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Atomic-waveguide quantum electrodynamics
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Atom arrays are a new type of quantum light-matter interface. Here we propose to employ one-dimensional
ordered arrays as atomic waveguides. These arrays support optical guided modes that do not decay into free
space. We show that these modes can be harnessed to mediate tunable, long-range interactions between additional
“impurity qubits” coupled to the chain, without need for photonic structures. The efficient coupling between
qubits and atomic waveguides enables the realization of tunable qubit-qubit interactions, which can be short
or long range, dissipative or coherent, as well as chiral. Moreover, owing to the two-level nature of atoms,
these waveguides are intrinsically quantum. In contrast to classical waveguides, where photons do not interact
with each other, atomic waveguides display strong nonlinearities, which create a tunable dissipative channel for
qubit-qubit interactions, and opens the door to the exploration of many-body physics between guided photons.
This physics is universal as it only relies on photon interference and can also be observed with other types of
quantum emitters, such as those in molecular or solid-state systems.
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I. INTRODUCTION

The realization of efficient interactions between photons
and atoms is a central challenge in quantum optics. Besides
enabling the exploration of exotic many-body physics [1],
they are also a critical resource to develop practical implemen-
tations of quantum information protocols [2,3]. Deterministic
light-matter interactions also form the underpinnings of quan-
tum nonlinear optics at the single photon level [4,5], as well
as of metrology and sensing applications [6,7].

To control and enhance the interactions between light and
atoms, it is generally believed they must be interfaced with
nanophotonic structures. This has propelled the development
of the field of cavity quantum electrodynamics (QED) and,
more recently, of waveguide QED, where atoms are coupled
to one-dimensional (1D) photonic reservoirs, such as fibers
[8–11] and photonic crystal waveguides [12–15]. Waveguide
QED offers efficient light-matter coupling as photons are con-
fined in small volumes and can be almost deterministically
exchanged between distant atoms.

Coupling atoms to 1D dielectric structures enables the
exploration of fundamentally different paradigms within
quantum optics [16], without a free-space analog. For in-
stance, engineering of the dispersion relation of the optical
modes allows for the generation of band gaps, frequency
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regions where photons cannot propagate and become bound.
This gives rise to “slow light” and localized photonic states
[17–19], and enables the realization of almost arbitrary inter-
actions between atoms [16,20,21]. The intrinsic helicity of the
near field leads to directional decay, in the form of chiral light-
matter interactions [22,23]. Waveguide QED offers tantalizing
possibilities for quantum information storage and processing,
such as the realization of quantum memories [24,25] and gates
[26,27], as well as for the preparation of entangled states be-
tween distant atoms assisted by collective dissipation [28–30].
However, deterministic interfacing of quantum emitters with
nanophotonics in a scalable manner has proven to be techni-
cally difficult.

Here we suggest an alternative approach: to employ atomic
arrays as 1D waveguides to mediate interactions between
distant “impurity qubits.” In ordered arrays, interference in
photon emission leads to the emergence of subradiant states,
which cannot decay into free space [25,31–35]. These states
can be understood as guided modes of the atomic chain
[25,31,34], and can be used to mediate both coherent and
dissipative interactions between qubits that are coupled to
the atomic waveguide. The qubit-waveguide interaction can
be chiral, and qubit-qubit interactions can be strongly time
delayed even over short physical distances. The coupling
between these qubits and the waveguide can be remarkably
efficient. Atomic waveguides are an intrinsically quantum
reservoir, as a single atom cannot be excited twice. This
tunable nonlinearity sets a fundamental difference between
qubit interactions mediated by an atomic waveguide and
those in traditional nanophotonic structures. We demonstrate
that qubit-qubit interaction can be primarily unperturbed or
strongly damped by the presence of multiple excitations in
the chain. Our results provide a comprehensive picture of a
new paradigm for light-matter interactions: atomic-waveguide
QED.
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FIG. 1. A 1D atomic array behaves as a quantum waveguide.
(a) Schematic of the setup under consideration: an “impurity qubit”
(red) of resonance frequency ωq is located in the vicinity of a 1D
chain of atoms of resonance frequency ω0 and spontaneous emission
rate �0 (blue), at a distance ρq from the axis of the array. If the
distance d between the array atoms is smaller than λ0/2, the chain
behaves as a waveguide and supports guided modes that do not decay
into free space. The qubit emission rates into the atomic-waveguide
mode and into free space are �

q
1D and �′q, respectively. (b) Dispersion

relation for the single-excitation mode of an infinite, 1D chain of
atoms polarized parallel to the chain axis with spacing d = 0.1λ0. In
the region enclosed within the light line (shaded), the chain does not
guide light and the mode decays into free space. Beyond the light
line (kz > k0 = ω0/c), the mode is guided.

II. GUIDED PHOTONS IN ATOMIC CHAINS

Ordered arrays of atoms support guided photons (in the
form of polaritonic spin waves) that do not scatter light into
free space [25,31,34,36]. In this section we review the physics
of guided modes in chains and describe their dispersion re-
lation, setting up the stage for the main idea of the paper:
to harness these states to mediate interactions between cou-
pled impurity qubits. We employ a “spin model” to describe
dipolar interactions between atoms [25,32–48]. We consider
an array of N two-level atoms of resonance frequency ω0

separated by a distance d , as shown in Fig. 1(a). We describe
the atoms’ dynamics employing a stochastic wave function
approach [49,50], where the atomic state evolves under the
non-Hermitian Hamiltonian

H = h̄ω0

N∑
i=1

σ̂ i
ee + h̄

N∑
i, j=1

(
Ji j − i

�i j

2

)
σ̂ i

egσ̂
j

ge, (1)

interrupted by the action of stochastic quantum jumps that
lower the number of excitations and occur at random times.
Jump operators are found as the eigenstates of the dissipative

interaction matrix � with elements �i j [37,38,48,51]. The co-
herent and dissipative dipolar interaction rates between atoms
i and j read [25,32–48,52,53]

Ji j = −μ0ω
2
0

h̄
℘∗ · Re G0(ri, r j, ω0) ·℘ , (2a)

�i j = 2μ0 ω2
0

h̄
℘∗ · Im G0(ri, r j, ω0) ·℘ , (2b)

where ℘ is the dipole matrix element associated with the
atomic transition. The Green’s tensor G0(ri, r j, ω0) is the
propagator of the electromagnetic field between atoms i and j
in vacuum. It admits the closed expression

G0(ri, r j, ω0) = 1

4π

[
1 + 1

k2
0

∇ ⊗ ∇
]

eik0|ri−r j |

|ri − r j | , (3)

where k0 = ω0/c. For a single atom, the spontaneous
emission rate is �0 = (2μ0 ω2

0/h̄)℘∗ · Im G0(ri, ri, ω0) ·℘ =
ω3

0|℘|2/3πε0h̄c3, and the local frequency shift simply renor-
malizes the resonance frequency ω0. The Hamiltonian of
Eq. (1) only contains spin degrees of freedom (i.e., the atomic
coherence operators σ̂ i

ge = |gi〉 〈ei| between the ground and
excited states, and the population operator σ̂ i

ee = |ei〉 〈ei|). In
the presence of a driving field of frequency ω, the equations
are identical, but with the prescription ω0 → ω.

