regime
of interest, the left and right halves of these wires form M
effectively spinless semi-infinite leads. A central segment of
length L is separated from the leads by barriers which are
characterized by a dimensionless conductance gi ∈ [0, 1]. We
assume that L is much larger than the p-wave coherence
length so we can ignore the hybridization of the Majorana
states through the central segment. Proximitized nanowires
are coupled with each other by trivial floating superconductor
with the gap �S � �P, EC . Different proximitized nanowires
are separated from each other by a distance much larger than
the coherence length ξS in the trivial superconductor so in-
terwire Majorana hybridization can be neglected. The s-wave
superconductor has a large number of channels connecting
different segments of the device and therefore the island
formed by the superconductor together with the nanowires can

FIG. 1. Schematic diagram of the device built out of M/2
nanowires. Each wire (grey) is split by two barriers (orange trian-
gles) into left and right “leads” and a middle section. The middle
section has a topological gap �P due to a proximity to a central
floating superconductor (dark blue). Well-separated Majorana zero
modes (light grey) γi are localized at the boundaries between the
normal and the topological superconducting regions. The middle
section consisting of the nanowires and the s-wave superconductor
has a charging energy EC . We assume that the s-wave gap �S of
the central superconductor is the largest energy scale in the problem,
�S � EC, �P.

be characterized by a single charging energy EC and interwire
mutual charging effects can be neglected. For more details on
the model, see Sec. III.

In this paper, we focus on four main parameter regimes
summarized in Fig. 2. These regimes correspond to the cases
of large or small �P/EC , and weak or strong tunneling,
which is controlled by the dimensionless conductance g of
a junction. In all regimes, the system flows to the universal
strong-coupling fixed point mentioned above. As a result,
at low temperatures T � TK , the conductance displays non-
Fermi-liquid corrections with a characteristic strong-coupling
temperature scale TK , see Eq. (2.3). This characteristic scale
depends on the bare parameters and is summarized in Table I.

In the Kondo regime in Fig. 2, the scale TK is well below
both EC and �P. In this regime, there is a wide temperature
window in which the junction conductances are small and
exhibit the typical weak-coupling Kondo renormalization with
logarithmic temperature dependence. As seen in Fig. 2, this
case requires small enough bare conductances g and is favored
by small ratio �P/EC . The Kondo temperature in this case can
be written as

TK ∼ D0 exp

[
− 1

(M − 2)λ(D0)

]
, (2.1)

where D0 = min(EC, �P ) sets the effective UV cutoff for the
Kondo regime, and λ(D0) is the cotunneling amplitude, see
Table I. This expression is valid in the Coulomb valley where
Ng is away from half-integer values.

If the bare conductances are not too small, the scale TK be-
comes of order min(EC, �P ) [λ(D0) ∼ 1/M in Eq. (2.1), see
Table I]. This regime is denoted strong tunneling in Fig. 2 and
is favored by a large ratio �P/EC . Benefiting from the large
TK , this regime thus may be advantageous for observing the
non-Fermi-liquid aspects of the strong coupling fixed point.

In the rest of this section, we discuss thermodynamic
and transport signatures of the topological ground-state de-
generacy and summarize our findings for two observable
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FIG. 2. A diagram showing the behavior of the island at in-
termediate temperatures, before reaching the strong coupling fixed
point. The parameter space is formed by the dimensionless bare
conductance 0 � g � 1 and the topological gap in units of charg-
ing energy �P/EC . In the weak-coupling Kondo regime (grey),
there is a large temperature window TK � T � min(EC, �P )
which is characterized by a marginally relevant tunneling opera-
tors. The strong tunneling regime (white) can be understood as
the limit TK → min(EC, �P ). In this regime, there is no logarith-
mic Kondo renormalization of tunneling amplitudes. Instead, the
system is characterized by weak irrelevant reflection amplitudes
that display non-Fermi-liquid-like temperature dependence at T �
min(EC, �P ). Generally, the Kondo regime exists when the renor-
malized tunneling amplitude is small at scale min(EC, �P ). On the
left, the charging energy is large, EC � �P, and even a large bare
tunneling amplitude (but still 1 − g � ( �P

EC
)(2/M )) gets renormalized

to a small value at scale �P. On the right, the topological supercon-
ducting gap is large, �P � EC , and even a small tunneling amplitude
(but still g � EC

M�P
) gets renormalized to a large value at scale EC .

Thus, on the right, �P � EC , the Kondo regime only exists where
bare conductance is relatively small. The crossover between different
regimes as a function of �P/EC and g is schematically indicated by
the dashed line.

quantities—the average charge on the island and the conduc-
tance matrix Gi j . For the latter, we focus on low temperatures
below the strong coupling scale, T � TK , where the results
are universal, independent of the ratio �P/EC .

A. Average charge

Let us first discuss the average number of electrons 〈N〉 of
the island, whose dependence on the gate charge Ng can be
measured by charge sensing [33,34]. We focus on the regime
T � EC where thermal excitations can be neglected. In the
limit �P � EC , the charge depends on the ratio EC/�P. For
example, in the strong tunneling limit g�P � EC [case (b) in

TABLE I. The cotunneling amplitude λ(D0) in Eq. (2.1) in the
conductance intervals where the Kondo regime exists, see Fig. 2.
Here � ∼ EC (1 − g)M/2 is the renormalized charging energy in the
case EC � �P, see Eq. (5.15).

EC � �P EC � �P

g < 1
M

1
M <g<1−(�P

EC

) 2
M g <

EC
M�P

λ= g�P
EC

, Sec. V A 1 λ= �P
M�

, Sec. V B λ = g�P
EC

, Sec. IV A

FIG. 3. The different regimes of parameters that we focus on.
These regimes (a)–(d) are discussed in respective Secs. IV A, IV B,
V A, and V B. In (d), (weak superconductor, strong tunneling), we
have two subcases, � = EC (1 − g)M/2 can be much smaller or much
larger than �P.

Fig. 3], we have for all Ng,

〈N〉 − Ng ∝ −
(

EC

�P

)M

r1 . . . rM sin 2πNg , (2.2)

where ri ∼ (1 − gi )1/2 are the bare reflection amplitudes of
the M junctions. Thus, the charge of the island almost linearly
follows the gate charge Ng, apart from harmonic corrections
which are weakened by a factor (EC/�P )M due to the en-
hanced superconducting charge fluctuations. The power-law
dependence on EC/�P is a signature of topological ground-
state degeneracy and can be measured in charge sensing. In
the opposite limit of weak superconductivity, EC � �P, this
factor is absent from Eq. (2.2) [Fig. 3(d)]. This result is similar
to the one predicted in metallic multilead quantum dots [35].

In the weak-tunneling limit, g�P � EC , the charge is ap-
proximately quantized to the nearest integer to Ng and 〈N〉 vs
Ng shows the usual Coulomb staircase. The plateaus in the
Coulomb staircase at Ng ≈ integer are not horizontal but have
a slope d〈N〉/dNg ≈ ∑

i gi�P/EC from quantum fluctuations
due to tunneling. The zero-temperature slope is thus enhanced
by an additional factor �P/EC � 1 compared to the case of a
normal metal quantum dot [36,37]. In the weak pairing limit
(�P � EC) we find indeed d〈N〉/dNg ≈ ∑

i gi. For more de-
tails, see Secs. VI A–VI B.

B. Multiterminal conductance

One of the signatures of the topological ground-state
degeneracy is a universal zero-temperature value of the off-
diagonal elements Gi �= j of the conductance matrix. (Diagonal
elements Gii are determined by current conservation, Gii =
−∑ j �=i Gi j .) Namely, Gi �= j approaches the quantized value
Gi �= j/G0 = 2/M independent of gate voltage Ng, EC , �P and
the normal-state conductance gi of the junctions. At finite
temperatures, the deviations from the quantized value are

Gi �= j

G0
− 2

M
∝ −

(
T

TK

)2(1− 2
M )

, (T � TK ), (2.3)

where the non-Fermi-liquid type power-law exponent 2(1 −
2
M ) is a signature of the topological ground-state degeneracy.
While the dependence on T/TK is universal, the temperature
TK depends on �P/EC as shown in Eq. (2.1) and Table I in the
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Kondo regime. In the strong tunneling regime, we have TK →
min(EC, �P ). For more details, including the conductance at
intermediate temperatures, see Secs. VI C–VI D.

III. THEORETICAL MODEL

We consider an array of semiconductor nanowires coupled
to a conventional s-wave superconductor [38,39]. The left and
right halves of these wires form M normal metal semi-infinite
leads, see Fig. 1. The central region between the leads forms
an island which is proximitized by an s-wave superconductor.
We will focus on energy scales much less than the Fermi
energy, which allows us to linearize the electron spectrum.
In this approximation, we can use the bosonization technique
[40].

In a bosonized description, the s-wave superconductor
can be modeled as having a large spin gap [41] �S , which
we take to be the largest energy scale (UV cutoff) in our
system [42]. At energies much below �S , only the charge
degree of freedom of the superconductor plays a role. We
can furthermore neglect the spatial dependence of the charge
fluctuations by consider a large superconductor with many
channels [41,43,44]; in this limit, the superconductor is fully
characterized by its total charge NSC or its conjugate variable
θSC.

We assume that each nanowire is in the helical regime
[38,39] and can be modeled as a single channel of spinless
electrons. Under these assumptions, we obtain the following
low-energy model valid at energies well below �S (henceforth
we set kB = h̄ = 1):

H =
M/2∑
α=1

(H0,α + HP,α + Hr,α ) + EC (N − Ng)2 , (3.1)

where α labels the wires and

H0,α = v

2π

∫ ∞

−∞
dx([∂xθα (x)]2 + [∂xϕα (x)]2), (3.2)

HP,α = − �P

2πa

∫ L

0
dx cos 2[θα (x) − θSC], (3.3)

Hr,α = −DrαL cos 2ϕα (0) − DrαR cos 2ϕα (L) . (3.4)

Here H0,α is the kinetic energy of wire α, HP,α describes
the pair-tunneling to the s-wave superconductor [41] and fa-
vors a formation of a superconducting topological gap �P

in the proximitized middle section of wire, 0 < x < L. The
proximitized segments of length L are separated from the
leads by barriers that are modeled by the backscattering
terms Hr,α (D = v/a ∼ �S is the cutoff, rαL/R is the di-
mensionless reflection amplitude of the left/right junction
of wire α). The last term in Eq. (3.1) is the total charg-
ing energy of the central island formed by the barriers. In
it, N is the total number of electrons N = NSC +∑

α Nα

where in the bosonized language Nα = 1
π

[ϕα (L) − ϕα (0)] is
the charge of the wire segment α. The dimensionless gate
voltage Ng can be tuned to change the favored values of N . The
bosonic fields of the wires satisfy the commutation relations
[θα (x′), ∂xϕβ (x)] = iπδαβδ(x − x′). For the s-wave supercon-
ductor we have [θSC, NSC] = i. The pair-tunneling term HP,α

therefore conserves the total charge N .
We will first derive an effective low-energy boundary

model from the Hamiltonian Eq, (3.1). For this, it is conve-

nient to move to the imaginary time action formalism. The
action obtained from Eq. (3.1) reads

S =
M/2∑
α=1

Sα +
∫

dτEC (N − Ng)2 , (3.5)

where

Sα = 1

2π

∫
dτ

∫ ∞

−∞
dx(v[[∂xθα]2 + [∂xϕα]2] + 2i∂xϕα∂τ θα ),

(3.6)

− �P

2πa

∫
dτ

∫ L

0
dx cos 2[θα (x) − θSC], (3.7)

−
∫

dτ [DrαL cos 2ϕα (0) + DrαR cos 2ϕα (L)], (3.8)

and throughout all the τ integrals range from 1/D to the
inverse temperature β = 1/T . Crucially, the pairing operator
cos 2[θα (x) − θSC] has scaling dimension 1 and as a bulk
perturbation is a relevant operator [41,43]. It reaches strong
coupling at bandwidth D ∼ �P. For boundary perturbations
[e.g., Eq. (3.8)] the marginal dimension is 1. At energy scales
much above �P and EC , the barrier term, Eq. (3.8), as well
as the charging energy, Eq. (3.5), are both marginal operators
with scaling dimension 1.

We integrate out the lead modes (x < 0, x > L) from the
first term in Sα . This leads to the action

S̄ =
M/2∑
α=1

S̄α +
∫

dτEC (N − Ng)2 , (3.9)

where now the total charge of the island

N = NSC + 1

π

∑
ασ

ϕασ (3.10)

is expressed in terms of the boundary fields

ϕαL = −ϕα (0) , ϕαR = ϕα (L) , (3.11)

and the wire action consists of a boundary part and the prox-
imitized middle segment [45]:

S̄α = 1

2π
T
∑
ωn

∑
σ=L,R

e−|ωn|/D|ωn||ϕασ (ωn)|2, (3.12)

−
∫

dτ
∑

σ=L,R

Drασ cos 2ϕασ , (3.13)

+
∫

dτ

∫ L

0
dx

[
v

2π
([∂xθα]2 + [∂xϕα]2), (3.14)

+ 1

π
i∂xϕα∂τ θα − �P

2πa
cos 2[θα (x) − θSC]

]
. (3.15)

Here, in Eq. (3.12), we introduced the bosonic Matsubara
frequency ωn = 2πnT and imposed the cutoff with the the
factor e−|ωn|/D. Equation (3.12) is the familiar dissipative ac-
tion that arises after integrating out the gapless bulk modes
[46]. However, the dissipation strength [the prefactor on the
first line of Eq. (3.12)] is half of the usual one for a spinless
Luttinger liquid [47]. This is due to the fact that we integrated
out modes only on one side of the barrier. The next step is
to integrate out the proximitized sections 0 < x < L. This is,
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in general, a difficult task due to the nonlinear cosine term
in Eq. (3.15). However, we can resort to approximations at
energies much larger or smaller than �P. At high energies,
ω � �P, we can ignore the pairing term and the proximitized
section contributes to the dissipation due to above-gap quasi-
particles. This will modify the coefficient in Eq. (3.12) and is
discussed in more detail in Sec. V.

