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Magnon pair emission from a relativistic domain wall in antiferromagnets
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Magnon emission and excitation by a relativistic domain wall at a constant velocity in antiferromagnets is
theoretically studied. A pair emission due to a quadratic magnon coupling is shown to be dominant. The emission
corresponds in the comoving frame to a vacuum polarization induced by a zero-energy instability of the Lorentz-
boosted anomalous response function. The emission rate is sensitive to the magnon dispersion and wall profile,
and is significantly enhanced for a thin wall with velocity close to the effective light velocity. The Ohmic damping
constant due to magnon excitation at low velocity is calculated.
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I. INTRODUCTION

Emission from a relativistic moving object is a general
intriguing issue that has an analogy to blackbody radiation and
black hole physics [1] and can be applied for wave amplifica-
tion [2]. Solid-state systems are particularly interesting from
the viewpoints of quantum effects and experimental feasibility
due to low “light velocity.” Antiferromagnets at low energy
have been known to be typical relativistic systems [3] when
dissipation is neglected, and dynamic properties of domain
walls have been explained in terms of Lorentz contraction [4].

In this paper, we study the emission from a moving domain
wall, a relativistic soliton, in an antiferromagnet. We discuss
the low-energy regime using a continuum model, valid when
the wall thickness λ is larger than the lattice constant a. The
system is described by a relativistic Lagrangian, and thus there
are domain wall solutions moving with a constant velocity
smaller than the effective light velocity c. The wall width λ

is affected by Lorentz contraction; λ = γ λ0, where λ0 is the
thickness at rest,

γ (vw) ≡
√

1 −
(vw

c

)2
(1)

is a contraction factor, and vw is the velocity of the wall.
Emission from a moving object is generally dominated by

a linear process, where the object couples to its fluctuation
linearly. In the case of soliton solutions, such linear coupling,
absent at rest, arises from acceleration and deformation as
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argued for ferromagnetic domain walls [5–8]. The dynamics
of a magnetic domain wall is described by two collective co-
ordinates, the wall position X and angle φ of the wall plane. In
ferromagnets, φ is the canonical momentum of the wall, and
thus the ferromagnetic wall motion is intrinsically coupled to
the angle rotation [9,10]. Various origins of the emission have
been argued theoretically for a ferromagnetic domain wall
(see Ref. [7] and references therein): Couplings of the wall
to the second-order magnon field were studied in Refs. [5,7]
and a linear coupling to the wall velocity modulation was
discussed in Ref. [6]. Modulation of the wall thickness, λ,
was found to contribute to a significant magnon emission
numerically [11] and analytically [8]. The emission effect has
a practical importance in predicting a damping constant of a
wall. Ohmic friction force proportional to the wall velocity
was found from the thickness modulation [8], and weaker
super-Ohmic frictions were also identified [6,7].

The antiferromagnetic case is expected to be qualitatively
distinct from the ferromagnetic case because of a different
spin dynamics governed by the Lorentz invariance. The wall
coordinates X and φ are not conjugate to each other, but have
independent dynamics (see Appendix A 4). It turns out that the
couplings to magnons contain higher-order time derivatives of
the wall coordinates compared to the ferromagnetic case, and
the linear coupling induces weak super-Ohmic dissipation,
negligible at low energy. The dominant emission thus arises
from the second-order coupling to the moving wall. A linear
momentum is transferred from the wall to magnons, while the
energy comes from Doppler shift. In the rest frame of the wall,
the wall potential generates a localized magnon excitation.
The excitation is described by the normal (particle-hole) com-
ponent of the magnon response function, which we call �q

(q is the wave vector transferred). In the moving frame, this
excitation corresponds to a scattering of magnons, resulting
in a significant Ohmic friction force at low velocity. The
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scattering property of the normal response function �q is
essentially the same as in the ferromagnetic case studied in
Ref. [8]; although the magnon dispersion in ferromagnets,
quadratic in the wave vector k, is different from the antifer-
romagnetic linear behavior (in the absence of a gap), it does
not lead to qualitative difference in magnon scattering.

A significant feature antiferromagnets have is the existence
of an anomalous particle-particle (or hole-hole) propagation,
�q, like in superconductivity contributing to the response
function [12]. This is due to the quadratic time-derivative term
of the relativistic Lagrangian, which allows positive and neg-
ative energy (or frequency) equally. The anomalous response
function thus can be regarded as a scattering of particles with a
positive and negative energies. The negative frequency mode
exists generally in any relativistic excitations. In optics, for
example, a scattering of negative frequency modes was argued
to cause an amplification of photon current [13]. In the con-
text of magnons, the scattering of negative frequency modes
corresponds to an emission and absorption of two magnons.
The anomalous response function �q describing such process
is shown to be sensitive to the magnon dispersion as well
as the wall velocity. Its low-energy weight is much smaller
compared to the normal response function �q for the ideally
relativistic dispersion of k-linear dependence, while it is sig-
nificantly enhanced if it deviates from linear to have a flatter
dispersion. The anomalous response function in this case has a
sharp and large peak at finite wave vector for the wall velocity
close to the effective light velocity c, resulting in a strong
forward emission of two magnons. Our results indicate that
the relativistic domain wall is useful as a magnon emitter, and
the efficiency is tunable by designing magnon dispersion.

A second-order coupling of magnons to a domain wall
velocity was studied in the ferromagnetic case in Ref. [7], and
it was shown to give rise to a super-Ohmic dissipation. The
antiferromagnetic domain wall has been intensively studied
recently [4,14–16]. The effect of magnons in driving a wall
as a result of the wall potential scattering was theoretically
studied in Ref. [14]. At critical wall velocity when the wall
width becomes comparable to the lattice spacing, the rela-
tivistic nature of the wall breaks down as was discussed in
Refs. [16,17].

The pair emission here is analogous to the vacuum po-
larization (Schwinger pair production of an electron and a
positron) by an electric field in vacuum electromagnetism
[18]. While in the original context, the effect requires ex-
tremely high field and has not been observed so far, solid-state
realization by use of graphene has been drawing interest re-
cently [19]. The present magnon emission is an analog of the
vacuum polarization in solids, with the role of the electric field
played by the moving wall. In fact, in the laboratory frame,
the emission occurs when the magnon creation gap of 2� is
overcome by the energy shift by the Doppler effect. In the
moving frame with the wall, the emission is a spontaneous
vacuum polarization induced by a zero-energy instability of
the Lorentz-boosted anomalous magnon response function.

II. MODEL

Magnetic properties of antiferromagnets are described by
the staggered (Néel) order parameter n of the unit length. Its

low-energy Lagrangian is relativistic, namely, invariant under
the Lorentz transformation as for the kinetic parts [3]. We
consider the case with an easy-axis anisotropy energy along
the z axis, described by the continuum Lagrangian of

L = J

2a

∫
dx

[
1

c2
ṅ2 − (∇n)2 + 1

λ2
0

(nz )2

]
, (2)

where J is the exchange energy, and J/λ2
0 (= K ) is the easy-

axis anisotropy energy. Our results are valid in the presence of
hard-axis anisotropy simply by including the effect in the gap
of magnons. The effective light velocity is c = √

gJ , g being
a coupling constant [12]. The lattice constant is included to
simplify the dimensions of material constants. We consider
the one-dimensional case, although the effects we discuss
are general and apply to higher-dimensional walls. The La-
grangian is relativistic; i.e., a Lorentz transformation to a
moving frame with a constant velocity v, t ′ = (t − v

c2 x)/γ (v),
and x′ = (x − vt )/γ (v) does not modify the form. The system
has a soliton (domain wall) solution, nz(x) = tanh x

λ0
. The

Lorentz invariance indicates moving walls nz((x − vt )/γ ) are
classical solutions for a constant v < c, with a contracted
thickness λ = λ0γ (v).

These constant-velocity solutions are stable, meaning that
they have no linear coupling to magnons and there is no linear
emission (see Appendix A). Linear emission may occur dur-
ing acceleration or by deformation. The emission is studied
by introducing collective coordinates [20]. In the case of a
domain wall, of most interest is the wall position X [21]. The
coupling between the coordinate and fluctuation is governed
by the kinetic part of the Lagrangian. In antiferromagnets, it is
second order in time derivative, and thus the linear fluctuation
ϕ couples to the acceleration Ẍ as ϕẌ (see Appendix B).
The emitted magnon amplitude 〈ϕ〉 is thus proportional to
Ẍ , and the recoil force on the wall is ∂2

∂t2 〈ϕ〉 ∝ ∂4

∂t4 X . Hence
the linear coupling does not induce Ohmic friction and is
negligibly small at low energy. The result is the same for other
collective variables like thickness oscillation. The motion of
an antiferromagnetic domain wall is therefore protected from
the damping due to a linear coupling, in contrast to the ferro-
magnetic case, where Ohmic dissipation arises from thickness
oscillation [8].