The non-Hermitian Hamiltonian of Eq. (1) is that of an
open, long-range XY model, and is derived within the Born-
Markov approximation [54,55]. This approximation allows
for integrating out the electromagnetic degrees of freedom
and requires two conditions. First, the spectral response of
the reservoir is flat compared to that of the atoms (such that
the Green’s function is evaluated at the atomic resonance
frequency). Second, retardation can be ignored (such that the
Hamiltonian is local in time). This approximation is valid
in vacuum unless the separation between atoms is extremely
large (of the order of a meter for typical optical transitions
[56–58]).

In the single-excitation regime, guided modes emerge for
interatomic distances d < λ0/2, with λ0 = 2πc/ω0 [25,34].
To demonstrate their waveguiding behavior, we analyze
the physics of an infinite chain that extends along the
z direction. The eigenstates of the Hamiltonian are spin
waves with well defined wave-vector kz ∈ [−π/d, π/d], and
are generated by the action of the collective spin oper-
ator Ŝ†

kz
= (1/

√
N )

∑
j eikzz j σ̂

j
eg on the ground state |g〉⊗N

[25,31,33,34,44]. These Bloch modes satisfy H Ŝ†
kz

|g〉⊗N =
h̄ωkz Ŝ†

kz
|g〉⊗N , where [25]

ωkz = ω0 − 3π�0

k0
℘̂∗ · G̃0(kz ) · ℘̂ (4)

is a complex frequency whose imaginary part describes the
decay rate of the spin wave, and whose real part accounts
for a frequency shift with respect to the bare atomic reso-
nance. In the above equation, G̃0(kz ) = ∑

j e−ikzz j G0(r j ) is
the discrete Fourier transform of the free-space Green’s ten-
sor. Figure 1(b) shows the dispersion relation (i.e., the real
part of ωkz vs kz) of a chain with lattice constant d = 0.1λ0,
for atoms polarized along z, the direction of the array [59].
For |kz| > k0, the spin waves have a zero decay rate and
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are guided modes of the array [25,31,34]. For |kz| � k0, the
spin waves have a finite lifetime and decay due to photon
emission. Guided modes also exist in a finite chain. Due
to the presence of boundaries, their decay rate is nonzero
and scales as ∼1/N3 [25]. The emergence of guided modes
in the single-excitation manifold is not a uniquely quantum
property. Waveguiding behavior is also displayed by arrays
of classical dipoles, such as subwavelength grating waveg-
uides [60] and chains of dielectric [61] and metallic [62]
nanoparticles.

III. COUPLING OF IMPURITY QUBITS
TO THE ATOMIC WAVEGUIDE

The decay rate of an “impurity qubit” in the vicinity of
the array is altered by the presence of the waveguide [see
Fig. 1(a)]. The qubit can decay into free space (whose modes
are modified by the presence of the waveguide) and into
guided modes of the array, exciting spin waves that propa-
gate away from the qubit without scattering. We calculate the
decay rates into free space and the guided mode by com-
puting the Green’s tensor of the surrounding environment,
i.e., the vacuum and the waveguide. Exploiting the cylindrical
symmetry of the infinite chain, we find an expression of the
Green’s tensor in terms of an integral over reciprocal space
(see Appendix A). For a drive frequency ω, the Green’s tensor
reads

G(r, r′, ω) = G0(r, r′, ω)

+ 3�0

32kd

∫ π/d

−π/d
dkz

ukz (r) ⊗ vkz (r
′)

ω − ωkz

, (5)

where k = ω/c and the field eigenmodes are given by

ukz (r) =
∑

g

[
1 + 1

k2
∇ ⊗ ∇

]
· ℘̂ ei(kz+g)zH (1)

0 (k⊥ρ), (6a)

vkz (r
′) =

∑
g

℘̂∗ ·
[
1 + 1

k2
∇ ⊗ ∇

]
e−i(kz+g)z′

H (1)
0 (k⊥ρ ′). (6b)

In the above expressions, ℘̂ = ℘/|℘|, H (1)
0 is a Hankel func-

tion of the first kind, ρ is the radial distance to the chain axis,
and k⊥ =

√
k2 − (kz + g)2 is the transversal wave vector. The

sum is performed over reciprocal-lattice vectors g = 2πn/d ,
with n ∈ Z, and accounts for Umklapp processes (i.e., scat-
tering terms where the momentum transfer results in a wave
vector that falls outside the first Brillouin zone).

The efficiency of the coupling to the waveguide is given
by the ratio between the guided (�q

1D) and the free-space (�′q)
decay rates. The analytical expression for the Green’s function
provides an elegant way to compute these rates separately.
For atoms in free space, the decay rate is given by Eq. (2b).
Similarly, we postulate that the decay rate of the qubits is
proportional to the imaginary part of the generalized Green’s
tensor of Eq. (5). We thus trace out the waveguide atoms, and
treat the chain as a bath for the qubits [as the photons were
integrated out to derive Eq. (1)]. This procedure is only exact
within the single-excitation subspace (the atoms are spins,
not bosons) and under the Born-Markov approximation. This
implies that retardation can be ignored (i.e., that the group
velocity of the guided mode is not too small) and that the
decay rate of the qubit is much smaller than the bandwidth
of the waveguide. We discuss how these conditions can be
achieved in Sec. VIII.

The qubit decay rate into free space is given by radiative
wave vectors (i.e., |kz| < k). It reads

�′q/�q
0 = 1 + 9π�0

16k2d
Im

∫ k

−k
dkz

℘̂∗
q · ukz (rq ) ⊗ vkz (rq ) · ℘̂q

ω − ωkz

,

(7)

where �
q
0 ,℘q, and rq are the qubit’s vacuum spontaneous emis-

sion rate, dipole matrix element, and position, respectively.
The decay into the guided mode arises from the pole of the

Green’s function, and is readily found to be (see Appendix A)

�
q
1D

/
�

q
0 = 9π2�0

8k2dvg
|℘̂∗

q · uk1D (rq )|2, (8)

where |k1D| > k is the guided mode wave vector (i.e., the
wave-vector kz for which ωkz ≡ ω), and vg = ∂ωkz/∂kz|kz=k1D
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FIG. 2. Coupling strength between the impurity qubit and the waveguide. The efficiency is represented by the ratio of the guided (�q
1D)

vs nonguided (�′q) qubit decay rates as a function of the qubit position. (a) Bloch modulation along one unit cell of the chain (zq = 0 is in
line with one waveguide atom), for different radial distances ρq, with d = 0.1λ0. (b) and (c) Scaling with the radial offset from the chain
axis, for a qubit located (b) on top of a waveguide atom at zq = 0, and (c) in between two waveguide atoms, at zq = d/2. For all plots,
the detuning between qubit and waveguide atoms is chosen such that the guided wave vector is k1D = 0.7π/d (as shown by the red line
in Fig. 1).
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is the group velocity. The decay rate into the guided mode
increases for low group velocities, as the mode has more time
to interact with the qubit. Close to the band edge, the group
velocity is low, and the decay into the waveguide becomes
large (the waveguide behaves more like a photonic crystal than
a fiber in this region). Note that k � k0 as ω � ω0, ωq except
for deviations of the order of �0 � ω0, ωq.