At low frequencies, ω � �P, the proximitized segment
becomes nondissipative. Indeed, the superconducting pairing
makes θα (x) uniform throughout the proximitized section of
the wire and the action of the ϕ modes in that region becomes
nondissipative, see Sec. A for details. We will start by dis-
cussing the case of large topological gap, �P � EC , where
the physics is governed by this latter limit.

IV. STRONG SUPERCONDUCTOR LIMIT �P � EC

In this section, we focus on the case of large topological
gap in comparison to the charging energy, �P � EC . At en-
ergy scales �P � ω � �S , the nanowires behave essentially
as a independent wires in normal state, and �P can be treated
perturbatively [42]. At frequencies below the topological gap,
ω � �P, we can ignore above-gap quasiparticle excitations in
the island. In this case, the proximitized segment, Eqs. (3.14)–
(3.15), does not contribute to dissipation in the boundary
action, see Appendix A. We can therefore write a boundary
effective action for wire α,

S̄α = 1

2π
T
∑
ωn

∑
σ=L,R

e−|ωn|/D|ωn||ϕασ (ωn)|2

−
∫

dτ
∑

σ=L,R

Drασ cos 2ϕασ , (4.1)

and the full action is given by Eq. (3.9) which includes the
charging energy that couples the different boundary fields ϕασ .
The bandwidth D in S̄α above is now assumed to be well
below �P.

To describe energy scales below EC , it is convenient to
change variables to a common mode Q = ∑

j ϕ j/
√

M and
M − 1 differential modes, qj . We denote j = (α, σ ) which
we enumerate as j = 1, . . . , M from hereon, see Fig. 1. The
transformation is orthogonal and can be conveniently written
as

ϕ j = 1

2
R j · q + 1√

M
Q , (4.2)

where q is a (M − 1)-component vector field and the M
vectors R j satisfy

∑
j R j = 0 and

∑
j

1
4 Ra

j R
b
j = δab and

1
4 R j · Rk = δ jk − 1

M . In terms of these fields, the full boundary
action obtained from Eq. (3.9) is

S = 1

2π
T
∑
ωn

e−|ωn|/D|ωn|(|q(ωn)|2 + |Q(ωn)|2)

+ EC

∫
dτ

(
1

π

√
MQ − Ng

)2

− D
∫

dτ
∑

j

r j cos(R j · q + 2
1√
M

Q) . (4.3)

This action is suitable for perturbative expansion in the re-
flection amplitudes ri � 1, i.e., in the strong tunneling limit.
For the opposite case of weak tunneling, we introduce a dual
action.

In the weak tunneling limit, the barriers are high, r j ≈ 1 in
Eq. (4.3). In this case, it is convenient to use a dual description,

S = T

2π

∑
ωn

e−|ωn|/D|ωn|
[
|p(ωn)|2+ |ωn||P(ωn)|2

|ωn| + 2 M
π

EC

]
+SW

−
∫

dτ
∑

j

Dt j cos

(
1

2
R j · p + 1√

M
P + 2πW T τ

)
,

(4.4)

where again j = (α, σ ) and t j is the dimensionless tunneling
amplitude of an electron to pass from lead j to the island. The
dual fields p, P are defined analogously to Eq. (4.2),

1

2
R j · p + 1√

M
P = δθ j , (4.5)

where we denote δθαL = −θα (x)|0+
0− and δθαR = θα (x)|L+

L−.
Then [ϕ j, δθk] = iπδ jk and as a result, [q j, pk] = iπδ jk and
[Q, P] = iπ .

The action Eq. (4.4) allows us to use perturbation
theory in the weak tunneling limit, where ti � 1. In
Eq. (4.4), charge quantization is imposed by the integer wind-
ing number W whose action contains the dependence on
gate charge Ng: SW = −iNg2πW + π2T E−1

C W 2. The parti-
tion function includes a sum over winding numbers, Z =∑∞

W =−∞
∫
DpDPe−S . The dual action is derived by perform-

ing a Villain transformation in Eq. (4.3), see Appendix B for
details.

The discussion in the next sections is entirely based on an-
alyzing the actions Eqs. (4.3) and (4.4) by using perturbative
renormalization group.

A. Weak tunneling limit Mg�P � EC

The weak tunneling regime [r j ≈ 1 in Eq. (4.3)] is the pre-
viously studied conventional topological Kondo limit [16–18].
It is thus convenient to use the dual action Eq. (4.4). Alterna-
tively one can use a fermionic description [23], see Eq. (4.7)
below.

At high energies ωn � EC , the tunneling operator in the
second line of Eq. (4.4) has scaling dimension � = 1

2
1
4 |Ri|2 +

1
2

1
M = 1

2 so it is a RG relevant boundary perturbation. This is
due to the superconducting gap �P that pins the field in the
proximitized segment of the wire. From the RG equation,

dti
dl

= 1

2
ti , (l = − ln D/�P ) , (4.6)

we obtain the running coupling ti(D) ∼ √
gi

√
�P/D in terms

of the running cutoff D. We set here the bare value, ti(�P )2 =
gi/π

2, to be given by the normal-state dimensionless con-
ductance gi of the junction. The scaling dimension 1/2
corresponds to tunneling into a Majorana state: Indeed, in the
fermion language we have [23]

St = −i
∫

dτ
∑

i

Dti(ψiN
+ + ψ

†
i N−)γi , (4.7)
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where γi is a Majorana operator and ψi is a spinless lead
fermion annihilation operator; N+ = (N−)† raises the total
charge of the island by 1.

Let us next consider lower energies with a new cutoff
D � EC , obtained by integrating out high-energy modes. We
integrate out the field P (which is conjugate to total charge Q)
in Eq. (4.4). We find to second order in the tunneling action
(see Appendix B 1 for details),

St,eff = − 1

4
D2
∫

dτ

∫
dτ ′C(τ − τ ′)

∑
i j

ti(D)t j (D)

× cos

(
1

2
Ri · p(τ ) − 1

2
R j · p(τ ′)

)
, (4.8)

where the correlation function,

C(τ ) = 〈ei 1√
M

[P(τ )−P]+2π iW T |τ |〉P,W ≈ e−E∗
C |τ |

√
1 + D2τ 21/M , (4.9)

is valid for T � τ−1, EC, D and is derived in Appendix C 3.
We have introduced E∗

C = 2( 1
2 − Ng)EC , assuming

0 � Ng � 1/2. The correlation function C(τ ) is factored
into algebraically and exponentially decaying parts. The
former comes from the dissipative dynamics of the field P
while the latter comes from the dynamics of its charge.

Depending on E∗
C , ultimately determined by Ng, the weak

tunneling limit can be divided into two regimes: 1. the case
of Coulomb valley where Ng is close to an integer and the
charge of the island cannot change without a large energy
cost EC , and 2. the case of charge degeneracy where Ng is
close to a half-integer and the island charge can fluctuate
between two values. We will start our discussion from the first
regime of Coulomb valley. Note that even in the Coulomb
valley, the island still has ground state degeneracy due to
the many MZMs. This ground-state degeneracy gives rise to
a topological Kondo effect, distinct from the charge Kondo
effect.

1. Coulomb valley

When D � E∗
C , we have |τ − τ ′| � E∗−1

C � D−1 in
Eqs. (4.8)–(4.9). The correlation function can then be approx-
imated as C(τ ) ≈ e−E∗

C |τ |. Due to its fast exponential decay,
we can set τ ≈ τ ′ in the p-fields in Eq. (4.8). We then find

St,eff = −1

4
D
∫

dτ
∑

i j

λi j (D) cos
1

2
[Ri − R j] · p(τ ) ,

(4.10)

where λi j has a bare value λi j (E∗
C ) ≈ √

gig j�P/E∗
C ; we used∫

dτC(τ ) = 1/E∗
C . We can analyze Eq. (4.10) perturbatively

as long as λi j (D) � 1. The operator in Eq. (4.10) is marginal
as � = 1

2
1
4 |Ri − R j |2 = 1. It turns out to be marginally rele-

vant [22,48], with the RG equation

d

dl
λi j = 2

∑
k �=i, j

λikλk j . (4.11)

The system flows to a new fixed point of large λi j where
the electron number parity on the island is strongly coupled
with the parity in the leads. This phenomenon is called the

topological Kondo effect [16]. Along the flow to the new fixed
point, the couplings flow towards isotropic line λi j → λ and
the flow Eq. (4.11) becomes

dλ

dl
= 2(M − 2)λ2 , (4.12)

with solution λ(D) = λ(E∗
C ) ln(eE∗

C/TK )/ ln(eD/TK ). We de-
fine the Kondo temperature as the strong coupling scale at
which λ becomes large (i.e., 2(M − 2)λ(TK ) ∼ 1),

TK ∼ E∗
C exp

[
− 1

2(M − 2)g�P/E∗
C

]
. (4.13)

We expressed TK in terms of the bare conductance by us-
ing ti(D) = √

gi
√

�P/D and taking approximately isotropic
barriers. In Eq. (4.12) we assume for the bare coupling
that λ(E∗

C ) � 1/2(M − 2). This defines the Coulomb valley
regime where perturbative expansion of Eq. (4.10) is valid,
Mg�P � E∗

C . Therefore, we can use this to estimate the width
| 1

2 − N∗
g | in gate voltage of the regime of strong charge fluc-

tuations around the charge degeneracy point:∣∣ 1
2 − N∗

g

∣∣ ∼ Mg�P/EC . (4.14)

The weak tunneling limit is defined by the condition Mg �
EC/�P, which also implies TK < Mg�P.

The energy scale Mg�P that enters in Eq. (4.14) also ap-
pears in observable quantities (Sec. VI) and upon comparing
to EC distinguishes the weak and strong tunneling limits. The
scale can be interpreted as the broadening of the ground state
manifold due to Majorana-lead couplings. Our Hamiltonian
Eq. (3.1) allowed us to connect this scale to the experimentally
accessible microscopic parameters �P and g; this connection
is beyond the earlier works [16–19,22,23] where the super-
conducting gap does not enter since the limit �P → ∞ is
assumed from the start.

Near the charge degeneracy point, N∗
g < Ng < 1/2, we

cannot use the perturbative Eq. (4.10). This limit is studied
in the next section.

2. Charge degeneracy point

Near Ng = 1/2, the island charge is allowed to fluctuate
between two values 0 and 1, and E∗

C � T in Eq. (4.8) is a
small energy scale. We have then τE∗

C � 1 and the correlation
function C(τ ) ≈ (D|τ |)−1/M decays slowly due to the dissipa-
tive dynamics of the field P; one then cannot set p(τ ) and
p(τ ′) equal in Eq. (4.8). The tunneling action St is then most
convenient to present in the fermionic form given in Eq. (4.7)
upon projecting it to two charge states, N+ → σ+, where the
operator S+ = Sx + iSy = |1〉〈0| acts on the subspace spanned
by the charge states 0 and 1. Close to the degeneracy point the
effective Hamiltonian can be written as

HCK =
∑

i

D

[
J⊥i

1

2
(s−

i S+ + s+
i S−) + Jzsz,iSz

]
+ γ Sz,

(4.15)

where we introduced the pseudospin operators s−
i = (s+

i )† =
(−i)ψiγi and sz,i = 1

2 − ψ
†
i ψi. The first term, J⊥i ∝ ti, in

Eq. (4.15) arises from Eq. (4.7) while the second term is zero
in the bare Hamiltonian, Jz = 0, but will be generated in the
RG procedure. The last term in Eq. (4.15) is the projected
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charging energy and takes the form of an effective Zeeman
energy caused by small nonresonant gate voltage 1

2 − Ng.
Assuming approximately isotropic tunnel couplings in

Eq. (4.15), one arrives at the following RG equations [22,23]:

dJ⊥
dl

= 1

2
J⊥ + J⊥Jz

(
1 − M

2
Jz

)
− M

2
J3
⊥, (4.16)

dJz

dl
= J2

⊥(1 − MJz ) , (4.17)

dγ

dl
= γ

(
1 − 1

2
MJ2

⊥

)
, (4.18)

where l = − ln D/EC and we have the initial conditions
J⊥(0) ∼ √

gi�P/EC , Jz(0) = 0, and γ (0) = E∗
C/EC .

