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Universal conductance dips and fractional excitations in a two-subband quantum wire
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We theoretically investigate a quasi-one-dimensional quantum wire, where the lowest two subbands are
populated, in the presence of a helical magnetic field. We uncover a backscattering mechanism involving the
helical magnetic field and Coulomb interaction between the electrons. The combination of these ingredients
results in scattering resonances and partial gaps which give rise to nonstandard plateaus and conductance dips at
certain electron densities. The positions and values of these dips are independent of material parameters, serving
as direct transport signatures of this mechanism. Our theory applies to generic quasi-one-dimensional systems,
including a Kondo lattice and a quantum wire subject to intrinsic or extrinsic spin-orbit coupling. Observation of
the universal conductance dips would identify a strongly correlated fermion system hosting fractional excitations,
resembling the fractional quantum Hall states.
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I. INTRODUCTION

Quasi-one-dimensional conductors, such as semiconduct-
ing nanowires or quantum point contacts, are typical elements
of nanocircuits. On the one hand, they embody the ulti-
mate quantum limit upon shrinking a conductor. On the
other hand, they provide a test bed for fundamental physics
of low-dimensional interacting fermions. From both aspects,
conductance is the quantity of prime interest and of most
direct experimental access. The observation of conductance
quantization at integer multiples of the conductance quan-
tum G0 = e2/h, where e is the elementary charge and h is
the Planck constant, was a landmark achievement [1,2] in
experimental realization of conductors in the quantum limit.
It initiated extensive research activities on the quantum con-
ductance, both in experiment and theory, which continue
unabated. While the ballistic conductance is expected to be
robust against interactions [3–5], deviations from the universal
values are routinely observed [6–18], including mysteri-
ous conductance features that are unexpected from standard
single-particle quantum mechanics, such as dips and new
plateaus at fractional conductance values, strongly suggesting
the importance of many-body interaction effects [19–24].

In addition to hosting strongly interacting fermions, the
quasi-one-dimensional systems are capable of stabilizing
topological phases upon combining with an external magnetic
field, spin-orbit coupling, and superconductivity [25–27]. The
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observation of zero-bias conductance peaks in proximitized
Rashba nanowires [28–30], which hint at the presence of
Majorana bound states, has stimulated numerous sequential
studies on topological aspects of the quasi-one-dimensional
systems [31]. It motivated alternative setups for the realization
of Majorana bound states, in which the external magnetic field
and spin-orbit coupling are replaced by other ingredients. One
example is to replace these ingredients with a helical magnetic
field, which arises from either intrinsic spin textures [32–39]
or artificially synthesized nanomagnets [40,41]. Alternatively,
topological phases can also be stabilized by sufficiently strong
electron-electron interactions in a quasi-one-dimensional ge-
ometry with multiple conducting channels, such as nanowires,
edges of a two-dimensional topological insulator, and hinges
of a higher-order topological insulator [42–51]. Interestingly,
incorporating these ingredients has led to the discovery of
not only different candidate platforms but also more exotic
topological phases characterized by, e.g., parafermions or
fractionally charged fermions.

Here we merge these ingredients by considering an in-
teracting two-subband quantum wire in the presence of a
helical (spatially rotating) magnetic field, which induces a
spin-selective partial gap in the lower subband. The helical
field can be generated in a wide variety of systems, including
a Kondo lattice with localized spins ordered by the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [32,38,52–58], a
spin-orbit-coupled wire in the presence of an external mag-
netic field [59,60], and a wire subject to spatially modulated
nanomagnets [40,41]. While it is well known that such a
helical field, being equivalent to the combination of Zeeman
and spin-orbit fields [59], is crucial for the nontrivial topol-
ogy in the paradigm setup based on a single-subband Rashba
wire, there is less attention on its role in a wire where higher
subbands are populated.
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Remarkably, in this setting we identify a mechanism lead-
ing to fractional conductance quantization. It is manifested by
dips on the second conductance plateau of a quantum wire,
appearing when the Fermi wave vectors of the two lowest
subbands become commensurate. The effect arises in the pres-
ence of the helical magnetic field and strong electron-electron
interactions. The resulting higher-order backscattering opens
a gap in the upper subband, leading to universal conductance
dips; their positions and values are independent of material
details. Interestingly, upon varying the carrier density and/or
the wire width through voltage gates, the system reveals
the formation of strongly correlated fermions at certain gate
voltages, where the partially gapped upper subband forms a
fractional Tomonaga-Luttinger liquid [61,62], in analogy to
the fractional quantum Hall edge states.