The qubit interacts efficiently with the atomic-waveguide
mode, as shown in Fig. 2. The ratio between guided and
free-space decay rates, so-called optical depth �

q
1D/�′q, can

be larger than 1. The optical depth is a relevant quantity for
quantum information processing, as it sets the fidelity for
multiple protocols, such as photon storage and retrieval [24],
and quantum gates. The optical depth displays a modulation
along z related to the Bloch periodicity, with a contrast that de-
creases with the distance to the array. We find simple scaling
laws for the optical depth when the qubit is placed exactly on
top of a waveguide atom [i.e., at zq = 0, see Fig 2(b)], with
�

q
1D/�′q ∼ 1/d3−4 for constant ρq/d , and �

q
1D/�′q ∼ 1/ρ6

q

for fixed d and ρq � 0.4d , below which the coupling rates
plateau. Remarkably, a waveguide that is one-atom thick pro-
vides an optical depth ∼30 times larger than that of a fiber (see
Appendix B). We corroborate the analytic calculations with
numerical simulations by evolving a finite chain and coupled
qubit under the non-Hermitian Hamiltonian of Eq. (1). The
numerical and analytical results fully agree with each other
for qubits in the central part of the chain, where finite size
effects are negligible.

Surprisingly, we find a magic point where the emission into
free space is strongly suppressed. At ρq � 0.4d and zq = d/2,
the optical depth is extremely large while the total linewidth of
the qubit remains small, as shown in Fig. 2(c). The existence
of the magic point is solely due to interference. We study
changes in the location of the magic point in Appendix B.

IV. TUNABLE-RANGE INTERACTIONS BETWEEN
IMPURITY QUBITS

Atomic waveguides can be harnessed to mediate qubit-
qubit interactions, without the need of photonic structures.
The character of these interactions (coherent or dissipative)
is modified by tuning the qubit resonance frequency ωq. If
ωq lies within the band, the interactions are dissipative. If,
instead, ωq lies outside the band, the interactions are coherent.
This makes atomic waveguides appealing for quantum simu-
lation, where precise control of the form of interactions is of
fundamental importance.

A. Infinite-range interactions: Waveguide QED

Dissipative qubit-qubit interactions lead to collective decay
and superradiance. We analyze photon transport through an
atomic waveguide with either one or five periodically spaced
qubits coupled to it, as shown in Fig. 3(a). To calculate trans-
mittance and reflectance spectra, we launch a spin wave of the
form

|ψ (t = 0)〉 =
N∑

i=1

e−ik1D z̄i e−z̄2
i /ζ

2
σ̂ i

eg |g〉⊗N , (9)
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FIG. 3. Dissipative (a) and coherent (b) long-range interac-
tions between impurity qubits mediated by the atomic waveguide.
(a) Transmission (blue) and reflection spectra (orange) of a guided
mode that interacts with either a single qubit or with five qubits
evenly spaced 20 lattice sites apart. In both cases, the qubits’ vacuum
spontaneous emission rate is �

q
0 = 0.02�0, sit at ρq = d , and are

detuned from the waveguide atoms such that light with wave-vector
k1D = 0.7π/d is near resonant with the qubits. The chain consists
of N = 4000 atoms, and the lattice constant is d = 0.1λ0. (b) Evo-
lution of the excited-state population of qubit 1 (red) and 2 (green)
after fully inverting qubit 1 at the initial time. The Rabi oscillations
reveal strong coupling mediated by photonic bound states. The res-
onance frequency of the qubits lies 4.5�0 from the band edge of
the atomic waveguide, with the qubits (of spontaneous emission rate
�

q
0 = 0.001�0) placed in between two array atoms at ρq = 0.4d and

separated by a distance 8d , for a chain of N = 199 atoms of lattice
constant d = 0.05λ0.

where ζ = 300d is the spatial spread, z̄i are the atomic po-
sitions relative to the center of the spin wave, and k1D is
chosen to determine the relative detuning between qubit and
spin wave, i.e., such that � = ωk1D − ωq. We discuss how to
prepare such a state in Sec. VIII. The evolution is performed
under the Hamiltonian in Eq. (1), conditioning the results on
no jumps.
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FIG. 4. Non-Markovian effects in atomic-waveguide QED: time-delayed interactions and bound states in the continuum. (a) and (b) Time-
delayed qubit-qubit interactions. Evolution of the populations of (a) five qubits evenly spaced 20 lattice sites apart as in Fig. 3(a) and (b) two
qubits spaced 800 sites apart, coupled to an array of 4000 atoms. In both plots, the qubits’ vacuum spontaneous emission rate is �

q
0 = 0.02�0,

they sit at ρq = d , and are detuned from the waveguide atoms such that light with wave-vector (a) k1D = 0.7π/d , or (b) k1D = 0.95π/d is near
resonant with the qubits, and the initial state of the array is a spin wave with frequency shift detuned 14.5�

q
0 below the coupled qubits. In all

cases, d = 0.1λ0. (c) Bound states in the continuum: evolution of the excited-state populations of qubit and array atoms after fully inverting
the qubit at the initial time. The qubit has resonance frequency ωq = ω0 + 8.5�0, linewidth �

q
0 = �0, and position ρq = 0.5d .

Given the large optical depth, the impurity qubit behaves
as a mirror, reflecting most of the spin wave, as shown in
Fig. 3(a). Impurity qubits with a more complex hyperfine
structure can thus be used to realize single-photon transis-
tors and switches, as proposed for a single atom coupled to
a metallic 1D reservoir [63]. The qubit is positioned 1000
sites from the initial spin wave. We calculate the transmission
(reflection) from the population of the array atoms located past
(before) the qubit, while the lost norm provides the scattering
into free space. The spectra display the traditional Lorentzian
line shape with a width that scales as �

q
1D + �′q [42,56].