Let us analyze the RG Eqs. (4.16)–(4.17) in the limit when
M � 1 [49]. It is useful to rescale exchange couplings J̃⊥ →√

MJ⊥ and J̃z → MJz to find

dJ̃⊥
dl

= 1

2
J̃⊥ + 1

M
J̃⊥J̃z

(
1 − 1

2
J̃z

)
− 1

2
J̃3
⊥ , (4.19)

dJ̃z

dl
= J̃2

⊥(1 − J̃z ) , (4.20)

The cross terms in Eq. (4.19) are O(1/M ) and can be neglected
yielding a closed equation for J̃⊥(l ):(

ln x − x2

2

)∣∣∣∣
x=J̃⊥(l )

x=J̃⊥(0)

= l

2
, (4.21)

where the initial condition is J̃⊥(0) ∼ √
Mg�P/EC . Assuming

J̃⊥(0) � 1, the solution for J̃⊥(l ) reads

J̃⊥(l ) ≈
{√

Mg�P/ECel/2, J̃⊥(l ) � 1

1 −
√

ln (EC/Mg�P )−l√
2

, |1 − J̃⊥(l )| � 1.
(4.22)

The Kondo temperature can be obtained by solving J̃⊥(TK ) ≈
1, yielding

TK ∼ Mg�P. (4.23)

This estimate for the Kondo temperature at the charge de-
generacy point matches with the Kondo temperature in the
valley, Eq. (4.13), at E∗

C ∼ Mg�P, which suggests a width
∼Mg�P/EC of the charge degeneracy region.

We can further verify this estimate by studying the Zee-
man term Eq. (5.8). By using the solution Eq. (4.22), we
find γ (l ) = γ (0) exp (l − 1

2 [el − 1]J̃⊥(0)2). This shows that
initially γ grows (since it is a relevant perturbation) but its
flow reverses due to quantum fluctuations described by the
fast-growing J2

⊥ -term. By using J⊥(0)2 = g�P/EC , we find
that the maximum value γ ∼ E∗

C/Mg�P is reached at scale
Mg�P [which is the Kondo temperature at charge degeneracy,
see Eq. (4.23), and where J⊥ becomes of order 1/

√
M]. When

E∗
C � Mg�P, the quantum fluctuations are strong enough so

that γ never reaches a large value. This gives a crossover scale
E∗

C ∼ Mg�P between the Coulomb valley and charge degen-
eracy, which agrees with our estimate Eq. (4.14) obtained
from the RG equations in the valley.

When the bare conductance is increased to of order g ∼
EC/(M�P ), the region of strong charge fluctuations covers
the entire Coulomb valley and the valley Kondo temperature
becomes of order TK ∼ EC . The perturbative Eq. (4.16) is no

longer valid as J⊥(0) ∼ √
1/M. This conductance scale is the

crossover to strong tunneling, studied in Sec. IV B.
In the strong coupling limit, T � TK when J⊥ ∼ 1/

√
M,

one can use perturbation theory in weak irrelevant reflec-
tion operators which we will discuss in the next section,
Sec. IV A 3. This is conceptually very similar to the discussion
in Sec. IV B as well.

3. The strong-coupling limit

As shown in the previous section at low energies the
system flows to a strong coupling fixed point which is char-
acterized by the presence of a Kondo resonance regardless
of the gate charge Ng. The leading irrelevant perturbations
around the fixed point correspond to quasiparticle reflec-
tion from the contacts, which is described by the operator∑

j r j cos(R j · q + 2 1
M πNg) of scaling dimension � = 2(1 −

1
M ), see Sec. IV B below. The Ng dependence can be inter-
preted as a Berry phase [22] and it changes the QBM lattice
from triangular to honeycomb in the charge degeneracy point.
However, Ng only plays a role in Mth order perturbation
theory, see Sec. VI. We can estimate the “bare” amplitude
ri(TK ) by assuming that the dual description matches with
the tunneling formulation at scale TK , i.e., ri(TK ) ∼ 1 [as-
suming t (TK ) ∼ 1/

√
M]. We thus obtain the running coupling

ri(D) ∼ (D/TK )1− 2
M , which will determine the temperature-

dependence of observables, see Sec. VI.
The dual field scaling dimension �r = 2(1 − 1

M ) obtained
above satisfies the relation [50]

�r�t =
{(

1 − 1
M

)2
, (charge degeneracy)

2
(
1 − 1

M

)
, (valley),

(4.24)

where �t is the scaling dimension of the tunneling amplitude,
equaling 1 in the valley, Sec. IV A 1, and 1

2 (1 − 1
M ) at charge

degeneracy, Sec. IV A 2. This is a geometric relation for QBM
in a hyperhoneycomb (charge degeneracy) or hypertriangular
(valley) lattice, see Ref. [50].

B. Strong tunneling limit Mg�P � EC

We now consider the case where the quantum fluctuations
of charge on the island are large for all values of Ng. This
corresponds to bare conductances g � EC/(M�P ). In this
limit, there is no charge quantization or Coulomb blockade
of tunneling since the broadening of the ground-state man-
ifold Mg�P exceeds EC . The weak-coupling Kondo regime
discussed in Sec. IV A 1 also does not exist. Note that the
bare conductance does not have to be large in this limit. For
example, if we have 1 � g � EC/(M�P ), we can still use
the weak-tunneling action Eq. (4.4). With the RG equation for
tunneling amplitude, Eq. (4.6), we obtain the strong coupling
scale g�P. Below this scale, tunneling is strong and one may
use the dual action Eq. (4.3) with the scale g�P as the UV
cutoff.

When M is large and EC/�P � g � EC/(M�P ), tunnel-
ing is seemingly still weak at D ∼ EC � g�P and r(EC ) ∼ 1.
However, the perturbation theory of Sec. IV A 1 nevertheless
fails due to the large number ∼M of terms. Thus, in this limit,
it still makes sense to identify TK ∼ EC .
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Let us next consider even higher conductance, g �
EC/�P. Below the energy scale g�P, we use the dual ac-
tion Eq. (4.3). At energy scales ω � EC we can ignore the
charging energy and find that the scaling dimension of the
reflection operator is � = 1

2 |R j |2 + 1
2 4 1

M = 2 > 1 and reflec-
tion is irrelevant. Thus, the reflection amplitude at scale EC

is r(EC ) ≈ EC/(g�P ), where we took the UV cutoff to be
g�P and assumed that r(g�P ) ∼ 1. This inequality maybe
satisfied even when g � 1. In the limit g → 1, we can use
�P as the UV cutoff and a bare value r(�P ) ≈ √

1 − g. We
then have r(EC ) = (EC/�P )

√
1 − g. The two expressions for

r(EC ) match when g ∼ 1.
At low energies ω � EC , we can “integrate out” the total

charge mode Q [37,51]. For this, we use the average (see
Appendix C 1),

〈ei2Q/
√

M〉Q =
(

2eγ MEC

πD

)2/M

ei2 1
M πNg , (4.25)

where γ ≈ 0.577 is the Euler–Mascheroni constant and the
average is performed with respect to the action Eq. (4.3). The
action Eq. (4.3) averaged over Q then becomes

S = 1

2π
T
∑
ωn

e−|ωn|/D|ωn||q(ωn)|2 − D2

EC

(
2eγ MEC

πD

)2/M

×
∫

dτ
∑

j

r j (EC ) cos

(
R j · q + 2

1

M
πNg

)
, (4.26)

where ri(EC ) is the renormalized reflection amplitude de-
scribed above. The dimension of the reflection operator is
now � = 1

2 |Ri|2 = 2(1 − 1
M ) because of the pinned field Q

by charging energy. Despite this reduced scaling dimension,
the reflection remains irrelevant. Thus, there is only weak
Coulomb blockade at low energies [9]. The weak reflection
gives rise to weak harmonic corrections to the average charge,
1
π

√
M〈Q〉 − Ng ∝ r1 . . . rM sin 2πNg, see Sec. VI.

V. WEAK SUPERCONDUCTOR LIMIT �P � EC

In this section, we focus on the case of a small topologi-
cal gap in comparison to the charging energy, �P � EC . At
energy scales below the s-wave gap and still above charging
energy EC , we can use the boundary action Eqs. (3.12)–(3.15)
and neglect the p-wave pairing term ∝ �P. After integrating
out the modes in the middle segment (0 < x < L), we obtain
an action similar to Eq. (4.1) except that the dissipative ac-
tion will have an additional prefactor 2 due to the dissipative
fluctuations from both sides of the barriers. By using the pro-
cedure outlined in Sec. IV, we obtain the effective boundary
action,

S = 1

π
T
∑
ωn

e−|ωn|/D|ωn|(|q(ωn)|2 + |Q(ωn)|2)

+ EC

∫
dτ

(
1

π

√
MQ − Ng

)2

− D
∫

dτ
∑

j

r j cos

(
R j · q + 2

1√
M

Q

)
, (5.1)

in the strong tunneling (weak barrier) limit. In the weak tun-
neling regime, we find instead [compare to Eq. (4.4)]

S = T

4π

∑
ωn

e−|ωn|/D|ωn|
[
|p(ωn)|2+ |ωn||P(ωn)|2

|ωn| + M
π

EC

]
+ SW

−
∫

dτ
∑

i

Dti cos

(
1

2
Ri · p + 1√

M
P + 2πW T τ

)
,

(5.2)

which is derived from Eq. (5.1) by means of a duality
transformation as outlined in Appendix B. In Eq. (5.2), we
have the same winding number action as in Eq. (4.4), SW =
−iNg2πW + π2T E−1

C W 2, and the partition function includes
a sum over winding numbers, Z = ∑∞

W =−∞
∫
DpDPe−S .

Equations (5.1)–(5.2) are valid at energy scales much
above the topological gap, ω � �P, since we ignored the
pairing in them. At low temperatures T � min(�P, EC ) we
expect to find the same universal features in both limits of
strong (Sec. IV) and weak superconductor. Qualitative differ-
ences between the strong and weak superconductors limits
are found at temperatures T � �P. At such temperatures
in the weak superconductor limit, the island behaves like a
normal state metallic quantum dot. The normal state quantum
dots have been previously studied by Matveev and Furusaki
[37,51–53] in the two-lead case and by Yi and Kane [50,54]
in the many-lead case (see also Ref. [55]). The weak topolog-
ical superconducting limit has been studied for two leads by
Lutchyn and Glazman [14]. It is particularly interesting that
in the temperature-interval �P � T � EC in the Coulomb
valley, the junction reflections are relevant perturbations (and
tunneling irrelevant) and thus the conductance decreases upon
lowering the temperature. However, upon crossing the scale
�P, the situation reverses when reflections become irrelevant
and tunneling becomes relevant, as discussed in Sec. IV. This
may result in nonmonotonic temperature dependence of the
conductance as we will see in Sec. VI D. Furthermore, at
charge degeneracy point, the intermediate fixed point of the
multichannel Kondo effect [50,54] may be (almost) reached
if the corresponding Kondo temperature lies between �P and
EC , see Sec. VI D.

A. Weak tunneling limit Mg � 1

We start from the tunneling action Eq. (5.2) at high fre-
quencies ω � �P. Then, at ω � EC , we can ignore the
charging energy and find the scaling dimension of the tun-
neling operator � = 1

2 2( 1
4 |R j |2 + 1

M ) = 1, as expected from
the noninteracting limit. Thus, the tunneling amplitude does
not get renormalized and we have ti(D) = √

gi independent
of the running cutoff D for D � EC . Upon integrating out
high-energy modes and reducing the cutoff, in the interval
�P � D � EC the scaling dimension of the tunneling pertur-
bation increases and Coulomb blockade of conductance may
emerge as discussed in detail in the below sections.

Upon lowering the cutoff scale further, below the topo-
logical gap, D � �P, the superconducting pairing gaps out
the fluctuating modes p in half of the wire, which halves the
dissipation strength in the action Eq. (5.2). Consequently, the
scaling dimensions of tunneling (reflection) operators are low-
ered (increased) and it becomes relevant, � < 1. Likewise, we
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will find (see below) that reflection is irrelevant and there is
thus a stable fixed point without Coulomb blockade oscilla-
tions of conductance, even though we started from weak bare
tunnelings.

Next, we will analyze in more detail the tunneling action
Eq. (5.2) in the two cases of Coulomb valley (Ng close to in-
teger) and charge degeneracy points (Ng close to half integer).

1. Coulomb valley

Similar to Sec. IV A, in the frequency interval �P � ω �
E∗

C the field P in Eq. (5.2) is massive. After integrating out P,
the action for the gapless modes p is (compare to Sec. IV A 1)

S = T

4π

∑
iωn

|ωn||p|2 − D
∫

dτ
∑
i �= j

λi j (D) cos
1

2
(Ri − R j ) · p,

(5.3)

where λi j (E∗
C ) = √

gig j ≈ g is the (bare) amplitude to tun-
nel an electron between leads i and j without changing the
total charge of the island. In the Coulomb valley, D < E∗

C ,
the dimension of tunneling operator above is � = 2 [53,54]
and tunneling is therefore irrelevant, λi j (D) = gD/E∗

C . The
perturbative expansion in tunneling in the many-lead case is
valid when λi j (E∗

C ) � 1/M, or Mg � 1.
Upon reducing the cutoff to D � �P, the dissipative ac-

tion changes its coefficient, as discussed in the beginning
of Sec. V A. Due to the changing coefficient of the dis-
sipative part, the tunneling operator in the valley becomes
marginally relevant; the action above changes to one identical
to Eq. (4.10), albeit with different UV cutoffs now given by
�P. The analysis is thus identical to the strong superconduc-
tivity case discussed in Sec. IV A 1 and we have a topological
Kondo effect. We can define a Kondo temperature that is valid
in both regimes as

TK = min(E∗
C, �P ) exp

[
− 1

(M − 2)(g�P/E∗
C )

]
. (5.4)

This estimate of the Kondo temperature in the weak pairing
regime �P � EC is one of our main results. It shows that
the Kondo temperature is thus suppressed by the same ex-
ponential factor as in the case of strong pairing, �P � EC .
Equation (5.4) also gives the estimate E∗

C ∼ min(TK , Mg�P )
for the width of the charge degeneracy region.