The paper is organized as follows. In Sec. II we describe
two types of setups that realize a helical magnetic field and
explain how to achieve the commensurability condition in
each of them. In Sec. III we explain how the helical magnetic
field induces a gap opening in the electron energy spectrum.
The direct transport signatures of our theory, universal con-
ductance dips on the second plateau, and the conditions for
their appearance are presented in Sec. IV. The higher-order
scatterings for the even- and odd-denominator fillings are
discussed in Sec. V and Sec. VI, respectively. Finally, we
discuss the experimental realization and verification of our
theory in Sec. VII. The details of the calculation are given
in Appendix A. The estimation for the interaction parameter
is presented in Appendix B.

II. SETUP

We consider a quantum wire with anisotropic transverse
confinements. The geometry is chosen to separate the sub-
bands corresponding to the stronger confinement direction so
that the chemical potential, tuned by a voltage gate, intersects
with the lowest two transverse subbands, each being spin-
degenerate (see Fig. 1). Our mechanism applies to any wires
with well-defined subbands, irrespective of the specific form
of the transverse confinement potential. In this two-subband
regime, the electron operator can be expanded around the
Fermi points ±kF j ,

ψ jσ (x) = eikF j xR jσ (x) + e−ikF j xL jσ (x), (1)

with the slowly varying right(left)-moving fields Rjσ (Ljσ ),
the subband index j ∈ {1, 2}, and the spin index σ ∈ {↑,↓}.
We will suppress the coordinate x along the wire in the
argument unless it may cause confusion. In analogy to the
fractional quantum Hall states, we define the ratio ν ≡
kF2/kF1 as the “filling factor”. The commensurability condi-
tion is fulfilled when its inverse, 1/ν, is an integer. In terms of
the chemical potential measured from the bottom of the lowest
subband, the condition reads

μ

Eg

∣∣∣∣
ν

= 1

1 − ν2
, (2)

with the spacing Eg between the two subbands; see Fig. 1.

FIG. 1. Spectrum of a wire with two transverse subbands, each
being spin-degenerate; for clarity, the two spin branches are sep-
arated and plotted in different colors. The ratio of the chemical
potential μ to the subband spacing Eg is adjusted to fulfill the com-
mensurability condition given in Eq. (2). The helical magnetic field
B leads to 2kF1 spin-flip backscattering (green arrow) [see Eq. (6)]
and a partial gap in the lower subband. In a wire (blue block) with
anisotropic confinements, d < w � L, electrons experience a spa-
tially rotating magnetic field (colored arrows) described by Eq. (3).

We are interested in the setting where the electrons experi-
ence a helical magnetic field in the following form:

B(x) = B[ey cos(2kF1x) + ez sin(2kF1x)], (3)

with the unit vector eμ and field strength B. Without loss of
generality, we assign the up/down-spin orientation to be in
the ±x direction and choose the clockwise rotating magnetic
field. The spatial pitch π/kF1 of the field is chosen so that it
causes spin-flip backscattering between right- and left-moving
electrons in the lower subband. We remark that it is sufficient
to have a helical field with the dominant Fourier component
at 2kF1 even without a perfect periodicity [63]. To achieve
Eqs. (2) and (3) simultaneously, we consider the following
two types of setups.

A. Self-tuning helix in a Kondo lattice

In the first type, one can exploit a quasi-one-dimensional
Kondo lattice, where localized spins (e.g., nuclear spins or
magnetic dopants) are present and coupled to conduction
electrons in the wire. The conduction electrons mediate in-
direct RKKY coupling between the localized spins, which
can be strongly enhanced by electron-electron interactions in
low dimension. As has been established in the literature on
wires where only the lowest transverse subband is populated
(one-subband regime) [32,38,52,53,55–58], the RKKY cou-
pling stabilizes a helical spin order in a finite-length wire at
sufficiently low temperature; see Fig. 2 for illustration of the
helical spin order in a Kondo lattice. The helically ordered
spins induce a spatially rotating magnetic field, which acts
back on the electrons. Since the RKKY coupling arises from
resonant scattering of electrons at the Fermi energy, the spatial

043208-2



UNIVERSAL CONDUCTANCE DIPS AND FRACTIONAL … PHYSICAL REVIEW RESEARCH 2, 043208 (2020)

FIG. 2. A quasi-one-dimensional Kondo lattice is realized in a
wire (blue block) hosting localized spins (arrows). The itinerant
charge carriers (labeled by Rjσ and Ljσ ) mediate the RKKY coupling
and lead to the formation of a spin helix at low temperature, where
the localized spins align ferromagnetically within a cross section and
form a helical pattern along the wire. For clarity, localized spins in
different cross sections are colored differently.

period of the helix and thus the helical field is determined
by the Fermi wave vector kF1 itself. As a consequence, the
spatial period of the helical field is self-tuned to π/kF1 for
any chemical potential in the one-subband regime.