If there are multiple impurity qubits coupled to the chain,
they are bound to interact with the photons (or spin ex-
citations) emitted by all of their neighbors, due to the
one-dimensional nature of the waveguide. Impurity qubits
whose frequency lies inside the band emit polaritons that
propagate without scattering and mediate infinite-range in-
teractions between qubits. We perform a calculation for five
qubits separated by a distance such that k1Ddq = 14π . In
conventional waveguide QED, this corresponds to the mir-
ror configuration, where the qubits behave collectively as a
single qubit with a larger dipole moment and superradiantly
decay at a rate 5�

q
1D + �′q [42,56]. Our transmission spectra,

shown in Fig. 3(a), deviates slightly from a Lorentzian profile
due to non-Markovian effects associated with retardation (see
Sec. IV C). The group velocity of the spin chain is remarkably
slow compared to the speed of light in free space, scaling as
vg ∼ (�0/k0) f (k0d ) where f (k0d ) decreases with d . Atomic
waveguides are thus versatile platforms that can be tuned to
mediate both Markovian and time-delayed interactions be-
tween distant qubits.

B. Finite-range interactions: Band gap physics

Coherent qubit-qubit interactions mediate spin exchange,
and can be harnessed to realize generic Hamiltonian mod-
els for impurity qubits [21]. Interactions are coherent if the

qubits’ frequency sits beyond the band edge [17,18,21,64]. In
the band gap, spin waves cannot propagate and form bound
states that are spatially localized around the qubit position.
Mathematically, it is easy to see that a resonant excitation
cannot propagate through the array as there is no pole in
the integral of Eq. (5). Bound states mediate purely coherent,
finite-range interactions between qubits, as shown in Fig. 3(b).
Since the spin-exchange rate is small, we place the qubits at
magic points, where the free space decay rate is strongly sup-
pressed. This allows us to observe several oscillations before
the dynamics is damped. Without the waveguide, given the
qubits’ separation, they would simply decay.

C. Time delay in qubit-qubit interactions

Slow group velocity leads to non-Markovian behavior. In
particular, retardation in the propagation of the atomic spin
wave prevents the waveguide from behaving as a Markovian
bath for multiple impurity qubits. Figure 4(a) shows the ef-
fect of retardation in the evolution of the populations of five
evenly spaced qubits coupled to the array. As described in
Sec. IV A, we launch a spin wave and evolve the system under
the non-Hermitian Hamiltonian of Eq. (1). The spin wave
is detuned by 14.5�

q
0 from the resonance frequency of the

qubits, corresponding to a point on the shoulder of Fig. 3(a).
Each of the five qubits is excited at slightly different times.
The delay in the excitation is small, but significant enough to
break the Markovianity of the waveguide [65–68].

Tunable time-delayed interactions can be realized exploit-
ing this phenomenon. The delay can be controlled by altering
the distance between qubits or the group velocity, which is
slowest for large k1D and d . Figure 4(b) shows the evolution of
the populations of two impurity qubits spaced 800 sites apart.
There is a long delay between each qubit being excited, such
that the first qubit is almost completely de-excited before the
second atom interacts with the pulse. The small oscillations in
the population are due to the slight excitation of bound states
in the continuum, as explained in the following section.
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FIG. 5. Chiral emission from an impurity qubit. (a) Atomic population in a chain of 2000 atoms at �0t = 80 following the inversion of
a coupled impurity qubit positioned at { ρq, ϕq, zq } = { 0.4d, 0, 0.5d }. (b) and (c) Chirality as a function of qubit longitudinal and azimuthal
position. Chirality is calculated as 〈P̂left − P̂right〉 / 〈P̂left + P̂right〉, where P̂left (right) is the sum of excited state populations on waveguide atoms to
the left (right) of the qubit. Populations are calculated at �0t = 2 following the inversion of the qubit coupled to a chain of 500 atoms. In (c),
zq = 0.5d . In all cases, the qubit has linewidth �

q
0 = 0.002�0 and detuning such that light with wave-vector k1D = 0.7π/d is near resonant

with the qubit. The qubit has three excited levels and is inverted on the transition with dipole matrix element ℘q = −1(x̂ − iẑ)/
√

2.

V. BOUND STATES IN THE CONTINUUM

The strong coupling of impurity qubits to a finite-
bandwidth photonic reservoir gives rise to “bound states in
the continuum” [69–71], a type of dressed atom-photon bound
state. This effect can also appear in atomic-waveguide QED,
in the region where slow-light effects are relevant (i.e., near
the band edge). If the coupling between the qubit and guided
modes is very large, the population scattered into the array is
reabsorbed by the qubit on a timescale faster than that required
to transport the excitation away. This results in oscillations
between the qubit and a bound state of the array, as shown
in Fig. 4(c). This bound state is different to that appearing
when the qubit frequency is in the band gap (discussed in the
previous section), where the spin excitation is bound because
it cannot be guided. Here the bound state appears due to split-
ting of the hybridized energy of the qubit and photon. Due to
the large interactions, the splitting takes the hybridized energy
outside the guided band [69]. Bound states in continuum lead
to fractional decay, as the qubit scatters into free space, while
the array does not.

VI. CHIRAL QUANTUM OPTICS

An impurity qubit with the appropriate hyperfine structure
will decay into the waveguide in a directional manner, even
though the chain does not break reciprocity or mirror sym-
metry. This occurs because the near field of the waveguide
is chiral, i.e., has both longitudinal and radial components.
Chiral quantum optics has been recently explored for impu-
rities coupled to dielectric nanofibers and photonic crystals
[22,23,72–74], and allows for the realization of “cascaded”
open systems [75–77], which results in entangled steady states
of the impurities, among other applications. To demonstrate
chiral emission into the atomic waveguide, we employ a qubit
with three excited states, which are coupled to the ground state
via optical transitions with { σ−, π, σ+ } polarizations. The
quantization axis of the qubit is set to be along the y axis such
that the circularly polarized transitions have dipole moments
±(x̂ − iẑ)/

√
2. These break the symmetry of coupling into left

and right propagating modes, as can be seen from the detailed
expressions for the field modes ukz in Appendix A. This is
demonstrated in Fig. 5(a), where a qubit couples predomi-
nantly into left propagating modes.

Chiral decay is sensitive to the relative position of the
qubit with respect to the chain. We calculate a figure of
merit that quantifies the level of chirality as 〈P̂left − P̂right〉/
〈P̂left + P̂right〉, where P̂left (right) is the sum of excited state
populations of waveguide atoms to the left (right) of the qubit.
Chirality of +1 (−1) means perfectly chiral decay into left
(right) propagating modes. For a qubit close to the waveguide,
the chirality is strongly dependent on the relative position of
the qubit within a unit cell of the atomic waveguide [Figs. 5(b)
and 5(c)]. In particular, qubits in between two waveguide
atoms preferentially emit into left (right) propagating modes
when positioned at azimuthal angles ϕq ∈ (−π/2, π/2) [ϕq ∈
(π/2,−π/2)]. For ϕq = ±π/2, there is no chirality. For large
radial distances ρq between the qubit and the waveguide, the
sign of chirality flips and the contrast within the unit cell
is reduced (as the qubit does not resolve individual atoms).
While chirality is stronger at large ρq, the decay into free
space dominates over that to guided modes, thus preventing
efficient chiral transport.