In the strong coupling limit, below the Kondo temperature,
we find an irrelevant reflection operator

∑
j r j cos(R j · q +

2 1
M πNg) with scaling dimension � = 2(1 − 1

M ) similar to
Sec. IV B, as expected from universality of the fixed point.

(Strong bare tunneling in the weak pairing limit will be further
discussed in Sec. V B.) Despite weak bare tunneling and large
charging energy, the low-temperature fixed point is character-
ized by strong tunneling (note similarity to Ref. [56]). The
pairing term which is a bulk term, unlike the boundary term
EC , drives the island to Andreev-like fixed point of strong
tunneling.

2. Charge degeneracy point

Near the charge degeneracy, E∗
C ,�P � D � EC , the field

P is massless and the tunneling operator in Eq. (5.2) retains its
scaling dimension � = 1. As before (Sec. IV A 2), we project
on to two charge states of the island: N+ → S+, where the
operator S+ = Sx + iSy = |1〉〈0| acts on the retained charge
states 0 and 1. The projected fermionic action is then [compare
to Eqs. (4.7) and (4.15)]

SCK =
∫

dτD

[∑
i

(
J⊥
2

[s−
i S+ + s+

i S−] + Jzsz,iSz

)
+ γ Sz

]
,

(5.5)

where we introduced the pseudospin operators s−
i = (s+

i )† =
ψ̄

†
i ψi and sz,i = (ψ̄†

i ψ̄i − ψ
†
i ψi )/2 and where ψ̄i are the (neu-

tral) electron annihilation operators on the island at the contact
i. The second term, Jz, has a vanishing bare amplitude but
will be generated upon reducing the bandwidth, see Eq. (5.7)
below. The last term in Eq. (5.5) describes finite detuning
away from charge degeneracy with γ = E∗

C/D.
Similar to Sec. IV A, one obtains the weak-coupling charge

Kondo RG equations [50,52,54] (J⊥ = 2ti):

dJ⊥
dl

= J⊥Jz

(
1 − M

4
Jz

)
− M

4
J3
⊥ , (5.6)

dJz

dl
= J2

⊥
(

1 − M

2
Jz

)
. (5.7)

dγ

dl
= γ

(
1 − M

4
J2
⊥
)

. (5.8)

The tunneling (J⊥) operator is marginally relevant in the
presence of an infinitesimal Jz term [compare to the super-
conducting case Sec. IV A, Eq. (4.16) where the operator is
relevant and Jz is generated automatically]. In the absence of
superconductivity, there is an intermediate fixed point [57]
where J⊥ ∼ 1/M. Equations (5.6)–(5.7) can be integrated
by first identifying the constant of motion (J2

⊥ − J2
z )/(1 −

M
2 Jz ) = const. It is convenient to introduce JS = 1 − M

2 Jz

and using the above relation obtain a closed equation for JS

[52]. The solution can be obtained by solving the following
equation:

− 1

4
M

⎛
⎜⎜⎝ln

x2

xgM2 + 4(x − 1)2
+

(gM2 − 8) tanh−1
[ 1

4 gM2+2(x−1)√
gM2

√
gM2

16 −1

]
2
√

gM2
√

gM2

16 − 1

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

x=JS (l )

x=JS (0)

= l , (5.9)

where the initial value JS (0) = 0. Equation (5.9) may be in principle inverted to find JS (l ) and J⊥(l ) =√
JS (l )g + 4

M2 (1 − JS (l ))2 .
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Let us first assume that the initial value of J⊥(0) ∼ √
g is

below the intermediate fixed point value, g � 1/M2. We then
find from Eq. (5.9):

JS (l ) ≈
⎧⎨
⎩

1 − gMl
2 , |1 − JS (l )| � 1√

4
gM2 e

−( 2
M l− π√

gM2
)
, JS (l ) � 1.

(5.10)

The charge-Kondo temperature TCK can be obtained by solv-
ing the following equation J⊥(TCK) ∼ 1/M. One finds TCK ∼
EC (gM2)

M
4 e−π/(2

√
g) [52]. For simplicity, we focus henceforth

on �P � TCK limit. In this case, the charge-Kondo RG flow
will be cut off by �P and at D < �P Eqs. (5.6)–(5.7) should
be replaced with Eqs. (4.16)–(4.17).

Taking into account the solution Eq. (5.12), one finds
J2
⊥(�P ) ≈ g(1 − π

4

√
gM2 ln(EC/�P )

ln(EC/TCK ) + π2

4
ln2(EC/�P )
ln2(EC/TCK )

). The solu-
tion of topological Kondo RG equations can be obtained
similarly as in Eq. (4.21) to find that

TK ∼ MJ⊥(�P )2�P. (5.11)

At this scale, J⊥(TK ) ∼ 1/
√

M. One can show that this scale
(up to small logarithmic corrections) matches with the one
obtained from the valley, Eq. (5.4) at E∗

C ∼ TK .
At lower energies D � TK , the tunneling is strong so we

must use perturbation theory in an irrelevant reflection op-
erator, with a bare parameter r(TK ) ∼ 1. In this regime, the
findings of Sec. IV A 3 apply since the low-temperature fixed
point is universal: We have a leading irrelevant reflection op-
erator

∑
j r j cos(R j · q + 2 1

M πNg) of scaling dimension � =
2(1 − 1

M ). The temperature dependence of conductance then
has the universal non-Fermi-liquid-type temperature depen-
dence, see Eq. (2.3).

Let us now consider g � 1/M2 limit (still g � 1/M). We
then find from Eq. (5.9):

JS (l ) ≈
{

1 − gM
2 l, |1 − JS (l )| � 1

1
gMl , JS (l ) � 1.

(5.12)

The charge-Kondo temperature, obtained by solving
J⊥(TCK) ∼ 1/M, is given by TCK ∼ ECe−2/(Mg). As before, we
consider the limit �P � TCK here [58] and stop charge-Kondo
RG flow at �P finding J2

⊥(�P ) ≈ g(1 − ln(EC/�P )
ln(EC/TCK ) ). The

corresponding Kondo temperature is given by Eq. (5.11).
The width of the charge degeneracy region can be es-

timated from the RG equation for the effective Zeeman
coupling γ , Eq. (5.8). When J⊥ � 1/

√
M, we can ignore

the second term on the right-hand side of Eq. (5.8) and use
the approximate solution γ = E∗

C/D. This gives the width
E∗

C ∼ TK for the charge degeneracy region, which agrees (up
to logarithmic corrections) with our estimate from the valley,
below Eq. (5.4).

The perturbative weak-tunneling expansion is valid when
g � 1/M, see Sec. V A 1. Remarkably, even in the crossover
case g ∼ 1/M, the above estimate [see below Eq. (5.4)] gives
a narrow width | 1

2 − N∗
g | ∝ �P/EC � 1 for the regime of

strong charge fluctuations. This suggests that even if the bare
conductance is large, Coulomb blockade oscillations of the
conductance can form above the energy scale �P, see also
Fig. 2. In the next section, we confirm this expectation by

studying the limit g � 1/M by using perturbation theory in
reflection.

B. Strong tunneling limit Mg � 1

The strong tunneling limit in the weak pairing case is
more complicated than in the strong pairing one discussed in
Sec. IV B because the reflection amplitudes have nonmono-
tonic scaling behavior. Indeed, the reflection is relevant in
the interval �P � D � EC but irrelevant for lower energies,
D � �P. In particular, we will see that the conductance
develops Coulomb blockade oscillations at intermediate en-
ergies �P � D � EC when the bare reflection amplitude r =√

1 − g exceeds the crossover value (�P/EC )1/M . At the same
time, the charge of the island is not quantized but shows weak
harmonic Ng dependence.

Let us start from the strong-tunneling boundary action
Eq. (5.1) in the limit EC � �P. At D � EC we can ig-
nore the charging energy, finding that the reflection operator
is marginal, � = 1

2
1
2 |R j |2 + 1

2 2 1
M = 1, as expected for free

electrons. At energy scales below EC , the field Q becomes
massive and can be integrated out. Averaging the action
Eq. (5.1) over the massive field Q and taking into account
that 〈ei2Q/

√
M〉Q ∼ ( EC

D )
1/M

ei2πNg/M , we obtain in the range
�P < D < EC [see Appendix C 1]

S = 1

π
T
∑
iωn

|ωn||q(ωn)|2 − D

(
eγ MEC

πD

) 1
M

×
∫

dτ
∑

j

r j (EC ) cos

(
R j · q + 2π

1

M
Ng

)
. (5.13)

As expected, the scaling dimension of the resulting reflection
operator has decreased:

� = 1

2

1

2
|R j |2 = 1 − 1

M
< 1 . (5.14)

Thus backscattering is relevant and we have the running am-

plitude r j (D) = ( EC
D )

1
M ( eγ M

π
)

1
M r j (EC ). Since r j does not flow

for D � EC , we can fix r j (EC ) ∼ √
1 − g j where g j is the

bare dimensionless conductance of the junction.
Due to the finite weak reflection, the ground-state energy

has a weak harmonic Ng-dependence. This dependence can
be written in the form δE (M )

GS (Ng) = � cos2 πNg, where we
introduce a renormalized charging energy [9],

� ∼ ECr(EC )M , (5.15)

see also Eq. (6.3) and the discussion of the island average
charge. Note that in the case M = 2, one can find exact so-
lution of the problem for �P = 0 [53]. In the case of a finite
p-wave gap, results depend on the ratio of �P and �.

In the limit � � �P � EC , the RG flow of r j (D) gets
cut off by �P and reflection amplitude does not reach
strong coupling. In the interval EC � D � �P, we have
weak reflection and weak pairing and we recover the re-
sults of Furusaki and Matveev [37,51,53] (in the two-lead
case) and Yi and Kane [50,54] (in the multilead case). At
lower energies � � D � �P, fluctuations of q in the is-
land become gapped. Thus, we find the following boundary
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action:

S = 1

2π
T
∑
iωn

|ωn||q(ωn)|2 − D

(
D

�P

)1− 2
M (eγ MEC

π�P

) 1
M

×
∫

dτ
∑

j

r j (EC ) cos

(
R j · q + 2π

1

M
Ng

)
, (5.16)

One may notice that the reflection amplitude has a scaling
dimension � = 2(1 − 1

M ) > 1 and is irrelevant. Thus, the
action Eq. (5.16) exhibits the universal strong coupling be-
havior of the topological Kondo effect with characteristic
non-Fermi-liquid-type temperature dependence of the con-
ductance, Eq. (2.3).

On the other hand, when �P � � � EC , reflection ampli-
tudes grow under RG procedure until r j (�) ∼ 1. Thus, even
though initially backscattering was weak the system eventu-
ally flows to the weak-tunneling regime. Therefore, we expect
the case �P � � < EC to be analogous to the weak-tunneling
regime, see Sec. V A. Given that r j (EC ) ∼ √

1 − g j , the scale
� becomes of order EC when g ∼ 1/M (up to logarithmic
corrections in M). Thus, the following discussion is limited
to Mg � 1 case.

At �P � D � � we perform duality transformation and
derive a tunneling action as explained in Sec. V A. The
dual action describes weak tunneling in the dual lattice of
Eq. (5.13), i.e., hypertriangular lattice in the valley (Ng = 0)
and hyperhoneycomb lattice at charge degeneracy (Ng = 1/2).

Let us consider first Ng = 0 case. The dual action describ-
ing coherent electron transmission through the island is given
in Eq. (4.10) with λi j (D) = λi j (�)(D/�) for �P � D � �.
Given that r j (�) ∼ 1 − O( 1

M ), one can show, by matching the
conductances at scale � [see Eq. (6.11)], that the correspond-
ing cotunneling amplitude is λi j (�) ∼ 1/M.

When D < �P modes in the island are gapped out and
cotunneling becomes marginally relevant. Thus, we find the
topological Kondo RG flow of λi j with Kondo temperature

TK = �P exp

[
− 1

(M − 2)λ(�P )

]
, (5.17)

with λ(�P ) ∼ �P/(M�).
Let us now discuss the charge degeneracy case Ng = 1/2.

