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Metastable order protected by destructive many-body interference
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The phenomenon of metastability can shape dynamical processes on all temporal and spatial scales. Here,
we induce metastable dynamics by pumping ultracold bosonic atoms from the lowest band of an optical lattice
to an excitation band, via a sudden quench of the unit cell. The subsequent relaxation process to the lowest
band displays a sequence of stages, which include a metastable stage, during which the atom loss from the
excitation band is strongly suppressed. Using classical-field simulations and analytical arguments, we provide
an explanation for this experimental observation, in which we show that the transient condensed state of the
atoms in the excitation band is a dark state with regard to collisional decay and tunneling to a low-energy
orbital. Therefore the metastable state is stabilized by destructive interference due the chiral phase pattern of the
condensed state. Our experimental and theoretical study provides a detailed understanding of the different stages
of a paradigmatic example of many-body relaxation dynamics.
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I. INTRODUCTION

The relaxation dynamics of a many-body system that has
been driven out of equilibrium can either be governed by
a single time scale, as in an exponential decay process, or
take a more intricate form [1]. In the latter case, the relax-
ation dynamics of the system might first progress towards a
long-lived, metastable state, before relaxing to thermal equi-
librium [2,3]. The time evolution of this scenario naturally
separates into three stages. The first stage is the relaxation
to the metastable state. The second one is the long-lived
metastable state itself, the third stage is the relaxation from the
metastable state to equilibrium. A common origin of the long
lifetime of the metastable state is the existence of a free energy
barrier that inhibits relaxation at sufficiently low temperatures
[4–9]. Furthermore, the phase coherent properties of a system
evolving according to quantum dynamics can enhance or sup-
press transitions via constructive or destructive interference.
A striking example for long-lived states that are stabilized
by destructive interference are dark states in the electronic
structure of atoms or molecules [10], which are at the basis of
prominent phenomena as electromagnetic transparency [11].
For the example of a three-level system, the dark state emerges
due to destructive interference of the coupling to the two other
states. We note that the phase coherence of the quantum state
is imperative for the stability of the dark state, as it cannot be
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understood within a rate equation description of the system.
Finally, we note that metastable states of Bose-Einstein con-
densates, and their dynamics in general, are strongly modified
due to bosonic enhancement and statistics, in comparison to
a classical gas [12]. Further studies on metastable dynamics
have been reported in Refs. [13–16].

Metastability is not only an important concept for our
understanding of thermalization processes, but can also be
used as a starting point to study states that are inaccessible
in the equilibrium phase diagram. A well-defined platform to
study a many-body system far out of equilibrium are ultracold
atomic gases in general and in particular, when prepared in
excited Bloch bands of an optical lattice [17]. Exciting atoms
to higher bands gives access to orbital physics, which also
plays a crucial role for metal-insulator transitions, supercon-
ductivity, and colossal magnetoresistance in transition-metal
oxides [18,19]. Ultracold atoms in excited bands are naturally
prone to relaxation towards the lowest band, however, their
orbital nature opens a promising arena for studying scenarios
of metastability.

In this work we present an experimental and theoreti-
cal study of metastable dynamics of ultracold atoms in the
second band of an optical lattice. We provide a theoretical
interpretation of the observation of inhibited decay based on
numerical and analytical arguments that identify destructive
quantum interference of distinct decay channels as the under-
lying mechanism.

Our experiments begin with the preparation of an ultracold
gas of bosonic atoms in the ground state of an optical lat-
tice. This lattice is composed of shallow and deep potential
wells, forming a checkerboard pattern in the xy plane, see
Fig. 1(a). The atoms are weakly bound along the z direction
by a harmonic trap potential, such that the lattice wells acquire
a tubular shape. The atoms are then pumped into the first
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FIG. 1. (a) A single plaquette of the chequerboard lattice com-
prising A and B wells with tunable well depths difference �V .
Here, λ is the lattice wavelength and k = 2π/λ the wave vector.
(b) The second Bloch band of the lattice in (a), plotted across the first
Brillouin zone with the two inequivalent energy minima at X± high-
lighted. Blue denotes low and white denotes high energy. (c) Sketch
of the many-body ground state wave function of the second band.
The deep A wells host px and py orbitals, depicted by dumbbells.
These are phase locked by interaction to form (px ± i py ) orbitals.
The shallow B wells host s orbitals. The locations, where the local
phase φ takes the values eiφ ∈ {1, i,−1, −i}, are indicated by colors,
showing a chiral pattern of staggered currents.

excitation band by a sudden quench of the unit cell. This
induces relaxation dynamics to the lowest band that we ob-
serve in the momentum-resolved band occupation, obtained
via band mapping, see Figs. 4(c)–4(g). We thus derive the total
atom number, and the condensed atom number, see Fig. 4(a).
Initially, the atoms are found to condense in the excitation
band. Subsequently the system forms a metastable state in
which the total number of atoms changes only slowly, while
the number of condensed atoms decreases. When the con-
densed fraction reaches zero, the total atom number decays
exponentially.

We present a detailed theoretical understanding of the
relaxation dynamics. We identify three relaxation stages
illustrated in Fig. 2, in which we depict snapshots of our semi-
classical c-field simulation, see Appendix B and Refs. [20,21].
Directly after the quench, the atomic gas forms an incoherent
excited state. In stage I the atoms condense, the phase co-
herence increases, and the atoms form a coherent metastable
state, which we identify as the metastable state observed in
experiment. This condensate has been predicted and detected
in previous work [22–31]. It has a finite occupation of p
orbitals in the deep wells and of s orbitals in the shallow wells,
see Fig. 1(c). We confirm the proposed chiral phase winding
on p orbitals within our simulations, see Fig. 2: coherent
metastable state. The next stage, stage II, is characterized by
a comparatively slow decay and a finite amount of condensed
atoms. At the onset of stage III, the coherent metastable state
is entirely converted to the thermal excited state, which relaxes
exponentially towards the thermal ground state.

