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We propose to induce a time-crystalline state in a high-Tc superconductor, by optically driving a sum resonance
of the Higgs mode and a Josephson plasma mode. The generic cubic process that couples these fundamental
excitations converts driving of the sum resonance into simultaneous resonant driving of both modes, resulting
in an incommensurate subharmonic motion. We use a numerical implementation of a semiclassical driven-
dissipative lattice gauge theory on a three-dimensional layered lattice, which models the geometry of cuprate
superconductors, to demonstrate the robustness of this motion against thermal fluctuations. We demonstrate this
light-induced time-crystalline phase for mono- and bilayer systems and show that this order can be detected for
pulsed driving under realistic technological conditions.
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I. INTRODUCTION

Optical driving of solids constitutes a new method of
designing many-body states. Striking examples of this ap-
proach include light-induced superconductivity [1–3] as well
as optical control of charge density wave phases [4]. For
these states, the carefully tuned light field either renormalizes
the phase boundary of the equilibrium phase, as is the case
for light-induced superconductivity, or renormalizes a nearby
metastable state into a stable state of the driven system, as is
the case for light-controlled charge density waves.

These observations are part of a larger effort to determine
the steady states of periodically driven many-body systems.
In a parallel development in cold atom systems, serving
as well-defined many-body toy models, the generic regimes
that were proposed (see Refs. [5,6]) firstly include renor-
malized equilibrium states, for which the above-mentioned
states are examples. Secondly, regimes beyond the equilib-
rium states emerge, in particular, genuine nonequilibrium
orders, which have no equilibrium counterpart, and only exist
in the driven state. A striking example of a nonequilibrium
order is time crystals [7–13], reported in systems such as ion
traps or nitrogen-vacancy centers [14,15]. Thirdly, for strong
driving, chaotic states emerge. These different regimes are
achieved for different driving amplitudes and driving frequen-
cies, which constitutes the dynamical phase diagram of the
system.
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In this paper, we propose to create a light-induced time-
crystalline state in a high-Tc superconductor. This advances
light control of superconductors towards genuine nonequi-
librium orders and furthers time crystals in the solid-state
domain [16]. We characterize the observed nonequilibrium
state as a time crystal based on the following criteria [12]:
(i) A time crystal spontaneously breaks time-translation sym-
metry; that is, it exhibits a subharmonic response to the drive.
(ii) The subharmonic response is robust against perturbations
which respect the time-translation symmetry of the Hamilto-
nian. (iii) The subharmonic response emerges in a many-body
system with a large number of locally coupled degrees of
freedom, and it persists for an infinite time.

We call the novel dynamical phase a Higgs time crystal
because we induce it via optical driving of a sum resonance
of the Higgs mode and a Josephson plasma mode. The Higgs
mode and the Josephson plasma mode correspond to the two
fundamental collective excitations of a system with broken
U (1) symmetry and with an underlying approximate particle-
hole symmetry. The Higgs mode is an amplitude oscillation
of the order parameter, as depicted in Fig. 1(a) for the |ψ |4
theory used in the following. The Higgs mode is a gapped ex-
citation due to the increase of the potential energy in the radial
direction. The Josephson plasma mode is a phase oscillation,
as indicated. This mode also has a gapped excitation spectrum
owing to the electromagnetic interaction of the system. Be-
cause of the approximate particle-hole symmetry, these two
oscillations are orthogonal to each other [17,18].

To identify the Higgs time-crystalline phase, we map out
the dynamical phase diagram of optically driven high-Tc su-
perconductors as a function of the driving frequency ωdr