When the chemical potential is adjusted to populate the
second transverse subband (two-subband regime), the π/kF1

helix remains stabilized by the lower-subband electrons. A
second, additional helix with a spatial pitch of π/kF2 could be
induced by the upper-subband electrons [54]. However, since
the two helices have in general different ordering tempera-
tures, it is possible, by adjusting the temperature, to reach the
regime in which only the π/kF1 helix is present. As outlined
here, previous work focused on either the one-subband regime
or the double-helix phase in the two-subband regime with
incommensurable configuration between kF1 and kF2 (that is,
the ratio kF1/kF2 is not an integer). In contrast, we turn our
attention to the temperature range where there is a single helix,
which induces a helical magnetic field of the form in Eq. (3)
when the chemical potential is in the two-subband regime. In
this Kondo-lattice setup, the commensurability condition in
Eq. (2) can be achieved by scanning the chemical potential
μ via a voltage gate in a fixed wire geometry (hence a fixed
subband spacing Eg).

B. Artificial helical magnetic field

As an alternative to the Kondo-lattice setup, one can
generate the helical magnetic field in artificially engineered
nanostructures. For concreteness, here we provide two exam-
ples. In the first example, spatially modulated nanomagnets
are deposited in proximity to a wire [40,41]. As illustrated in
Fig. 3(a), the nanomagnets induce a spatially rotating mag-
netic field Bn(x) with a spatial pitch of λ, leading to a partial
gap opening at finite momentum ±π/λ [see Fig. 3(b)]. The
second example is based on a Rashba wire, in which the spin-
orbit coupling causes a spin-dependent momentum shift ±kso

of the quadratic energy band [59,60]. Applying a Zeeman field
perpendicular to the spin-orbit field leads to a partial gap �z

opening at zero momentum, as displayed in Fig. 3(c). For λ =
π/kso, the energy spectra of the two examples can be mapped

FIG. 3. Setups realizing an artificial helical magnetic field.
(a) By depositing nanomagnets with alternative magnetization (green
blocks) in proximity to a quantum wire (blue block), a spatially
varying magnetic field Bn(x) is generated, coupling to the conduction
electrons (labeled by Rjσ and Ljσ ) in the wire. It leads to a partial
gap at finite momentum in the spectrum, as shown in Panel (b); for
clarity, the two spin branches are shifted vertically and plotted in
different colors. (c) In an alternative setup based on a Rashba wire,
the combination of the Zeeman and spin-orbit fields leads to a partial
gap at zero momentum. The energy spectra in Panels (b) and (c) can
be mapped onto each other through a gauge transformation (see the
text). When the chemical potential is tuned into the partial gap, the
required helical magnetic field for our mechanism is realized.

onto each other via a spin-dependent gauge transformation,
which shifts the momentum k by an amount of ±kso.

In either example, a spin-selective partial gap is opened
as a result of the spin-flip backscattering between right- and
left-moving electrons. When the chemical potential is tuned
into the partial gap in the lower subband, the spectrum is
equivalent to that of a wire subject to the helical magnetic field
given in Eq. (3). We note that there is an additional partial gap
in the upper subband, but it is separated in energy from the
electrons near the Fermi level and therefore does not affect
the linear-response conductance in the regime of our interest.
Upon adjusting the wire width and therefore the subband spac-
ing (for instance, through side voltage gates), one can change
the ratio of μ/Eg in order to fulfill the commensurability
condition given in Eq. (2).

In both types (either using a Kondo lattice or artificially
engineered nanostructure), a helical magnetic field is gener-
ated in a two-subband wire as illustrated in Fig. 1, where the
ratio of μ/Eg serves as a gate-tunable variable in conductance
measurements. Below we discuss our mechanism in a general
setup and we shall give remarks on specific experimental
realizations in Sec. VII.