By combining the results of our numerical simulations with
analytical arguments we identify the origin of the observed
metastability as destructive interference. This interference ef-
fect arises due to the chiral phase texture of the condensate.
The chiral phase winding on p orbitals induces a staggered
order of the s orbitals, see Fig. 1(c). Therefore the wave
function of s-orbital atoms on opposing sides of a given deep
well has opposite sign and the corresponding hopping pro-
cesses interfere destructively. We find a similar mechanism of
destructive interference for the second decay channel, which

FIG. 2. The time evolution passes through four states connected
by three stages of relaxation I, II, and III, as explained in the text.
All states are plotted in terms of the occupations of local s orbitals,
depicted by disks, and p orbitals, depicted by dumbbells, obtained
for a snapshot of a single xy layer of our numerical simulation. The
colors indicate the local phases according to the color wheel in the
left lower corner and amplitudes are indicated by contrast, where
light gray indicates low amplitude. For the sake of clarity, we show
the idealized case of very low initial temperature, T = 0.5 nk, that
leads to nearly perfect phase coherence after stage I.

is an interaction-induced decay where two p-orbital atoms
collide and scatter into the s orbital on the same site. As a con-
sequence of these interference mechanisms, the condensate
with respect to collisions constitutes a many-body dark state
and therefore direct relaxation of the coherent metastable state
to the thermal ground state is inhibited, see Fig. 2. Instead,
decay arises solely via the thermal excited state.

II. EXPERIMENTAL AND THEORETICAL SETUP

A Bose-Einstein condensate (BEC) of 105 87Rb atoms
is prepared in the |F = 2, mF = 2〉 hyperfine state in an
isotropic magnetic trap. The BEC is adiabatically loaded
into the lowest band of the double-well chequerboard lat-
tice with the two inequivalent sublattice sites denoted A and
B. The lattice is formed by laser beams with a wavelength
λ = 1064 nm, see Fig. 1(a). For more details see Appendix A
and also Refs. [25–31]. The key tool is the tunability of the
potential offset �V between the A and B sublattice wells,
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FIG. 3. The atoms are prepared in the lowest band at large nega-
tive offset �V < 0. The red arrow depicts a sudden quench of 300 μs
duration to �V > 0 that transfers the atoms into the second band.
Insets show exemplary A and B wells with horizontal lines indicating
s- and p-orbital energies. Ascending and descending solid lines show
the energies at zero quasi-momentum of the lowest band of the A
sublattice and the three lowest bands of the B sublattice, respectively.

see Fig. 3. Initially, the A-site wells are deep and the B-site
wells are shallow such that �V is negative. We load the
BEC at large negative offset �V � 0, such that the resulting
ground state has vanishing occupation on the B-sublattice
sites. The atoms, which exclusively reside on the A sublattice,
are phase-incoherent even for temperatures as low as 50 nk
due to on-site particle number squeezing resulting from the
sizable repulsive interaction in the deep lattice wells in the xy
plane. We perform a rapid quench within 300 μs to �V > 0

such that the two lowest bands cross and a significant frac-
tion of atoms is excited to the second band (cf. Fig. 3). In
order to study the resulting relaxation dynamics the atoms are
observed via a band mapping technique. We extract the con-
densed and thermal fractions in the second band as explained
in Appendix A.

For our c-field simulations we use a tight-binding model
for the four lowest bands of the lattice and solve the time
evolution by computing classical equations of motion for an
ensemble of complex-valued fields. The details of this algo-
rithm are described in Appendix B and Refs. [32–37]. We
model both the dynamics within the lattice in the xy plane as
well as the dynamics within the tubes in the z direction. The
same quench of �V as in the experimental procedure excites
the atoms into the second band. In order to model the band
mapping process we project the wave function onto the Bloch
functions of the tight-binding lattice.

III. RELAXATION DYNAMICS

The central experimental observation is the momentum
resolved occupation of the bands, obtained via band mapping,
and depicted in Figs. 4(c)–4(g). From these measurements we
derive the number of condensed and thermal atoms, which
evolve in time as shown in Fig. 4(a). We simulate a similar
protocol numerically, and depict the resulting number of con-
densed and thermal atoms per tube in Fig. 4(b).

Immediately after the quench, the condensate fraction van-
ishes and all available Bloch modes in the second band
are nearly equally populated, see Fig. 4(c). The relaxation

FIG. 4. Time evolution of the total number of atoms, the condensate and the thermal fraction in the second band after a quench to �V =
0.43 V0. Panel (a) shows experimental and panel (b) numerical data. The different background colours identify the three relaxation stages of
Fig. 2. Black lines show exponential fits to the data points in stage III. (c)–(g) Time of flight images for experimental data points marked by
black squares in (a). We perform band mapping, such that the resulting time of flight image depicts the population of quasi-momentum space.
Panel (h) illustrates the first and second Brillouin zone and the X± points of the lattice. The temperature of the initial state for both experiments
and simulation is T ≈ 0.5 Erec/kB ≈ 50 nk. We note that atom numbers for experiment and simulation are adjusted to be comparable in the
center of each tube as is described in Appendix B.
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dynamics begins with a condensation stage, denoted stage
I, where the number of condensed atoms increases and the
number of thermal atoms decreases. In the experimental data
in Fig. 4(a) this condensation stage takes 20 ms, while in the
numerical simulations in Fig. 4(b) it occurs on a slower time
scale of 70 ms. We explain in Appendix F that the increased
duration is a result of using shorter tubes in the z direction
for our numerical simulations. The formation of coherence
within the lattice plane (xy) is associated with increased phase
fluctuations along the z direction [38]. Despite the different
durations of the condensation stage, qualitatively, the same
dynamical features are found in the observations and calcu-
lations. We find that the role of the tubes in the z direction
as an entropy reservoir is crucial for the initial condensation
stage. In fact, the atoms would not condense for an effective
two-dimensional system, see Appendix F.