and the driving amplitude E0, which is shown in Fig. 2(a),
for instance. The time-crystalline state is induced by driving
the superconductor via the nonlinear coupling ∼a2h of the
electromagnetic field a and the Higgs field h. We demon-
strate that driving at the frequency ωdr = ωH + ωJ induces a
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FIG. 1. Exciting the Higgs and plasma modes. (a) Illustration of
the free energy of a state with broken U (1) symmetry. (b) Illustra-
tion of a driven cuprate superconductor modeled as a U (1) gauge
theory on an anisotropic lattice. In-plane dynamics is captured by
discretizing the condensate field in the ab plane. (c) The Higgs mode
can be excited resonantly with a driving frequency of ωdr � ωH/2,
by utilizing the nonlinear coupling between the electromagnetic field
and the Higgs field. Upper panel: Diagrammatic representation of
the nonlinear process. Lower panel: Exemplary dynamical portrait
of the phase difference between the superconducting layers and the
condensate amplitude in the steady state for 10 driving cycles at zero
temperature. (d) We propose to utilize the same nonlinear coupling
to induce a time-crystalline state by driving the sum resonance of the
system at ωdr = ωH + ωJ. The phase-space trajectories shown in the
lower panels of (c) and (d) are obtained using a Josephson junction
model for a monolayer cuprate with Higgs frequency ωH/2π ≈ 6.3
THz and plasma frequency ωJ/2π ≈ 16.0 THz; see Table I for full
parameter set.

time-crystalline phase, where ωH is the Higgs frequency and
ωJ is the plasma frequency, as depicted in Fig. 1(d). We note
that this nonlinear coupling has been confirmed in conven-
tional superconductors [19–22], while a direct probe of the
Higgs field is challenging due to its scalar nature. Further
studies on the Higgs mode in high-Tc cuprates and organic
superconductors are reported in Refs. [23–29]. Persistent mul-
tifrequency dynamics of the superconducting order parameter
has been investigated in Ref. [30].

To describe the dynamics of optically driven supercon-
ductors, we develop a lattice gauge simulation that describes
the motion of the order parameter of the superconducting
state ψ (r, t ) and the electromagnetic field A(r, t ). We first

utilize our method to show how to induce the time-crystalline
state and to determine its regime in the dynamical phase
diagram. Furthermore, we demonstrate the robustness of the
time-crystalline phase against thermal fluctuations and show
that it can be realized and identified under pulsed operation.

II. THREE-DIMENSIONAL LATTICE GAUGE MODEL

We represent the layered structure of high-Tc supercon-
ductors via the lattice geometry illustrated in Fig. 1(b). We
note that this geometry of CuO2 layers perpendicular to the
c axis has motivated a low-energy description of stacks of
Josephson junctions [31–33], which captures the appearance
of Josephson plasma excitations reported in Refs. [34–36].
Each layer is represented by a square lattice, leading to a
discretization of the fields of the form ψ (r, t ) → ψl,m,n(t ) ≡
ψr(t ). The in-plane discretization length dab constitutes a
short-range cutoff well below the in-plane coherence length.
In doing so, we generalize the modeling of layered cuprates to
a three-dimensional (3D) lattice of Josephson junctions. Each
component of the vector potential Ai,r(t ) is located between
a lattice site r and its nearest neighbor r′(i) in the i direction,
where i ∈ {x, y, z}. According to the Peierls substitution, it de-
scribes the averaged electric field along the bond of a plaquette
in Fig. 1(b).

We focus on temperatures below Tc, where the dominant
low-energy degrees of freedom are Cooper pairs. We de-
scribe the Cooper pairs as a condensate of interacting bosons
with charge −2e, represented by the complex field ψr(t ).
To construct the Hamiltonian of the lattice gauge model, we
discretize the Ginzburg-Landau free energy [37] on a layered
lattice and add time-dependent terms. We explicitly simulate
the coupled dynamics of the condensate and the electromag-
netic field. We discretize space by mapping it on a lattice,
as mentioned, but implement the compact U (1) lattice gauge
theory in the time-continuum limit [38]. The particle-hole
symmetry inherent to our relativistic model creates stable
Higgs oscillations, even in bilayer cuprates where the Higgs
frequency is between the two longitudinal Josephson plasma
frequencies.

We consider mono- and bilayer cuprate superconductors.
For bilayer cuprates, we assign the strong (weak) junc-
tions to the even (odd) layers. The corresponding tunneling
coefficients are t2n = ts and t2n+1 = tw. The interlayer spac-
ings d2n,2n+1 = ds,w are the distances between the CuO2

planes in the crystal. Note that we suppose the z direction to
be aligned with the c axis of the crystal throughout this paper.
The Hamiltonian of the lattice gauge model is

H = Hsc + Hem + Hkin. (1)

The first term is the |ψ |4 model of the superconducting con-
densate in the absence of Cooper pair tunneling:

Hsc =
∑

r

|πr|2
Kh̄2 − μ|ψr|2 + g

2
|ψr|4, (2)

where πr = Kh̄2∂tψ
∗
r is the conjugate momentum of ψr, μ is

the chemical potential, and g is the interaction strength. This
Hamiltonian is particle-hole symmetric due to its invariance
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under ψr → ψ∗
r . The coefficient K describes the magnitude

of the dynamical term.
The electromagnetic part Hem is the discretized form of the

free-field Hamiltonian, modified by tunable interlayer permit-
tivities εs,w to capture the screening due to bound charges in
the material:

Hem =
∑
i,r

κi,rεi,rε0

2
E2

i,r + κz,r

κi,rβ
2
i,rμ0

[1 − cos(βi,rBi,r )],

(3)

where Ei,r denotes the i component of the electric field. The
vector potential is located on the bonds between the supercon-
ducting sites. Consequently, this applies to the electric field
as well. Note that we choose the temporal gauge for our cal-
culations, i.e., Ei,r = −∂t Ai,r. Meanwhile, the magnetic field
components Bi,r = εi jkδ jAk,r are centered about the plaque-
ttes. This arrangement is consistent with the finite-difference
time-domain (FDTD) method for solving Maxwell’s equa-
tions [39]. We calculate the spatial derivatives according to
δ jAk,r = (Ak,r′( j) − Ak,r )/d j,r, where d j,r is the length of the
bond. The dielectric permittivities are εx,r = εy,r = 1 and
εz,r = εn. The other prefactors in Eq. (3) account for the
anisotropic lattice geometry. They are defined as κx,r = κy,r =
1 and κz,r = dn/dc, while βx,r = βy,r = 2edabdn/h̄ and βz,r =
2ed2

ab/h̄, where dc = (ds + dw )/2.
The nonlinear coupling between the Higgs field and the

electromagnetic field derives from the tunneling term

Hkin =
∑
i,r

ti,r|ψr′(i) − ψreiai,r |2. (4)

The unitless vector potential ai,r = −2edi,rAi,r/h̄ couples to
the phase of the superconducting field, ensuring the gauge
invariance of Hkin. The in-plane tunneling coefficient is tab,
and the c-axis tunneling coefficients are ts,w.

We solve the equations of motion for ψr(t ) and Ar(t ) ob-
tained from the Hamiltonian numerically, employing Heun’s
method with an integration step size 
t = 1.6 as. Thermal
fluctuations are included by adding dissipation and Langevin
noise to the equations of motion for both fields. For example,
the time evolution of the superconducting field is given by

∂tπr = − ∂H
∂ψr

− γπr + ξr, (5)

where γ is a damping constant and ξr represents white
Gaussian noise with zero mean; see Appendix A for noise
correlations. We note that the inclusion of in-plane dynam-
ics and arbitrarily strong amplitude fluctuations constitutes
a qualitative advance of previous descriptions, such as 1D
sine-Gordon models [40,41].

We determine the response of the superconductor to peri-
odic driving of the electric field along the c axis. The external
drive Edr (t ) has the frequency ωdr and the effective field
strength E0. We consider the long-wavelength limit such that
the external drive is assumed to be homogeneous in the bulk
of the sample. Thus the time evolution of Ez,r(t ) reads

∂t Ez,r = dc

dnεnε0

∂H
∂Az,r

− γ Ez,r + ηz,r + ∂t Edr

εn
, (6)

where ηz,r is white Gaussian noise with zero mean. The equa-
tions of motion for Ex,r(t ) and Ey,r(t ) are analogous to Eq. (6),
except for the driving term. We characterize the response by
evaluating the sample averages of the condensate amplitude
|ψ (t )| and the supercurrent density J (t ); see also Appendix B.

By applying the optical driving as described, we obtain the
full dynamical phase diagram due to the direct coupling of the
electromagnetic field to the superconducting order parameter.
We note that resonant optical driving of phonon modes has
been utilized and discussed in Refs. [1–3,40–42]. Here, we
ignore the phononic resonances, so that our predictions are
valid away from these resonances. A combined description
will be given elsewhere.