III. PARTIAL GAP INDUCED BY THE HELICAL
MAGNETIC FIELD

We describe a general setup consisting of electrons in a
two-subband wire and a helical magnetic field with the Hamil-
tonian: H = H0 + Hint + HB. The first term H0 is the kinetic
energy. The second term Hint, describing electron-electron
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FIG. 4. Linear-response conductance (G) as a function of the chemical potential (μ) to the subband spacing (Eg) ratio in the regime of
μ/Eg ∈ {0.9, 1.4}. In the one-subband regime, the first plateau shows a quantized value at G0 ≡ e2/h due to the helical magnetic field, gapping
out a half of conduction modes. In the two-subband regime (shaded region), conductance dips with the universal values [see Eq. (8)] appear
at commensurate positions [see Eq. (2)]. Away from the commensurate positions, the conductance is given by 3G0 due to the half-gapped
lower subband. Here we show the dips for ν = 1/2, · · · , 1/5, each modeled by a gaussian profile with a width of δμ/Eg = 10−3. A hyperbolic
tangent function with the same width is used to smoothen the transition between the conductance plateaus. The gray lines are guidance
for eyes.

interactions, can be separated into the forward-scattering Hf

and backscattering Hb parts. The term H0 + Hf describes a
two-subband Tomonaga-Luttinger liquid parametrized by the
charge and spin interaction parameters Kjc < 1 and Kjs ≈ 1
(for subband j). Finally, the helical field couples to the elec-
tron spin through

HB =
∑

μ=x,y,z

∫
dx Bμ

(
1

2

∑
jσσ ′

ψ
†
jσ σ

μ

σσ ′ψ jσ ′

)
, (4)

with Bμ being the component of the helical field B in Eq. (3)
and σμ the Pauli matrix defined as

σ x =
(

1 0
0 −1

)
, σ y =

(
0 1
1 0

)
, σ z =

(
0 −i
i 0

)
. (5)

In Eq. (4), there is a single resonant (that is, nonoscillatory)
term in the integrand,

OB = g(1)

2
R†

1↓L1↑ + H.c., (6)

with the coupling strength g(1) ∝ B. The operator OB de-
scribes spin-flip backscattering with momentum transfer 2kF1.
If OB is relevant in the renormalization-group (RG) sense, it
can gap out the R1↓ and L1↑ modes, leading to a partial gap in
the lower subband, as shown in Fig. 1. The other modes (R1↑
and L1↓) remain gapless, resulting in a helical spin texture
in the electron subsystem. The RG relevance of OB can be
examined from the RG flow equation,

dg̃(1)

dl
=3 − K1c

2
g̃(1), (7)

where l is the dimensionless scale and g̃(1) = Ba/(h̄vF1) is
the dimensionless coupling constant with the Fermi velocity
vF1 of the lower subband and the short-distance cutoff a. The
RG flow equation shows that OB is relevant for any repulsive
interactions. From now on we focus on the regime in which

g̃(1) flows to the strong-coupling limit and OB gets ordered. In
this limit, operators that do not commute with OB cannot be
ordered.

The remaining, oscillating integrand in Eq. (4) does not
lead to a gap opening by itself due to momentum mis-
match. However, as the subbands are commensurate, the
combination of this oscillating term and the Hb term of the
electron-electron interaction allows for higher-order scatter-
ing processes that preserve both the momentum and the spin.
If such higher-order backscattering commutes with the opera-
tor OB, it can open a gap in the upper subband of the energy
spectrum. As a result, the primary experimental consequence
of the helical-field-assisted backscattering is reduction of the
conductance at certain fillings, which we present next.

IV. UNIVERSAL CONDUCTANCE DIPS

The conductance as a function of the ratio μ/Eg in the
one- and two-subband regime is presented in Fig. 4. The
conductance values at the dips, as well as the criterion for
interaction strength, are given by

Gν

G0
=3ν2 + 1

ν2 + 1
,

{
K2c < 2ν2 for even 1/ν,

K2c < 3ν2 for odd 1/ν.
(8)

At the commensurate fillings, the upper subband contributes
a fractional conductance depending on the filling factor ν and
an open channel in the half-gapped lower subband gives e2/h.
In consequence, upon decreasing ν, the dip value decreases
towards unity. The appearance of the dips rely on strong
electron-electron interactions, parametrized by K2c. In princi-
ple, the smaller the filling factor is, the higher-order backscat-
tering and thus the stronger interaction (smaller K2c) is
required for the occurrence of the corresponding dip. Since the
interaction parameter K2c itself also decreases when the elec-
tron density is reduced, as has been observed and analyzed in
Refs. [64,65], we expect that the interactions in typical devices
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FIG. 5. Scattering process in the upper subband for ν = 1/2 (that
is, kF1 = 2kF2); for clarity, the two spin branches are separated and
plotted in different colors. The lower subband, identical to the one
plotted in Fig. 1, is not shown. (a) Scattering process O(2)

+ . The HB

term brings an electron from L2↑(−kF2) to the intermediate state
R′

2↓(3kF2) (green dashed arrow). Electron-electron interactions al-
low R′

2↓ to forward scatter to R2↓(kF2) (brown dashed arrow). The
momentum difference is compensated by a backscattering process
L2↑ → R2↑ (brown solid arrow). (b) Diagram for O(2)

+ scattering
process in panel (a). The red (blue) arrows indicate up-(down-)spin
fermion fields. The wavy line and green circle mark Coulomb in-
teraction and spin-flip backscattering by the helical magnetic field,
respectively.

are sufficiently strong for multiple dips to be observable; see
also Appendix B for the estimation on the K2c value. As shown
in Fig. 4, the dips appear around the edge of the second
plateau, within the range of μ/Eg ∈ {1, 4/3}. They become
denser as the wire becomes more depleted. Crucially, as long
as electron-electron interactions are sufficiently strong, the
positions and the values of the conductance dips are insensi-
tive to specific material parameters; hence they are universal.