At the beginning of stage II there is a large number of con-
densed atoms, which manifests itself in the accumulation of a
significant fraction of atoms in the two inequivalent minima of
the second band, i.e., see Fig. 4(d). These minima are the X±
points as depicted in Fig. 1(b). As has been shown in previous
work, the atoms form a condensate with a chiral phase texture
composed of vortical currents with opposite signs for adjacent
plaquettes [30]. The numerical data depicted in the second
panel of Fig. 2 for the coherent metastable state, suggest that
this order emerges dynamically as a result of the recondensa-
tion process.

Stage II is characterized by a finite number of condensed
atoms, a stable or even increasing number of thermal atoms
and a slower than exponential decay of the total number of
atoms. The last observation can be seen from the deviation of
the total number of atoms from an exponential fit in Figs. 4(a)
and 4(b). In the numerical simulation the decay is almost
linear during stage II. At the beginning of stage III, the critical
temperature for condensation is reached and only thermal
atoms remain, see Fig. 4(f). At this point, the atoms decay
exponentially as is predicted in Fig. 4(b) and confirmed by the
observations in Fig. 4(a). Eventually at the end of stage III all
atoms have relaxed to the lower band with only small thermal
excitations of the upper band, see Fig. 4(g).

We identify the initial slow decay during stage II as a
signature of the proposed mechanism for metastability. As
mentioned above and as we will describe in more detail in
the following section, the chiral phase pattern, as observed
in our simulations, stabilizes the condensate against decay
to the first Bloch band through destructive interference of
the dominant decay channels. In fact, the condensate itself is
expected to show perfectly balanced destructive interference
and hence represents a dark state with infinite lifetime. Decay
should arise exclusively via the thermal fraction of atoms
in the second band, see thermal excited state in Fig. 2. In
other words, condensate atoms become thermal atoms, which
can decay to the lowest band. This prediction determines the
dynamics during stage II. The underlying physics leading to
this behavior is as follows: the thermal fraction of the second
band relaxes to the lowest band, whereby significant kinetic
energy is gained, which heats the thermal atoms in the second
band through collisions with decayed atoms. This in turn
depletes the condensate fraction into the thermal fraction and
hence overcompensates its exponential decay. The remarkable

FIG. 5. Time scales of the exponential decay in stage III as a
function of the final potential offset �V approached in the quench.
(a) and (b) show observations and numerical results, respectively.
The dashed and solid red line graphs show calculations for Wint and
Whop set to zero, respectively. The temperature of the initial state for
(a) and (b) is T ≈ 0.5 Erec/kB ≈ 50 nk.

agreement with the observations in Fig. 4(a) shows that di-
rect relaxation of the condensate towards the lowest band is
inhibited, as predicted by the model in Fig. 4(b). Calculations
and corresponding observations deferred to Appendix D also
show that a higher initial temperature with an initially larger
thermal fraction leads to an earlier onset of stage III and hence
a significantly faster decay.

IV. NATURE OF DECAY MECHANISM

In order to understand why the chiral phase pattern of the
condensate inhibits decay, we analyze the contributing decay
mechanisms. The character of the dominant decay channels
depends on the value of the potential offset �V . We consider
values of �V between the first two band crossings in Fig. 3.
For �V = 0 the sublattice sites have equal depth and hence
their s orbitals are degenerate, while at the second band cross-
ing for �V = 0.86 V0 the p orbitals on B-sublattice sites are
degenerate with s orbitals on A-sublattice sites. Since only
the thermal fraction of atoms in the second band is expected
to decay to the lowest band, we utilize the exponential de-
cay during stage III, to determine the decay times observed
for different final values of �V shown in Fig. 5(a), see
Appendix A. The decay is slow for intermediate values of
�V , while becoming increasingly fast towards the two band
crossings at �V = 0 and �V = 0.86 V0.

Our simulation leads to the white circles in Fig. 5(b), which
shows good qualitative agreement with (a), particularly re-
producing the life time maximum close to �V/V0 = 0.4. The
simulation, however, provides additional insight into the char-
acter of the distinct underlying relaxation processes on both
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sides of that maximum. The main decay channel on the right
side close to �V = 0.86 V0 is an interaction-driven decay, as
has been already proposed in Ref. [38]. In this regime the p
orbitals on B sites are nearly degenerate with s orbitals on A
sites and hence are strongly occupied. Therefore, the domi-
nant interaction term leading to band relaxation is associated
with the collision of two px or py atoms on a deep B well at
site R, which are both scattered into the s-orbital on the same
site

Wint ≡
∑
R∈B

b†
R,sb

†
R,s(bR,xbR,x + bR,ybR,y) . (1)

Here b†
R,{x,y,s} (bR,{x,y,s}) creates (annihilates) an atom on site

R in orbital {px, py, s}. On the left side of the maximum, how-
ever, close to �V = 0, we identify the main decay channel to
be associated with an atom in the s orbital of a shallow well,
belonging to the second band, hopping to the s orbital of an
adjacent deep well, belonging to the first band. This process
is expected to be increasingly strong the closer the involved s
orbitals are to degeneracy. The responsible decay term is

Whop ≡
∑

R∈B,ν∈{x,y}
b†

R,s

(
bR−eν ,s + bR+eν ,s

)
, (2)

where the vectors ex, ey connect A and B sites along the x and
y directions, respectively. We confirm these considerations by
selectively switching off either of the terms Wint and Whop for
the entire duration of our simulation. If Wint is set to zero,
we find the dashed red line in Fig. 5, which only accounts
for Whop. As expected, the decay times given by the white
disks are well approximated on the left side of the life time
maximum. Similarly, for Whop = 0, the red solid line is found
in Fig. 5, which provides a decent approximation on the right
side of the life time maximum. For intermediate values of �V
there is a competition between the two decay channels. The
maximal life time is observed close to �V = 0.4 V0. Calcula-
tions predict a slight shift depending on, e.g., temperature, see
Appendix E.