III. TWO-MODE MODEL

Before we present the full numerical simulation, we iden-
tify the main resonant phenomena of the system. We consider
the zero-temperature limit, where the in-plane dynamics can
be neglected and the model simplifies to a 1D chain along the
c axis. Furthermore, we restrict ourselves to weak driving and
a monolayer structure with ts = tw ≡ tJ and ds = dw ≡ d . For
periodic boundary conditions, the time evolution then reduces
to two coupled equations of motion. Keeping only linear terms
except for the lowest-order coupling between the Higgs field
and the unitless vector potential, we find

∂2
t a + γ ∂t a + ω2

J a + 2ω2
J ah ≈ jdr, (7)

∂2
t h + γ ∂t h + ω2

Hh + αω2
J a2 ≈ 0, (8)

where h = (ψ − ψ0)/ψ0 is the Higgs field with ψ0 being the
equilibrium condensate amplitude, γ is the damping constant,
and α is the capacitive coupling constant of the junction.
Note that the unitless vector potential a equals the phase
difference between adjacent planes in this setting. The ex-
ternal drive appears through the current jdr. The Higgs and
plasma frequencies are ωH =

√
2μ/Kh̄2 and ωJ =

√
tJ/αKh̄2,

respectively.
The main finding of this work is the emergence of a time-

crystalline phase by driving at the sum of the Higgs and
plasma frequencies, ωdr = ωJ + ωH. A cubic interaction pro-
cess, visualized in Fig. 1(d), allows for simultaneous resonant
driving of both the Higgs and the plasma modes [43].

In addition to the sum resonance, we identify various other
resonances from the simplified equations of motion. For a
response of the vector potential at the driving frequency, i.e.,
a = a1cos(ωdrt ), Eq. (8) simplifies to a forced oscillator with
a resonance at ωdr = ωH/2. This recovers the subgap Higgs
resonance [22]. The subgap resonance and the sum resonance
originate from the same cubic coupling term ∼a2h, as illus-
trated in Figs. 1(c) and 1(d). Next, we consider the range of
driving frequencies where the Higgs field exhibits a second-
harmonic response; that is, the external drive induces Higgs
oscillations of the form h = h0 + h1cos(2ωdrt ) through the a2

term in Eq. (8). For small driving amplitudes, the ah term
in Eq. (7) can be neglected so that the equation reduces to
a forced oscillator with a resonance at ωdr = ωJ. However,
the response is modified once the coupling to the Higgs field
becomes significant. Then, Eq. (7) approaches a parametri-
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FIG. 2. Dynamical phases of a light-driven monolayer cuprate superconductor. (a) Dynamical phase diagram of a monolayer cuprate
continuously driven by an electric field with frequency ωdr and effective field strength E0 at T = 0. The time-crystalline (TC) phase is encoded
in red. (b) Driving Edr (t ) and response of the condensate amplitude |ψ |/|ψ0|(t ) for the Higgs resonance at ωdr = ωH/2 (diamond), the time
crystal (cross), and an off-resonantly driven superconductor (circle). The driving parameters are indicated by the symbols in (a). (c) Power
spectra of the condensate amplitude, corresponding to the trajectories of the Higgs resonance and the time crystal presented in (b). The
parameters for the monolayer system are the same as in Fig. 1.

cally driven oscillator. The parametric resonances emerge at
ωdr = ωJ/k, where k ∈ N.

IV. DYNAMICAL PHASE DIAGRAM

We now present our numerical results in two steps. Firstly,
we verify our analytical predictions for the resonances and,
in particular, the Higgs time crystal by mapping out the
dynamical phase diagrams of mono- and bilayer cuprate su-
perconductors at zero temperature. We will show how the
sum resonance is modified in a bilayer system, which has
two plasma modes. Secondly, we test the robustness of this
phase against thermal fluctuations using finite-temperature
simulations.

A. Monolayer cuprate superconductor

Here, we consider a monolayer cuprate with ωH/2π ≈
6.3 THz, ωJ/2π ≈ 16.0 THz, γ /2π = 0.5 THz, and α =
0.33; see Table I for full parameter set. The system is con-
tinuously driven at various amplitudes and frequencies in
the terahertz regime. In each realization, the drive is applied
for 20 ps, and the relevant frequency spectra are com-
puted using the final 10 ps, which amounts to 5 < Mtot <

300 driving cycles in the frequency range of interest. The
dynamical phase diagram in Fig. 2(a) is mapped out by
analyzing the normalized power spectra of |ψ (t )| and J (t )
defined as Pf (ω) = 〈 f (ω) f (−ω)〉, where