We remark that, in deriving Eq. (8), we have taken into ac-
count explicitly the effect of Fermi-liquid leads (characterized
by KL

c = KL
s = 1), as in early works on single-subband wires

in the absence of backscatterings in the wire [3–5]. While
electron-electron interactions are required for the appearance
of the dips, the conductance value itself does not depend
on the interactions in the wire. This result is similar to the
conclusion of Refs. [3–5], in the sense that the conductance
is determined by the interaction strength in the leads instead
of the wire. The interaction criterion summarized in Eq. (8)
reveals distinct scaling behaviors for the backscatterings at
even- and odd-denominator fillings. Next, we fix the filling
factor ν, and discuss the higher-order backscattering mecha-
nism separately for even and odd denominators.

V. EVEN-DENOMINATOR FILLING

When the chemical potential is at the even commensu-
rability ν = 1/(2n), it allows for the (2n)th-order helical-
field-assisted scattering in the upper subband. In the RG
framework, we keep the most relevant scattering, which con-
sists of two terms, denoted as

O(2n)
σ = g(2n)

2
(R†

2↓L2↑)(R†
2σ L2σ )n(R†

2σ̄ L2σ̄ )n−1 + H.c., (9)

with g(2n) ∝ B(U2kF2 )2n−1, the Fourier component of the
Coulomb potential U , and σ = −σ̄ ∈ {↑ ≡ +,↓ ≡ −}.
Figure 5 illustrates the scattering process for n = 1 and

σ = +. The helical field in HB brings an electron from L2↑
at the Fermi point −kF2 to the intermediate state R′

2↓ at
3kF2, which subsequently forward scatters to R2↓ at kF2 by
electron-electron interactions. The momentum difference is
compensated by a backscattering process, which brings an
electron from L2↑ at the Fermi point −kF2 to R2↑ at kF2. One
can generalize the diagram to describe scattering processes
for σ = −, as well as for general n. While the scattering
involves states away from the Fermi level, the corresponding
operator O(2n)

σ is written in terms of R2σ and L2σ defined at the
Fermi level, where the bosonization and Tomonaga-Luttinger
liquid approach are valid. Clearly, the initial value of g(2n)

depends on the energies of the intermediate states and there-
fore the system details, such as the confinement potential and
the curvature of the dispersion relation. Nevertheless, since
the relevance of the operator O(2n)

σ is determined by its scaling
dimensions instead of the bare coupling, we do not specify
g(2n) here.

With the bosonization technique, we derive the RG flow
equation for g̃(2n) = g(2n)a2/(h̄vF2) with the Fermi velocity
vF2 of the upper subband,

dg̃(2n)

dl
=(1 − 2n2K2c)g̃(2n), (10)

which indicates that the operator O(2n)
± is RG relevant for

K2c < 1/(2n2). Before proceeding, we comment on other
perturbations that could be relevant. First, the presence of a
periodic potential (for instance, arising from the lattice) could
enable umklapp scattering processes, in which electrons back
scatter with the help of the crystal momentum [66]. However,
the umklapp scattering is feasible only when the Fermi wave
vector is on the order of the inverse lattice spacing, which
is beyond the parameter regime of interest. We, therefore,
do not include the effect of the lattice periodicity here. Sec-
ond, impurity scattering induced by disorder is in general
RG relevant [66], where the corresponding operator is given
by Oimp = R†

2σ L2σ + H.c. (other operators such as R†
1σ L2σ do

not commute with the most relevant OB and therefore cannot
be ordered). However, since Oimp has a different scaling di-
mension than O(2n)

σ , we find that g̃(2n) grows faster than the
coupling of Oimp under the RG flow for K2c < 1/(4n2 − 1).
Moreover, when taking into account the RG flow up to the
second order in couplings, the K2c value is also renormalized
and reduced from its initial value, in favor of the dominance
of O(2n)

σ over Oimp. In consequence, the helical-field-assisted
scattering dominates over the impurity scattering for suffi-
ciently strong electron-electron interactions.

