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Nuclear liquid-gas phase transition with machine learning
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Machine-learning techniques have shown their capability for studying phase transitions in condensed matter
physics. Here, we employ machine-learning techniques to study the nuclear liquid-gas phase transition. We
adopt an unsupervised learning and classify the liquid and gas phases of nuclei directly from the final-state raw
experimental data of heavy-ion reactions. Based on a confusion scheme which combines the supervised and
unsupervised learning, we obtain the limiting temperature of the nuclear liquid-gas phase transition. Its value
9.24 ± 0.04 MeV is consistent with that obtained by the traditional caloric curve method. Our study explores the
paradigm of combining machine-learning techniques with heavy-ion experimental data, and it is also instructive
for studying the phase transition of other uncontrollable systems, such as QCD matter.
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I. INTRODUCTION

The nuclear liquid-gas phase transition is an old and long-
lasting topic [1–6]. Since the interaction between nucleons
exhibits van der Waals features similar to those between
molecules, i.e., a short-distance repulsive core and a long-
distance attractive tail, the nuclei, considered as self-bound
Fermi liquid, can experience liquid-gas phase transition as
well. Over the past several decades, the nuclear liquid-gas
phase transition has been studied based on the heavy-ion
collisions at intermediate and relativistic energies and hadron-
nucleus collisions at relativistic energies. The information of
the reaction products is obtained with powerful multidetectors
allowing the detection of a large amount of the fragments
and light particles produced in the reaction. A lot of probes
by analyzing sophisticatedly the information of the reaction
products have been proposed to recognize the liquid-gas phase
transition of nuclei [7–20].

The ability of machine-learning techniques [21,22] to
recognize and characterize complex sets of data stimulates
their applications on physics, and brings new possibilities
to the study of the nuclear liquid-gas phase transition. Be-
sides the common uses such as particle identification and
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tagging in experiments [23–25], machine-learning techniques
have various novel applications. Several examples are solving
quantum many-body problems [26], analyzing strong grav-
itational lenses [27], exploring phase properties of quark
matter [28–30], constraining and studying field theories
[31,32], and quantum state tomography [33]. Most notably, in
condensed matter physics, machine-learning techniques have
been used to classify phases of matter, and identify topological
order and phase transitions [34–37].

The resemblance between condensed matter physics and
nuclear physics is remarkable. They both involve a large
amount of degrees of freedom, and share the same theoretical
tools like Hartree-Fock theory and finite-temperature field
theory. Experimentally, however, unlike the condensed matter
physics, the nucleus is an uncontrollable system, and its ther-
mal properties can only be accessed through nuclear reactions.
Thus to treat the nuclear liquid-gas phase transition in terms
of equilibrium thermodynamics is not practicable. The nuclear
liquid-gas phase transition is realized through tracing the ef-
fect of the spinodal instability, which is intimately related to
first-order phase transition, on the reaction dynamics, e.g., by
measuring the properties of the intermediate mass fragments
(with charge number larger than 3).

Heavy-ion reaction experiments may bring the excited nu-
clei into the spinodal region of the phase diagram in which
the spinodal instability may develop exponentially and lead
to the breakup of nuclei. This is commonly referred to as
nuclear multifragmentation. In Fig. 1, we draw schemati-
cally the phase diagram and typical phase trajectories of an
excited nucleus in heavy-ion reactions. At the beginning of
the reaction, the vast majority of a ground state nucleus is
around the saturation density ρ0, which is approximately 0.16

2643-1564/2020/2(4)/043202(8) 043202-1 Published by the American Physical Society

https://orcid.org/0000-0002-6465-6186
https://orcid.org/0000-0002-7444-0629
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043202&domain=pdf&date_stamp=2020-11-09
https://doi.org/10.1103/PhysRevResearch.2.043202
https://creativecommons.org/licenses/by/4.0/


WANG, MA, WADA, CHEN, HE, LIU, AND SUN PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