VII. QUANTUM NONLINEARITY AND PHOTON
COLLISIONS

Interactions between impurity qubits in the presence of
multiple photons are impacted by the two-level nature of
the atomic-waveguide atoms. As a consequence of this non-
linearity, the physics of two-photon transport in an atomic
waveguide is qualitatively different from that observed in
a classical waveguide. In particular, (Ŝ†

kz
)2 |g〉⊗N is not an

eigenstate of the Hamiltonian. Instead, the true eigenstates
behave as fermions (or hardcore bosons), obeying a Pauli ex-
clusion principle in space [25,78,79]. Multiple photons must
interact with each other, such that the linear regime of waveg-
uide QED described above is no longer strictly accurate.
In this section we consider the effect of quantum nonlin-
earities on waveguide-mediated interactions between qubits.
We first analyze interaction-assisted dissipation due to “colli-
sions” between counterpropagating photons. We then discuss
the impact of these collisions on time-delayed qubit-qubit
interactions.

The spatial overlap of two photons (spin waves) produces
scattering into free space. A photon-photon collision occurs if
two spin waves propagate in opposite directions, as shown in
Fig. 6(a). Dissipation during the collision is due to the spatial
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FIG. 6. Two-photon collision in an atomic waveguide. (a) At
t = ti, two counterpropagating spin waves are initialized. They col-
lide, leading to population loss (the maximum overlap occurs at
t = tc). After the collision has occurred they propagate without loss
until they hit the ends of the chain. Before this occurs, they first
return to their original positions, at t = t f ≡ 2tc. (b) Population in
the two-excitation manifold as a function of time, for chains of
lattice constants d = 0.1λ0 (green) and d = 0.3λ0 (orange), for ini-
tial wave-vector k1D = ±0.7π/d . Inset: Scaling of lost population
in the two-excitation manifold, γ ≡ 1 − 〈σ̂ (2)

ee (t f )〉 / 〈σ̂ (2)
ee (0)〉, with

interatomic distance for k1D = ±0.7π/d (blue) and k1D = ±0.9π/d
(red). The continuous lines are guides to the eye and scale as γ ∼
d∼2.8(2.6) for k1D = ±0.7(0.9)π/d . For both plots N = 200.

distortion of the guided modes. To observe such interaction,
we initialize a two-excitation state

∣∣ψ (2)(ti )
〉 =

N∑
i, j=1

eik1D(z̄i−z̄ j )e−(z̄2
i +z̄2

j )/ζ 2
σ̂ i

egσ̂
j

eg|g〉⊗N , (10)

where ζ = 15d and z̄i, j are the atom positions relative to
centers 60 sites apart. We evolve the wave function under
the Hamiltonian in Eq. (1) conditioned on zero jumps. In
Fig. 6(b) we show the decrease of population [〈σ̂ (2)

ee (t )〉 =
〈ψ (2)(t )| ∑i σ̂

i
ee|ψ (2)(t )〉] as a function of time. The popula-

tion loss ranges from less than 1% (for d = 0.1λ0) to almost
60% (for d = 0.3λ0) for |k1D| = 0.7π/d; the inset in Fig. 6(b)
shows that the loss grows with the distance as a power law.
This power law is dependent on k1D and d , and is discussed
in further detail in Appendix C. The collision generates pop-
ulation in radiative modes (those with |kz| < k0), leading to
the field leaking out of the waveguide. The degree of inter-
action between two excitations is controlled by tuning a few
experimentally accessible parameters (frequency and lattice
constant). The decay probability is a function of the overlap
between the distorted state and radiative modes, and their
scattering rate. Smaller lattice constants lead to larger group
velocities and smaller light cones. For large lattice constants,
jumps lead to the emission of one or (most probably) two
photons.

For small distances, the probability of photon emission
is negligible and the effect of the collision reduces to the
acquisition of a global phase dependent on k1D and d . This
phase accumulation may be harnessed to realize conditioned
phase gates between polaritons [80–83], which can be used for
quantum computation [84,85], and will be explored in future
work.

Qubit-qubit interactions are modified by the nonlinear na-
ture of the waveguide. To illustrate this, we focus on their
impact on time-delayed interactions, explored in Sec. IV C.
We consider two qubits coupled to slow propagating guided
modes. If one qubit is initialized in its excited state, then
it decays into the waveguide, and, after some delay as the
excitation propagates through the array, the emitted pulse
excites the other qubit. However, when both qubits are ini-
tially inverted, the two emitted pulses must collide as they
propagate along the waveguide, leading to dissipation and
phase accumulation. As described above, the geometry of the
array and the wave vector of the propagating photons strongly
affect the amount of dissipation during the photon collision.
This can have a dramatic impact on time-delayed qubit-qubit
interactions, as shown in Fig. 7. For photon-photon interac-
tions that are primarily coherent, i.e., for qubit frequencies
that are resonant with the guided mode far beyond the light
line, the population of the impurity qubits is not significantly
altered by the collision, as photons remain guided [Fig. 7(a)].
However, for qubits whose resonance frequencies correspond
to guided modes close to the light line, photon-photon in-
teractions are strongly dissipative, as shown in Fig. 7(b).
In this situation, photon loss is unavoidable and excited-
state population is not preserved, as the photons are likely
to scatter out of the waveguide before reaching the second
qubit.

VIII. PHYSICAL IMPLEMENTATIONS

Atomic arrays are not just a toy model, but an experimental
reality [86–91]. The implementation of an atomic waveguide
involves two main challenges: to trap atoms at short distances
and to efficiently excite guided modes. Coupling qubits to
the waveguide comes with an additional set of difficulties.
We discuss strategies for overcoming these challenges below.
For most of the discussion, the experimental setup we have
in mind consists of neutral atoms trapped in optical lattices
[86–88,92–94] or optical tweezers [89–91,95–100], which
have recently been suggested as quantum metasurfaces [101].
While lattices create gridlike arrays, tweezers allow for almost
arbitrary positioning of the impurity qubits, as nonregular ar-
rays can be created via spatial light modulators or holographic
metasurfaces.