To proceed, we express the operator as O(2n)
± =

g(2n) cos 	e
± in terms of the boson fields 	e

±; see Appendix A.
Importantly, we show that O(2n)

± commute with each other
and with OB, so that the three operators can be ordered
simultaneously. In wires with sufficiently strong interactions,
meaning sufficiently small K2c, the backscattering terms in
Eq. (9) open a gap in the upper subband, leading to dips in the
conductance.

VI. ODD-DENOMINATOR FILLING

Now we turn to the odd case ν = 1/(2n + 1) and in-
vestigate the (2n + 1)th-order helical-field-assisted scattering.
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FIG. 6. The same as in Fig. 5 but for an odd filling ν = 1/3
(kF1 = 3kF2). (a) Scattering process O(3). The HB term brings an
electron from L2↑(−kF2) to R′′

2↓(5kF2) (green dashed arrow). With the
help of electron-electron interactions, the electron scatters from R′′

2↓,
through R′

2↓(3kF2), to R2↓(kF2) (brown dashed arrows), accompanied
by the backscattering processes L2↑ → R2↑ and L2↓ → R2↓ at the
Fermi points (brown solid arrows). (b) Diagram for O(3) scattering
in panel (a). The labels are the same as those given in Fig. 5.

In contrast to the even case, here the most RG relevant process
consists of a single term,

O(2n+1) = g(2n+1)

2
(R†

2↓L2↑)(R†
2↑L2↑)n(R†

2↓L2↓)n + H.c.,

(11)

with g(2n+1) ∝ B(U2kF2 )2n; Fig. 6 illustrates the O(3) process,
which is similar to Fig. 5 but involves higher-order scattering
processes.

Upon bosonization, we derive the RG flow equation,

dg̃(2n+1)

dl
=3 − (2n + 1)2K2c

2
g̃(2n+1), (12)

with g̃(2n+1) = g(2n+1)a2/(h̄vF2). The operator O(2n+1) is RG
relevant for K2c < 3/(2n + 1)2. In addition, we find that the
process O(2n+1) dominates over the impurity scattering Oimp

for sufficiently strong interactions K2c < 2/[(2n + 1)2 − 1].
Again, the reduced K2c value under the (second-order) RG
flow tends to enhance the dominance of O(2n+1) over Oimp,
so we have dominant helical-field-assisted scattering in a
strongly interacting system.

The operator can be written as O(2n+1) =
g(2n+1) cos(2

√
2n + 1	o

+) with the transformation given
in Eq. (A4); see Appendix A. In the presence of strong
interactions, the O(2n+1) term leads to a partial gap in the
upper subband. As a result, the system contains a fractional
(helical) Tomonaga-Luttinger liquid in the upper (lower)
subband. The conductance, with contributions from both
subbands, is summarized in Eq. (8). In the bosonic language,
when O(2n+1) is ordered, the 	o

+ field is pinned at multiples
of π/

√
2n + 1, while the excitations correspond to kinks in

	o
+, where the field changes its value between neighboring

minima. We find that such a kink carries a charge of qk = νe
and zero spin. This fractional charge can be examined through
shot noise, similar to the proposed setup in Ref. [67]. Here, qk

reveals the hierarchy of the Laughlin states [62], similar to an
array of one-subband quantum wires [61,68–71] and Rashba
wires [72–74] in magnetic fields.

VII. DISCUSSION

In this work, we demonstrate a mechanism for universal
conductance dips and fractional excitations. While the mech-
anism can take place in a wide variety of materials and setups,
we expect that the most natural realization is to utilize III-V
semiconducting quantum wires, where nuclear spins couple
to conduction electrons through the hyperfine interaction.
The wires realize Kondo lattices, in which nuclear spins are
ordered into a helical pattern at dilution fridge temperature
[e.g., O(10 mK)–O(100 mK) for GaAs and InAs wires], as
predicted theoretically in Refs. [52,53] and indicated in the
experiment with cleaved edge overgrowth GaAs quantum
wires in Ref. [13]. The ordered nuclear spins generate an
internal helical magnetic field required for our mechanism. In
general terms, this system consists of a Kondo lattice in which
the couplings between itinerant charge carriers and localized
spins are weak so that the RKKY coupling dominates over
the Kondo screening [75,76]. With the tunable dimensionality
of our setup, we demonstrate that Coulomb interaction be-
tween the charge carriers can trigger the formation of strongly
correlated fermions even in this weak-coupling limit. Remark-
ably, this realization relies on ingredients naturally present in
semiconductor wires and can host fractional excitations, re-
sembling fractional quantum Hall states even without external
magnetic fields.