Instead, emission due to the second-order coupling dom-
inates in antiferromagnets. At low energy, the contribution
containing less time derivative of the wall collective coor-
dinates dominates. The issue then reduces to a simple and
general problem of the emission from a moving potential of a
constant velocity. Our domain wall solution of the tanh profile
induces an attractive potential of cosh−2 form. Taking account
of the two magnon modes along the x and y directions, ϕx

and ϕy, respectively [n � (ϕx, ϕy, 1)], the potential reads (see
Appendix A) [20]

V = −K
∫

dx

a

1

cosh2 x−X (t )
λ

(
ϕ2

x + ϕ2
y

)
, (3)

where X (t ) is the wall position and λ = λ0γ is the thickness
of a moving wall. We consider the case of a constant velocity,
X (t ) = vwt . A moving potential transfers momentum q to
fluctuations and an angular frequency 
 as a result of the
Doppler shift. Although the form of the potential, Eq. (3), is
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FIG. 1. Schematic figure showing magnon processes due to mov-
ing domain wall (black curved line) with a velocity vw; there is a
scattering, with the amplitude 〈a†a〉, a pair emission (〈a†a†〉) and
a pair annihilation (〈aa〉). Red and blue arrows denote created and
annihilated magnons, respectively. A wave vector k is that of one of
the magnons, and q is the transferred wave vector from the wall.

common for ferro- and antiferromagnetic cases, its effect is
different, due to the different nature of magnon excitations.
In ferromagnets, ϕx and ϕy are represented as linear combina-
tions of magnon fields b and b† (Holstein-Primakov boson).
The potential in this case is proportional to magnon density
as ϕ2

x + ϕ2
y = 4b†b, inducing scattering of magnons without

changing total magnon number. (The feature is unchanged in
the presence of a hard-axis anisotropy.) This is due to the
kinetic term linear in the time derivative for ferromagnetic
magnons [20], ib†ḃ, which allows a positive energy for the
ferromagnetic magnon boson. In contrast, a magnon boson in
antiferromagnets is described by a relativistic Lagrangian (see
Appendix A)

Lϕ = 1

2g

∑
i,k

{
[ϕ̇i(k)]2 − (

ω
(i)
k

)2[
ϕi(k)

]2
}
, (4)

where i = x, y and

ω
(i)
k ≡

√
c2k2 + �2

i (5)

is the energy with a gap �i of mode i. The kinetic term second
order in time derivative, (ϕ̇i)2, allows “negative frequency”
modes, and processes changing the total magnon number are
allowed. In fact, the canonical magnon boson ai is defined for
each mode i = x, y as

ϕi(k, t ) =
√

g

ω
(i)
k

[
a(i)

k (t ) + a(i)†
−k (t )

]
, (6)

and the potential, Eq. (3), reads

V = − Kg
λ

a

∑
i=x,y

∑
k,q

Wq√
ω

(i)
k ω

(i)
k+q

e−iqX (t )

× (
a(i)

k a(i)
−k−q + a(i)†

−k a(i)†
k+q + 2a(i)†

k+qa(i)
k

)
, (7)

where Wq = π
qλ

sinh π
2 qλ

is the Fourier transform of the potential
profile and ω−k = ωk is assumed. The emission and absorp-
tion of two magnons, represented by terms aa and a†a†, are
thus possible in antiferromagnets (Fig. 1).

The potential represents a transfer of linear momentum
between the wall and magnons, while angular momentum is

not transferred. This is because the angular momentum, �, of
antiferromagnets is represented by a product of ϕx and ϕy as
� = − 1

2Sg (ϕ × ϕ̇) (S is the magnitude of localized spin) [12].
Although the potential contains pair creation and annihilation
processes within a single magnon branch, it does not therefore
change the angular momentum of magnons.

The relativistic nature is partially lost when dissipation is
included. We here consider the case of weak dissipation (small
Gilbert damping).

III. MAGNON AMPLITUDES

Let us evaluate the amplitudes of scattering and emission
and absorption as a linear response to the dynamic potential
V for a wall moving with a constant velocity. We suppress the
index i for the magnon branch. The scattering amplitude,

〈a†
k+qak〉(t ) = iG<

k,k+q(t, t ), (8)

is a lesser Green’s function for magnons. The amplitude af-
ter summation over k is represented in terms of the normal
(particle-hole) response function, including the form factor Wq

[8,12] (see Appendix C),

�q,
 ≡ −
∑

k

Wq√
ωkωk+q

nk+q − nk

ωk+q − ωk − 
 + 2iη
, (9)

as ∑
k

〈a†
k+qak〉 = Kg

a
λeiqvwt�q, (10)

where �q ≡ �q,qvw . Here nk ≡ [eβωk − 1]−1 is the Bose dis-
tribution function, β ≡ (kBT )−1 being the inverse temperature
(kB is the Boltzmann constant); η is the damping coefficient
of the magnon Green’s function. The angular frequency of

 = qvw in �q,qvw is the one transferred to magnons as a
result of the Doppler shift. The emission amplitude of two
magnons is ∑

k

〈
a†

−k+qa†
k

〉 = Kg

a
λeiqvwt�q, (11)

where �q ≡ �q,qvw and

�q,
 ≡
∑

k

Wq√
ωkω−k+q

1 + n−k + n−k+q

ω−k+q + ωk − 
 + 2iη
(12)

is the anomalous (particle-particle) response function. The
absorption amplitude is given by this function as (∗ denotes
the complex conjugate)∑

k

〈a−k+qak〉 = Kg

a
λe−iqvwt�∗

−q. (13)

The normal response function has symmetry of �−q,
 =
�q,
, which leads in the case of 
 = qvw to �−q,−qvw =
�∗

q,qvw
; i.e., the real (imaginary) part of �q is even (odd) in

q. The normal response has a low-energy contribution around
q = 0 and 
 = 0. The asymmetric and localized character
near q = 0 of Im[�q] indicates an asymmetric real-space
magnon distribution with respect to the wall center similarly
to the ferromagnetic case [8]. The anomalous response sat-
isfies �−q,
 = �q,
. It has a gap of 2� for 
, suppressing
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q

v=0
boost(v=0.8)

q

v=0
boost(v=0.8)

FIG. 2. Effect of Lorentz boost on the anomalous response func-
tion Im[�q,
] at vw/c = 0.8 for a hyperbolic dispersion (μ = 5),
λ̃0 = 2, �̃ = 0.1, η̃ = 0.01, and T̃ = 0.2 in dimensionless arbitrary
units. Blue is the amplitude at rest frame, which is localized at

 � 2� with negligibly small weight at 
 = 0. In the boosted
frame, shown in red, the amplitude extends to the zero-energy regime
at finite q, inducing spontaneous vacuum polarization, which corre-
sponds to a pair emission in the laboratory frame. The right plot is a
global plot.

the low-energy contribution in the rest frame (Fig. 2). In the
moving frame, the Lorentz boost, which transforms q and 


to

q′ = (q + vw
/c2)/γ , 
′ = (
 + vwq)/γ , (14)

distorts the response function, enhancing significantly the
low-energy weights at finite q (Fig. 2 and Appendix D). This
induces spontaneous vacuum polarization, which corresponds
to a two-magnon emission in the laboratory frame.

There are two key factors governing the response func-
tions, the form factor Wq and magnon dispersion. The form
factor constrains the wave vector transfer q to |q| � λ−1 =
(λ0γ )−1. Because of this factor, magnon effects are signif-
icantly enhanced for thin walls at high velocity (small γ ).
As the emission is dominated by the large-q behavior, it is
sensitive to the wall profile as we shall see below.

The role of the dispersion is clearly seen focusing on the
imaginary part in the limit of η → 0, where the response
arises from the processes satisfying the energy and momen-
tum conservation. We consider the case of the dispersion
with a small gap and saturation around kmax = π/a, like the
one in MnF2 [22]. We choose vw as positive. The imaginary
part of the normal response arises from the process satisfying
ωk+q − ωk = qvw [Fig. 3(a)], which leads to an asymmetric
weight around q = 0. The imaginary part of the anomalous
response �q arises when

ω−k+q + ωk = qvw. (15)

ωk
k k + q

ωk+q

q

ωk+q − ωk

= qvw

ω
(a)

ωk

k
−k

−k + q
−ωk

ω−k+q

q

ω−k+q + ωk

= qvw

ω(b)
k > 0

FIG. 3. Energy conservation conditions in (a) scattering and
(b) emission and absorption of two magnons. The emission is re-
garded as a scattering from a hole state with energy −ωk to a particle
state with energy ω−k+q. The slope of dotted straight lines is vw.