First, we require small interatomic separations (d < λ0/2).
The diffraction limit can be overcome using two different
atomic transitions: one to trap and one to drive the opti-
cal excitation. As an example, strontium can be trapped at
a magic wavelength with d = λ0/16.3 [43,102], driven on
the λ0 = 2.6 μm 3P0 → 3D1 transition. The bosonic species
lacks hyperfine structure, which prevents additional difficul-
ties [36,103]. Another possibility would be to use ytterbium’s
telecom transition [104]. Quantum and classical disorder may
affect the guiding properties of the waveguide. While guided
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FIG. 7. Role of photon collisions on multiexcitation qubit-qubit
interactions. (a) and (b) Evolution of the excited-state populations of
two qubits coupled to a 1D array of N = 120 atoms with interatomic
spacing d = 0.1λ0. Comparison is given between qubit-qubit inter-
actions when (dashed) one qubit is initially excited and (solid) both
qubits are initially excited. When both qubits are initially excited,
they have the same temporal evolution due to the symmetry of the
system. Qubits are positioned in line with the end atoms and have
radial displacement ρq = 0.4d and resonance frequency commen-
surate with the guided mode frequency for (a) k1D = 0.7π/d and
(b) k1D = 0.25π/d , respectively. In (a), the qubits have linewidth
�

q
0 = 0.002�0. In (b), the qubits have linewidth �

q
0 = 0.01�0. All

plotted curves are the ensemble average of 100 quantum trajectories.

modes have been shown to be robust against spatial disorder
[34,36], disorder may lead to localization for low group ve-
locities. The finite spread of the atomic wave function adds
an independent decay channel for each atom (�′

trap ∼ �0η
2,

where η is the Lamb-Dicke parameter [105]), but can be
reduced using tight traps.

Second, we need to excite guided modes efficiently. The
frequency of the external field selects the wave vector of
the spin wave that propagates in the array, and the temporal
duration of the laser pulse sets its spatial width. Coupling is
possible by focusing the external light into the array edge,
either with a lens with high numerical aperture or with a
spatial light modulator. One can also employ coupled qubits to
inject spin waves into the waveguide. The coupling loss can be
alleviated by using a near-field probe, such as a fiber tip close

to the array. Finally, a phase could be imprinted, via magnetic
or optical fields [106,107], into easily accessible superradiant
states.

We require the frequency of the qubits to be distinct from
that of the waveguide atoms. The qubit frequency can be
tuned with AC Stark shifts through optical tweezer beams. To
realize Markovian interactions, the waveguide bandwidth has
to be broad compared to the qubit linewidth. One option is
to rely on compact chains, as the bandwidth increases as d is
reduced. Another is to use different atomic isotopes (e.g., 87Sr
and 88Sr), as they have similar transition frequencies [108] but
different linewidths due to hyperfine structure. For distances
d = λ0/16.3, the ratio between waveguide bandwidth and
qubit linewidth is ∼400. Cold molecules are also interesting
candidates, as they have dense frequency spectra and have
been recently trapped in tweezer arrays [109].

This physics can also be observed in arrays of solid state
qubits, such as color centers [110], rare-earth ions [111,112],
and localized excitonic quantum dots or strain-generated
defects in 2D materials [113,114]. While deterministic place-
ment of solid state emitters is becoming a reality, these
emitters have their own set of issues, mostly related to inho-
mogeneous broadening and nonradiative decay.

IX. OUTLOOK

We have demonstrated that atomic waveguides are versatile
quantum light-matter interfaces. They support single-photon
states that do not leak into free space, with a disper-
sion relation that can be easily engineered by tuning the
interatomic separation (and dipole orientation). They also me-
diate waveguideless long-range interactions between impurity
qubits, without the need for interfacing atoms with traditional
nanophotonic structures. These qubits interact efficiently with
excitations in the chain, allowing for the exploration of dif-
ferent regimes of waveguide QED such as collective decay,
band gap physics (where atomic bound states emerge and
mediate coherent finite-range interactions between qubits),
non-Markovian dynamics, and chiral quantum optics.

Atomic arrays allow for dispersion engineering, such that
photons acquire a finite mass, propagate with slow group
velocity, or are even bestowed with topological properties.
Band structure design is crucial to realize almost arbitrary
interactions between impurity qubits, required for quantum
simulation, and the processing of quantum information. The
optical properties of atomic arrays can be controlled dynam-
ically via external dressing fields, which is hard to achieve
in conventional dielectric structures, and may allow for novel
schemes in trapping and manipulation of single-photon states.
Together with local (i.e., single atom) access through optical
tweezers, these ideas open the door to the realization of a new
paradigm for controlling light-matter interactions. Atomic
waveguides also provide opportunities to explore the rich
physics of self-organization [115–117], as optomechanical
degrees of freedom might play an important role in determin-
ing the geometry of the array.

At the few photon level, atomic waveguides allow for the
realization of deterministic and controllable photon-photon
interactions enabled by atomic dark states. Interactions form
the underpinnings of quantum nonlinear optics, and may
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enable the design of quantum photonic circuitry, including
photon transistors and gates [80–83]. It should be stressed that
this physics does not involve Rydberg states, which have, up
to now, been the conventional resource to generate photon-
photon interactions [4,5,82,118]. This tunable nonlinearity
opens the door to the exploration of few-body physics be-
tween guided photons and to the realization of conditioned
phase gates between counterpropagating photons, which can
be used for quantum computation.

Finally, atomic waveguides can be harnessed to explore
less traditional QED paradigms, such as time-delayed inter-
actions to study the effects of retardation and feedback in
interacting quantum systems [119]. They also represent a
realizable platform where questions about how baths emerge
from finite-sized and mesoscopic systems can be answered.
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APPENDIX A: DERIVATION OF THE IMPURITY
QUBIT DECAY RATES

Here we derive the expressions for the qubit decay rates
into free space and into the guided mode of the atomic array.
The decay rate of an emitter is related to the imaginary part
of the Green’s tensor evaluated at the emitter’s position. We
thus begin by finding an expression for the propagator of the
electromagnetic field in the presence of the chain. Following
the main text, we consider that the atomic array is pumped by
a weak coherent field (such that saturation is negligible and
the dynamics is confined to the single-excitation manifold).
The equation of motion for the expectation value of the atomic
coherence operator of atom j is readily found to be [25]

σ̇ j
ge = i�σ j

ge + i
μ0ω

2

h̄

N∑
i=1

℘∗ · G0(ri, r j, ω) ·℘σ i
ge

+ i

h̄
℘∗ · E+

p (r j ), (A1)

where G0(ri, r j, ω) is the vacuum Green’s tensor, σ
j

ge ≡
〈σ̂ j

ge〉, E+
p = 〈Ê+

p 〉 is the expectation value of the positive-
frequency component of the driving field, � = ω − ω0 is
the detuning between the driving and the atomic resonance
frequencies, and r j = (R j, z j ) is the position of atom j.
For an infinite chain we can define a spin-wave operator