FIG. 1. The sketch of the phase diagram of nuclear matter and
typical phase trajectories of the projectile nucleus in the heavy-ion
reactions with different excitation energies.

nucleon fm−3. After hitting the target nucleus, the projectile
nucleus is excited and compressed, and is regarded as heated
liquid (same for the target nucleus but we will focus on
the projectile, which is easier to measure for the detectors).
For low excitation energy, the compressed projectile nucleus
will expand and then exhibit a damped monopole oscilla-
tion accompanied by the emissions of a few light particles,
and remains as liquid. As the excitation energy increases,
the expansion of the nucleus becomes severer and drives the
nucleus into the spinodal region. In the spinodal region, due
to the attractive part in the nucleon-nucleon interaction, the
high-density region will attract nucleons from the low-density
region. This causes the formation of intermediate mass frag-
ments. The spinodal decomposition process thus drives the
system towards thermodynamic liquid-gas phase coexistence.
If the excitation energy continues to increase, the excited nu-
cleus will expand quickly enough to pass through the spinodal
region. The formation of the intermediate mass fragments be-
comes less important, since dynamically it takes time for the
fragments to format. In this case, the entire projectile nucleus
ends up with dominant light fragments, which corresponds to
a gas phase. Based on the above discussion, the observation
of the intermediate mass fragments or nuclear multifragmen-
tation is a sign of the nuclear liquid-gas phase transition.

In the present paper, we want to demonstrate that the
machine-learning techniques are also capable of dealing with
the phase transition in realistic nuclear systems, other than
theoretical models in condensed matter physics, though the
way of studying the phase transition of the two systems
exhibits essential differences. To that end, we train the neu-
ral network instead of, e.g., by the spin configurations from
Monte Carlo simulations, but by the final-state information
of heavy-ion reaction experiment. We then use the trained
networks to classify the liquid and gas phases of nuclei, and
determine the limiting temperature of the nuclear liquid-gas
phase transition.

II. EXPERIMENTAL DATA

The reactions of 40Ar on 27Al and 48Ti at 47 MeV/nucleon
were performed using beams from the TAMU K500
superconducting cyclotron. The charge and mo-
mentum of charged fragments are probed with the
4π detector, NIMROD [38] (neutron ion multidetector

for reaction oriented dynamics). Generally speaking, phase
transitions of small systems (about ten constituents) are
still well defined, distinguishable [39], and even detectable
[40]. The spectator matter in the nuclear reaction is argued
to be ideally suited to investigate the nuclear liquid-gas
phase transition since it can largely avoid the effect of
dynamical evolution. Because of the essential binary nature
of such reactions, we applied a reconstruction method for
the quasiprojectile (QP) source developed by Ma et al.
[15], which performs a three-source (i.e., a QP source, an
intermediate velocity source, and a quasitarget source) fit
for light particles with Z � 3, and then use the probability
of QP particles to identify the QP light fragments in an
event-by-event basis. For heavier fragments, they can be
assigned to the QP source directly through a rapidity cut.
The QP fragments are supposed to come from the excited
projectile nucleus. By the above QP-labeled light and heavier
fragments, the mass and charge numbers of QP source could
be reconstructed in each event and its excitation energy and
other bulk properties can be obtained. Details of Ma’s QP
reconstruction method can be found in Ref. [15]. Due to
the existence of an intermediate velocity source, the total
charge of QP fragments ZQP is generally less than the charge
number of the projectile nucleus. We choose events with
ZQP � 12 as good QP events, and focus on those ZQP = 12
events since they have the largest statistics (using events with
other ZQP does not change our conclusion qualitatively). The
universality of the QP fragment distributions [15] indicates
the memory of the entrance channel dynamics is lost prior
to the decay of the excited spectators. Thus the final-state
information of the QP fragments of the above two reactions is
combined to form a single event-by-event data set. This leads
to 40 081 valid QP events with ZQP = 12.