Next, we consider the effect of the two relaxation channels
Wint and Whop on the condensate fraction. This chiral con-
densate, denoted |px ± ipy〉, can be well approximated as a
product of local coherent states, residing at each lattice site.
More precisely, |px ± ipy〉 = |A〉 ⊗ |B〉 with

|A〉 =
∏
R∈A

|s(R)〉,

|B〉 =
∏
R∈B

|px(R)〉 ⊗ |py(R)〉 ⊗ |0〉R,s . (3)

Here, |A〉 comprises local coherent states with on average
|s(R)|2 atoms in the s orbitals of the shallow wells, while
|B〉 accounts for coherent states with on average |px(R)|2
atoms in the px orbitals and |py(R)|2 atoms in the py or-
bitals in the deep wells. Note also the empty s orbitals in
the deep wells, denoted |0〉R,s. The phases of the complex
functions s(R) on the A sublattice and px(R), py(R) on the
B sublattice take values in {1, i,−1,−i}, thus forming the
chiral phase texture, shown in Fig. 1(c). This phase texture
imposes the relation py(R) = ±i (−1)ν+μ px(R) with R =
(μ + ν) ex + (μ − ν) ey, with the interaction-induced relative
phase factor ±i and a sign change (−1)ν+μ for adjacent B sites

+

interaction-induced
decay

+

hopping-induced
decay(a) (b)

FIG. 6. Sketch of the two dominant decay mechanisms and the
inhibition of decay for the condensate mode. (a) shows the case of
interaction-induced decay, where two px atoms or two py atoms in a
deep well collide and are transferred to the s orbital in the same well.
For condensate atoms populating (px ± ipy ) orbitals, the transition
amplitudes for these two processes interfere destructively. (b) shows
the case of hopping-induced decay: an atom in the s orbital of a
shallow well, belonging to the second band, hops to the s orbital of
an adjacent deep well, belonging to the first band. Condensate atoms
in the s orbitals of the two shallow wells on opposite sides of a deep
well have opposite local phases. Hence the tunneling of such atoms
to the s orbital of the deep well destructively interferes.

[28]. As a consequence, using bR,x|px(R)〉 = px(R) |px(R)〉
and bR,y|py(R)〉 = py(R) |py(R)〉, and assuming equal popu-
lations of px- and py orbitals, i.e., |px(R)|2 = |py(R)|2, one
finds

Wint|px ± ipy〉 = 0 (4)

and hence perfect destructive interference. This process is
schematically illustrated in Fig. 6(a). The annihilation of two
atoms in a px orbital or in a py orbital, phase-shifted by π/2,
leads to different signs, such that both transition amplitudes
eliminate each other.

A consideration similar to that for Wint shows that the
condensate is also stable with respect to the hopping-induced
decay channel, i.e.,

Whop|px ± ipy〉 = 0 . (5)

As illustrated in Fig. 6(b), condensate atoms in the s orbitals
of the two shallow wells on opposite sides of a deep well have
opposite phases. Hence the tunneling of such atoms to the s
orbital of the deep well destructively interferes.

V. TWO-FLUID MODEL

Our understanding of the dynamics in stages I, II, and
III of Fig. 4 suggests the concept of two interacting fluids,
i.e., a stable condensate in equilibrium with a thermal frac-
tion that decays and thereby heats. In stage I, the thermal
fraction exceeds the value compatible with the present tem-
perature and hence a condensate fraction forms. In stage II,
the condensate fraction is again redistributed to the thermal
fraction, while it undergoes decay and heating. In stage III,
the condensate has vanished and the thermal fraction decays
exponentially. We capture this dynamical mechanism with a
simplified two-fluid model which reproduces the dynamics in
stages I, II, and III and gives qualitative insight into the asso-
ciated heating dynamics. The two-fluid model is not expected
to deliver quantitative information on timescales or fractional
populations, and hence is formulated in terms of unitless
quantities.

We split the total number of atoms into a thermal and
a condensed part Ntot = Nth + Nc. The thermal part decays

043210-5



M. NUSKE et al. PHYSICAL REVIEW RESEARCH 2, 043210 (2020)

FIG. 7. Two-fluid model for self-stabilization. We show the to-
tal, thermal and condensed particle number as well as temperature
computed within a two-fluid model, for details see Appendix C. The
model shows qualitative agreement with experimental and simulated
data shown in Fig. 4. All quantities within the two-fluid model are
without units. We use γdec = 1, �eq = 3, α = 2 and �E = 3.

exponentially with constant γdec, while the condensed part is
stable. Each decaying atom gains an energy �E proportional
to the band gap between the first excited and lowest band.
This additional energy is assumed to thermalize among all
atoms and hence increase the temperature T . Additionally,
we assume that thermalization between the thermal and the
condensed fraction occurs at fixed total energy on a time scale
�eq. The resulting differential equations are

Ṅth = −γdecNth + �eq(T α − Nth ),

Ṅtot = −γdecNth, (6)

Ṫ = γdec�E − �eqT

Nth
(T α − Nth ),

where T is scaled in terms of an arbitrary unit temperature,
an exponent α has been introduced and further details are
described in Appendix C. Equation (6) explicitly encodes the
assumption that the condensed number of atoms does not
decay, as the atom loss only depends on the thermal atom
number. We find that the resulting time evolution, shown in
Fig. 7, captures the different decay stages and hence stresses
the general applicability of the inhibited-decay mechanism
presented in this paper. Furthermore, the validity of the two-
fluid description is highlighted by an approximate analytical
solution that predicts linear scaling for the decay in stage
II as compared to exponential scaling during stage III, see
Appendix C,

Ntot (t ) = Ntot (0) − γdecT αt .

The decay rate of stage II is suppressed relative to the single
particle decay rate γdec, at low temperatures. This separation
of time scales defines the metastable state. The slope of the
linear decay γdecT α highlights the fact that a perfect conden-
sate at T = 0 is a dark state that does not decay.