As before, at �P � D � � we perform a duality transforma-
tion. The tunneling action is in this case [50]

St =−D
∫

dτ
∑

i

1

2
ti(D)ei 1

2 Ri·pS+ + H.c., (5.18)

where the operator S+ = |1〉〈0| acts on the charge states 0 and
1. S+ can be also thought of as acting on the sublattice degree
of freedom in the hyperhoneycomb lattice [50]. The scaling
dimension of the tunneling operator is � = (1 − 1

M ) and to-
gether with its dual reflection operator, Eq. (5.13), the relation
Eq. (4.24) is satisfied. Thus, we obtain t (D) ∼ t (�)(�/D)1/M .
We can estimate the bare amplitude as t (�) ∼ 1/

√
M based

on matching the conductances at scale � [50]. At D < �P, the
modes in the island are gapped out and the scaling dimension
of t becomes � = (1 − 1

M ). Based on this, we find the Kondo

FIG. 4. The island charge 〈N〉 versus gate charge Ng in the strong
superconductor (�P � EC) regime. The red (nearly flat) curves
correspond to weak tunneling (Mg�P � EC) while the blue ones
correspond to weak reflection.

temperature at charge degeneracy,

TK ∼
(

�

�P

) 2
M+1

�P , (5.19)

obtained by solving from t (TK ) ∼ 1/
√

M.
Finally, at the lowest energies D < TK at any Ng, we find

an irrelevant reflection operator with scaling dimension � =
2(1 − 1

M ). This corresponds to the universal T → 0 fixed
point of the topological Kondo model. As before, the frac-
tional scaling dimension leads to the non-Fermi-liquid-type
temperature-dependence of the conductance, see Eq. (2.3).

VI. CHARGE AND CONDUCTANCE

In this section, we discuss in more detail the signatures of
topological ground-state degeneracy that were summarized in
the introduction, Sec. II. We start from the thermodynamic
observable of average charge 〈N〉 and then discuss transport
signatures. We focus on temperatures T � EC so we can
ignore thermal fluctuations of the charge and concentrate on
the relevant quantum effects.

A. Average charge in the strong superconductor limit �P � EC

In the weak tunneling limit, Mg�P � EC , the quantum
fluctuations of charge are weak. The charge is then approx-
imately quantized to the nearest integer to the gate charge Ng,
〈N〉 ≈ �Ng + 1

2�, where �. . .� denotes the floor function, see
Appendix D 1. The charge steps at half-integer values of the
gate charge are smeared out by thermal or quantum fluctu-
ations [36,52]. At relatively high temperature, T � Mg�P,
the broadening is thermal. Here we focus on lower temper-
ature at which the broadening is of order Mg�P/EC due
to superconducting quantum fluctuations. The center of the
charge plateau, Ng = integer, is horizontal in the absence of
tunneling. In the presence of tunneling, it acquires a finite
slope, d〈N〉/dNg ≈ ∑

i gi�P/EC , see Fig. 4 and Eq. (D8) in
Appendix D 1. The slope is enhanced by a factor �P/EC from
the superconducting quantum fluctuations.

In the strong tunneling limit, Mg�P � EC , the quantum
fluctuations of charge are strong. In this limit, we can use
perturbation theory in reflection [15], see Sec. IV B.
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In the absence of reflection, the ground-state energy is
independent of gate charge since the island can compensate
for Ng by changing its own charge; in the Hamiltonian, one can
shift Q → Q + 1√

M
πNg which removes the Ng dependence

from it. Thus, the average charge on the island equals the gate
charge: 〈N〉 = Ng. In the presence of reflection, the difference
δN ≡ 〈N〉 − Ng becomes nonzero (except for integer values
of Ng). The lowest order contribution to δN starts at order M
from a process where an electron is reflected from each con-
tact, see Appendix D 2. When M is large and EC/�P � g �
EC/(M�P ), we have r(EC )M ∼ (1 − g�P

EC
)M � 1 and 〈N〉 −

Ng ∼ −(1 − g�P

EC
)M sin 2πNg. In the limit 1 � g � EC/�P,

we find r(EC ) ∼ EC/(g�P ) and

〈N〉 − Ng ∼ −
(

EC

�P

)M
(

M∏
i=1

1

gi

)
sin 2πNg , (6.1)

whereas when g ≈ 1, we have

〈N〉 − Ng ∼ −
(

EC

�P

)M
(

M∏
i=1

(1 − gi )
1/2

)
sin 2πNg . (6.2)

Note that the amplitude of the harmonic corrections to
〈N〉 − Ng is weakened by a small factor (EC/�P )M due to
the enhanced superconducting charge fluctuations in topo-
logical superconductors. We also note that in Eq. (6.2),
even a single fully transparent barrier, gi → 1, makes the
Ng dependence fully linear [35,59]. From Eqs. (6.1)–(6.2),
the slope d〈N〉/dNg near Ng = integer is very close to 1,
d〈N〉/dNg − 1 ∼ −(EC/�P )Mr1 . . . rM , see Fig. 4. The weak
tunneling result for the slope matches with this estimate when
Mg�P ∼ EC .

B. Average charge in the weak superconductor limit �P � EC

In the case EC � �P, weak superconductivity does not in-
fluence the average charge. The charge 〈N〉 behaves similarly
as in normal metal islands since superconducting fluctuations
are weaker than in the limit EC � �P discussed in the previ-
ous section. In the weak tunneling limit g � 1/M, we find a
Coulomb staircase with charge steps that are broadened by
the charge-Kondo scale [52] TCK/EC , see Sec. V A 2. The
slope d〈N〉/dNg is of order Mg due to weak tunneling, see
Appendix D 1. In the strong tunneling regime g � 1/M, we
find [35] (see Appendix D 2)

〈N〉 − Ng ∼ −
(

M∏
i=1

(1 − gi )
1/2

)
sin 2πNg . (6.3)

This result shows that the scale � in Eq. (5.15) can be identi-
fied as a renormalized charging energy [9,14].

C. Conductance in the strong superconductor limit �P � EC

The multiterminal island, Fig. 5, is characterized by a
conductance matrix Gi j , defined as 〈Ii〉 = ∑

j Gi jVj which
gives the current 〈Ii〉 in contact i as a response to voltage
Vj (measured from ground) applied to lead j. (The current
operator is Ii = −e 1

π
∂tϕi.) The easiest way to measure the

conductance matrix is to use an asymmetric biasing, see
Fig. 5. For example, one grounds all the other leads while

FIG. 5. Schematic diagram of the biasing to measure the ele-
ments of the conductance matrix Gi j .

applying Vj �= 0 in lead j. In this case, one measures the
current in contact i �= j to get Gi j = 〈Ii〉/Vj . The diagonal
components of the conductance matrix are fixed by the conser-
vation of current: Gii = −∑ j �=i Gi j . The conductance matrix
can then be calculated with the help of the Kubo formula, see
Appendix E.

Let us start from the weak tunneling case, Mg�P � EC ,
Fig. 3(a). The conductance in this regime as a function of tem-
perature is sketched in Fig. 6. At relatively high temperatures,
EC � T � �P, we have Gi j ∝ δi j . At temperatures below
the charging energy, T � EC , we have sequential tunneling
through Majorana states, yielding [13,23]

Gseq
i j = G0

gi(g j − δi jg� )

g�

�P

4T

1

cosh2 E∗
C

2T

, (6.4)

with g� = ∑
i gi. The renormalization of junction conduc-

tances at T � �P gave rise to the extra factor of �P/T in
Eq. (6.4). Away from charge degeneracy, sequential tunneling
is suppressed by activation gap, Gseq ∝ e−EC/T .

At temperature TK � T � EC , the conductance in the
valley is instead dominated by elastic tunneling through a
Majorana state, modified by the Kondo effect in the leading
logarithmic approximation (T > TK ),

Gi j

G0
≈ π2

4
gi(g j − δi jg� )

(
�P

EC

)2[ ln(eEC/TK )

ln(eT/TK )

]2

, (6.5)

FIG. 6. A sketch of the conductance versus T in the strong su-
perconductor and weak tunneling limit, Mg�P � EC � �P in the
Coulomb valley (blue, left) and at charge degeneracy (yellow, right).
The scale TK of the topological Kondo effect is given by Eq. (4.13).
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see Appendix E 1. Using the expression for Kondo tempera-
ture is TK ∼ ECe−EC/Mg�P at Ng ≈ 0 one finds that Gi �= j/G0 ∼
2/M2 at T → TK .

Below the Kondo temperature, we have a correction to the
conductance from weak backscattering [see Eq. (E34)],

Gi j

G0
≈ 2

(
1

M
− δi j

)[
1 − c r(TK )2

( T

TK

)2(1− 2
M )
]

, (6.6)

which displays the non-Fermi-liquid temperature-
dependence. The numerical coefficient c is beyond our
RG analysis but expected to be of order unity. At T ∼ TK , we
expect that r(TK ) ∼ 1 − O(1/M ) and thus Gi �= j/G0 ∼ 1/M2.
This matches with the limit T → TK of the high-temperature
result Eq. (6.5).

Let us now discuss conductance through the island at
Ng ≈ 1/2, i.e., close to the charge degeneracy point. At
high temperatures, the conductance is given by Eq. (6.4) de-
scribing sequential tunneling through MZMs. At the charge
degeneracy E∗

C = 0 and, thus, Gi �= j/G0 ≈ g�P/(4MT ) for ap-
proximately isotropic barriers. At low temperatures T � TK ,
the conductance is given by Eq. (6.6) with TK ∼ Mg�P. The
two (high- and low-temperature) results match at T ∼ TK

yielding Gi �= j (T ∼ TK )/G0 ∼ 1/M2.
In the strong-tunneling limit, Mg�P � EC [Fig. 3(b)],

the conductance has the same temperature dependence as
in Eq. (6.6) already at relatively high temperatures T � EC .
Thus, the strong-tunneling regime may be favorable for ob-
serving the non-Fermi-liquid temperature dependence. We
have for T � EC � �P (see Appendix E 2),

Gi j/G0 = 2

(
1

M
− δi j

)
− c

(
T

EC

)2(1− 2
M )

Ri j , (6.7)

where c is a numerical coefficient whose calculation is beyond
the accuracy of our RG treatment and the effective reflection
coefficient is [60]

Ri j = −
∑

k

rk (EC )2

(
δ jk − 1

M

)(
δik − 1

M

)
. (6.8)

For approximately isotropic contacts, we have Ri j ≈
( 1

M − δi j )r(EC )2. From Sec. IV B, we found that in the
strong-tunneling limit r(EC ) ≈ EC/(Mg�P ) when 1/M �
g � EC/(M�P ) and r(EC ) = (EC/�P )

√
1 − g when g �

1/M. In the crossover between weak and strong tunneling, we
have TK ∼ EC and Eqs. (6.6) and (6.7) match in that limit.

D. Conductance in the weak superconductor limit �P � EC

In the weak superconductor limit, the dependence of con-
ductance on temperature is nonmonotonic. It is easy to see this
effect in the strong tunneling regime, g � 1/M and � � �P

[Fig. 3(d)]. Indeed, one finds in this case that the maximum of
conductance doubles [14] from e2

h
1
M to 2e2

h
1
M upon lowering

the temperature across T ∼ �P. Indeed, in the temperature
interval �,�P � T � EC , one finds [50] the conductance
from inelastic cotunneling of above-gap quasiparticles,

Gi j/G0 ≈
(

1

M
− δi j

)
− bM

(
EC

T

) 2
M

Ri j, (6.9)

where the coefficient bM is given in Eq. (E31). The increas-
ing backscattering upon lowering the temperature agrees with
the RG flow of reflection amplitudes to scale T , see below
Eq. (5.14). The bare reflection amplitudes enter the coefficient
Ri j , given in Eq. (6.8) where now rk (EC )2 ∼ (1 − gk ).

The onset of p-wave superconductivity at T ∼ �P mod-
ifies both the maximum values as well as temperature
dependence. Indeed, for T � �P, the maximum conductance
is doubled [14],

Gi j

G0
≈ 2

(
1

M
− δi j

)
− c

(
EC

�P

) 2
M
(

T

�P

)2(1− 2
M )

Ri j , (6.10)

as the current is carried by the Majorana states, compare to
Eq. (6.7). Furthermore, unlike in Eq. (6.9), the backscattering
corrections to conductance become smaller as temperature
is lowered, dGi j/dT < 0. (Here c is a constant of order
one.) The conductance is therefore a nonmonotonic func-
tion of temperature [56,61]. The backscattering corrections to
Eqs. (6.9)–(6.10) match at T ∼ �P.

The nonmonotonic dependence of the conductance versus
temperature is also present in the weak tunneling limit, � �
�P [corresponding to g � 1 − (�P/EC )2/M].

In the Coulomb valleys, the conductance becomes small
[see Eq. (E12)] at temperatures �P � T � �,

Gi j/G0 =
(

λi j (�)2 − δi j

∑
k

λik (�)2

)(
T

�

)2

, (6.11)

We can match Eq. (6.11) with the strong-tunneling re-
sult Eq. (6.9) at T ∼ �. In the latter, the backscattering
correction becomes bM (EC/�)2/MRi j ∼ 1

M + O( 1
M2 ) and thus

Gi �= j ∼ 1/M2 which matches with Eq. (6.11) when λ(�) ∼
1/M. (Here we neglect ln M corrections.)