This amplitude is much smaller than the normal response
for the relativistic dispersion, ωk =

√
(ck)2 + �2, due to the

following reasons [Fig. 3(b)]: The process satisfying Eq. (15)
is regarded as a scattering process of a particle and a hole
having positive and negative energy, ω−k+q and −ωk , respec-
tively. The condition requires that the average slope of the line
connecting the two energies ω−k+q and −ωk is vw. However,
the slope is larger than c for the relativistic dispersion, while
vw has an upper limit of c, which is the maximum group
velocity. The condition cannot therefore be satisfied by the
purely relativistic dispersion, and the imaginary part of the
anomalous response thus arises only if the dispersion has an
inflection point like in Fig. 3(b). (In reality, a damping η leads
to a finite imaginary part, but it remains negligibly small.)
Those features are consistent with a theory of spin transport in
antiferromagnets [12] showing that the anomalous correlation
function is negligible.

IV. NUMERICAL RESULTS

Let us evaluate numerically the response functions of scat-
tering and emission and absorption for a domain wall at
constant velocity. We use dimensionless variables, defined
by scaling by kmax = π/a for wave vectors and by πc/a for
energies (h̄ is set to unity),

q̃ = q/kmax, k̃ = k/kmax, ω̃k = a

πc
ωk,

ṽ = Vw/c, λ̃0 = λ0

a
, t̃ = πc

a
t,

�̃ = a

πc
�, η̃ = a

πc
2η, T̃ = a

πc
kBT . (16)

We have also Kg = c2

λ2
0
.

The amplitudes we calculate are

〈
a(i)†

k+qa(i)
k

〉 = 1

π2

λa

λ2
0

eiq̃ṽt̃�̃kq,

〈
a(i)†

−k+qa(i)†
k

〉 = 1

π2

λa

λ2
0

eiq̃ṽt̃ �̃kq, (17)

where

�̃kq ≡ − W−q√
ω̃

(i)
k ω̃

(i)
k+q

nk+q − nk

ω̃
(i)
k+q − ω̃

(i)
k − q̃ṽ + iη̃

,

�̃kq ≡ W−q√
ω̃

(i)
k ω̃

(i)
−k+q

1 + nk + n−k+q

ω̃
(i)
−k+q + ω̃

(i)
k − q̃ṽ + iη̃

(18)

are dimensionless response functions. The amplitudes after k
summation are defined as

�̃q ≡
∑

k

�̃kq, �̃q ≡
∑

k

�̃kq. (19)

A. Hyperbolic dispersion

As Fig. 3(b) suggests, the anomalous emission is enhanced
for a band with smaller average slope keeping the maximum
slope (the maximum group velocity) as c. We take here as an
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FIG. 4. Dispersions considered: relativistic (rel; black line) and
hyperbolic dispersions with μ = 5, 10. The maximum slope (max-
imum group velocity) is c (= 1) and the gap is �̃ = 0.1 for both
cases.

example a hyperbolic form of

ω
(h)
k = � + 2ckmax

μ

(
1 − 1

cosh μk/kmax

)
, (20)

where kmax = π/a and μ is a parameter defining the average
slope [23]. The two dispersions,

ω̃k =
√

k̃2 + �̃2 (relativistic dispersion),

ω̃k = �̃ + 2

μ

(
1 − 1

cosh μk̃

)
(hyperbolic dispersion),

(21)

are plotted in Fig. 4.

B. Wall profiles

The anomalous emission, determined by the large-q behav-
ior of the response function, is sensitive to the wall profile. In
the case of a very thin wall, the linear profile of nx (or ny)
inside the wall may appear instead of the ideal tanh wall, as
argued in nanocontacts [24], which is

nx = (1 − |x|/λ(l) )θ (λ(l) − |x|), (22)

where λ(l) = λπ/2. The two wall profiles and form factors,

Wq ≡
⎧⎨
⎩

π2λ̃q̃

sinh π2
2 λ̃q̃

(tanh wall),

2π

(λ̃(l)q̃)2

(
1 − sin λ̃(l)q̃

λ̃(l)q̃

)
(linear wall),

(23)

with λ̃ = λ/a and λ̃(l) = π
2 λ/a are plotted in Fig. 5.

nx =
{ 1

cosh x
λ

(tanh wall),

(1 − |x|/λ(l) )θ (λ(l) − |x|) (linear wall).
(24)

C. Response functions

Let us first show the most typical effect of wall motion
on the imaginary part of the anomalous response function,
Im[�q] [Fig. 6(a)]. For a relativistic dispersion, Im[�q] has
only a low peak near q = 0, while for hyperbolic dispersion
it is significantly altered; a sharp peak appears for velocity
vw/c � 0.7 at q = q∗ in the high-q regime (0.5 � q∗/kmax �
1), indicating strong forward emission of two magnons. The

x

sin Wq

q

FIG. 5. Wall profiles, sin2 θ (x), for tanh and linear walls, and
their Fourier transforms (form factors) Wq. Linear wall has slow
power-law decay at large q, resulting in the enhancement of the
anomalous response function (see Figs. 6 and 9).

minimum velocity necessary is determined by the dispersion;
it is obviously larger than ωkmax/kmax for a monotonically in-
creasing dispersion, which is ∼ 2

μ
c for hyperbolic dispersion

with a small gap. These behaviors are consistent with the
argument in Sec. III. The peak position q∗ is independent of
λ0. The intensity I∗ of the peak and q∗ are plotted as functions
of velocity in Fig. 6(b). The anomalous response amplitude I∗
is sensitive to the wall profile; it is significantly enhanced for
a linear wall due to a slower decay at large q compared to the
tanh wall [Fig. 6(b)].

The present continuum approximation breaks down for
λ � a, i.e., for v � vc ≡

√
1 − (a/λ0)2. For λ0/a = 2, 4, 6, 8,

the critical velocity is vc/c = 0.866, 0.968, 0.986, 0.992, re-
spectively, as shown by the vertical dotted lines in Fig. 6(b).

Let us look into the details of the response functions. The
real and the imaginary parts of the normal and the anomalous
response functions are plotted in Fig. 7 for the case of λ̃0 = 2
at T̃ = 0.8 for the relativistic and hyperbolic dispersions.

a. Relativistic dispersion. It is seen that the normal response
function �q satisfies �−q = �∗

q and has the real and imagi-
nary part even and odd in q, respectively. The wall velocity
distorts the profile, but qualitative feature is untouched. The
anomalous response function �q has a negligibly small imag-
inary part in the case of relativistic dispersion, consistent with
the observation in Sec. III and Fig. 2. The peak at q = 0 of
Re�q is shifted to the positive-q regime in the presence of
positive vw.

b. Hyperbolic dispersion. For hyperbolic dispersion (Fig. 7,
lower panel), �q is distorted but the qualitative feature is
unchanged. In contrast, Im�q is significantly modified at high
wall velocity; it shows a sharp peak at finite q, as a result of
pair creation (annihilation) processes.

c. Thickness dependence. Comparison of λ̃0 = 2 and 4 is
shown in Fig. 8. For a thicker wall with λ̃0 = 4, the amplitudes
of �q and �q are reduced and the peak of Im�q is shifted to
higher wall velocity.

d. Wall-profile dependence. The details of the peak of Im�q

are shown in Fig. 9 for the tanh and linear profile of the wall.
It is seen that the linear profile with slower decay at large q
has larger response, although both have qualitatively similar
behaviors.
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~
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FIG. 6. (a) Im�q for relativistic (dotted lines) and hyperbolic
(solid lines) dispersion for vw/c = 0.6, 0.7, 0.8, 0.96 with μ = 5 and
λ0/a = 4. At high velocity the hyperbolic dispersion shows a sharp
peak at finite q (≡ q∗), while the response function for the relativistic
dispersion, with low and broad peak near q = 0, is not strongly
affected by the velocity. (b) The peak amplitude I∗ and position
q∗ (black dotted line) of Im�q for different λ0/a. Wall profiles are
linear (solid lines) and tanh (dashed lines). The linear wall has larger
amplitudes due to a slower decay of Wq at large wave vector q. The
breakdown velocities vc of the continuum approximation are shown
as vertical dotted lines.