Ŝ†
kz

= (1/
√

N )
∑

j eikzz j σ̂
j

eg that creates an excitation of well-
defined longitudinal momentum kz. In the steady state (i.e.,
σ̇

j
ge = 0), the expectation value of the spin-wave annihilation

operator reads

Skz = − 1

h̄� + μ0ω2℘∗ · G̃0(kz ) ·℘℘∗ · E+
p (kz ), (A2)

where E+
p (kz ) = (1/

√
N )

∑
j e−ikzz j E+

p (R j, z j ) is the spatial
Fourier transform of the field. Employing the input-output
equation [25]

Ê+(r) = Ê+
p (r) + μ0ω

2
N∑

j=1

G0(r, r j, ω) ·℘ σ̂ j
ge, (A3)

we write the expectation value of the field in any point in space
as

E+(r) = E+
p (r) − μ0ω

2

√
N

∑
kz

[( ∑
j

G0(r, r j ) ·℘eikzz j

)

× ℘∗ · E+
p (kz )

h̄� + μ0ω2℘∗ · G̃0(kz ) ·℘

]
. (A4)

From this equation we obtain an expression for the Green’s
tensor of the medium consisting of vacuum modified by the
presence of the atomic chain. To do so, we assume that the
pump field is generated by a dipolelike source p at rp, which
generates the current j(r, ω) = −iωpδ(r − rp), such that

E+
p (r) = iμ0ω

∫
dr′ G0(r, r′, ω) · j(r′, ω) (A5)

= μ0ω
2G0 (r, rp, ω) · p. (A6)

Substituting the above expression into Eq. (A4), and trans-
forming the sum over kz into an integral over the Brillouin
zone, i.e.,

1

N

∑
kz

→ d

2π

∫ π/d

−π/d
dkz, (A7)

we find that E+
p (r) = μ0ω

2 G (r, rp, ω) · p, with a Green’s
tensor that now accounts for the presence of the chain and
can be written as

G(r, r′, ω) = G0(r, r′, ω)

− μ0ω
2d

2π h̄

∫ π/d

−π/d
dkz

αkz (r) ⊗ βkz
(r′)

� + μ0ω2

h̄ ℘∗ · G̃0(kz ) ·℘
,

(A8)

where we have defined

αkz (r) =
∑

j

G0(r, r j, ω) ·℘eikzz j , (A9a)

βkz
(r) =

∑
j

℘∗ · G0(r j, r, ω) e−ikzz j . (A9b)

We now express the vacuum Green’s tensor in cylindrical
coordinates, by making use of the integral representation of
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spherical waves [120]

eik|r−r j |

|r − r j | = i

2

∞∑
m=−∞

∫
dkze

im(φ j−φ)eikz (z j−z)

× Jm(k⊥ρ j )H
(1)
m (k⊥ρ), (A10)

where ρ > ρ j , Jm(·) and H (1)
m (·) are Bessel and Hankel func-

tions of the first kind, respectively, and k⊥ = √
k2 − k2

z is the
transversal wave vector. We choose the waveguide atoms to lie
along z with radial and angular coordinates ρ j = 0 and φ j = 0
for all j. This simplifies the sum over azimuthal components
in the above expression, as Jm(k⊥ρ j ) = 0 for m �= 0. Then the
vacuum Green’s tensor reduces to

G0(r, r j, ω) = i

8π

[
1 + 1

k2
∇ ⊗ ∇

]

×
∫

dkze
ikz (z j−z)H0(k⊥ρ). (A11)

Introducing this expression into the equations for αkz (r)
and βkz

(r) and performing the sum over atomic sites, we arrive
to the final expression for the total Green’s tensor:

G(r, r′, ω) = G0(r, r′, ω)

+ 3�0

32kd

∫ π/d

−π/d
dkz

ukz (r) ⊗ vkz (r
′)

ω − ωkz

, (A12)

where we have defined the (complex) frequency ωkz = ω0 −
(3π�0/k)℘̂∗ · G0(kz ) · ℘̂, with �0 = ω3|℘|2/3π h̄ε0c3 being
the spontaneous emission rate of a single waveguide atom in
vacuum. In the above equation,

ukz (r) =
∑

g

[
1 + 1

k2
∇ ⊗ ∇

]
· ℘̂ ei(kz+g)zH (1)

0 (k⊥ρ),

(A13a)

vkz (r) =
∑

g

℘̂∗ ·
[
1 + 1

k2
∇ ⊗ ∇

]
e−i(kz+g)zH (1)

0 (k⊥ρ),

(A13b)

where the sums are performed over reciprocal-lattice vectors
g = 2πn/d with n ∈ Z. We note that, for atoms polarized
along the direction of the chain, the complex frequency ωkz

can be written as [25]

ωkz = ω0 − 3

2k3d3

[
Li3

(
ei(k+kz )d

) + Li3
(
ei(k−kz )d

)
− ikdLi2

(
ei(k+kz )d

) − ikdLi2
(
ei(k−kz )d

)]
, (A14)

where Lis(z) = ∑∞
�=1 z� �−s is a polylogarithm function of

order s.
The decay rate of an impurity qubit placed in the vicinity

of the chain is directly related to the imaginary part of the
Green’s tensor through

�q = 2μ0 ω2

h̄
℘∗

q · Im G(rq, rq, ω) ·℘q, (A15)

where rq and ℘q are the qubit position and dipole matrix
element, respectively. The integration path for Eq. (A12) is
shown in Fig. 8. The integrand displays several branch cuts
(associated with the square root and polylogarithm functions),

as well as simple poles for kz such that ωkz = ω. We can
clearly separate two different contributions to the decay: emis-
sion into free space (in the region such that kz ∈ [−k, k]), and
emission into the atomic-waveguide mode (due to the pole at
kz = k1D).

1. Free-space decay rate

The presence of the chain alters the vacuum modes and
thus leads to a modified decay rate of the qubit, which is now
calculated not only from the vacuum’s Green’s tensor, G0, but
also taking into account a contribution to the integral arising
from wave vectors within the light cone, i.e., kz ∈ [−k, k]. The
free-space decay rate is thus readily found to be

�′q/�q
0 = 1 + 9π�0

16k2d
Im

∫ k

−k
dkz

℘̂∗
q · ukz (rq ) ⊗ vkz (rq ) · ℘̂q

ω − ωkz

.

(A16)

There is also a frequency shift that arises from the real part
of the Green’s function, which can be calculated numerically
by taking the real part of the integrals along Ir , Ic, and Icc, as
shown in Fig. 8.