Physically, the excitation energy per nucleon Eex/A and
apparent temperature Tap of the QP nucleus are used to
characterize each QP event. Eex is deduced event-by-event
through [8,15]

Eex =
MQP∑
i=1

Ekin
i + 3

2
MnT − Q. (1)

The three terms represent the kinetic energy of the charged
QP fragments and neutrons, and the mass excess, respectively.
The apparent temperature of the QP nucleus can be obtained
by measuring the light particles evaporated from its surface.
This can be achieved via different thermometers, e.g., particle
kinetic energy or isotope yield ratios [41]. In the present
work, the quadruple momentum fluctuation [42] is used as the
thermometer. The quadruple momentum is defined as Qxy =
p2

x − p2
y, where px and py are the transverse components of

the emitted particle momentum in laboratory frame. Since
the apparent temperature is derived from the fluctuation of
Qxy, determining the reaction plane is not necessary. When
the momenta distribute in a Maxwellian form, the average
temperature of the events in a given Eex/A bin is related to
the variance of Qxy, i.e.,

〈Tap〉 =
√

〈Q2
xy〉 − 〈Qxy〉2

4m2
, (2)

043202-2



NUCLEAR LIQUID-GAS PHASE TRANSITION WITH … PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

FIG. 2. Scatter plot of the apparent temperature versus the excita-
tion energy per nucleon; only 10% of the total QP events with ZQP =
12 are shown. The red dashed line represents 〈Tap〉 as a function of
Eex/A. The horizontal and vertical cyan dotted lines represent the
limiting temperature and an analogical characteristic value of Eex/A
obtained through a confusion scheme, respectively (see below).

where m represents the mass of the probe particle (deuteron in
the present work). The event-by-event Tap is obtained through
a Monte Carlo method based on the standard deviation of 〈Tap〉
(details can be found in the Appendices). We draw the scatter
plot of Tap versus Eex/A, or the caloric curve, of the events
with ZQP = 12 in Fig. 2. The red dashed curve in the figure
represents the 〈Tap〉 as a function of Eex/A.

III. RESULTS

The power of the machine-learning techniques lies in their
ability to classify the phases of matter prior to the knowledge
of the characteristic quantities, namely, Eex/A and Tap. In that
sense, the event-by-event charge-weighted charge multiplicity
distribution of QP fragments ZMc(Z ) from experiment is used

as the input to train the neural network (the charge weighting
is for normalization). Among the 40 081 valid QP events with
ZQP = 12, 2/3 are used for training and others for testing.
To obtain an intuitive impression of Mc(Z ), we average for
testing events their Mc(Z ) in three typical Eex/A bins, namely,
low excitation (0.9–2.8 MeV), intermediate excitation
(5.3–5.4 MeV), and high excitation (8.1–13.0 MeV), and
show 〈Mc〉(Z ) in Fig. 3 with dashed lines (each bin contains
500 events). The patterns of 〈Mc〉(Z ) reflect the mechanism of
the nuclear liquid-gas phase transition discussed above, i.e.,
a large fragment accompanied by several small fragments at
low excitation energy; intermediate mass fragments show up
as the excitation energy increases, and the projectile nucleus
breaks into small fragments entirely if the excitation energy is
high enough.

A. Classifying the liquid and gas phases by the
autoencoder method

We first adopt an unsupervised learning, the autoencoder
method [43], to study the nuclear liquid-gas phase transition.
We show the construction of the autoencoder network used
in the present work in Fig. 4. The neural network consists
of two main parts: the encoder part encodes the inputted
event-by-event ZMc(Z ) to a latent variable (or code [44]),
and the decoder part decodes the latent variable to ZM ′

c(Z ),
and tries to restore the original ZMc(Z ). The neural network is
trained to best restore the encoded information, which means
the network is trained to minimize the difference between
ZMc(Z ) and ZM ′

c(Z ). There are two layers in the encoder and
decoder parts, respectively, and all layers are fully connected;
more details can be found in the Appendices.