D. Magnon current

The amplitude of the emitted magnon current is estimated
by

j =
∑

k

q〈a†
−k+qa†

k〉 ∼ q∗I∗. (25)

For λ0/a = 4, j � 0.8 for vw/c > 0.8, and j = 0.2 for
λ0/a = 8 at vw/c = 0.9, at T = 0.8 and for a linear wall
profile. Let us compare the emitted spin wave current with the
current due to the wall motion. The magnon current is defined
in terms of the real spin wave field ϕ as

j = − i

2
a†

↔∇ a = − 1

4g

(
ϕ̇

↔∇ ϕ
)
. (26)

For a domain wall with the tanh profile, ϕw = [cosh x−X (t )
λ

]−1.
The current at the wall center is thus jw ≡ Vw

4gλ2 . Using J/a2 �
c/a, we have

jw � kmax

4πλ̃2
0

ṽ

1 − ṽ2
, (27)
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FIG. 7. Plot of the real and the imaginary parts of response func-
tions �q and �q for relativistic (rela) dispersion and a hyperbolic
(hyp) dispersion with μ = 5. Calculated for vw/c = 0.2, 0.8, 0.9 at
T̃ = 0.8 with λ̃ (≡ λ0/a) = 2 and �̃ = 0.1, η̃ = 10−2. The effect
of temperature is shown for relativistic dispersion at ṽ = 0.8. The
amplitude is reduced by about a factor of 2 at lower temperature of
T̃ = 0.4 compared to T̃ = 0.8.

where ṽ = vw/c. For λ̃ = 4, jw/kmax � 0.01 (0.02) at ṽ =
0.8 (0.9). The current due to the emission is thus by 1–2
orders of magnitude larger than the current of the wall itself in
the relativistic regime. A thin and relativistic wall is therefore
an extremely efficient magnon emitter.

E. Recoil force and Gilbert damping parameter

As a reaction to the scattering, emission and absorption, a
frictional force,

F = 2
Kg

a
Im

∑
k,q

Wqe−iqX (t )

√
ωkωk+q

qλ〈a†
k+qak + a†

−ka†
k+q〉, (28)

arises. As seen in the plot of Fig. 10, the emission contribution
has a narrow peak at high velocity close to vw/c = 1, while
the normal-response (�) contribution shows a broad peak
starting from the low-velocity regime. The normal contribu-
tion is larger than the emission contribution as the excited
magnon profile is mostly localized near the wall, resulting in
a large overlap. The force at small velocity, dominated by the
normal response, is an Ohmic friction,

F = −αvw/λ2, (29)

whose dimensionless coefficient α is plotted in Fig. 10. As
the force arises from transfer of finite q, the friction constant
α depends strongly on the wall thickness. The friction coeffi-
cient α corresponds to a contribution to the Gilbert damping
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FIG. 8. Comparison of �q and �q for λ̃0 = 2 and 4 for hyper-
bolic dispersion with μ = 5.

constant of

αG = a

2λ
α, (30)

which is plotted by dashed lines. For a linear wall profile, the
contribution αG is 0.007 (0.002) for λ/a = 6 (8) at T = 0.8,
which is significantly large compared to the intrinsic Gilbert
damping constant of most antiferromagnets. The damping
due to magnon excitation has clear temperature dependence,
exponentially suppressed for kBT � �, and increases linearly
at high temperature below the Néel transition temperature. For
quantitative study, the temperature dependence of η and the
fluctuation near the Néel temperature need to be taken into
account [12].

The temperature dependence of the recoil force is shown
in Fig. 11. The slope, the friction constant α, and thus the
contribution to the Gilbert damping constant, increases nearly
linearly for T̃ > �̃. Near the Néel transition, this estimate is
insufficient as it does not include the temperature-dependent

q
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FIG. 9. Comparison of Im�q for the wall profiles tanh (tanh
w) and linear (linear w) walls for λ̃0 = 4, 6, 8 and for hyperbolic
dispersion with μ = 5. Peak positions are shown by small circles.
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FIG. 10. (a) Plot of the force F as functions of wall velocity for
tanh and linear wall with λ0/a = 4. The normal (�) and anomalous
(�) contributions to the force are shown by dashed and solid lines
with axis at the left and right, respectively. Shaded region (ṽ > 0.97)
shows a breakdown of continuum description, i.e., λ � a, for λ0/a =
4. (b) Friction constant α (left axis) and contribution to the Gilbert
damping constant (right axis) determined at small wall velocity (ṽ ∼
0) as a function of wall thickness.

damping constant η and suppression of the order parameter
argued in Ref. [12].

F. Group velocity

The excited magnon propagates to the direction determined
by the sign of its wave vector k. As the wall is moving, how-
ever, even a forward-emitted magnon may be behind the wall
if its group velocity is less than the wall velocity. Figure 12
is a plot of the normal response function for the relativistic

F

v

T=0.2
T=0.4
T=0.6
T=0.8

FIG. 11. Plot of the force F for tanh wall with λ0/a = 4 for
different temperatures. The normal (�) and anomalous (�) contribu-
tions to the force are shown by dashed and solid lines, respectively.
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FIG. 12. Normal response function at vw/c = 0.8 plotted in the
k-q plane for λ̃0 = 2, �̃ = 0.1, η̃ = 0.01, and T̃ = 0.8. Blue straight
lines, k = 0.13 and k + q = 0.13, represent the wave vectors k and
k + q, respectively, where the group velocity vg(k) = ∂ωk

∂k is equal
to the wall speed, 0.8. Shaded regime below those lines is therefore
magnon excitations behind the wall.

dispersion plotted in the k-q plane. In the case of the wall
velocity vw/c = 0.8, the wave vector k∗ where the group
velocity is equal to the wall velocity is k∗ = 0.13 if �̃ = 0.1.
The excited magnon with wave vector k + q is therefore be-
hind the wall and is k + q < 0.13. As seen from Fig. 12, the
dominant part of the excitation due to the normal response
function is behind the wall. This result is consistent with
the observation based on the Landau-Lifshitz-Gilbert (LLG)
equation analysis in Ref. [4] that the moving wall emits
magnons mostly behind the wall. The LLG study fixes the

magnon dispersion to be relativistic, and thus its results are
due to the normal response function of the present analysis.

V. SUMMARY

We have studied theoretically the magnon scattering and
emission and absorption due to a moving domain wall in an
antiferromagnet. The emission and absorption due to linear
couplings to magnons are negligible at low energy as a re-
sult of the relativistic nature of antiferromagnetic magnons.
Instead, the second-order coupling to the potential induced by
the wall is the dominant process, and the scattering and the
emission and absorption properties are represented by the nor-
mal (particle-hole) and anomalous (particle-particle) response
functions, respectively. For a moving wall, the anomalous
response function turns out to be significantly deformed due
to the Lorentz boost, resulting in a strong emission in the
relativistic regime.

As the amplitude 〈a†
−k+qa†

k〉 indicates, the two-magnon pair
created by the mechanism proposed here is entangled quan-
tum mechanically like in the case of electromagnetism [25],
suggesting interesting possibilities for quantum magnonics.
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APPENDIX A: MAGNON LAGRANGIAN

1. Rotated frame

Here we show the derivation of the magnon (spin wave) Lagrangian including the linear and the second-order couplings
to the wall from the spin Lagrangian, Eq. (2). We use a transformation to a rotated frame to represent magnon excitations
around a domain wall solution. Instead of using collective coordinates for the wall from the start like in Ref. [8], we carry out
the calculation generally using the polar angles to describe a classical solution, (θ0(x, t ), φ0(x, t )). For a moving domain wall
solution of a constant velocity vw (� c),

cos θ0 = tanh
x − vwt

λ
, φ0 = 0, (A1)

with a contracted width

λ = λ0

√
1 − v2

w

c2
. (A2)

The spin wave is defined in the locally rotated frame, where the quantization axis is chosen along the local direction of the Néel
vector, (θ0(x, t ), φ0(x, t )). We write the transverse fluctuations as ϕx and ϕy, which are linear in the spin wave fields. The Néel
vector in the rotated frame is, to the second order in the fluctuation,

ñ =
⎛
⎝ ϕx

ϕy

1 − ϕz

⎞
⎠. (A3)

The longitudinal fluctuation ϕz = 1
2 |ϕ|2 + O(ϕ3) is of the second order, as required from the condition that |ñ| = 1, where ϕ ≡

(ϕx, ϕy) is a two-component field of the spin wave. The representation (A3) is essentially the Holstein-Primakoff transformation.
The local Néel vector in the laboratory frame n is written in terms of ñ in the rotated frame as

n = U ñ, (A4)

where

U = Rz(φ0)Ry(θ0) (A5)
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is a 3 × 3 rotation matrix connecting the direction (θ0, φ0) to the z axis.