VI. CONCLUSIONS

We have observed metastable dynamics in the relaxation
process of ultracold bosonic atoms from an excitation band
to the band of lowest energy. By measuring the momentum

resolved occupation of the bands via band mapping, we have
observed three stages of dynamics, which are the relaxation
dynamics to the metastable state, the metastable state itself
and the relaxation to the thermal equilibrium state. Utilizing
both numerical and analytical reasoning, we have provided
an interpretation of this dynamical process. In particular, our
simulations suggest that the metastable state is stabilized by
the chiral, transient order that emerges in the excitation band.
This chiral order suppresses the relaxation processes via de-
structive interference.

We emphasize that the mechanism described here is not
only conceptually interesting, but provides a framework to
create nonequilibrium ordered states in solids. By optically
pumping electrons into higher bands, an ordered state can be
long-lived if this ordered state is a dark state with regards to
particle relaxation to the lower band, as we have argued in this
work. We note that the transient order observed in this work
can be related to the critical slowdown near renormalization
group fixed points [39,40], to be discussed elsewhere.
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APPENDIX A: EXPERIMENTAL PROTOCOLS

The light-shift potential for the bipartite square optical
lattice reads

V (x, y) = −V0[cos2(kx) + cos2(ky)

+ 2 cos(θ ) cos(kx) cos(ky)], (A1)

where V0(1 + 2 cos(θ )) is the total depth of the lattice and
k = 2π/λ with wavelength λ = 1064 nm, see Ref. [31]. The
lattice is composed of two classes of wells, denoted A and
B, with different depth arranged according to the black and
white fields of a chequerboard, see Fig. 8(a). The control
parameter θ , that can be experimentally adjusted on a few-
ten-microsecond time-scale with better than π/300 precision
by interferometric techniques [41], determines the difference
of the depths of the A- and B-sublattice sites, which is given
by �V = −4V0 cos(θ ). In its second Bloch band this lattice
provides two inequivalent degenerate energy minima, denoted
X+ and X−, at the edge of the first Brillouin zone (BZ), see
Fig. 1(b) in the main text and Fig. 8(b).

A BEC of 105 87Rb atoms in the |F = 2, mF = 2 > hyper-
fine state is prepared in an isotropic magnetic trap with trap
frequencies (ωx, ωy, ωz ) = (39, 42, 35) Hz. By adiabatically
ramping up the lattice depth in 100 ms to V0 = 7.2 Erec, the
atoms are loaded into the lowest band of the optical lattice.

043210-6



METASTABLE ORDER PROTECTED BY DESTRUCTIVE … PHYSICAL REVIEW RESEARCH 2, 043210 (2020)

AB

x

y

(a) (c)

k

(b)
M X+

X-

FIG. 8. (a) Lattice geometry and unit cell (gray area). (b) Sketch
of first (red area) and second (blue area) Brillouin zones with the high
symmetry points �, M, X+, and X−. (b) Sketch of the disk-shaped
(area within dashed white circle) and ring-shaped (area within red
and white dashed circles) regions of interest used for data evaluation.

The time phase at this stage is set to θ = 0.4 π corresponding
to a potential difference �V = −1.2 V0. After a short waiting
time of 10 ms, θ is tuned in 300 μs to a final value via a
band-mapping technique: The lattice potential is adiabatically
ramped down to zero in 2 ms followed by a ballistic expansion
during 30 ms. This maps the quasimomenta of the Bloch func-
tions onto the momenta of the free particles, thus giving rise
to a map of the populations of the BZs of the lattice, which is
recorded via an absorption image.

To determine the condensed part of the atomic sample, we
define four disk-shaped regions of interest (ROIs) and four
ring-shaped ROIs, see Fig. 8(c), all enclosing the same area,
centered around the X± points. By subtracting the number
of atoms found within the outer ring from the atoms within
the inner disk, we get rid of the thermal part and remain
with the number of condensed atoms. The number of thermal
atoms in the first and second band are determined by counting
the atoms within ROIs comprising the first and second BZs,
respectively, however, with the intersections with the disk-
shaped ROIs around X± cut out and with the intersections with
the ring-shaped ROIs counted twice. For the total population
in the second band we add up the population of the thermal
atoms in the second BZ and the condensed atoms.

For extracting the decay time scale shown in Fig. 5, we
perform an exponential fit to the data points in stage III.
We identify the onset of stage III as the time where the
condensate fraction, i.e., the number of condensed atoms di-
vided by the number of total atoms, drops below a certain
threshold value. This threshold is chosen to be 20% for the
experimental data and 5% for the simulated data shown in
Fig. 5. Due to collisions during the time-of-flight images and
other broadening effects we expect the experimental data to
overestimate the actual condensate fraction and therefore use
the higher threshold value. We fit an exponential of the type
f (t ) = a e−t/Td + b and extract the decay time scale Td.

APPENDIX B: DETAILS
ON CLASSICAL-FIELD-THEORY SIMULATIONS

For our numerical simulations we employ a tight-binding
model that includes both the dynamics between individual
tubes within the xy plane as well as the dynamics within each
tube in the z direction. We first describe how we model the
dynamics within a single xy plane and afterwards explain how
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FIG. 9. Sketch of all hopping terms included in the Hamiltonian
Hxy for each xy plane. Circles denote s orbitals while dumbbells
denote p orbitals. Next to each hopping strength we indicate the two
tight-binding orbitals involved in the corresponding hopping process
by an arrow of the same color. Panel (a) shows all hopping terms
between s orbitals on A sublattice sites and p orbitals on B sublattice
sites, while panel (b) shows all hopping terms that involve at least
one s orbital on a B sublattice site. The latter s orbitals are indicated
by red circles in panel (b).

we extend this to include the dynamics in the tubes along the
z direction.