Upon lowering the temperature to T � �P, the tunnel-
ing in the valley becomes marginally relevant leading to a
weak-coupling Kondo RG flow with characteristic scale TK ∼
�Pe−�/�P , see Eq. (5.17). The conductance in this case reads

Gi j

G0
≈
[
λi j (�)2− δi j

∑
k

λik (�)2

][
�P

�

]2
[

ln e�P
TK

ln eT
TK

]2

,

(6.12)

where we assumed that TK � T � �P and λ(�) ∼ 1/M. At
T ∼ �P, the expressions Eqs. (6.12) and (6.11) match. At
T → TK , the logarithmic factor becomes of order ∼(�/�P )2

and we find Gi �= j/G0 ∼ 1/M2. Finally, in the low-temperature
regime T � TK , the nonlocal conductance approaches the
quantized value 2G0/M, see Eq. (6.6). At T � TK , the con-
ductance is given by Eq. (6.6) with the aforementioned TK .
One can see that this result matches with Eq. (6.12) at T ∼ TK .

VII. ON THE RELATION TO THE MULTI-CHANNEL
KONDO MODEL

Since in our model we include the superconducting pair-
ing explicitly, we can understand the relation between the
topological Kondo effect and the earlier studies of inelastic
cotunneling in multiterminal normal state metallic quantum
dots (which can be mapped to the multichannel Kondo prob-
lem) in Refs. [50,52–54].
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We demonstrated that both the topological superconduct-
ing as well as normal-state models can be mapped to a model
of Brownian motion of a quantum particle in a dissipative
bath. The fictitious quantum particle describes the charge that
tunnels across a tunnel barrier [62] between the lead and the
island, while the bath is formed by low-energy electronic fluc-
tuations away from the tunneling contact. The main difference
between the normal state and topological superconducting
island is in the effective dissipation strength (i.e., effective
Luttinger liquid parameter) in the QBM model, which in turn
determines the scaling dimensions of boundary operators. The
difference stems from the fact that in the case of a topological
superconducting island, the fluctuations away from the tunnel
contact are created only on the half axis since the super-
conducting region is gapped out at energies below �P. This
modifies the dissipation strength (and all scaling dimensions)
by a factor of 2 because the superconducting region does not
contribute to dissipation.

In the normal state, the multiterminal quantum dot model at
charge degeneracy can be mapped to the multichannel Kondo
(MCK) model. The multichannel Kondo model has a stable
intermediate fixed point [57] characterized by a universal con-
ductance GMCK

i j = e2

h ( 1
M − δi j ) sin2 π

M+2 at half-integer values
of Ng. (Away from these values, the conductance is small.)
Due to the difference in dissipation strength, the topological
Kondo model does not have an intermediate fixed point for
strictly noninteracting leads. The low-temperature fixed point
is characterized by a conductance Gi j = e2

h ( 1
M − δi j ) which is

independent of Ng.

VIII. CONCLUSIONS

We study signatures of topological ground-state degener-
acy in a mesoscopic Majorana island. We have developed a
microscopic model which explicitly includes p-wave super-
conductivity and have identified the signatures of ground-
state degeneracy in thermodynamic and transport observable
quantities.

Our work sheds light on the so-called topological Kondo
effect which corresponds to a formation of a correlated state
between an effective Majorana spin in the island and elec-
trons in the leads. Our model allows one to express the

characteristic Kondo scale TK in terms of microscopic pa-
rameters: junction conductances gi, charging energy EC , and
topological gap �P. We have also extended the previous
results for the topological Kondo effect to the regimes of
weak pairing (�P � EC) as well as to strong tunneling limit
(g ∼ 1). Thus, our results provide insight regarding the exper-
imental requirements necessary to detect this exotic correlated
state.

We find that the main features of the topological Kondo ef-
fect, the quantized conductance and its non-Fermi-liquid-like
temperature dependence, are present in both limits: �P � EC

and �P � EC . In the strong tunneling limit, the effective
Kondo temperature becomes large, TK ∼ min(EC,�P ), which
makes the temperature window for observing non-Fermi-
liquid corrections to conductance in the laboratory favorable.
The underlying reason for the robustness of the topologi-
cal Kondo effect stems from the fact that the topological
ground-state degeneracy is protected by the bulk gap (i.e.,
superconducting p-wave pairing is a relevant bulk perturba-
tion), thus leading to the same universal low-temperature fixed
point regardless of EC/�P. The non-Fermi-liquid fixed point
is stable and isotropic as long as the hybridization between
different Majoranas can be ignored [21].

In islands with more than two (noninteracting) leads, the
superconducting fluctuations are enhanced due to ground-
state degeneracy and, as a result, charging effects are
suppressed. This effect is particularly dramatic when �P �
EC , in which case we find that charging energy has additional
suppression relative to the normal-state Coulomb islands, pro-
portional to (EC/�P )M . This renormalization of the charging
energy can be used to identify ground-state degeneracy. The
suppression of charging energy is also important in the context
of topological qubits where charging energy provides protec-
tion from quasiparticle poisoning [28,29].
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APPENDIX A: DERIVATION OF THE DISSIPATIVE ACTION EQ. (4.1)

In this Appendix, we discuss how p-wave pairing term Eq. (3.3) modifies the dissipation strength in the effective boundary
model. For this, it is convenient to use the fermion representation. We linearize the spectrum around the Fermi level, which is
valid at small energies compared to the Fermi energy. The Hamiltonian in the proximitized segment is then

Hisland =
M/2∑
α=1

∫ L

0
dx

(∑
r=R,L

ψ†
αr (−ivr∂x − vkF )ψαr + [�Pe2iθSCψ

†
αRψ

†
αL + H.c.]

)
, (A1)

where ψαr is a spinless fermion operator for wire α and r = +,− = R, L labels right and left movers. We will suppress the label
α in the remainder of this section. In the pairing term, the operator eiθSC removes an electron from the superconductor backbone,
[NSC, e−iθSC ] = 1. The total charge (that appears in the charging energy) N = NSC +∑

α Nα is thereby conserved by the pairing
term. We can diagonalize Hisland with a Bogoliubov transformation in momentum space,

crk,r = eiθSC (dkruk − rvkd†
kr ) , (A2)
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where dkr is a neutral operator [commutes with N] and

uk = 1√
2

√√√√1 + εk√
�2

P + ε2
k

, vk = 1√
2

√√√√1 − εk√
�2

P + ε2
k

, (A3)

with εk = v(k − kF ). The diagonalized Hamiltonian is Hisland = ∑
α,r

∑
k

√
�2

P + ε2
k d†

k,α,rdk,α,r . Note that the phase θSC does

not enter in the backscattering operator ψ
†
RψL.

By using the diagonalized Hamiltonian we find that 〈[ψ†
RψL](τ )[ψ†

LψR](0)〉 ∼ τ−2e−2τ�P in the proximitized segment.
In the bosonic description, ψr (x) = ei(rϕ−θ ), this corresponds to a nondissipative effective action at low frequencies
1
π

T
∑

ωn
e−|ωn|/D |ωn|2

�
|ϕ(x, ωn)|2 (with D � �P) for 0 � x � L after integrating out the spatial fluctuations. Thus, the bosonic

action at the boundary (x = 0, L) of the proximitized segment is dominated by the dissipative part, 1
2π

T
∑

ωn

∑
j |ωn||ϕ j (ωn)|2,

the first term in Eq. (3.12).

APPENDIX B: DERIVATION OF THE DUAL ACTION BY USING VILLAIN TRANSFORMATION

In this Appendix, we derive the dual boundary action Eq. (4.4) used in the weak tunneling limit. We start from the boundary
action Eq. (4.1) in the limit of large barriers Dri. We consider the boundary-field partition function:

Z =
∫

Dϕ1 . . .DϕM (B1)

exp −
(

1

π
T
∑
ωn

∑
i

1

K
|ωn||ϕi(ωn)|2 +

∫
dτ
∑

i

Dri cos 2ϕi(τ ) + 1

π2
EC

∫
dτ

(∑
i

ϕi(τ ) − πNg

)2)
. (B2)

We include a factor K which takes values 2 or 1 in the cases where the cutoff is either much below �P, used in the strong pairing
case Eq. (4.1), or much above it, used in the weak-pairing limit, Eq. (5.1).

Because of the large Dri, we can approximate the cosine as [63,64] cos xi ≈ ∑
ni

1
2 (xi − (2ni + 1)π )2 which leads to

Z ≈
∫

Dϕ1 . . .DϕMe−S0
∑

n1(τ )...nM (τ )

e−Spot , (B3)

where S0 = 1
π

T
∑

i

∑
ωn

1
K |ωn||ϕi(ωn)|2 and

Spot = 2
∫

dτ
∑

i

Dri(ϕi − ai )
2 + 1

π2
EC

∫
dτ

(∑
i

ϕi − πNg

)2

, (B4)

and we denote ai = 1
2 (2ni + 1)π .

Next, we introduce the decoupling fields z j ,

e−Spot = e− 1
π2 EC

∫
dτ (

∑
i ϕi−πNg)2

∫
Dz1 . . .DzM exp −

∫
dτ
∑

j

(
1

2Drj
z2

j − 2iz j (ϕ j − a j )

)
(B5)

= e− 1
π2 EC

∫
dτ (

∑
i ϕi−πNg)2

∫
Dδθ1 . . .DδθM exp −

∫
dτ
∑

j

(
1

2Drj

1

4π2
(∂τ δθ j )

2 − i
1

π
(∂τ δθ j )(ϕ j − a j )

)
. (B6)

We set in the second line z j = 1
2π

∂τ δθ j , where δθ j are conjugate to 1
π
ϕi: [ 1

π
ϕ j, δθ j] = i. We will drop the terms ∝ 1/Drj from

hereon.
Only ∂τ δθ j is now coupled to the integer-field n j so we can do the sum. This part of the path integral reads∑

n1(τ )...nM (τ )

exp −
∫

dτ
∑

j

i
1

2π
∂τ δθ jn j2π . (B7)

Upon inspecting this with the Poisson summation formula,
∑

s∈Z δ(s − δθ ) = ∑
m∈Z e2π imδθ , the sum over ni(τ ) imposes 1

2π
δθ i

to be integer-valued. We impose this condition “softly” by introducing a cosine potential [64]:∑
n1(τ )...nM (τ )

e− ∫ dτ
∑

j i 1
2π

∂τ δθ j n j 2π ≈ e
∫

dτ
∑

j Dt j cos δθ j . (B8)

Next, we rotate to the basis Eq. (4.2) where the total charge mode
∑

i ϕi is singled out. Similar to the basis change Eq. (4.2),
we transform the conjugate fields as

δθ i = 1

2
Ri · p + 1√

M
P . (B9)
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Then [q j, pk] = iπδ jk and [Q, P] = iπ . In the new variables, the full action is (we shift the Q field Q → Q + π√
M

Ng)

S[q, Q, p, P] = T

π

∑
ωn

[
1

K
|ωn||q(ωn)|2 + 1

K

(
|ωn| + KM

π
EC

)
|Q(ωn)|2

]
−
∫

dτ i∂τ P
1√
M

Ng (B10)

− 1

π

∫
dτ
∑

j

(
i
1

4
(R j · ∂τ p)(R j · q) + i

1

M
∂τ PQ

)
−
∫

dτ
∑

i

Dti cos

(
1

2
Ri · p + 1√

M
P

)
. (B11)

In general, P(τ + 1
T ) = P(τ ) + 2π

√
MW with W an integer winding number. Let us define P(τ ) = P(τ ) + 2π

√
MW T τ where

P is 1/T periodic. Then,

S[q, Q, p, P] = T

π

∑
ωn

[
1

K
|ωn||q(ωn)|2 + 1

K

(
|ωn| + KM

π
EC

)
|Q(ωn)|2

]
(B12)

−
∫

dτ
∑

j

i

π

(
1

4
(R j · ∂τ p)(R j · q) + 1

M
∂τ PQ + 1

M
2π

√
MW T Q

)
(B13)

− i2πW Ng −
∫

dτ
∑

i

Dti cos

(
1

2
Ri · p + 1√

M
P + 2πW T τ

)
. (B14)

We will from hereon drop the bar from P. Integrating out q and Q, we are left with the final dual partition function,

Z =
∑
W

eiNg2πW −π2T E−1
C W 2

∫
DpDP exp − T

4π

∑
ωn

K|ωn|
{
|p(ωn)|2 + |ωn|

|ωn| + KM
π

EC
|P(ωn)|2

}
(B15)

exp
∫

dτ
∑

i

Dti cos

(
1

2
Ri · p + 1√

M
P + 2πW T τ

)
, (B16)

which gives the actions Eqs. (4.4) and (5.2) of the main text, by setting, respectively, K = 2 or K = 1 above.

1. Derivation of the tunneling action in Sec. IV A

Expanding Eq. (B16) to second order in the tunneling amplitudes ti, we find (we take K = 2, relevant for the strong
superconductor limit of Sec. IV)

Z ≈
∫

Dpe− T
2π

∑
iωn

|ωn||p(ωn )|2 ∑
W

eiNg2πW −π2T E−1
C W 2

∫
DPe

− T
2π

∑
iωn

|ωn |2
|ωn |+ 2M

π EC
|P(ωn )|2

(
1 + 1

2
S(W )2

t

)
(B17)

≈ Z0(Ng)ZP

∫
Dpe− T

2π

∑
iωn

|ωn||p(ωn )|2 e−St,eff , (B18)

where we denote St,eff = − 1
2 〈S(W )2

t 〉P,W and

Z0(Ng) =
∞∑

W =−∞
eiNg2πW −π2T E−1

C W 2 = ϑ
(
Ng; iπT E−1

C

)
, ZP =

∫
DPe

− T
2π

∑
iωn

|ωn |2
|ωn |+ 1

π 2MEC
|P(ωn )|2

, (B19)

and we dropped the first-order term 〈S(W )
t 〉P,W , which is negligible.