For the testing QP events, the reconstructed M ′
c(Z ) are

averaged and compared with the original Mc(Z ) in Fig. 3.
We also show the mean and standard deviation of the event-
by-event reconstruction loss in the Appendices. We notice
from Fig. 3 that the autoencoder network succeeds in cap-
turing essential information of the inputted event-by-event
ZMc(Z ). Once we finish training the autoencoder network,
through the charge multiplicity distribution, each QP event
is mapped to a number (latent variable). We plot in Fig. 5

FIG. 3. The averaged charge multiplicity distribution 〈Mc〉(Z ) of the QP fragments. The average is taken for different Eex/A bins: left panel
for low excitation (0.9–2.8 MeV), middle panel for intermediate excitation (5.3 –5.4 MeV), and right panel for high excitation (8.1–13.0 MeV).
The dashed curves represent 〈Mc〉(Z ) from the NIMROD experiment, while the circles from the autoencoder network reconstruction 〈M ′

c〉(Z ).
Each Eex/A bin contains 500 testing events.

043202-3



WANG, MA, WADA, CHEN, HE, LIU, AND SUN PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

FIG. 4. The construction of the autoencoder network. We use two
layers in the encoder part and decoder part, respectively. The infor-
mation of the input ZMc(Z ) is encoded into the latent variable (LV)
through training the network to best restore the encoded information.
Details of the network are shown in the Appendices.

the latent variable as a function of Tap and Eex/A, with each
data point averaged over 500 testing events. The vertical error
bars in the figure represent the standard deviations of the
latent variable of these events, while the horizontal error bars
represent the standard deviations of characteristic parameter
(Tap or Eex/A). Although there are large errors due to the event-
by-event fluctuations of the experimental charge multiplicity
distribution, the averaged latent variable as a function of Tap or
Eex/A exhibits a sigmoid pattern, which indicates the trained
autoencoder network treats the low- and high-temperature (or
low- and high-excitation energy) regions differently. Consid-
ering that the autoencoder network is trained prior to any
knowledge of the characteristic quantities, i.e., Eex/A and Tap,
the autoencoder network is capable of classifying different
phases of nuclei directly from the final-state information of the
heavy-ion experiment. The area in the midst of the two phases
represents those liquid-gas coexistence events that enter the
spinodal region and are affected by the spinodal instability.
It is interesting for further studies to find out how the latent
variable is related to physical quantities.

FIG. 5. The mean and standard deviation of the latent variable
in different Tap and Eex/A bins, respectively. Each Tap or Eex/A bin
consists of 500 testing events. The horizontal errors represent the
standard deviation of Tap or Eex/A in that bin. The cyan vertical
dashed line in the left panel represents the limiting temperature
obtained through a confusion scheme (see below).

B. Limiting temperature from confusion scheme

Traditionally, the nuclear liquid-gas phase transition can
be recognized from the relation between Eex/A and the ap-
parent temperature Tap, namely, the caloric curve [7]. As the
excitation energy increases, more energy is transferred to the
internal energy of the liquid phase projectile nucleus, and
the apparent temperature increases. Dramatic change hap-
pens if the excited projectile nucleus goes into the spinodal
region. Part of the excitation energy is consumed to form
the fragments, in other words, transfer to latent heat. As a
consequence, the increase of the apparent temperature slows
down significantly, and even a plateau in the caloric curve is
observed [7,13]. The specific heat capacity of the collision
process c̃ is defined to describe quantitatively the effect of the
spinodal instability, i.e.,

c̃ ≡ d (Eex/A)

dTap
, (3)

which can be obtained from the caloric curve shown in Fig. 2.
Note its difference with cP and cV since the external con-
ditions on pressure and volume are not practicable due to
the complex nature of such finite, self-bound objects like
nucleus. The specific heat capacity c̃ will reach a peak when
the spinodal instability affects the excited projectile nucleus
the most severely. The corresponding apparent temperature
at the maximum is called limiting temperature, which can be
used to deduce the critical temperature of infinite nuclear mat-
ter [12]. Although the limiting temperature is different from
the first-order critical temperature of the isobaric process,
the nonmonotonic structure of c̃(Tap) indicates the existence
of the spinodal region in the nuclear matter phase diagram,
which is a convincing evidence of the existence of nuclear
liquid-gas (first-order) phase transition.