∫
Pf (ω)dω = 1,

f (ω) = 1/
√

Ts
∫

dt ′exp(−iωt ′) f (t ′), and Ts = 10 ps is the
sampling interval. Specifically, we obtain the spectral en-
tropy for the dynamics of the condensate amplitude, S|ψ | =
− ∫

dωP|ψ |(ω)lnP|ψ |(ω).
The heating regime, which is characterized by a strong

depletion of the condensate, is identified based on the thresh-
old S|ψ | > 2.2 × 10−2. It indicates the appearance of resonant
phases associated with the Higgs and plasma excitations.
We note that the two dominant heating tongues are weakly

red-detuned from the expected resonance frequencies ωH/2
and ωJ, respectively. Such a renormalization of the funda-
mental frequencies is inherent to strongly driven nonlinear
systems [44]. This effect is further amplified by the damping
terms present in our model. We identify the small tongue at
ωdr/2π ≈ 4.8 THz as the third-order parametric resonance of
the Josephson plasma mode around ωJ/3.

For intermediate driving intensity, we observe several dy-
namical regimes due to resonances. The resonance with the
lowest frequency is the Higgs resonance at ωdr = ωH/2. In
general, resonant excitation of the Higgs mode is marked
by strong modulation of the condensate amplitude as exem-
plified in Fig. 2(b). Moreover, the Higgs resonance exhibits
a commensurate and superharmonic response of |ψ (t )| with
respect to the driving Edr (t ) as seen from the closed trajectory
in Fig. 1(c) and the sharp peak at 2ωdr of the condensate
amplitude spectrum in Fig. 2(c). We emphasize that driv-
ing away from any noticeable resonance, indicated as the
blue regime in Fig. 2(a), induces only a single sharp peak
in the supercurrent spectrum, namely, at the driving fre-
quency. The condensate amplitude oscillates at twice the
driving frequency in the blue regime. This also applies to
the regime near the Josephson plasma resonance at ωdr = ωJ,
where the system responds with strong oscillations of the
supercurrent.

The red regime in Fig. 2(a), identified via the condition
10−4 < S|ψ | < 2.2 × 10−2, is the Higgs time crystal intro-
duced earlier. We emphasize that its resonance condition
ωdr = ωJ + ωH differs from the subgap frequencies ωdr �
ωH/2 used in standard Higgs spectroscopy. The sum res-
onance simultaneously couples to the Higgs and plasma
resonances as evident from the exemplary mean-field tra-
jectory in Fig. 1(d), where the amplitude oscillation is
accompanied by a strong oscillation of the phase difference
between the junctions. Despite a smaller driving amplitude E0,
the plasma mode is excited with larger amplitude than for the
Higgs resonance. The strong activation of the plasma mode
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FIG. 3. Higgs time crystal in a light-driven bilayer cuprate su-
perconductor. (a) Dynamical phase diagram of a bilayer cuprate
continuously driven by an electric field with frequency ωdr and ef-
fective field strength E0 at T = 0. (b) Robustness of the time crystal
(TC) against perturbations of the drive as described in the text. Values
of the dominant amplitude frequency ωpeak close to ωH indicate
a subharmonic response, whereas maxima at 2ωdr mark a normal
response. The bilayer system has the Higgs frequency ωH/2π ≈
6.3 THz and the two longitudinal Josephson plasma frequencies
ωJ1/2π ≈ 2.0 THz and ωJ2/2π ≈ 14.3 THz at T = 0; see Table I
for full parameter set.

results in a partial depletion of the condensate as visible in
Fig. 2(b), where the time average of the oscillatory motion of
the condensate amplitude is below 1. The key feature of the
novel phase is the subharmonic response of the condensate
amplitude as |ψ (t )| oscillates at ωH when the superconductor
is driven at ωdr = ωJ + ωH. This phenomenon is highlighted
in Fig. 2(b) and in the strong subharmonic peak in the power
spectrum of |ψ (t )| shown in Fig. 2(c). The other dynamical
phases respect the time-translation symmetry imposed by the
external drive as evidenced by Figs. 2(b) and 2(c).