The partition function Z0(Ng) gives the charge steps of an isolated island, see Appendix D; ϑ is the Jacobi theta function. The
effective tunneling action Eq. (4.8) used in Sec. IV A is obtained from

St,eff = −1

4
D2
∫

dτ

∫
dτ ′〈ei 1√

M
[P(τ )−P(τ ′ )]+2π iW T (τ−τ ′ )〉P,W

∑
i j

ti(D)t j (D) cos

(
1

2
Ri · p(τ ) − 1

2
R j · p(τ ′)

)
, (B20)

by integrating out P and summing over W . The correlation function in the integrand is discussed in Appendix C 3.

APPENDIX C: VERTEX OPERATOR AVERAGES AND CORRELATION FUNCTIONS

In this Appendix, we calculate the averages and correlation functions of the boundary vertex operators e2i 1√
M

Q, eiRi·q, ei 1√
M

P,
and e

1
2 iRi·p. We will use the quadratic boundary actions,

S[Q] = 1

Kπ
T
∑
ωn

e−|ωn|/D|ωn||Q(ωn)|2 + EC

∫
dτ

(
1

π

√
MQ − Ng

)2

, S[q] = 1

Kπ
T
∑
ωn

e−|ωn|/D|ωn||q(ωn)|2 , (C1)
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S[P] = K

4π
T
∑
ωn

e−|ωn|/D |ωn|2
|ωn| + KM

π
EC

|P(ωn)|2 , S[p] = K

4π
T
∑
ωn

e−|ωn|/D|ωn||p(ωn)|2 . (C2)

The average of a vertex operator is non-negligible only for e2i 1√
M

Q in which case the charging energy EC cuts off long-wave
length fluctuations [37,51]. Since our Hamiltonian is time independent, the two-point functions only depend on time differences
while the one-point function is time independent.

1. The average 〈e
2i 1√

M
Q〉

For the average 〈e2i 1√
M

Q〉 we find to lowest order in T/EC and EC/D,

〈e2i 1√
M

Q(τ )〉 = ei2 1
M πNg exp −KπT

M

∑
ωn �=0

e−|ωn|/D 1

|ωn| + 1
π

KMEC
(C3)

= ei2 1
M πNg

(
Keγ MEC

πD

)K/M

. (C4)

This result for K = 2 was used in Sec. IV B and for K = 1 in Sec. V B.

2. The correlation functions 〈eiRi·[q(τ )−q(0)]〉 and 〈ei 1
2 Ri·[p(τ )−p(0)]〉

Correlation functions of type 〈ei
∑

i Ri·q(τi )〉 and 〈ei 1
2

∑
i Ri·p(τi )〉 are nonvanishing only when

∑
i Ri = 0. For the two-point

function, we find

〈eiRi·[q(τ )−q(0)]〉 = 〈eiT
∑

ωn B(−ωn )·q(ωn )〉 (C5)

= exp −Kπ

4
T
∑
ωn

e−|ωn|/D 1

|ωn|B(−ωn) · B(ωn) (C6)

= exp −K

2
|Ri|2T π

∑
ωn

e−|ωn|/D 1

|ωn| (1 − cos ωnτ ) (C7)

=
(

1 + D2

π2T 2
sin2 πT τ

)−K 1
4 |Ri|2

. (C8)

where B(−ωn) = Ri [eiωnτ − 1] and we used the following sum [65] (ωn = 2πnT ) valid in the limit D � T :

T π
∑
ωn

e−|ωn|/D 1 − cos ωnτ

|ωn| = 1

2
ln

(
1 + D2

π2T 2
sin2 πT τ

)
. (C9)

The correlation function 〈ei 1
2 Ri·[p(τ )−p(0)]〉 is calculated similarly. We find

〈ei 1
2 Ri ·[p(τ )−p(0)]〉 =

(
1 + D2

π2T 2
sin2 πT τ

)− 1
4K |Ri|2

. (C10)

From the correlation function Eq. (C8), we find in the limit T −1 � τ � D−1 the result 〈eiRi·[q(τ )−q(0)]〉 ∼ |τ |−2�, from which
we can identify the scaling dimension � = K 1

4 |Ri|2. Similarly, from Eq. (C10), we find � = K−1 1
4 |Ri|2 for the operator ei 1

2 Ri·p.

For the operator ei 1
2 (Ri−R j )·p, used in Eqs. (4.10) and (5.3), we have instead � = 2K−1.

3. The correlation function 〈e
i 1√

M
[P(τ )−P(0)]〉

Let us calculate the correlator 〈ei 1√
M

[P(τ )−P(0)]〉 by using the action S[P] given in Eq. (C2) above. We introduce B(−ωn) =
1√
M

[eiωnτ − 1], which allows us to write

〈ei 1√
M

[P(τ )−P(0)]〉P = 〈eTi
∑

iωn B(−ωn )P(ωn )〉P (C11)

= exp −πT

2

∑
iωn

e−|ωn|/D |ωn| + 2M
π

EC

|ωn|2
∣∣∣∣ 1√

M
(eiωnτ − 1)

∣∣∣∣
2

(C12)

≈
(

1√
1 + D2τ 2

)1/M

e−EC |τ | , (T � τ−1, EC, D) . (C13)
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We used the following sums [65] (ωn = 2πnT ) valid in the limit D � T :

T π
∑
iωn

e−|ωn|/D 1 − cos ωnτ

|ωn| = 1

2
ln

(
1 + D2

π2T 2
sin2 πT τ

)
, T π

∑
iωn

e−|ωn|/D 1 − cos ωnτ

|ωn|2 = π

2
|τ |(1 + T |τ |) . (C14)

Equation (C13) gives the correlation function when Ng is close to an integer, e.g., Ng ≈ 0. For half-integer values, Ng ≈ 1/2,
we need to include the sum over winding number W and consider instead

C(τ ) = 〈ei 1√
M

[P(τ )−P(0)]+2π iW T |τ |〉P,W = 〈ei 1√
M

[P(τ )−P(0)]〉P〈e2π iW T |τ |〉W , (C15)

where the average over W is evaluated with the help of Z0(Ng) in Eq. (B19). We find

〈
e2π iW T τ

〉
W = Z0(Ng)−1

∞∑
W =−∞

eiNg2πW −π2T E−1
C W 2

ei2πW T τ (C16)

= Z0(Ng)−1ϑ
(
Ng + T τ ; iπT E−1

C

)
, (C17)

where Z0(Ng) = ϑ (Ng; iπT E−1
C ). At large EC/T , we can use the asymptotic

Z0
(
Ng)−1ϑ

(
Ng + T τ ; iπT E−1

C

) ≈ e−2NgEC |τ |. (C18)

We then find Eq. (4.9) of the main text:

C(τ ) ≡ 〈ei 1√
M

[P(τ )−P(0)]+2π iW T |τ |〉P,W ≈
(

1√
1 + D2τ 2

)1/M

e−E∗
C |τ | =

{(
1

Dτ

)1/M
, 1/D � τ , 1/E∗

C

e−E∗
C |τ | , τ � 1/D � 1/E∗

C

, (C19)

where E∗
C = 2EC ( 1

2 − Ng).

APPENDIX D: AVERAGE CHARGE

We have from Eqs. (3.1) the charge operator

N = − 1

2EC

dH

dNg
+ Ng . (D1)

For calculating 〈N〉, it is therefore convenient to find the Ng-dependent part of the average energy 〈H〉.

1. Weak tunneling limit

Let us first derive the average charge in the absence of tunneling. It is of course very easily obtained from the charging energy
term of the Hamiltonian Eq. (3.1) and one finds 〈N〉 = �Ng + 1

2� where �. . .� is the floor function. (The charge steps are 1e
periodic since the topological superconductor can host an odd number of electrons.) This result is obtained from the partition
function Eq. (B19), as we show below.

We are interested in the Ng-dependent part of the average energy, which is obtained as 〈H〉 = −Z−1∂βZ = −∂β ln Z in general.
Ignoring the Ng-independent contributions, we find the average energy,

〈H〉 = −∂βZ0(Ng)

Z0(Ng)
, (D2)

where β = 1/T and

Z0(Ng) =
∞∑

W =−∞
eiNg2πW −π2T E−1

C W 2 = ϑ
(
Ng; iπT E−1

C

)
. (D3)

For EC � T , we can use the expansion of the theta function,

ϑ
(
Ng; iπT E−1

C

) ≈
√

EC

T π
exp −(EC/T )

({
Ng − 1

2

}
− 1

2

)2

, (D4)

where {. . . } is the positive fractional part. Using it, we find

〈H〉 = −∂β ln ϑ
(
Ng; iπT E−1

C

)
(D5)

≈ EC

({
Ng − 1

2

}
− 1

2

)2

(D6)

for the ground-state energy. Upon taking the derivative, we obtain 〈N〉 = Ng − ({Ng − 1
2 } − 1

2 ) = �Ng + 1
2�. Next, we will

calculate the leading correction to this result due to weak tunneling between the island and the leads.
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The leading correction to ground-state energy comes from a process where an electron tunnels through the junction i into the
island (or the lead) and returns through the same junction within a time ∼1/EC . The correction to charge due to finite tunneling
is most convenient to calculate in the fermionic formalism, by using the tunneling action Eq. (4.7). This action corresponding to
tunneling into a Majorana mode is valid in the limit of strong superconductor, �P � EC . We will comment on the opposite case
below.

From the tunneling action Eq. (4.7) in the Hamiltonian formalism, we find the second-order correction to ground-state energy,

δE (2)
g.s. ≈ −ν

∑
i

(Dti )
2

(
ln

D

�E+1
+ ln

D

�E−1

)
, (D7)

where ν ∼ 1/D is the density of states (inverse bandwidth) of the lead and we denote �E±1 the energy required to add/remove
an electron from the island. For example, in the Ng ≈ 0 valley we have �E±1 = EC (1 ∓ 2Ng). Upon taking the Ng derivative of
Eq. (D7), we find the leading correction to the average charge,

δ〈N〉(2) =
∑

i

gi�P

EC

Ng(
1
4 − N2

g

) , (D8)

in the valley −1/2 < Ng < 1/2. We also set the bandwidth D ∼ EC and used the running coupling ti(D) ∼ √
gi

√
�P/D from

Eq. (4.6). Equations (D7)–(D8) become invalid in the narrow regions where Ng is within ∼Mg�P/EC of a charge degeneracy
point, in which case, for example, δ〈N〉(2) becomes of order 1. This estimate of the regime of strong charge fluctuations around
the charge degeneracy point agrees with the estimate Eq. (4.14) obtained in the main text. Equation (D8) gives the result used in
Sec. VI A in the strong superconductor limit, �P � EC .

In the case of weak superconductivity (�P � EC), the above estimates δE (2)
g.s. and 〈N〉(2) change as one needs to sum over

intermediate energies of the virtual quasiparticles in the island, see Eq. (5.5). This leads then to the result δ〈N〉(2) ∼ ∑
i gi ln 1+2Ng

1−2Ng

obtained in Ref. [52].

2. Strong tunneling limit

In this Appendix, we derive the correction to ground-state charge from weak backscattering at the junctions. Our discussion
is similar to Ref. [9] where a normal state dot is considered (�P → 0). In the absence of any backscattering (ri = 0) we have
〈N〉 = Ng.

To calculate the leading-order backscattering correction to 〈N〉, we can calculate the correction to ground-state energy by
using 〈H〉 = −Z−1∂βZ and then take the Ng derivative as in Eq. (D1). Upon integrating out the total charge mode Q, we obtain
an effective action with a backscattering perturbation,

Sr = EC

∫
dτ
∑

j

r j (EC ) cos

(
R j · q + 2

1

M
πNg

)
, (D9)

where we took the bandwidth D ∼ EC . This result is valid in both cases of strong (�P � EC) and weak (�P � EC) supercon-
ductivity. In the former limit it is obtained from the action Eq. (4.3) and in the latter limit from Eq. (5.1). We have, respectively,
r j (EC ) ∼ (EC/�P )

√
1 − g j and r j (EC ) ∼ √

1 − g j in Eq. (D9), in the limit g j ≈ 1.
Upon expanding the partition function perturbatively in Sr , the leading term is in second order ∝ r2

j . However, this
contribution is Ng independent and thus does not modify 〈N〉. The leading Ng-dependent term is in order M perturbation
theory Z (M ) ∼ 〈∏M

j=1 EC
∫

dτ j r j cos[R j · q(τ j ) + 2 1
M πNg]〉 which is nonvanishing since

∑
j R j = 0. The integrals over imag-

inary time can be easily calculated by using Eq. (C8). The integrals only depend on the differences and are UV divergent
when τi − τ j → 0. This integration then yields Z (M ) ∼ (EC/T )(

∏
j r j (EC )) cos 2πNg and the correction to ground-state en-

ergy δE (M )
g.s. ∝ EC (

∏
j r j (EC )) cos 2πNg. By taking the Ng derivative and substituting r j (EC ) ∼ (EC/�P )

√
1 − g j in the limit

�P � EC , we obtain the correction to 〈N〉 introduced in the main text, Eq. (6.2) [Eq. (6.1) is obtained similarly]. In the limit of
weak superconductivity, we substitute r j (EC ) ∼ √

1 − g j and find Eq. (6.3).