Ri(θ ) = e−iJiθ (A6)

is a rotation matrix around the i axis by the angle θ , where

Jx =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, Jy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, Jz =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ (A7)

are generators of rotation satisfying

[Ji, Jj] = iεi jkJk . (A8)

Explicitly,

U (θ, φ) =
⎛
⎝cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞
⎠. (A9)

As a result of the rotation, the derivative of the Néel vector becomes a covariant derivative with a gauge field [26] as

∂μn = U (∂μ + iAμ)ñ, (A10)

where

Aμ ≡ −iU −1∂μU

= −i

⎛
⎝ 0 − cos θ0∂μφ0 ∂μθ0

cos θ0∂μφ0 0 sin θ0∂μφ0

−∂μθ0 − sin θ0∂μφ0 0

⎞
⎠ (A11)

is the gauge field in the 3 × 3 matrix representation. The derivative term of the Lagrangian is

(∂μn)2 = (∂μñ)2 − i[ñAμ∂μñ − (ñ
←
∂ μ)Aμñ] + ñ(Aμ)2ñ. (A12)

2. Magnon expansion

Here we include for generality a hard-axis anisotropy energy along the y direction, described by a Hamiltonian

HK⊥ = J

2a

∫
dx

κ

λ2
0

(ny)2, (A13)

where the hard-axis energy is Jκ/λ2
0. The total Lagrangian in terms of domain wall coordinates (θ0, φ0) and spin wave variable

ϕ reads

L = L(0) + L(1) + L(2),

L(0) ≡ J

2a

∫
dx

{
1

c2
(θ̇0

2 + sin2 θ0φ̇0
2
) − [(∇θ0)2 + sin2 θ0(∇φ0)2] − 1

λ2
0

sin2 θ0(1 + κ sin2 φ0)

}
,

L(1) ≡ J

2a

∫
dx

{
2

[
1

c2
(θ̇0ϕ̇x + sin θ0φ̇0ϕ̇y) − (∇θ0∇ϕx + sin θ0∇φ0∇ϕy)

]
+ 1

c2
[sin 2θ0(φ̇0)2ϕx − 2 cos θ0θ̇0φ̇0ϕy]

− [sin 2θ0(∇φ0)2ϕx − 2 cos θ0∇θ0∇φ0ϕy] − 1

λ2
0

[sin 2θ0ϕx(1 + κ sin2 φ0) + κ sin θ0 sin 2φ0ϕy]

}
,

L(2) = J

2a

∫
dx

(
1

c2
|ϕ̇|2 − |∇ϕ|2 + 2 cos θ0

[
1

c2
φ̇0(ϕx

↔
∂t ϕy) − ∇φ0(ϕx

↔∇ ϕy)

]

+ ϕ2
x cos 2θ0

{[
φ̇0

2

c2
− (∇φ0)2

]
− 1

λ2
0

(
1 + κ sin2 φ0

)}+ ϕ2
y

{
−
[

θ̇0
2

c2
− (∇θ0)2

]
+ cos2 θ0

[
φ̇0

2

c2
− (∇φ0)2

]

− 1

λ2
0

[cos2 θ0 + κ (cos2 φ0 − sin2 θ0 sin2 φ0)]

}
+ ϕxϕy

{
2 sin θ0

[
1

c2
θ̇0φ̇0 − (∇θ0)(∇φ0)

]
− 1

λ2
0

κ cos θ0 sin 2φ0

})
.

(A14)

The second-order contributions containing (ϕx

↔
∂μ ϕy) are the effect of magnon current (or density if μ = t) inducing a torque for

the Néel order parameter (spin-transfer effect of spin waves). The coupling between the two spin wave modes ϕx and ϕy describes
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the process of angular momentum transfer, as they carry opposite angular momenta [12]. The (ϕx

↔
∂μ ϕy) term indicates that the

spin Berry phase cos θ0∂μφ0 acts as an effective magnetic field, inducing a coupling ϕx∂μϕy.

3. Linear coupling

The equations of motion for the classical variables derived from L(0) are

−2

(
1

c2
θ̈0 − ∇2θ0

)
+ sin 2θ0

[
1

c2
(φ̇0)2 − (∇φ0)2

]
− 1

λ2
0

sin 2θ0(1 + κ sin2 φ0) = 0,

−2

[
1

c2
∂t (sin2 θ0φ̇0) − ∇(sin2 θ0∇φ0)

]
− 1

λ2
0

κ sin2 θ0 sin 2φ0 = 0. (A15)

The linear contribution is written using integral by parts in the action (time integral of the Lagrangian) as∫
dtL(1) = J

2a

∫
dt
∫

dx

(
ϕx

{
−2

(
1

c2
θ̈0 − ∇2θ0

)
+ sin 2θ0

[
1

c2
(φ̇0)2 − (∇φ0)2

]
− 1

λ2
0

sin 2θ0(1 + κ sin2 φ0)

}

+ ϕy

{
2

sin θ0

[
− 1

c2
∂t (sin2 θ0φ̇0) + ∇(sin2 θ0∇φ0)

]
− 1

λ2
0

κ sin θ0 sin 2φ0

})
. (A16)

Using Eq. (A15), the linear coupling term (A16) vanishes if θ0 and φ0 are a classical solution; L(1) = 0. The absence of the linear
term for a classical solution is natural mathematically. This fact does not necessary prohibit magnon emission from the wall,
as the solution of the equation of motion may contain an extended state corresponding to the propagating magnons. (Emission
arises also from higher-order interactions.) In fact, the soliton solution, which is strictly localized [∝ e−|x|/� at |x| → ∞ (� is
a constant)], exists only under particular conditions, and the solution of the accelerating domain wall may in general have an
extended solution with magnons. This is supported by the following simple argument. Consider the case of the sine-Gordon
model, corresponding to that of angle θ with φ = 0:

θ̈

c2
− ∇2θ + 1

λ2
0

sin θ cos θ = 0. (A17)

We are interested in the behavior at |x| → ∞, where sin θ → 0. Choosing θ � 0 therefore, the equation has a wave solution
ei(kx−ωt ) with finite real parts of k and ω if

ω

c
= ±

√
k2 + (λ0)−2. (A18)

If an acceleration angular frequency is larger than the magnon gap, c/λ0, therefore, the equation has an extended solution. In
contrast, the static solution has k = ±i/λ0, i.e., only localized structure. Therefore, the dynamic solution may contain magnons
besides a localized structure, and this solution corresponds to magnon emission. Usually, to access such emission solution
analytically is difficult. The collective coordinate formulation provides a practical approximation scheme to treat the emission,
by separating the localized mode and fluctuation. The solution represented by collective coordinates is not a rigorous solution,
and thus linear coupling to the spin wave appears. Nevertheless, the calculation in this approach is straightforward and useful.
The coupling depends on the choice of the collective coordinates, and this would be the reason why there are theories discussing
different couplings [6–8].

4. Equations for DW collective coordinates

Based on these considerations, we apply collective coordinate representation of a domain wall for (θ0, φ0), representing the
total Néel vector as the sum of the domain wall configuration and spin wave ϕ. The domain wall solution is

cos θ0 = tanh
x − X (t )

λ(t )
, sin θ0 = 1

cosh x−X (t )
λ(t )

, φ0 = φ0(t ). (A19)

We let the thickness λ be dynamic besides X and φ0 to include deformation effects [8]. We then have

∇θ0 = −1

λ

1

cosh u
, ∇2θ0 = 1

λ2

sinh u

cosh2 u
,

θ̇0 = 1

λ
(Ẋ + uλ̇)

1

cosh u
,

θ̈0 = 1

λ

[
Ẍ + uλ̈ − 2

λ̇

λ
(Ẋ + uλ̇)

]
1

cosh u
+ 1

λ2
(Ẋ + uλ̇)2 sinh u

cosh2 u
, (A20)

where u ≡ x−X (t )
λ(t ) .
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The domain wall part of the Lagrangian is

L(0) = Mw

2
Ẋ 2 − J

aλ

[
1 −

(
λ

λ0

)2]
, (A21)

where Mw ≡ 2J
ac2λ

= 2h̄2

J0λa is the wall mass. As λ → 0, i.e., as the wall speed Vw → c, the wall mass diverges, consistent with the
relativistic form of the Lagrangian [3]. The contribution of Ẋ of the dissipation function is

W = α

λa
Ẋ 2, (A22)

and the equation of motion for X determined by L(0) and W is

MwẌ = −αwẊ , (A23)

where αw = 2α
λa .