The subharmonic collective motion is one of the defining
features of a time crystal. In addition to being subharmonic,
the response of the time-crystalline state is also incommensu-
rate to the external driving. That is, the phase-space trajectory
traces an open loop for any number of driving cycles; see also
Fig. 1(d). Therefore, and more specifically, the state that we
propose to create is an incommensurate time crystal in high-Tc

superconductors. We will confirm its robustness against per-
turbations of the drive and thermal fluctuations for the bilayer
case. We note that the subharmonic response can be expected
to be rigid as it emerges for a broad regime of driving pa-
rameters rather than a fine-tuned point in the dynamical phase
diagram. In addition, our finite-temperature calculations with
a large number of lattice sites will highlight the many-body
nature of the Higgs time crystal.

B. Bilayer superconductor

We now focus on bilayer cuprates. Due to the staggered
tunneling coefficients ts and tw along the c axis, the system
has two fundamental longitudinal plasma excitations with fre-
quencies ωJ1 and ωJ2. The dynamical phase diagram at zero
temperature in Fig. 3(a) displays a regime in which a Higgs
time crystal is induced by optical driving at a sum resonance.
Here, the resonance condition is ωdr = ωH + ωJ2, so it is the
sum of the Higgs frequency and the upper plasma frequency.

First, we examine how perturbing the optical drive itself
affects the subharmonic response. To excite the sum reso-
nance, we initially drive the bilayer superconductor with E0 =
0.1 MV/cm and ωdr/2π = 21 THz. At some instant of time
t0, the driving is altered so that the oscillation amplitude of the
field strength depends on its sign for t > t0:

Edr (t ) =
{

E0cos(ωdrt ) for cos(ωdrt ) � 0
(E0 + δE ) cos(ωdrt ) for cos(ωdrt ) < 0.

(9)

After allowing the system to relax to a steady state, we take
the power spectrum of the condensate amplitude and deter-
mine the dominant frequency ωpeak. The robustness of the
subharmonic response is demonstrated by Fig. 3(b), where
perturbations of the driving amplitude between δE/E0 =
−0.4 and δE/E0 = 1 do not destroy the sum resonance. We
have also verified the persistence of the subharmonic response
for 105 cycles of continuous driving at T = 0 [43]. Because
of experimental and numerical limitations in accessible time
scales (∼102 driving cycles for our finite-temperature calcu-
lations), we will not distinguish here between a “true” time
crystal and a slowly decaying time crystal [13,14].

We note that the time-crystalline response is stabilized
by the nonlinear coupling between the Higgs and plasma
modes, which further highlights the collective nature of the
Higgs time crystal. Furthermore, the amplitudes of the oscil-
lations are saturated by nonlinear processes in the system (see
Ref. [45] for example) while the dissipative coupling to the
environment limits heating.

Next, we demonstrate the robustness of the Higgs time
crystal against thermal fluctuations modeled as Langevin
noise in the dynamics of the fields. These fluctuations are
a natural test for the rigidity of the subharmonic response
against temporal perturbations [13]. When considering ther-
mal fluctuations, we include the in-plane dynamics of the
fields in a full 3D simulation. The complete parameter
set is summarized in Table I, implying the Higgs fre-
quency ωH/2π ≈ 6.3 THz and the two longitudinal Joseph-
son plasma frequencies ωJ1/2π ≈ 2.0 THz and ωJ2/2π ≈
14.3 THz at T = 0. For simplicity, we keep the chemical
potential fixed in the following finite-temperature calcula-
tions, μ(T ) ≡ μ. We choose the parameters within the CuO2

planes to yield a critical temperature of Tc ∼ 30 K. We find
that a discretization of 48 × 48 × 4 lattice sites with peri-
odic boundaries is sufficient to obtain fully converged results
with respect to the system size. Note that both the Higgs
and Josephson plasma frequencies are renormalized at finite
temperature [43].