Alternatively, magnetic dopants (e.g., Mn) can substitute
nuclear spins in creating the RKKY-induced helical field. Yet
differently, the quasi-one-dimensional Kondo lattice can be
fabricated out of heavy-fermion compounds, where itinerant
electrons and localized spins interact through exchange cou-
plings [77]. In these alternative systems, both the transition
temperature and the helical field strength can be enhanced
due to larger exchange couplings [32]. Since the helix is
susceptible to magnetic fields [55] and elevated tempera-
tures [24,73], field- and temperature-dependent conductance
might be used to seek additional signatures, such as disappear-
ance of the dips and restoration of the standard plateaus. The
observation of universal conductance dips would indicate the
helix-assisted higher-order scattering and therefore the pres-
ence of the helix itself, supplementary to uniformly dropped
plateaus [13]. Apart from the above Kondo-lattice scheme,
the helical magnetic field can be artificially generated by the
external magnetic field in Rashba wires or by depositing nano-
magnets [40], which are target systems of active researches on
topological matters in the quasi-one dimension.

For the purpose of observation, as disorder in quantum
wires can mask the conductance features, the predicted dips
should be searched for in wires in the ballistic regime. Since
the proposed scatterings involve intermediate states at rel-
atively high energies, quantum wires capable of sustaining
these intermediate states are desirable, which can be achieved
using, for instance, quantum wires that confine a few more
transverse modes [78]. To distinguish the predicted dips from
Fabry-Perot oscillations in a finite-size wire, one might sup-
press the latter features through device design, such as wire
length or smoothness of the contact between the wire and
leads [24,73]. In addition, while the Fabry-Perot oscillations,
if present, occur on both of the first and second conductance
plateaus, the dips appear only on the second plateau and are
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inevitably accompanied by nonstandard quantized values of
the two plateaus in a certain temperature range. Since the
conductance dips can be observed in straightforward transport
measurements, our prediction can be verified through system-
atic investigations on the temperature-dependent conductance
upon varying carrier density and/or wire geometry.
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APPENDIX A: DETAILS OF THE CALCULATION

In this section we present the details of our calculation.
To analyze the higher-order backscattering processes, we em-
ploy the bosonization technique [43,46,54,61,66,68,70]. We
express the slowly varying fields [see Eq. (1)] as

Rjσ (x) = 1√
2πa

eiφR jσ (x), Ljσ (x) = 1√
2πa

eiφL jσ (x), (A1)

with the chiral bosonic fields φ� jσ . In the above, we omit
the Klein factors, and use the indices � ∈ {R ≡ +, L ≡ −},
j ∈ {1, 2}, and σ ∈ {↑≡ +, ↓≡ −} to label the chirality,
subband, and spin, respectively.

For the odd-denominator filling ν = 1/(2n + 1), we im-
pose the following commutation relation:

[φ� jσ (x), φ�′ j′σ ′ (x′)] = iπ�δ��′δ j j′δσσ ′sign(x − x′). (A2)

Next, we express the operator O(2n+1) as a cosine;
[43,46,61,68,70],

O(2n+1) = g(2n+1) cos(2
√

2n + 1	o
+), (A3)

through the transformation �o = T oψ with �o ≡
(	o

+,	o
−,o

+,o
−)t , ψ ≡ (φR2↑, φR2↓, φL2↑, φL2↓)t , the

transpose operator t , and the matrix T o given by

T o = 1

2
√

2n + 1

⎛
⎜⎝

−n −(n + 1) n + 1 n
−(n + 1) −n n n + 1

−n n + 1 n + 1 −n
n + 1 −n −n n + 1

⎞
⎟⎠.

(A4)

The new fields satisfy the commutation relations

[	o
±(x),o

±(x′)] = iπ

2
sign(x′ − x), (A5a)

[	o
±(x),o

∓(x′)] = 0, (A5b)

[	o
+(x),	o

−(x′)] = [o
+(x),o

−(x′)] = 0. (A5c)

To evaluate the charge of the excitations, we express the
charge density operator as [66]

ρc(x) = e

2π

∑
� jσ

∂xφ� jσ (x). (A6)

Using Eq. (A4) and performing the integral over space, we
evaluate the charge

qk =
∫

kink
dx ρc(x) = e

π
√

2n + 1
�	o

+, (A7)

with the change �	o
+ of the field across a kink. Therefore,

a kink where the 	o
+ field changes its value by π/

√
2n + 1

carries a charge of e/(2n + 1). In addition, the linear-response
conductance from the fractional Tomonaga-Luttinger liquid
can be computed straightforwardly as in Refs. [72,79]. The
results are given in the main text.