For a domain wall solution with φ0 = 0, the second-order part describing the magnon is, neglecting explicit couplings to Ẋ
and λ̇,

L(2) = J

2a

∫
dx

{
1

c2
|ϕ̇|2 − |∇ϕ|2 − 1

λ2
0

[
ϕ2

x

(
1 − 2

cosh2 u

)
+ ϕ2

y

[
1 + κ − 1

cosh2 u

(
1 + λ2

0

λ2

)]]}
. (A24)

The magnon dispersion is therefore determined by

Lϕ = 1

2g

∑
i,k

{
[ϕ̇i(k)]2 − (

ω
(i)
k

)2
[ϕi(k)]2

}
, (A25)

where i = x, y, g ≡ c2/J , and

ω
(x)
k ≡

√
c2[k2 + (λ0)−2], ω

(y)
k ≡

√
c2[k2 + (λ0)−2(1 + κ )] (A26)

are magnon energies in the x and y directions, respectively. The remaining term of Eq. (A24) represents the domain wall potential
term (approximating λ = λ0),

V = −K
∫

dx

a

1

cosh2 u
(ϕ2

x + ϕ2
y ), (A27)

which is discussed in detail in the main text (K = J/λ2
0).

The linear term of the Lagrangian, Eq. (A16), reads in terms of domain wall coordinates

L(1) = J

a

∫
dx

(
ϕx

{
− u

cosh u

1

c2λ

(
λ̈ − 2

λ̇2

λ

)
+ tanh u

cosh u

[
− 1

c2λ2
(Ẋ + uλ̇)2 + 1

λ2
− 1

λ2
0

(1 + κ sin2 φ0) + 1

c2
(φ̇0)2

]}

− ϕy
tanh u

cosh u

2

c2λ
φ̇0(Ẋ + uλ̇)

)
, (A28)

where we used the orthogonality between the ϕi and the zero mode, 1/ cosh u,
∫

du ϕi

cosh u = 0. As seen, ϕx couples to dynamics
of X and λ, while ϕy couples to that of φ0.

The equations of motion with dissipation included for the domain wall configuration are

1

cosh u

([
Ẍ + uλ̈ − 2 λ̇

λ
(Ẋ + uλ̇)

]
c2λ

+ α

J

Ẋ + uλ̇

λ

)
+ tanh u

cosh u

[
− (Ẋ + uλ̇)2

c2λ2
+ 1

λ2
− 1

λ2
0

(1 + κ sin2 φ0) + (φ̇0)2

c2

]
= 0, (A29)

1

cosh u

(
φ̈0

c2
+ κ

2λ2
0

sin 2φ0 + 1

J
αφ̇0

)
+ tanh u

cosh u

2

c2λ
φ̇0(Ẋ + uλ̇) = 0. (A30)

Obviously, this equation cannot generally be satisfied locally for each position x by any choice of X , λ, and φ0. What we can
impose in terms of the collective coordinates are the averaged condition. Integrating over x, these equations reduce to

Ẍ − λ̇

λ
Ẋ + α

J
Ẋ = 0,

φ̈0

c2
+ κ

2λ2
0

sin 2φ0 + 1

J
αφ̇0 + 2

φ̇0λ̇

c2λ
= 0, (A31)

where we used 1
λ

∫
dx u tanh u

cosh u = π . The first equation is a sort of trivial one without a driving force. We see from Eq. (A31) that
the wall dynamics in antiferromagnets is qualitatively different from the one in ferromagnets; the position X and the angle φ0
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are decoupled for low wall velocity, while they are canonically conjugate to each other in the ferromagnetic case. Picking up the
asymmetric part of Eq. (A30) by multiplying by tanh u and integrating over x, we obtain

2

c2
λλ̈ + 2α

J
λλ̇ + 1

c2
μλλ̇

2 + λ2

λ2
0

(1 + κ sin2 φ0) −
(

1 − Ẋ 2

c2

)
− λ2

c2
(φ̇0)2 = 0,

φ̇0Ẋ = 0, (A32)

where μλ = π (1 + π2

8 ) − 4. We used

1

λ

∫
dx

tanh2 u

cosh u
= π

2
,

1

λ

∫
dxu2 tanh2 u

cosh u
= π

(
1 + π2

8

)
. (A33)

The last equation of Eq. (A32) leads to a decoupling of φ0 from X and λ; in fact, choosing φ̇0 = 0 leads to φ0 = 0 resulting in

2

c2
λλ̈ + 2α

J
λλ̇ + 1

c2
μλλ̇

2 + λ2

λ2
0

−
(

1 − Ẋ 2

c2

)
= 0,

Ẍ − λ̇

λ
Ẋ + α

J
Ẋ = 0. (A34)

Using these equations, the linear coupling of Eq. (A28) reads

L(1) = J

a

1

c2

∫
dxϕx

{
− u

cosh u

(
λ̈

λ
− 2

λ̇2

λ2

)
+ tanh u

cosh u

[
2
λ̈

λ
+ (μλ − u2)

λ̇2

λ2
− 2u

Ẋ λ̇

λ2

]}
(A35)

with vanishing ϕy term. As we see here, the linear couplings are with second-order time derivatives like λ̈ and λ̇2. This is a result
of the relativistic form of the magnon Lagrangian in antiferromagnets, and this leads to non-Ohmic weak dissipation as shown
in Appendix B. In the ferromagnetic case, in contrast, the coupling is to first-order time derivatives like λ̇, resulting in an Ohmic
dissipation and a Gilbert damping constant. The last term of Eq. (A35) is a coupling between ϕx and Ẍ if we use the equation of
motion, Eq. (A34). It is seen that Ẍ induces a magnon mode ϕx with a spatial profile symmetric with respect to the wall center,
while λ̈ induces an asymmetric mode. As seen from this result, variation of λ is essential for magnon emission. This is the same
as in the ferromagnetic case [8]. In the present antiferromagnetic case, this is natural also from the Lorentz invariance, constant
velocity motion is a stable solution, and no emission is allowed. As we have argued, this linear-coupling Lagrangian is a model
derived for our choice of the collective coordinates, and may not be something universal.

APPENDIX B: EMISSION DUE TO LINEAR COUPLING

Let us study the spin wave emission from the linear coupling, Eq. (A35). The calculation is parallel to the ferromagnetic case
studied in Ref. [8]. Here we focus on the effect of center of mass motion, as the λ dynamics is an internal degree of freedom not
directly detectable. Using the last equation of Eq. (A34) and neglecting the terms that do not depend on X in Eq. (A35), we see
that acceleration of the wall leads to a linear coupling of

L(1)
X = −2J

a

1

c2

(∫
dx u

tanh u

cosh u
ϕx

)
Ẋ λ̇

λ2
= fX

(∫
du u

tanh u

cosh u
ϕx

)
Ẍ , (B1)

where fX ≡ − 2J
a

1
c2 . As this expression indicates, the acceleration induces a spatially symmetric spin wave profile. The force due

to emission is

FX = ∂

∂X
L(1)

X = fX
∂2

∂t2
ϕX , (B2)

where

ϕX ≡
∫

du u
tanh u

cosh u
〈ϕx〉, (B3)

being a spin wave expectation value 〈ϕx〉 with a spatially symmetric weight around the wall. Here we used the integration by
parts with respect to time considering the action (the time integral of the Lagrangian). The expectation value 〈ϕx〉 is expressed
in terms of the retarded Green’s function of spin wave mode ϕx,

Gr
ϕx

(u, t, u′, t ′) ≡ −iθ (t − t ′)〈[ϕx(u, t ), ϕx(u′, t ′)]〉, (B4)

as [8]

〈ϕx(x, t )〉 = fX

∫ t

−∞
dt ′Ẍ (t ′)

∫
dx′

λ(t ′)
x′ − X (t ′)

λ(t ′)

tanh x′−X (t ′ )
λ(t ′ )

cosh x′−X (t ′ )
λ(t ′ )

Gr
ϕx

(x, t, x′, t ′). (B5)
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This expression indicates that the wall acceleration at time t ′ < t emits spin waves around the wall center X (t ′) and the spin
waves propagate to the point of the observation x at time t .