The above picture of the nuclear liquid-gas phase transition
is consistent with the features of the latent variable shown
in Fig. 5, and we can further obtain the limiting tempera-
ture by a confusion scheme [35]. In the confusion scheme,
the neural network is trained with data that are deliberately
labeled incorrectly according to a proposed critical point, and
the phase transition properties can be deduced from the per-
formance curve, i.e., the total testing accuracy as a function
of the proposed critical point, of the neural network [35]. In
the original confusion scheme [35], a W-shape performance
curve of the Ising model is observed, and the proposed critical
point corresponding to the local maximum in the middle of
the curve is recognized as the realistic critical point. As men-
tioned above, the nucleus is an uncontrollable system, thus
the events used to train the neural network cannot come from
separate phases like those in the Ising model. The change
from liquid to gas phase is gradual through a liquid-gas
phase coexistence. Therefore as we will demonstrate below, a
W-shape performance curve in the case of the Ising model, is
replaced by a V shape, when adopting the confusion scheme
in the nuclear liquid-gas phase transition.

Taking the example of Tap, the picture is as follows. In order
to properly include the uncertainty of the obtained limiting
temperature, we construct a Bayesian neural network (BNN)
which contains two fully connected layers, as shown in Fig. 6,
to perform this supervised classification. The QP events are
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FIG. 6. The construction of the Bayesian neural network for su-
pervised learning. The network consists of two hidden layers; details
are shown in the Appendices.

divided into two categories and labeled as liquidlike or gaslike
according to a proposed transition temperature T ′

ap. When
T ′

ap increases from low temperature (vice versa when T ′
ap de-

creases from high temperature), the feature of the liquid phase
(a large fragment accompanied by several small fragments)
emerges on both the liquidlike and gaslike categories. As a
consequence, the testing accuracy of low-temperature region
below T ′

ap is relatively low, and the total performance of the
network P(T ′

ap) starts to decrease, as shown in the left panel of
Fig. 7. When T ′

ap continues to increase, the features of the in-
termediate mass fragments begin to show up in the liquidlike
category and the total performance continues to decrease. As
T ′

ap approaches the realistic limiting temperature, the features
of the intermediate mass fragments become evident in both
the low- and high-temperature categories, thus significantly
reducing the total efficiency of the neural network. The total
testing accuracy then reaches its minimum at T ′

ap ≈ Tlim. The
error bars in the figure are the standard deviation of the testing
accuracy, and are obtained based on the trained BNN by per-
forming ten test runs, with each consisting of 1000 randomly
selected testing events. The limiting temperature is obtained
by a parabolic fit of the lowest five data points with errors.
The limiting temperature through the confusion scheme is
9.24 ± 0.04 MeV, which is consistent with the 9.0 ± 0.4 MeV
obtained from the traditional analysis of caloric curve [45].
Besides that, it also locates in the intermediate temperature

FIG. 7. The performance curve P(T ′
ap) and P(E ′

ex/A), i.e., the
testing accuracy as a function of the proposed temperature T ′

ap and
transition excitation energy E ′

ex, respectively. The yellow dotted lines
represent a parabolic fit of the lowest five data points with errors.

region in the left panel of Fig. 5 (cyan vertical dashed line),
which indicates both the autoencoder network and confusion
scheme learn the basic features of the liquid and gas phases
from the raw event-by-event charge multiplicity distribution.