For even-denominator fillings ν = 1/(2n), we use the com-
mutator in Eq. (A2) for j = 1, and the following generalized
commutation relation for j = 2:

[φ�2σ (x), φ�′2σ ′ (x′)] = iπM�σ�′σ ′sign(x − x′), (A8)

with M�σ�′σ ′ being an integer depending on the chirality and
the spin. In addition, the chiral boson fields for j = 1 and j =
2 commute with each other. Defining the new index,

p, p′ ∈ {1 ≡ R ↑, 2 ≡ R ↓, 3 ≡ L ↑, 4 ≡ L ↓}, (A9)

we can write Mpp′ in the following matrix form:⎛
⎜⎝

1 −(2n − 1) −1 0
−(2n − 1) 1 0 1

−1 0 −1 2n − 1
0 1 2n − 1 −1

⎞
⎟⎠. (A10)

Denoting �e ≡ (	e
+,	e

−,e
+,e

−)t , we make the transfor-
mation �e = T eψ , with the matrix T e given by

T e =

⎛
⎜⎜⎝

−n −n n + 1 n − 1
n − 1 n + 1 −n −n
− fn −(2n2 − 1) fn 2n(n − 1) fn 0

0 −2n(n − 1) fn (2n2 − 1) fn fn

⎞
⎟⎟⎠,

(A11)

with fn ≡ 1/[4n(4n2 − 4n − 1)]. It can be shown that the
new fields 	e

± and e
± satisfy Eq. (A5) upon replacing the

superscript o → e. With Eqs. (A8)–(A11), the operators O(2n)
±

can be expressed in terms of 	e
±, as given in the main text.

Similarly to the odd case, the charge at the domain wall in the
	e

± fields is given by e/(2n).
Since the 	e

± fields arise from the unconventional commu-
tation relations in Eq. (A8), it is not obvious whether a partial
or full gap is opened in the upper subband. We therefore
employ a Green’s function-based approach [3,79] and com-
pute directly the linear-response conductance. By modeling
the system as a fractional Tomonaga-Luttinger liquid wire and
Fermi-liquid leads, we find the values for the conductance
dips, as presented in the main text.

APPENDIX B: ESTIMATION FOR THE
INTERACTION PARAMETER

In this section we estimate the interaction parameter Kjc for
subband j. By generalizing the formula in Refs. [50,64,66] for
wires with multiple subbands, we obtain

Kjc =
[

1 + 2e2

π2ε h̄vF j
ln

∣∣∣∣ D

max(w j, d )

∣∣∣∣
]−1/2

, (B1)
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FIG. 7. Interaction parameters Kjc for subband j ∈ {1, 2} in a
GaAs (blue) and InAs (red) quantum wire as functions of μ/Eg.
The green dots mark the K2c conditions for ν = 1/2, . . . , 1/5 at
the corresponding positions [see Eq. (8) in the main text]. The
adopted parameter values are ε = 12.9 ε0 (15.15 ε0), m = 0.067 me

(0.023 me) for GaAs (InAs), D = 400 μm, w = 100 nm, and
d = 10 nm.

with the dielectric constant ε, the Fermi velocity vF j =
h̄kF j/m, the Fermi wave vector kF j , the effective mass m,
the screening length D (the distance between the wire and

a nearby metallic gate), and the thickness d of the wire.
Defining the effective width w j = √〈y2〉 j (averaged with re-
spect to the jth subband electron wave function) and taking a
simple harmonic confinement potential along y direction with
the subband spacing Eg = h̄2/(2mw2), we find w1 = w and
w2 = √

3w. While our backscattering mechanism does not
rely on any specific confinement, here we adopt the parabolic
confinement potential in order to make concrete estimation
for Kjc; adopting other types of confinement would not make
qualitative difference.

The estimated Kjc values for GaAs and InAs wires are
shown in Fig. 7, where the green dots mark the upper bounds
for the K2c values required for our mechanism. To be specific,
for the dips corresponding to ν = 1/2, 1/3, 1/4, 1/5, . . .

to emerge, we need K2c below 0.5, 0.33, 0.13, 0.12, . . .,
respectively. Since vF j decreases when approaching the sub-
band bottom, we find sufficiently low K2c values in the regime
of interest, indicating sufficiently strong electron-electron in-
teractions for the helical-field-assisted backscattering. Specif-
ically, for the adopted parameters we find sufficiently small
K2c values for ν = 1/2, 1/3 in InAs wires and for ν up to
1/5 in GaAs wires. In conclusion, the K2c criterion for the
higher-order scattering can be fulfilled in the realistic regime,
allowing for multiple conductance dips appearing in typical
semiconductor wires.
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