Examples of the power spectra of the condensate am-
plitude and the supercurrent density at T = 3 K are shown
in Figs. 4(a) and 4(b), respectively. When the sum reso-
nance is driven, the condensate amplitude exhibits strong
subharmonic modulation as evidenced by a sharp peak in the
amplitude spectrum in Fig. 4(a). Moreover, we observe in
Fig. 4(a) how the modulation of the condensate amplitude
is suppressed as the driving frequency is tuned away from
the resonance frequency. As shown in Fig. 4(b), we identify
an experimentally relevant signature of the superconducting
time-crystalline phase, which is the appearance of two side
peaks at ωdr ± ωH in the power spectrum of the supercurrent
density. The side peaks vanish as the driving frequency is
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crystalline fraction for a bilayer cuprate superconductor, rescaled by its value at T = 0. The optimal crystalline fraction at a given temperature
corresponds to the maximum value of PJ (ωdr + ωH) in the relevant section of the dynamical phase diagram, as exemplified in (c). The error
bars in (d) arise from the standard errors of Lorentzian fits to the blue-detuned side peaks. The parameters for the bilayer system are the same
as in Fig. 3. The resonance frequencies are shifted at finite temperature.

tuned away from the resonance frequency. Coherent dynamics
of supercurrents can be experimentally probed using second-
harmonic measurements [46,47].

To quantify the time-crystalline fraction, we use the height
of the blue-detuned side peak in the power spectrum of the
supercurrent density, PJ (ωdr + ωH). Figure 4(d) displays the
temperature dependence of the optimal crystalline fraction for
a bilayer cuprate, normalized to the optimal time-crystalline
fraction at T = 0. The optimal driving parameters at each
temperature were inferred from coarse scans such as that in
Fig. 4(c). As we expect for time crystals under increasingly
strong perturbation, the crystalline fraction decreases with
temperature. Nevertheless, the subharmonic response is ro-
bust against thermal noise for temperatures up to T = 6 K ∼
0.2Tc.

V. PULSED EXCITATION OF THE HIGGS TIME CRYSTAL

While significant progress has been made in generating
continuous-wave terahertz sources [48], typical experiments
in optically driven superconductors utilize pulsed excitation,
as in most pump-probe experiments. We now point out that
the time-crystalline phase can be detected when the system
is driven with a short pulse, rather than the steady state
discussed so far. We consider a pulsed driving scheme by
introducing a Gaussian envelope of the periodic driving; that
is, Edr (t ) = E0cos(ωdrt ) exp(−t2/2σ 2) with the pulse width
σ . In Fig. 5, we present an example of the dynamical response
of the bilayer system under pulsed excitation. The response
shown in Fig. 5(b) is approximately the Fourier-broadened
form of Fig. 4(b). The similarity between the two results
suggests that the defining features of the Higgs time crystal of
continuously driven superconductors are detectable for pulsed
driving protocols with realistic pulse lengths. The response
can be clearly distinguished from normal dynamical phases
by probing the coherent dynamics of the supercurrent. Thus
the Higgs time crystal predicted here can be observed in cur-
rent state-of-the-art experiments with optically driven high-Tc

superconductors.

VI. DISCUSSION

In conclusion, we have demonstrated the emergence of a
time-crystalline phase in a high-Tc superconductor, which is
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FIG. 5. Time-crystalline response of a bilayer cuprate supercon-
ductor to a driving pulse. (a) Temporal wave form of the pulsed
electric field and the induced motion of the supercurrent den-
sity shown for one representative trajectory at T = 3 K ∼ 0.1Tc

with an effective field strength E0 = 0.2 MV/cm, driving frequency
ωdr/2π = 22.4 THz, and pulse width σ = 2 ps. (b) Power spectrum
of the supercurrent density, measured in the interval between 0 and
2 ps. The parameters for the bilayer system are the same as in Fig. 3.
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induced by optical driving of a sum resonance of the Higgs
mode and a Josephson plasma mode. Using a newly developed
lattice gauge simulator, we demonstrate this time crystal for
mono- and bilayer cuprates and show its robustness against
thermal fluctuations, for up to ∼20% of the critical tempera-
ture. As an experimentally accessible signature we observe the
emergence of two side peaks at ωdr ± ωH in the supercurrent
spectra. This signature is also visible in pulsed operation,
which mimics realistic experimental conditions.