2. Guided-mode decay rate

For an infinite chain we can perfectly isolate the decay into
the guided mode of the atomic waveguide as it appears as a
pole in the integral. Beyond the light line, vkz = −u†

kz
and ωkz

is real (as the guided mode has infinite lifetime, i.e., it is not
“leaky”). This means that the imaginary part of the integral is
zero everywhere outside the light cone, except for the poles
where ωkz = ω. Note that if the driving frequency is detuned
from the guided mode band, there is no pole contribution
and thus no decay. For longitudinal polarization there are two
poles (corresponding to forward and backward propagating
guided waves at ±k1D). We close the integral around one of
these poles, as shown in Fig. 8, and find

�
q
1D

/
�

q
0 = 9π�0

16k2d
Im

∮
Ipole

dkz

|℘̂∗
q · ukz (rq)|2
ω − ωkz

. (A17)

Approximating ωkz � ω0 + vgkz, where vg is the group veloc-
ity at frequency ω, and applying Cauchy’s residue theorem,
we find an expression for the guided decay rate:

�
q
1D

/
�

q
0 = 9π2�0

8k2dvg
|℘̂∗

q · uk1D (rq )|2. (A18)

3. Functional form of the field modes and scalings
of the group velocity

For waveguide atoms polarized along the direction of the
chain, the different polarization components of ukz (r) read

ρ̂ · ukz (r) = −i
∑

g

(kz + g)k⊥
k2

ei(kz+g)zH (1)
1 (k⊥ρ), (A19)

φ̂ · ukz (r) = 0, (A20)

ẑ · ukz (r) =
∑

g

[
1 − (kz + g)2

k2

]
ei(kz+g)zH (1)

0 (k⊥ρ). (A21)

The components of vkz (r) admit similar expressions.
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FIG. 8. Integration contour for Eq. (A12) depicting the pole. Branch cuts are shown by dashed lines. The integration is performed in the
first Brillouin zone, i.e., kz ∈ [−π/d, π/d].

For an infinite array we can calculate the group velocity of
the guided modes as the derivative of the dispersion relation
of Eq. (A14), i.e., vg = ∂ωkz/∂kz|kz=k1D . We show the group
velocity scalings with d and kz in Fig. 9. Note that k � k0 as
ω � ω0, ωq except for deviations of the order of �0 � ω0, ωq.
Beyond the light line [corresponding to the peaks in Fig. 9(b)]
the mode is guided, and the group velocity tends to zero
as kz approaches the edge of the Brillouin zone, though the
dependence on kz is not trivial for small distances. For fixed
kzd , vg ∼ d−1.7 where the exponent is approximate and varies
slightly for different kz.

APPENDIX B: SPATIAL DEPENDENCE OF THE
DECAY RATES

The decay rate into free space is not simply that of a
qubit in vacuum (�q

0), but is modified by the presence of
the atomic waveguide, which alters the vacuum modes. This
decay rate displays a nontrivial dependence on the position of
the qubit, as shown in Fig. 10. A similar scaling is followed
by the decay rate into the waveguide mode. Generically, both

decay rates are enhanced for short radial and longitudinal
distances to the waveguide atoms. However, there are magic
points—manifested as dark lines in the figures—where decay
is strongly suppressed due to interference effects. For the free
space scattering rate, these lines appear as a narrow band at
ρq ≈ 0.4d in between two array atoms (at zq = ±0.5d) and
then move towards the central atom as ρq decreases. For the
guided-mode scattering rate, these positions draw virtually
straight lines that appear at ρq ≈ 0.6d in the middle of two
array atoms. This translates into a ratio between guided-mode
and free-space scattering that is strongly enhanced at zq =
±0.5d , as shown in Fig. 2 in the main text. This pattern
displays only minor changes when altering k1D and d .

As we discuss in the main text, a waveguide that is one-
atom thick provides an optical depth ∼30 times larger than
that of a fiber. To estimate these numbers, we have consid-
ered a waveguide with lattice constant d = 0.2λ0 and a qubit
frequency such that k1D = 0.7π , placed at zq = 0, ρq = 0.1λ0

[red line in Fig. 2(b) in the main text]. The fiber has radius
k0r = 1.2 and is made of silicon nitride, with dielectric
constant ε = 4. The qubit is located at ρq from the surface

(b) (c)(a)
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FIG. 9. Characterization of the guided mode of a 1D chain of atoms polarized parallel to the chain axis. (a) Real (blue) and imaginary
(orange) part of the dispersion relation of Eq. (A14), for a spacing d = 0.1λ0. In the region enclosed within the light line (shaded), the chain
does not guide light and the decay rate of the mode into free space is finite (nonzero imaginary part). (b) Group velocity scaling with kz, for
different lattice constants. The light line is approximately in line with the peaks in each curve. (c) Group velocity scaling with lattice constant
d , for different longitudinal wave vectors.
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(a)

(b)

FIG. 10. Decay rates into free space, guided mode, and ratio between them, as a function of the qubit radial (ρq) and longitudinal (zq)
position for (a) d = 0.1λ0, and (b) d = 0.2λ0. For all plots, the detuning between the qubit and the waveguide atoms is such that k1D = 0.7π/d .
At zq = 0 the qubit is exactly on top of a waveguide atom.

of the fiber (this leads to �
q
1D/�′q � 0.3 [25]). Note that the

coupling to the atomic waveguide can be increased by placing
the qubit frequency closer to the band edge.

APPENDIX C: LOSS DURING PHOTON COLLISIONS

Dissipation during photon collisions is controlled by both
the spacing of the array and the central wave-vectors ±k1D of
the counterpropagating wave packets. As shown in Fig. 11(a),
loss is minimized for small interatomic distance d and k1D

close to the edge of the band. Conversely, loss is maximized
for large d and k1D close to the light cone. For fixed k1D, the

loss as a function of interatomic spacing can be approximated
by a power law γ (d ) � AdB. For |k1D|d/π � 0.8, the fitted
power law is of the form γ (d ) � Ad2.77. However, as |k1D| is
increased toward the edge of the band, the exponent decreases
[Fig. 11(b)]. The fits become less accurate for large |k1D|,
implying that the dependence is not just a simple power law.
In Fig. 11(c) we plot loss as a function of ±k1D for fixed
d . Generally, larger |k1D| leads to lower loss, as the initial
spin waves are further away from the light cone. This data
does not admit an accurate fit by trivial functions as, for large
wave vectors, the group velocity is extremely slow and both
dispersion and single-photon loss due to finite size effects
impact the dynamics.
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FIG. 11. Loss during collisions in atomic-waveguide QED. (a) Scaling of lost two-photon population γ = 1 − 〈σ̂ (2)
ee (t f )〉/〈σ̂ (2)

ee (0)〉, with
interatomic distance for initial wave-vector ±k1D values evenly distributed between 0.6π/d and 0.9π/d . Continuous lines are guides to the
eye and are found as fits to a power law γ (d ) � AdB. (b) Exponents B from power law fits in (a). (c) Scaling of lost two-photon population
γ = 1 − 〈σ̂ (2)

ee (t f )〉/〈σ̂ (2)
ee (0)〉, with initial wave-vector ±k1D for different d .
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