In the right panel of Fig. 7, a similar analysis is carried
out on Eex/A, and we obtain an analogical characteristic value
of Eex/A = 5.79 ± 0.02 MeV. Since the network classifies
each event purely based on ZMc(Z ), the liquidlike events
and gaslike events divided by the characteristic value of Tap

(horizontal dotted cyan line in Fig. 2) correspond to almost
the same events that are divided by the characteristic value of
Eex/A (vertical dotted cyan line in Fig. 2). Considering that the
latent variable obtained in Sec. III A is correlated with Tap or
Eex/A, performing the above analysis with the latent variable
will lead to a similar result.

IV. SUMMARY AND OUTLOOK

We have shown that machine-learning techniques can be
employed to a traditional nuclear physics topic, the nuclear
liquid-gas phase transition. Based on the experiment event-
by-event charge multiplicity distribution, the neural networks
are capable of classifying the liquid and gas phases, and de-
termining the limiting temperature of the nuclear liquid-gas
phase transition. The hidden parameters identified by machine
learning may acquire physical significance. The latent vari-
able can be related to the order parameters for certain systems
[46,47]. A new field called “softness,” which characterizes
the local structure, is used to study the correlations between
structure and dynamics in glassy liquids [48]. To relate the
latent variable in Fig. 5 to certain physical quantities might
be meaningful for future studies. The analysis performed here
can also be applied to study the first-order phase transition of
the QCD matter by choosing proper final-state observables,
since the picture of the first-order phase transition of the QCD
matter is quite similar with that of the nuclear matter [49].
We anticipate that more sophisticated observables like the
kinetic energy spectra of the final-state particles, along with
more advanced machine-learning techniques, will provide us
new features in the nuclear liquid-gas phase transition, even
in other fields of nuclear physics, that are beyond the present
knowledge.
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APPENDIX A: EVENT-BY-EVENT EXCITATION ENERGY

The event-by-event excitation energy is obtained through
Eq. (1). In Eq. (1), Ekin

i represents the kinetic energy of the ith
charged QP fragment, which is obtained through the measured
data directly. The contribution of the neutron kinetic energy is
taken as 3/2MnT . Since the NIMROD does not provide the
momentum of neutrons, the associated QP neutrons cannot be
separated through the three-source fit. Therefore the neutron
multiplicity Mn is approximated as the difference between the
assumed total QP mass and the sum of the detected masses
of the QP fragments, i.e., Mn = AQP − ∑

AQP
i . The to-

tal mass of the QP spectator AQP is determined from ZQP

(the sum of ZQP
i , with ZQP

i being the charge of the ith mea-
sured fragments), by assuming the QP spectator has the same
neutron-proton ratio as the initial projectile. The temperature
T is assumed to equal to the temperature of QP protons which
is taken from the three-source fit parameters. The nonobserved
light charged particles from the QP spectator are calculated
from the extracted three-source fit parameters and added to
the QP in mass and energy.

APPENDIX B: EVENT-BY-EVENT APPARENT
TEMPERATURE

The apparent temperature of the QP nucleus is obtained
via the quadrupole momentum fluctuation. For the QP events
in a given excitation energy bin, the experimental deuteron
quadrupole momentum fluctuation temperature 〈Tap〉 is ob-
tained through Eq. (2), and its standard deviation values
�〈Tap〉 are evaluated by the TProfile class of ROOT in the
CERN data analysis library [50]. Both 〈Tap〉 and �〈Tap〉 are
fitted by polynomial functions to obtain their Eex/A depen-
dence, i.e., Tpol(Eex/A) and �Tpol(Eex/A). Since the standard
deviation �〈Tap〉 is small, the event-by-event apparent tem-
perature of the reconstructed QP nucleus is evaluated through

Tap = Tpol(Eex/A) + �Tpol(Eex/A)N (0, 1), (B1)

where N (0, 1) is a zero-mean Gaussian random number with
unit variance.