Although there is an analytical solution of the spin wave in a cosh−1 potential [Eq. (A24) with Ẋ = λ̇ = 0] [8,20], we here
expand the spin waves by plane waves. In fact, description in terms of the correct wave function depends on the wall position
X at each time, and thus is not convenient to represent emitted waves. The retarded Green’s function in the angular frequency
representation is thus

Gr
ϕx

(x, x′, ω) = 2c2
∑

k

1

(ω + i0)2 − (
ω

(x)
k

)2 eik(x−x′ )e−iω(t−t ′ ), (B6)

where ω
(x)
k =

√
c2[k2 + (λ0)−2] is the spin wave energy of the mode in the x direction and thus

〈ϕx(x, t )〉 = 2c2 fX

∫ t

−∞
dt ′Ẍ (t ′)

∫
dω

2π

∑
k

�k (t ′)
e−iω(t−t ′ )

(ω + i0)2 − (ω(x)
k )2

eik[x−X (t ′ )] (B7)

and

�k (t ′) =
∫

du′u′ tanh u′

cosh u′ e
−iku′λ(t ′ ) = π

cosh π
2 kλ(t ′)

[
1 − π

2
kλ(t ′) tanh

π

2
kλ(t ′)

]
; (B8)

u′ ≡ x′−X (t ′ )
λ(t ′ ) is a form factor representing the distribution of k emitted. After the integration over ω, we have

〈ϕx(x, t )〉 = 2ic2 fX

∫ t

−∞
dt ′Ẍ (t ′)

∑
k

�k (t ′)

ω
(x)
k

(e−iω(x)
k (t−t ′ ) − eiω(x)

k (t−t ′ ) )eik[x−X (t ′ )], (B9)

as the amplitude of the linearly created magnon.

Dissipation in the instantaneous approximation

In the instantaneous approximation corresponding to slow excitations, the retardation effect in Gr is neglected [8], resulting
in

〈ϕx(x, t )〉 = −2c2 fX Ẍ (t )
∑

k

�k (t )(
ω

(x)
k

)2 eik[x−X (t )]. (B10)

The averaged density ϕX then reads

ϕX = − fX Ẍ (t )�X , (B11)

where �X ≡ 2c2∑
k

|�k (t )|2
(ω(x)

k )2 . The reaction force due to emission, Eq. (A35), is [assuming that the time dependence of �k (t ) is

weak]

FX = − fX �X
∂4X

∂t4
. (B12)

It is an even higher-order derivative than the force proportional to ∂3X
∂t3 found in the ferromagnetic case [7], and is weak for

low-frequency dynamics. The energy dissipation rate, dE
dt = FX Ẋ , due to this linear emission is proportional (after integral by

parts) to d
dt (Ẍ 2). The dissipation arising from the acceleration is therefore negligibly small at low energy compared to the Ohmic

damping proportional to d
dt (Ẋ 2). This is in contrast to the ferromagnetic case, where Ohmic damping is present [8].

APPENDIX C: EVALUATION OF MAGNON AMPLITUDES

The scattering amplitude (or the induced spin wave density) by the moving wall is〈
a(i)†

k+qa(i)
k

〉 = iG(i)<
k,k+q(t, t ), (C1)

where G(i)<
k,k+q(t, t ′) ≡ −i〈a(i)†

k+q(t ′)a(i)
k (t )〉 is the lesser Green’s function. The total wave vector of the spin wave increases by q as

a result of interaction, and thus h̄q is the momentum given to the spin waves from the wall. In the linear response to the potential,
it is 〈

a(i)†
k+qa(i)

k

〉
(t ) = i

Kg

a

∫
C

dt ′〈a(i)†
k+q(t )a(i)

k (t )a(i)
k+q(t ′)a(i)†

k (t ′)
〉
λ(t ′)

W−qeiqX (t ′ )√
ω

(i)
k ω

(i)
k+q

= −i
Kg

a

∫
C

dt ′λ(t ′)
W−qeiqX (t ′ )√

ω
(i)
k ω

(i)
k+q

[gk (t, t ′)gk+q(t ′, t )]<, (C2)
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where gk (t, t ′) denotes the free-path-ordered magnon Green’s function defined on path C in a plane of a complex time. The
lesser component is calculated using

∫
C dt ′[gk (t, t ′)gk+q(t ′, t )]< = ∫∞

−∞ dt ′[gr
k (t, t ′)g<

k+q(t ′, t ) + g<
k (t, t ′)ga

k+q(t ′, t )], and Green’s
functions on real time are

gr
kω = 1

ω − ωk + iη
, g<

kω = −n(ωk )
(
ga

kω − gr
kω

)
, (C3)

where n(ω) ≡ [eβω − 1]−1 is the Bose distribution function, gr
kω and ga

kω are the retarded and advanced Green’s functions,
respectively, and η is a damping parameter. We therefore obtain

〈
a(i)†

k+qa(i)
k

〉
(t ) = i

Kg

a

∫ ∞

−∞
dt ′λ(t ′)

W−qeiqX (t ′ )√
ω

(i)
k ω

(i)
k+q

∫
d


2π

∫
dω

2π
ei
(t−t ′ )(nk+q − nk )gr

kωga
k+q,ω+


= −Kg

a

∫ ∞

−∞
dt ′λ(t ′)

W−qeiqX (t ′ )√
ω

(i)
k ω

(i)
k+q

∫
d


2π
ei
(t−t ′ ) nk+q − nk

ωk+q − ωk − 
 + 2iη
. (C4)

Similarly the amplitudes of the two-magnon annihilation and creation are

〈
a(i)

−(k+q)a
(i)
k

〉
(t ) = i

Kg

a

∫
C

dt ′〈a(i)
−(k+q)(t )a(i)

k (t )a(i)†
−(k+q)(t

′)a(i)†
k (t ′)

〉
λ(t ′)

W−qeiqX (t ′ )√
ω

(i)
k ω

(i)
k+q

(C5)

and

〈
a(i)†

(k+q)a
(i)†
−k

〉
(t ) = i

Kg

a

∫
C

dt ′〈a(i)†
(k+q)(t )a(i)†

−k (t )a(i)
(k+q)(t

′)a(i)
−k (t ′)

〉
λ(t ′)

W−qeiqX (t ′ )√
ω

(i)
k ω

(i)
k+q

, (C6)

respectively. The expectation value is decomposed using

θ (t − t ′)[g>(t, t ′) − g<(t, t ′)] = gr (t, t ′),

θ (t − t ′)[g>(t ′, t ) − g<(t ′, t )] = −ga(t ′, t ), (C7)

as ∫
C

dt ′〈a(i)
−(k+q)(t )a(i)

k (t )a(i)†
−(k+q)(t

′)a(i)†
k (t ′)

〉 = ∫ t

−∞
dt ′〈a(i)

k (t )a(i)†
k (t ′)

〉〈
a(i)

−(k+q)(t )a(i)†
−(k+q)(t

′)
〉

+
∫ −∞

t
dt ′〈a(i)†

k (t ′)a(i)
k (t )

〉〈
a(i)†

−(k+q)(t
′)a(i)

−(k+q)(t )
〉

= −
∫ ∞

−∞
dt ′[g(i)r

k (t, t ′)g(i)>
−(k+q)(t, t ′) + g(i)<

k (t, t ′)g(i)r
−(k+q)(t, t ′)

]
,

∫
C

dt ′〈a(i)†
(k+q)(t )a(i)†

−k (t )a(i)
(k+q)(t

′)a(i)
−k (t ′)

〉 = ∫ t

−∞
dt ′〈a(i)†

−k (t )a(i)
−k (t ′)

〉〈
a(i)†

(k+q)(t )a(i)
(k+q)(t

′)
〉

+
∫ −∞

t
dt ′〈a(i)

−k (t ′)a(i)†
−k (t )

〉〈
a(i)

(k+q)(t
′)a(i)†

(k+q)(t )
〉

= −
∫ ∞

−∞
dt ′[g(i)a

−k (t ′, t )g(i)<
(k+q)(t

′, t ) + g(i)>
−k (t ′, t )g(i)a

(k+q)(t
′, t )

]
. (C8)

Using

g>
kω = −(1 + nk )

(
ga

kω − gr
kω

)
,

g<
kω = −nk

(
ga

kω − gr
kω

)
, (C9)

products of the Green’s functions are calculated as (noting that the integration in ω is finite only for terms containing either
retarded or advanced Green’s functions, as the frequencies for the two are ω and −ω)

g(i)r
k (t, t ′)g(i)>

−(k+q)(t, t ′) + g(i)<
k (t, t ′)g(i)r

−(k+q)(t, t ′) =
∫

dω

2π

∫
d


2π
ei
(t−t ′ )[g(i)r

k,ω
g(i)>

−(k+q),−(ω+
) + g(i)<
k,ω

g(i)r
−(k+q),−(ω+
)