For the dynamics within the xy plane we use a lattice with
12×12 sites with periodic boundary conditions. In contrast to
the experimental setup we do not include an additional weak
harmonic trap for our simulations. Instead we only model
the dynamics in the center of the trap where the additional
trapping potential is flat to good approximation. In the Hamil-
tonian Hxy for each xy plane we include all nearest- and
next-nearest-neighbor hopping terms as indicated in Fig. 9.
Additionally we include on-site interaction terms. After the
quench that excites the atoms to higher bands, such that
�V � 0, the lowest band is almost entirely composed of
s orbitals on B sublattice sites. Keeping this in mind, it is
convenient to group the terms of Hxy into four subsets

Hxy = Hlb + Heb + Hnn + Hexc. (B1)

The first subset Hlb denotes those terms that only involve s or-
bitals on B sublattice sites, hence those orbitals that comprise
the lowest band for �V > 0. Its explicit form is

Hlb = −J ′
ss

∑
R ∈ B,

d = ±e′
x,±e′

y

b†
R+d,sbR,s + V ′

s

∑
R∈B

b†
R,sbR,s

+ UB

2

∑
R∈B

b†
R,sb

†
R,sbR,sbR,s . (B2)

Here the operator b†
s,x,y,R (bs,x,y,R) creates (annihilates) an

atom on the site R in the s, px or py orbital, respectively. The
unit vectors ex and ey connect A and B sites along the x and
y directions, respectively, e′

x = ex − ey and e′
y = ex + ey. The

term Hlb involves a hopping term between nearest neighbor B
sites with strength J ′

ss, an on-site potential Vs and an interac-
tion term.

The second subset Heb involves only those orbitals that
comprise the excited bands
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Heb = −Jss

∑
R ∈ A,

d = ±e′
x, ±e′

y

b†
R+d,sbR,s + Vs

∑
R∈A

b†
R,sbR,s + Jsp

∑
R∈B

−b†
R+ex,s

bR,x + b†
R−ex,s

bR,x − b†
R+ey,s

bR,y + b†
R−ey,s

bR,y + H.c.

− J‖
∑

R ∈ B, ν ∈ {x, y}
d = ±e′

x, ±e′
y

b†
R+d,νbR,ν +

∑
ν

Vν

∑
R∈B

b†
R,νbR,ν − J⊥

∑
R ∈ B,

d = ±e′
x, ±e′

y

b†
R+d,xbR,y + H.c.

UA

2

∑
R∈A

b†
R,sb

†
R,sbR,sbR,s + 3UB

8

∑
R ∈ B,

ν ∈ {x, y}

b†
R,νb†

R,νbR,νbR,ν + UB

2

∑
R∈B

b†
R,xbR,xb†

R,ybR,y

+ UB

8

∑
R∈B

[b†
R,xb†

R,xbR,ybR,y + H.c.] . (B3)

Here all combinations of hopping processes between s orbitals
on A sites and p orbitals on B sites as well as interaction
and on-site potentials for these orbitals are included. The third
subset Hnn contains only one density-density-type interaction
term that does involve both the lowest and excited bands, but
leaves each of their occupations unchanged

Hnn = UB

∑
R ∈ B,

ν ∈ {x, y}

b†
R,νbR,νb†

R,sbR,s . (B4)

The fourth subset Hexc contains the most interesting terms, as
these lead to an exchange of particles between excited bands
and the lowest band. Hence only these terms can lead to decay
from excited bands to the lowest band. The explicit form is

Hexc = Jd
sp

∑
R ∈ B,

ν ∈ {x, y}

(
b†

R−e′
ν ,s

− b†
R+e′

ν ,s

)
bR,x + H.c.

+ Jd
sp

∑
R ∈ B,

σ = ±1

(
σb†

R+σe′
x,s

+ σb†
R−σe′

y,s

)
bR,y + H.c.

− Jd
ssWhop + UB

4
Wint + H.c. (B5)

We find numerically that the first two terms proportional to Jd
sp

are negligible for �V > 0. Hence the only two terms that can
lead to decay from excited bands to the lowest band are the
latter two terms with the operators

Wint ≡
∑
R∈B

b†
R,sb

†
R,s(bR,xbR,x + bR,ybR,y), (B6)

Whop ≡
∑

R ∈ B,

ν ∈ {x, y}

b†
R,s

(
bR−eν ,s + bR+eν ,s

)
, (B7)

as also defined in the main text. For all cases the relative
prefactors of the interaction terms have been obtained by
computing the overlap of harmonic oscillator wave functions
for s and p orbitals in the xy plane.

Next we describe how we adjust the tight-binding param-
eters. For each value of �V we adjust all hopping terms
and on-site potentials such that the resulting tight-binding
band structure has optimal agreement with the correspond-
ing numerically determined Bloch band structure at certain

symmetry points. For our case we use the symmetry points �,
M, X and the points half way between � and M, as indicated
in Fig. 8(b). Some of the tight-binding parameters we deter-
mine from analytical expressions for the tight-binding band
structure at these symmetry points. Others we determine nu-
merically using a variational Monte-Carlo-type optimization
routine. The resulting set of hopping parameters and on-site
potentials for V0 = 7 Erec is shown in Fig. 10. For the interac-
tion parameters we determine the effective one-dimensional
interaction strength of each tube as g1d,C = 2h̄2a/(mx2

0,C ),
see, e.g., Ref. [42], where a = 5 nm is the three-dimensional
scattering length and m is the mass of 87 Rb, C = A,B and
x0,C is the harmonic oscillator length. We determine the har-
monic oscillator length by expanding the lattice potential
around each well and comparing to a harmonic oscillator
potential. Depending on the value of �V and the sublattice
site considered we obtain values in the range 0.04 μm Erec <

g1d < 0.06 μm Erec.
In order to include the dynamics within each tube along

the z direction we artificially introduce a lattice with spacing
dz. The artificial discretization allows us to impose a tight-
binding model with hopping constant Jz and lattice potential
Vz along the z direction. This constitutes a reasonable ap-
proximation as long as the discretization length dz is small
compared to the healing length of the condensate and the
thermal de-Broglie wavelength. For our case this is fulfilled
for dz = 0.13 μm. The full Hamiltonian then splits into a part
for each xy plane and the part for the z direction