APPENDIX E: CURRENT OPERATOR AND KUBO FORMULA FOR CONDUCTANCE

In this Appendix, we outline how the linear conductance presented in Sec. VI is calculated by using the Kubo formula. We
follow closely Ref. [53].

The dc conductance matrix is given by [66]

Gi j = i lim
ω→0

ω−1 lim
iωn→ω+i0+

∫
dτeiωnτ 〈Tτ Ii(τ )I j (0)〉 , (E1)

where Ii = −e 1
π
∂tϕi is the current operator for junction i. In the two sections below, we use the Kubo formula to evaluate the

conductance at low temperatures T � EC .
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1. Weak tunneling limit

In the Coulomb valley, the tunneling action is given by Eq. (4.10), corresponding to electron tunneling from lead i to lead j
without changing the charge of the island. By using the equation of motion for ϕi, we obtain the current operator

Ii = −e
1

2
D
∑

j

λi j (D) sin
1

2
[Ri − R j] · p . (E2)

By using the current operator in the Kubo formula Eq. (E1), we find

Gi j = i

(
e

1

2
D

)2 ∑
i′ �=i, j′ �= j

λii′ (D)λ j j′ (D) lim
ω→0

ω−1 lim
iωn→ω+i0+

∫
dτeiωnτ

〈
Tτ sin

1

2
[Ri − Ri′ ] · p(τ ) sin

1

2
[R j − R j′ ] · p(0)

〉
(E3)

We have 〈
Tτ sin

1

2
[Ri − Ri′ ] · p(τ ) sin

1

2
[R j − R j′ ] · p(0)

〉
= 1

(2i)2

∑
σσ ′

〈Tτ eiσ 1
2 [Ri−Ri′ ]·p(τ )eiσ ′ 1

2 [R j−R j′ ]·p(0)〉 (E4)

= −1

2
(δi′ jδi j′ + δi jδi′ j′ )〈Tτ ei 1

2 [R j−R j′ ]·p(τ )e−i 1
2 [R j−R j′ ]·p(0)〉 (E5)

and

〈Tτ ei 1
2 [R j−R j′ ]·p(τ )e−i 1

2 [R j−R j′ ]·p(0)〉 =
(

D

πT
sin πT τ

)−K−1 1
2 |R j−R j′ |2

, (E6)

where K = 2 in the superconducting case and K = 1 in the normal case, and 1
4 |R j′ − R j |2 = 2 for j �= j′. Thus, � = 1 and

� = 2 in the superconducting and normal cases. Thus,

Gi j = −i

(
−e

1

2
D

)2

lim
ω→0

ω−1 lim
iωn→ω+i0+

1

2

(
λi j (D)2[1 − δi j] − δi j

∑
i′ �=i

λii′ (D)2

)∫
dτeiωnτ

(
D

πT
sin πT τ

)−4K−1

. (E7)

We take the real part and use the integral in the limit ωn → 0,∫ T −1−D−1

D−1
dτ

1 − cos ωnτ(
D

πT sin πT τ
)ν = −iωni

(
πT

D

)ν 1

2πT 2
B

(
1

2
,
ν

2

)
, (E8)

where B is the beta function. We find

Gi j = e2

h

π2

8

(
λi j (D)2[1 − δi j] − δi j

∑
i′ �=i

λii′ (D)2

)(
πT

D

)−2+4K−1

B

(
1

2
, 2K−1

)
. (E9)

In the superconducting case, we have λi j (D) ≈ √
gig j�P/E∗

C with logarithmic corrections, see Sec. IV A 1. Thus, in the
superconducting case (K = 2),

Gi j = e2

h

π2

4
gi(g j − δi jg� )

(
�P

E∗
C

)2[ ln(eEC/TK )

ln(eT/TK )

]2

, (E10)

where we have included the logarithmic corrections. This is Eq. (6.5) of the main text. In the normal case (K = 1), we have for
D � E∗

C the running coupling λi j (D) → λi j (D)
√

gig jD/E∗
C , in the notation of Sec. V A 1. Thus, we find

Gi j = e2

h

π2

6
gi(g j − δi jg� )

(
πT

E∗
C

)2

, (E11)

where g� = ∑
i gi.

We can also use Eq. (E9) in the case of strong tunneling when � � �P in which case tunneling becomes weak in the
temperature interval �P � T � �. In this limit, we have λi j (D) = λi j (�)(D/�), see discussion in Sec. V B above Eq. (5.17).
Therefore, from Eq. (E9) with K = 1, we find

Gi j = e2

h

(
λi j (�)2 − δi j

∑
k

λik (�)2

)(
T

�

)2

, (E12)

which was given in Eq. (6.11) of the main text.
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2. Strong tunneling limit

In the strong tunneling limit, it is easiest to work in terms of the ϕ variables. The current operator is then Ii = −e 1
π
∂tϕi and

the Kubo formula becomes [see Eq. (E1)]:

Gi j = i
e2T

π2
lim
ω→0

ω lim
iωn→ω+i0+

〈ϕi(−iωn)ϕ j (iωn)〉 . (E13)

This form for the conductance is best suited for calculations in the strong tunneling limit.
We can write

〈ϕi(−iωn)ϕ j (iωn)〉 = 1

ZJ

δ

δJi(iωn)

δ

δJj (−iωn)
ZJ

∣∣∣∣
J=0

, (E14)

where

ZJ =
∫

Dϕ je
−S−SJ , SJ = −

∑
ωn

∑
j

J j (−iωn)ϕ j (iωn). (E15)

In the presence of charging energy, the proper variables are q and Q, Eq. (4.2). In terms of these variables, we have

S = S0 − D
∫

dτ
∑

j

r j (D) cos

(
R j · q + 2

1√
M

Q

)
, (E16)

S0 = 1

π
T
∑
iωn

1

K
|ωn|(|q(ωn)|2 + |Q(ωn)|2) + EC

∫
dτ

(
1

π

√
MQ − Ng

)2

, (E17)

SJ = −
∑
iωn

∑
j

J j (−iωn)

[
1

2
R j · q(iωn) + 1√

M
Q(iωn)

]
. (E18)

To describe both normal and superconducting islands, we have included in S0 a factor K which is 1 in the normal case (D � �P)
and 2 in the topological superconducting case (D � �P). Likewise, in the former case, the reflection amplitude is irrelevant
under RG flow, ri(D) = (D/�P )K−1√1 − gi, where EC � D � �P. The above action thus allows us to cover both actions
Eqs. (4.3) (when �P � EC) and (5.1) (when �P � EC).

Expanding e−S−SJ in perturbation theory in reflection, we find to second order in r j ,

e−S−SJ = e−S0−SJ

(
1 + 1

2
D2
∫

dτ1

∫
dτ2

∑
j1 j2

r j1 r j2 cos

[
R j1 · q(τ1) + 2

1√
M

Q(τ1)

]
cos

[
R j2 · q(τ2) + 2

1√
M

Q(τ2)

])
(E19)

= e−S0−SJ

(
1 + 1

2
D2
∫

dτ1

∫
dτ2

∑
j1 j2

r j1 r j2
1

4

∑
σ1,σ2=±

e
∑

iωn
A(−iωn )·q(iωn )e

∑
iωn

B(−iωn )Q(iωn )

)
, (E20)

where

A(−iωn) = iT (σ1eiωnτ1 R j1 + σ2eiωnτ2 R j2 ) , B(−iωn) = 2i
1√
M

T (σ1eiωnτ1 + σ2eiωnτ2 ). (E21)

Thus,

ZJ = Z0

〈
e−SJ

(
1 + 1

2
D2
∫

dτ1

∫
dτ2

∑
j1 j2

r j1 r j2
1

4

∑
σ1,σ2=±

e
∑

iωn A(−iωn )·q(iωn )e
∑

iωn B(−iωn )Q(iωn )

)〉
S0

. (E22)

The averages over q and Q can be done separately. For this, we have the following correlation functions:

〈e
∑

iωn C(−iωn )·q(iωn )〉S0 = e
1
2 KT −1 π

2

∑
iωn |ωn|−1C(iωn )·C(−iωn ) , (E23)

〈e
∑

iωn C(−iωn )Q(iωn )〉S0 = eπT −1 1
2

∑
iωn �=0 C(−ωn )(2K−1|ωn|+ 2

π
MEC )−1

C(ωn )e
1
4 T −1 π2

MEC
C(0)2

eT −1C(0)
πNg√

M . (E24)

We find for ωn, T � EC ,

〈ϕi(−iωn)ϕ j (iωn)〉 = π
(
δi j − 1

M

)
2K−1T |ωn| + 2

π2D2

4K−2|ωn|2T

(
2eγ MEC

2K−1πD

)2K/M
(

D

EC

)2K−2

Ri j

∫ T −1−D−1

D−1
dτ

1 − cos ωnτ(
D

πT sin πT τ
)2K (1− 1

M )
,

(E25)
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where the factor ( D
EC

)
2K−2

is absent in the normal case K = 1 (D � �P). We denote

Ri j = −
∑

j1

r j (EC )2

(
δ j j1 − 1

M

)(
δi j1 − 1

M

)
, (E26)

where r j (EC )2 = ( EC
�P

)
2K−2

(1 − g j1 ). For roughly isotropic contacts, we have Ri j ≈ r(EC )2( 1
M − δi j ). We also used the following

results for σ2 = −σ1 and j1 = j2 [which is the dominant contribution to ZJ , Eq. (E22)]:

〈e
∑

iωn
B(−iωn )Q(iωn )〉Q = 〈e2i 1√

M
σ1(Q(τ1 )−Q(τ2 ))〉Q ≈

(
2eγ MEC

gπD

)2K/M

(E27)

and

e
K
2 T −1 π

2

∑
iωn |ωn|−1A(iωn )·A(−iωn ) = e−(1− 1

M ) 1
2 KT π

∑
iωn |ωn|−1[1−cos ωn(τ1−τ2 )] (E28)

=
(

D

πT
sin πT (τ1 − τ2)

)−4(1− 1
M ) 1

2 K

. (E29)

The last integral in Eq. (E25) in the limit ωn → 0 can be calculated by using the integral Eq. (E8) with ν = 2K (1 − 1
M ). Thus,

with the help of Eq. (E13), we obtain

Gi j/G0 = K

(
1

M
− δi j

)
− π2K2

2

(πT

EC

)2K−2(Keγ MEC

π2T

)2K/M

B

(
1

2
, K

(
1 − 1

M

))
Ri j , (E30)

where G0 = e2/h. This result covers both the normal (T � �P) and superconducting (T � �P) cases by setting the parameter
K = 1 or 2, respectively.

In the superconducting case, K = 2, we obtain Eq. (6.7) of the main text. In the normal case, T � �P, i.e., K = 1, we find

Gi j/G0 =
(

1

M
− δi j

)
− 1

2
π2

(
eγ MEC

π2T

)2 1
M

B

(
1

2
,

(
1 − 1

M

))
Ri j . (E31)

This is Eq. (6.9) of the main text. In that equation, we have bM = 1
2π2( eγ M

π2 )
2/M

B( 1
2 , (1 − 1

M )); B is the beta function and 8.5 �
bM � 11.4 for M = 3, . . . , 6. For M = 4, the temperature-dependence agrees with the result of two spinful leads in Ref. [53].
Equation (E31) is valid at EC � T � �P and the T dependence arises from the renormalization of reflection amplitudes to
scale T , see below, Eq. (5.14). At T � �P, we can replace T → �P in Eq. (E31) and multiply the second term by a factor
(T/�P )2(1− 2

M ) as the reflection amplitudes get renormalized further.
We can also use the above method to evaluate the backscattering correction to conductance near the strong-coupling fixed

point, T � TK . We replace Eqs. (E16)–(E18) by

S = 1

2π
T
∑
ωn

e−|ωn|/TK |ωn||q(ωn)|2 − TK

∫
dτ
∑

j

r j (TK ) cos

(
R j · q + 2

1

M
πNg

)
, (E32)

where TK is now the UV cutoff and r j (TK ) ∼ 1. Instead of Eq. (E25), we now find (for ωn, T � TK )

〈ϕi(−iωn)ϕ j (iωn)〉 = π
(
δi j − 1

M

)
T |ωn| − 2

π2T 2
K

|ωn|2T

∑
j1

r j1 (TK )2

(
δ j j1 − 1

M

)(
δi j1 − 1

M

)∫ T −1−T −1
K

T −1
K

dτ
1 − cos ωnτ( TK

πT sin πT τ
)4(1− 1

M )
(E33)

and the conductance

Gi j/G0 = 2

(
1

M
− δi j

)
+ 2π2B

(
1

2
, 2

(
1 − 1

M

))∑
j1

r j1 (TK )2

(
δ j j1 − 1

M

)(
δi j1 − 1

M

)(
πT

TK

)2(1− 2
M )

, (E34)

which gives Eq. (6.6) of the main text upon setting r j1 (TK )2 ∼ 1 and
∑

j1
(δ j j1 − 1

M )(δi j1 − 1
M ) = −( 1

M − δi j ).
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