]
=
∫

dω

2π

∫
d


2π
ei
(t−t ′ )[(1 + n−k−q )g(i)r

k,ω
g(i)r

−(k+q),−(ω+
) + nkg(i)r
k,ω

g(i)r
−(k+q),−(ω+
)

]
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= i
∫

d


2π
ei
(t−t ′ ) 1 + nk + n−(k+q)

ω
(i)
−(k+q) + ω

(i)
k + 
 − 2iη

,

g(i)a
−k (t ′, t )g(i)<

(k+q)(t
′, t ) + g(i)>

−k (t ′, t )g(i)a
(k+q)(t

′, t ) =
∫

dω

2π

∫
d


2π
ei
(t−t ′ )[g(i)a

−k,−ω
g(i)<

(k+q),(ω+
) + g(i)>
−k,−ω

g(i)a
(k+q),(ω+
)

]
=
∫

dω

2π

∫
d


2π
ei
(t−t ′ )(−)(nk+q + 1 + n−k )

× [
g(i)a

−k,−ω
g(i)a

(k+q),(ω+
) + g(i)a
−k,−ω

g(i)a
(k+q),(ω+
)

]
= i

∫
d


2π
ei
(t−t ′ ) 1 + n−k + n(k+q)

ω
(i)
(k+q) + ω

(i)
−k − 
 + 2iη

. (C10)

The result of the amplitudes of the two-magnon annihilation and creation is

〈
a(i)

−(k+q)a
(i)
k

〉
(t ) = Kg

a

∫
d


2π
ei
t

∫ ∞

−∞
dt ′e−i
t ′

eiqX (t ′ )λ(t ′)
W−q√

ω
(i)
k ω

(i)
k+q

1 + nk + n−(k+q)

ω
(i)
−(k+q) + ω

(i)
k + 
 − 2iη

,

〈
a(i)†

(k+q)a
(i)†
−k

〉
(t ) = Kg

a

∫
d


2π
ei
t

∫ ∞

−∞
dt ′e−i
t ′

eiqX (t ′ )λ(t ′)
W−q√

ω
(i)
k ω

(i)
k+q

1 + n−k + n(k+q)

ω
(i)
(k+q) + ω

(i)
−k − 
 + 2iη

. (C11)

Changing k → −k,

〈
a(i)†

(−k+q)a
(i)†
k

〉
(t ) = −i

Kg

a

∫
d


2π
ei
t

∫ ∞

−∞
dt ′e−i
t ′

eiqX (t ′ )λ(t ′)
W−q√

ω
(i)
k ω

(i)
−k+q

1 + n−k + n(k+q)

ω
(i)
(−k+q) + ω

(i)
k − 
 + 2iη

. (C12)

Here h̄q and h̄
 are the momentum and energy given to the spin waves from the wall, respectively.
We define response functions for scattering and emission as

�k,q,
 ≡ − W−q√
ω

(i)
k ω

(i)
k+q

nk+q − nk

ωk+q − ωk − 
 + 2iη
,

�k,q,
 ≡ W−q√
ω

(i)
k ω

(i)
−k+q

1 + n−k + n(k+q)

ω
(i)
(−k+q) + ω

(i)
k − 
 + 2iη

, (C13)

so that

〈
a(i)†

k+qa(i)
k

〉
(t ) = Kg

a

∫
d


2π
ei
t

∫ ∞

−∞
dt ′e−i
t ′

eiqX (t ′ )λ(t ′)
∑

k

�k,q,
,

〈
a(i)†

−k+qa(i)†
k

〉
(t ) = Kg

a

∫
d


2π
ei
t

∫ ∞

−∞
dt ′e−i
t ′

eiqX (t ′ )λ(t ′)
∑

k

�k,q,
, (C14)

and

〈
a(i)

−k+qa(i)
k

〉
(t ) = Kg

a

∫
d


2π
ei
t

∫ ∞

−∞
dt ′e−i
t ′

eiqX (t ′ )λ(t ′)
∑

k

�∗
k,−q,−
 (C15)

for the absorption. �k,q,
 represents an ordinary particle-hole propagation, while �k,q,
 is an anomalous particle-particle (or
hole-hole) propagation.

The correlation functions after the summation over k have the following properties (we use W−q = Wq and ω−k = ωk):

∑
k

�k,−q,
 = −
∑

k′=−k

W−q√
ω

(i)
k′ ω

(i)
−k′−q

n−k′−q − nk′

ω−k′−q − ωk′ − 
 + 2iη
=
∑

k

�k,q,
,

∑
k

�k,−q,
 =
∑

k′=−k

W−q√
ω

(i)
k′ ω

(i)
k′−q

1 + nk′ + n(k′−q)

ω
(i)
(k′−q) + ω

(i)
k′ − 
 + 2iη

=
∑

k

�k,q,
. (C16)
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Namely, both are even in q if 
 is independent of q. Later we consider the case of a motion with a constant velocity Vw, and in
that case, 
 = qVw is imposed. In this case, the symmetry is modified as∑

k

�k,−q,
=−qVw = −
∑

k′=k−q

W−q√
ω

(i)
k′ ω

(i)
k′+q

nk′+q − nk′

ωk′+q − ωk′ − qVw − 2iη
= �∗

q,
=qVw
. (C17)

Therefore,

Re

[∑
k

�k,−q,
=−qVw

]
= Re

[∑
k

�∗
k,q,
=qVw

]
,

Im

[∑
k

�k,−q,
=−qVw

]
= −Im

[∑
k

�∗
k,q,
=qVw

]
. (C18)

The emission response function is ∑
k

�k,−q,
=−qVw =
∑

k

�k,q,
=−qVw (C19)

and have both even and odd contributions of q when Vw �= 0.

APPENDIX D: LORENTZ BOOST OF RESPONSE
FUNCTION

In the case of normal relativistic dispersion, the system has
a Lorentz invariance. The spin wave emission and scattering
from a moving wall is understood from the Lorentz boost
of the response function. The real transition (imaginary part)
contributions of the response functions in q-
 space are

�q,
 = − 1

V

∑
k

W−q√
ω

(i)
k ω

(i)
k+q

η(nk+q − nk)(
ω

(i)
k+q − ω

(i)
k − 


)2 + η2
,

(D1)

�q,
 = 1

V

∑
k

W−q√
ω

(i)
k ω

(i)
−k+q

η(1 + nk + n−k+q )(
ω

(i)
−k+q + ω

(i)
k − 


)2 + η2
.

(D2)

The response in the boosted frame with velocity v is repre-
sented by changing variables as

u ≡ x − vt

γ
, s ≡ t − vx/c2

γ
, (D3)

where γ ≡
√

1 − (v/c)2. The response in the boosted frame
is given by (the same for �)

∑
q

∫
d


2π
e−iqxei
t�q,


=
∑

q

∫
d


2π
e−iu(q−v
)/γ eis(
−vq)/γ �q,


=
∑

q

∫
d


2π
e−iquei
s�(q+v
)/γ ,(
+vq)/γ . (D4)

The response functions are distorted due to the mixing of q
and 
, as shown in Fig. 13. The response functions from
the moving wall agree with the boost of the static (
 = 0)
rest-frame one �q/γ ,vq/γ . The boost transformation clearly
indicates the appearance of a peak at finite q, which leads to a
significant emission discussed in the main text.

APPENDIX E: RELATION TO ξ REPRESENTATION OF
REFERENCE [8]

To describe fluctuation around a domain wall, parametriza-
tion in terms of the ξ variable, defined as

ξ ≡ eiφ tan
θ

2
, (E1)

has been used in Refs. [8,20]. For the case of a domain wall
centered at x = X with the angle of plane φ0, ξ is

ξ = e−u+iφ0+η, (E2)

where u = x−X
λ

, and η represents the spin wave. This repre-
sentation is equivalent to the rotated-frame representation in
the present paper. In fact, η ≡ ηR + iηI and ϕ = (ϕx, ϕy) are
related as η̃R = 1

2ϕx and η̃I = 1
2ϕy, where η̃ ≡ 1

2 cosh uη.

FIG. 13. The Lorentz boost effects on the imaginary parts of the
normal (upper row) and the anomalous (lower row) response func-
tions, Im[�(q+v
)/γ ,(
+vq)/γ ] and Im[�(q+v
)/γ ,(
+vq)/γ ], respectively,
for the relativistic dispersion at v/c = 0, 0.4, 0.8 from the left to the
right.
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