H = Hxy + Hz, (B8)

Hz = −Jz

∑
R, ν ∈ {s, x, y},

d ∈ {±ez}

b†
R+d,νbR,ν

+ Vz

∑
R,ν∈{s,x,y}

b†
R,νbR,ν . (B9)

By requiring that the lowest tight-binding band of the artificial
lattice for small quasimomenta is approximately equal to the
free particle dispersion relation, we obtain for the hopping
constant Jz = h̄2/(2md2

z ) = 1.7 Erec. Since it is numerically
too expensive to consider a trap in the z direction that is as
large as in the experiment, we instead determine the density
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FIG. 10. Tight-binding parameters as a function of θ for V0 = 7Erec, λL = 1064 nm and the rubidium mass m = 87mp. All parameters are
given in units of Erec.

in the center of the trap ncent from a Thomas-Fermi approxi-
mation and adjust the occupation of the corresponding lattice
sites nC , C = A,B, such that nC = ncentdz. Note that ncent

depends on C via g1d . For 300 atoms per tube we find nC ≈
3. Furthermore, we choose the interaction strengths UC , for
C = A,B, such that UC nC = g1d ncent. We obtain UA ≈ UB ≈
0.4 Erec. We use a lattice of Nz = 25 sites in the z direction
and adjust the trapping potential Vz such that the occupations
nC vanishes at the edge of the trap. Hence we use a trap that
is shorter and steeper as compared to the experimental values,
while at the same time matching the density and mean-field
interaction in the center of the trap. This leads to an overall

lower number of atoms per tube as can be seen in Fig. 12 and
in Fig. 4 in the main text.

For the time evolution we start at θ = 0.35 π correspond-
ing to �V ≈ −1.8 V0 and use a classical-field approach, for
reviews see Refs. [32–37]. For large occupation of modes
it is a good approximation to replace creation and annihi-
lation operators by their expectation values and solve the
resulting Heisenberg equations of motion for these operators
numerically. We initialize the system using Monte Carlo min-
imization, starting from an empty lattice and working at fixed
chemical potential. For the Monte Carlo procedure we use
the Hamiltonian as the minimization functional and adjust the

FIG. 11. Two-fluid model for self-stabilization at low initial temperature (a) and high initial temperature (b). We show the total, thermal
and condensed particle number as well as temperature computed within a two-fluid model, for details see Appendix C. The model shows
qualitative agreement with experimental and simulation data shown in Fig. 4 of the main text. All quantities within the two-fluid model are
unitless. We use γdec = 1, �eq = 3, α = 2 and �E = 3.
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FIG. 12. Time evolution of the total number of atoms in the second band as well as its condensate and thermal fraction after a quench to
�V = 0.43 V0. Panel (a) shows experimental and panel (b) numerical data. We identify three main decay stages: the coherence buildup stage
(I), the inhibited relaxation stage (II) and the fast relaxation stage (III). The blue lines show exponential fits to the data points in stage III.
(c) Time of flight images for experimental data points marked by black squares in (a). The temperature of the initial state for both experiments
and simulation is T ≈ 1.1 Erec/kB ≈ 110 nk. We note that atom numbers for experiment and simulation are adjusted to be comparable in the
center of each tube as is described in Appendix B.

Monte Carlo temperature to the desired temperature of the
lattice. For the low temperature data we perform annealing
starting at higher temperature and reducing the temperature
to the desired one during the Monte Carlo procedure. For our
simulations we repeat this procedure and the subsequent time
evolution 300–600 times. We average all observables over all
of these Monte Carlo trajectories. This accounts for thermal
fluctuations. Note that a rather low number of Monte Carlo
trajectories is sufficient due to the self-averaging along the
z direction. We read out the occupations of individual bands
by projecting onto the Bloch functions of the tight-binding
lattice. As an estimate for the condensed atoms we use the
number of atoms occupying the X points of the lattice.

APPENDIX C: TWO-FLUID MODEL

A simple two-fluid model captures the main aspects of the
three different decay stages and qualitatively shows the same
behavior as the experimental data and our full simulation. We
consider only the atoms in the upper band and assume that
we have a thermal fraction Nth and a condensed fraction Nc of
atoms. The total number of atoms is Ntot = Nth + Nc. Further-
more, we assume that the equilibration within the thermal and
condensed atoms happens on a much faster time scale than the
equilibration between the two, such that we can assume the
equilibration within each fraction to be instantaneous. Without
loss of generality we assume that the condensed atoms have
zero energy. Following the description in Chap. 2 of Ref. [42]
we assume a generic density of states

g(ε) = cαεα−1 . (C1)

We can then compute the total number of thermal atoms and
the total energy E as

Nth =
∫

dε g(ε)
1

eε/(kBT ) − 1
∝ T α (C2)

E =
∫

dε g(ε)
ε

eε/(kBT ) − 1
∝ T α+1 . (C3)

We absorb the proportionality constants into the units of tem-
perature and energy and therefore obtain

Nth = T α, NthT = E . (C4)

As we have seen above the condensed atoms do not decay
due to perfect destructive interference. We, therefore, assume
that only the thermal atoms decay with time scale 1/γdec. Fur-
thermore, we assume that the thermal and condensed fraction
equilibrate on a time scale of 1/�eq. On average whenever a
thermal atom decays the total energy is decreased by the mean
energy of a thermal atom E/Nth. Additionally the atom gains
an energy �E corresponding to the energy difference between
the upper and the lower band. We assume that this energy is
redistributed to the atoms in the upper band and hence the
energy of these atoms is increased by this amount. Hence the
equations of motion for our model system are

Ṅth = −γdecNth + �eq(T α − Nth ),

Ṅtot = −γdecNth,

Ė =
(

�E − E

Nth

)
γdecNth . (C5)
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We derive the equation for the temperature of the system
by taking the derivative of T = E/Nth. We obtain

Ṫ = γdec�E − �eqT

Nth
(T α − Nth ) . (C6)

These equations are of cause only valid as long as there is a
condensed fraction, otherwise Ntot = Nth and

Ṅth = −γdecNth, (C7)

Ṫ = γdec�E . (C8)

In our case, having one harmonically trapped and two free
dimensions, we obtain α ≈ 1/2 + 1/2 + 1 = 2.