The emergent time-crystalline order that we propose to
induce constitutes a qualitative departure from previous
light-induced states in solids, because it is a genuine nonequi-
librium state with no equilibrium counterpart. The realization
of such a state expands the scope of the scientific effort
to design many-body states by optical driving beyond the
paradigm of renormalizing equilibrium orders. While even
this existing paradigm has been and continues to be thought
provoking and stimulating, the work presented here urges the
design and exploration of light-induced nonequilibrium states
beyond that framework and thereby expands the scope of the
effort to design quantum matter on demand.
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APPENDIX A: NOISE CORRELATIONS

The fluctuation-dissipation theorem requires

〈Re{ξr(t )}Re{ξr′ (t ′)}〉 = γ Kh̄2kBT

V0
δrr′δ(t − t ′), (A1)

〈Im{ξr(t )}Im{ξr′ (t ′)}〉 = γ Kh̄2kBT

V0
δrr′δ(t − t ′), (A2)

〈Re{ξr(t )}Im{ξr′ (t ′)}〉 = 0 (A3)

for the noise term of the superconducting field, where V0 =
d2

abdc is the discretization volume of a single superconducting

TABLE I. Model parameters used in the simulations.

Monolayer Bilayer

K (meV−1) 2.9 × 10−5 2.9 × 10−5

μ (meV) 1.0 × 10−2 1.0 × 10−2

g (meV Å3) 5.0 5.0
γ /2π (THz) 0.5 0.5
tab (meV) 6.2 × 10−1 6.2 × 10−1

ts (meV) 4.2 × 10−2 2.5 × 10−2

tw (meV) 4.2 × 10−2 1.0 × 10−3

dab (Å) 15 15
ds (Å) 6 4
dw (Å) 6 8
εs 1 1
εw 1 4

site. The noise correlations for the electric field are

〈ηx,r(t )ηx,r′ (t ′)〉 = 2γ kBT

ε0V0
δrr′δ(t − t ′), (A4)

〈ηy,r(t )ηy,r′ (t ′)〉 = 2γ kBT

ε0V0
δrr′δ(t − t ′), (A5)

〈ηz,r(t )ηz,r′ (t ′)〉 = dc

dnεn

2γ kBT

ε0V0
δrr′δ(t − t ′). (A6)

APPENDIX B: CHARACTERIZATION OF THE RESPONSE

We characterize the response of the system to the periodic
driving by studying the dynamics of the sample averages of
the condensate amplitude and the supercurrent along the c
axis. The supercurrent along a single junction in the c direc-
tion is given by the Josephson relation

Jz
l,m,n = 4etndc

h̄
Im{ψ∗

l,m,n+1ψl,m,neiaz
l,m,n}. (B1)

The sample average of the supercurrent density along the c
axis can be obtained from

J (t ) = dsJs(t ) + dwJw(t )

ds + dw

, (B2)

where Js,w(t ) denotes the spatial average of Josephson cur-
rents along either strong or weak junctions. In the case of
nonzero temperatures, we average the power spectra P|ψ |(ω)
and PJ (ω) over an ensemble of trajectories. We find that 100
trajectories are enough to obtain convergent results for sam-
pling thermal fluctuations at nonzero temperatures.

APPENDIX C: MODEL PARAMETERS

Table I summarizes the parameters of our numerical calculations for mono- and bilayer systems, respectively. In both cases,
our parameter choice of μ and g implies an equilibrium condensate density n0 = μ/g = 2 × 1021 cm−3 at T = 0. The bilayer
system has two longitudinal c-axis plasma modes. Their eigenfrequencies are

ω2
J1,J2 =

(
1

2
+ αs

)
�2

s +
(

1

2
+ αw

)
�2

w ∓
√[(

1

2
+ αs

)
�2

s −
(

1

2
+ αw

)
�2

w

]2

+ 4αsαw�2
s �

2
w, (C1)
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as follows from a sine-Gordon analysis at T = 0 [32,33]. Here, we introduced the bare plasma frequencies of the strong and
weak junctions

�s,w =
√

8ts,wn0e2dcds,w

h̄2εs,wε0
, (C2)

where dc = (ds + dw )/2. The capacitive coupling constants are given by

αs,w = εs,wε0

8Kn0e2dcds,w
. (C3)

Besides, there is a transverse c-axis plasma mode with the eigenfrequency

ω2
T = 1 + 2αs + 2αw

αs + αw

(
αs�

2
s + αw�2

w

)
. (C4)

We have αs = 0.5, αw = 1, ωJ1/2π ≈ 2.0 THz, ωJ2/2π ≈ 14.3 THz, and ωT/2π ≈ 11.8 THz for the parameters specified in
Table I. The in-plane plasma frequency amounts to 154 THz.
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