APPENDIX C: DETAILS OF THE NEURAL NETWORK

The neural network contains successively one input layer,
several hidden layers, and one output layer. Each layer pro-
vides its output z through a matrix multiplication of its input
x, i.e., z = W · x + b. The elements in the matrix W are
known as weights and in the vector b as biases. In a nor-
mal fully connected neural network these parameters are
single values, while in a BNN they become distributions,
usually assumed to be Gaussian form. The layer is then fol-
lowed by an activation function, f (z), which turns a linear
transform into a nonlinear one. Commonly used activation
functions are sigmoid, tanh, and ReLU (rectified linear unit).
f (z) is then used as the input of the next layer. The neu-
ral network can be treated as a function ỹ = g(x; W, b),
which transfers nonlinearly a given input x to an output
prediction ỹ. The cost function of the network C(ỹ, y) is
used to measure the difference between the network pre-
dictions ỹ and their true values y. The neural network is

TABLE I. Details of the autoencoder network used in the
present work.

Layer Neuron number Activation

Input 12 tanh
Encoder first layer 8–64 tanh
Encoder second layer 4–32 tanh or ReLU
Latent variable 1 tanh
Decoder first layer 4–32 tanh
Decoder second layer 8–64 ReLU
Output 12 −

trained to minimize C(ỹ, y), by adjusting its parameters
W and b.

For the autoencoder network used in the present work
shown in Fig. 4, the optimization is fulfilled by the Adam
[51] package in Tensorflow for this fully connected network.
When training the network, we use an exponential decreasing
learning rate α = 10−3 + (10−3 − 10−6) exp(−i/10 000),
with i the training epoch. The cost function is defined as
C(ỹ, y) = (ỹ − y)2. To prevent the network from overfitting
the data, we adopt a standard l2 regularization term in the
cost function of this neural network. The cost function is
adjusted to include the norm of the weight W and the bias
b, i.e., C̃(ỹ, y) = C(ỹ, y) + l2(‖W‖2/2 + ‖b‖2/2), with l2 a
positive number. The l2 regularization prevents the weights
and biases from increasing to arbitrary large values during the
optimization. We list the information of the autoencoder net-
work in Table I. The encoder part and decoder part are mirror
symmetric and each consists of two layers. Since the output
layer represents the positive defined reconstructed charge-
weighted charge multiplicity distribution ZM ′

c(Z ), a ReLU is
used to connect the decoder and the output layer. Figures 3 and
5 in the main text show the result with eight and four neurons
in the first and second encoder layer, respectively, and ReLU
activation between the encoder part and the latent variable
(with regularization l2 = 0.1). Note that not all the network
constructions shown in the second column of Table I properly
restore the inputted charge multiplicity distributions. For those
that do properly restore the charge multiplicity distributions,
their features of the latent variable shown in Fig. 5 are quite
similar. As a supplement to Fig. 3, we show the mean and

FIG. 8. The mean and standard deviation of the event-by-event
reconstruction loss of the autoencoder network for different (a) Tap

and (b) Eex/A bins, respectively. Each bin contains 500 testing events.
The horizontal errors represent the standard deviation of Tap or Eex/A
in that bin.
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standard deviation of the event-by-event reconstruction loss
in Fig. 8. The event-by-event reconstruction loss is defined as
the sum of absolute deviation of the charge multiplicity distri-
bution,

∑12
Z=1 |ZMc(Z ) − ZM ′

c(Z )|. We note that the average
reconstruction loss for the event with low temperature is
larger than that with higher temperature. Considering ZMc(Z )
is normalized to 12 and the event-by-event nature, we think
this is still acceptable.

For the supervised learning BNN used in the present work
shown in Fig. 6, we use two hidden layers, each consisting
of 100 neurons. The input layer and the hidden layers are
followed by ReLU. Weights and biases of the neurons are
represented as Gaussian distributions. The maximization of
the evidence lower bound is employed to solve the Bayes’
formula. Here we do not employ the l2 regularization since
the problem of overfit is not severe in BNN.
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