From Eq. (C6) we can see that moving an atom from the
condensate to the thermal cloud effectively cools the atoms.
The reason is that the mean kinetic energy of thermal atoms is
larger than the mean kinetic energy of condensed atoms. This
cooling process counteracts the heating effect due to the decay
of thermal atoms.

Within the two-fluid model we can also obtain an approx-
imation for the scaling of the decay of total atoms. To this
end we assume that the equilibration time scale �eq is much
faster than all other time scales, such that Nth ≈ T α . We find
that this approximation is reasonable during stage II. Within
this approximation we can solve Eq. (C5) and derive the
corresponding time dependence of the temperature

T (t ) = (
�E − (�E − T0)e− γ

α+1 t
)α

. (C9)

Hence the temperature always equilibrates at �Eα . For any
fixed temperature we can now solve the equation of motion
for the total number of atoms

Ntot (t ) = Ntot (0) − γdecT αt, (C10)

and see that it scales linearly. We note that for large �E
the condensate fraction may be depleted before the constant
temperature is reached and hence linear scaling of the total
number of atoms is not always observed.

For completeness we also show the results of the two-fluid
model for lower and higher initial temperature in Fig. 11.
By construction, the decay of the two-fluid model is expo-
nential when the condensate fraction vanishes. We also see
from Fig. 11 that the inflection point of the curve for the
total number of excited atoms is exactly the point where the
condensate fraction vanishes.

APPENDIX D: DECAY OF THERMAL STATE

As a cross check that the coherence of the chiral condensate
is indeed the origin of the inhibition of decay, we consider a
cloud of atoms at higher initial temperature in Fig. 12. As a re-
sult we obtain a lower condensate fraction and larger thermal
fraction. The decay is now dominated by the thermal fraction
of the atoms. We, therefore, find that an exponential fit shows
good agreement even for short times. This is in contrast to the
low temperature sample discussed in Fig. 4 of the main text.

APPENDIX E: DECAY-TIME-SCALE
FOR DIFFERENT TEMPERATURES

Within our numerical simulations we can determine the
decay time for the exponential decay in stage III for a range

FIG. 13. (a) Simulated decay time scale as a function of final
potential offset �V at several different temperatures as indicated
in the legend. After loading the atoms into the second Bloch band
they relax back to the lowest band. During stage III the decay
is exponential and we show the associated time scale versus �V .
(b) Crossover time from stage II–III. We extract the time where the
condensate fraction drops below 3%, which indicates the crossover
from stage II to III and is the starting point for the exponential fits.
We see that the crossover time crucially depends on temperature
while the temperature dependence of the decay time scale is not as
strong.

of different temperatures. The results are shown in Fig. 13(a).
The decay time shows no strong dependence on the initial
temperature of the atomic cloud. Only the maximum of the
decay times shifts to slightly lower values of �V for higher
temperatures. This can be explained as follows: the initial
temperature of the cloud determines the condensate fraction
at the beginning of stage II. Hence we expect larger coherence
and slower decay during stage II. Subsequently heating leads
to increasing temperature and hence reducing phase-space
density. The onset of stage III is essentially determined by the
time when the phase-space density has reduced below the crit-
ical value for condensation. Hence independent of the initial
temperature the phase-space density in the beginning of stage
III is always the same. A lower initial temperature only leads
to a later crossover from stage II to III. We confirm this by
showing the crossover time point from stage II to III in Fig. 13,
which indeed changes dramatically with temperature, indicat-
ing significantly longer durations of stage II and hence longer
lifetimes of the condensate for lower initial temperature.

APPENDIX F: COMPARISON OF DECAY
FOR DIFFERENT TUBE LENGTHS

As described in Appendix B we use shorter tubes in
the z direction in our numerical simulations as compared
to the experimental setup, while at the same time adjusting the
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FIG. 14. Condensed fraction of atoms as a function of time for
three different tube lengths. In order to adjust for different atom num-
bers per tube we plot the condensed fraction, which is the number of
condensed atoms normalized with the total number of atoms in the
second band. We consider three different numbers of sites in the z
direction Nz as indicated in the legend. The corresponding length of
the tubes is obtained by multiplying with the discretization length
dz = 0.13 μm, for details see Appendix B. Both the condensation
speed and the maximal number of condensed atoms depend crucially
on Nz. The temperature of the initial state is T ≈ 0.5 Erec/kB ≈
50 nk.

density and mean-field interaction in the center of the trap.
This step is necessary in order to keep the numerical effort
feasible. Here we compare different tube lengths in the z
direction. Longer tubes, while at the same time matching the
density in the center and ensuring a vanishing density at the
edge of the trap imply shallower traps and an overall larger
number of atoms within each tube. We see in Fig. 14 that
longer tubes lead to a faster condensation stage and a larger
final condensate fraction. This is consistent with the idea that
the extra dimension acts as an entropy reservoir for the con-
densation within the xy plane. More atoms in each tube imply
a larger entropy reservoir and hence more efficient cooling
towards the condensed state.

Furthermore we see that no tubes in the z direction, i.e.,
Nz = 1, implying an effective two-dimensional system, result
in a vanishing condensate fraction. We note that this is not
generally the case. We do obtain a small condensed frac-
tion of atoms for an effective two-dimensional system, when
starting at a much lower temperature of 5 nK in our sim-
ulations. This temperature is, however, currently unfeasible
experimentally.
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