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Nuclear surface acoustic resonance with spin-rotation coupling
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We show that, under an appropriate out-of-plane static magnetic field, nuclear spins in a thin specimen on
a surface acoustic wave (SAW) cavity can be resonantly excited and detected through spin-rotation coupling.
Since such a SAW cavity can have the quality factor as high as 104 and the mode volume as small as 10−2 mm3

the signal-to-noise ratio in detecting the resonance is estimated to be quite high. We argue that detecting nuclear
spin resonance of a single flake of an atomically thin layer of two-dimensional semiconductor, which has so far
been beyond hope with the conventional inductive method, can be a realistic target with the proposed scheme.
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I. INTRODUCTION

A particle with an orbital angular momentum L in an in-
ertial frame of reference acquires an extra energy −L · ω in a
noninertial frame rotating with an angular velocity ω with re-
spect to the inertial frame [1]. The same argument holds for a
particle with a spin angular momentum S. Due to the extra en-
ergy −S · ω emerged in the rotating frame as a consequence of
the spin-rotation coupling [2], the spin system is magnetized
as if it were exposed to a magnetic field Bω = ω/γ , where
γ is the gyromagnetic ratio of the particle. Development of
the magnetization by rotation was first observed by Barnett
in 1915 in a rotating ferromagnetic body [3]. Very recently,
the Barnett effect was also reported for paramagnetic electron
spins [4] as well as for nuclear spins, causing frequency shift
of nuclear magnetic resonance (NMR) [5] and extra nuclear
polarization [6] by sample spinning at ∼10 kHz.

In this paper, we explore the possibility of accessing nu-
clear spin resonance through the alternating Barnett field in
the presence of a static, polarizing magnetic field B0. To this
end, the Barnett field Bω has to be normal to B0 and be
rotating around B0 at the frequency matched to the Larmor
spin-precession frequency ω0 = −γ B0, which can be several
tens of MHz or even higher. To realize such seemingly impos-
sible, rapid change of the direction of mechanical rotation and
thereby of the Barnett field, we propose to exploit a surface
acoustic wave (SAW) device and attach on it a thin layer
of the material containing the nuclear spins of interest. The
elastic medium carrying the surface wave undergoes ellip-
tic backward rotation [7], and the resultant acoustic vortex
field and thereby the Barnett field oscillates at the SAW fre-
quency. The oscillating Barnett field is a superposition of the
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resonantly rotating and the counter-rotating components, and
the former can cause transition between the spin states, creat-
ing spin coherence that leads to a detectable back action onto
the SAW device.

The presence of the spin-rotation coupling between elec-
tron spins and SAW has been predicted [8,9] and confirmed
through generation of alternating electron-spin currents [10]
and through resonant excitation of spin wave [11] in a thin
layer of conductors deposited on the SAW device. Impor-
tantly, it is not the magnetic moment γ S of the spin but its
angular momentum S that is involved in the spin-rotation
coupling. It follows that, for a given angular velocity ω of
mechanical rotation, the spin-rotation coupling is indepen-
dent of the gyromagnetic ratio. Therefore, even though the
gyromagnetic ratios of nuclei are orders of magnitude smaller
than that of electrons, the spin-rotation coupling for nuclei is
expected to be comparable to that for electrons.

The proposed approach offers a new mechanism of nuclear
surface acoustic resonance (NSAR), distinguishing itself from
well known nuclear acoustic resonance (NAR) in bulk materi-
als [12], where the nuclear spins interact with acoustic waves
through the dynamic electrical quadrupole coupling [13] or
dynamic Alpher-Rubin coupling [14]. The Barnett field in-
duced by the SAW cavity can be confined in a volume far
smaller than the size of the coil used in the conventional NMR
experiments [15]. Moreover, the quality factor of the state-
of-art SAW cavities can reach 104 [15], being two orders of
magnitude higher than that of the conventional LC resonator.
The small cavity volume and the large quality factor of the
SAW cavity potentially leads to the improved signal-to-noise
ratio (SNR), and thereby offering a vital tool to characterize
structures and dynamics of thin samples, such as van der
Waals materials.

II. SAW, SPIN-ROTATION COUPLING,
AND BARNETT FIELD

Let us consider a semi-infinite elastic medium on which a
SAW with a wavelength λSAW and an angular frequency ω0

propagates along the x axis. The surface plane is taken to be
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FIG. 1. A snapshot of a vectorial velocity field Re[u̇] in the
zx plane accompanying with a plane monochromatic surface wave
propagating along the x axis. The values qL and qT used here are for
LiNbO3 with λSAW = 40 μm.

lying in the xy plane at z = 0, and the elastic medium occupies
the volume z < 0, whereas the region z > 0 is vacuum. Within
the monochromatic and plane-wave approximation, the dis-
placement field u(x, z, t ) is given by a sum of the longitudinal
component uL = ∇ψ0eqLzei(kx−ω0t ) and the transverse compo-
nent uT = ∇ × A0eqT zei(kx−ω0t )ey as [7]

ux(x, z, t ) = (
ikψ0eqLz − qT A0eqT z

)
ei(kx−ω0t ), (1)

uz(x, z, t ) = (
qLψ0eqLz + ikA0eqT z

)
ei(kx−ω0t ). (2)

Here, the wave vector k = 2π/λSAW along the direction of
propagation (x) is real, while those along z are imaginary both
for the longitudinal and the transverse displacements. ψ0 and
A0 are constants having units of meter2 and depend on each
other through A0 = 2ikqL

k2+q2
T
ψ0. Figure 1 depicts the real part

of the velocity field u̇ = ∂u
∂t in the zx plane, where a point

particle in the field undergoes elliptic backward rotation.
The vortex field � accompanying the SAW is given by ∇ ×

u̇. Straightforward calculation gives its dominant y component
�y(t ) as

�y(t ) = 2kqLω0
k2 − q2

T

k2 + q2
T

ψ0eqT zei(kx−ω0t ). (3)

Figure 2 shows a snapshot of the real part of the oscillating
vortex field �y(t ), where we can observe that the field is
localized in the vicinity of the surface with its amplitude
decaying exponentially with z. Since the angular velocity ω is

FIG. 2. A density plot of the y component of the normalized
vortex field (Re[�])y = (Re[∇ × u̇])y accompanying with the same
SAW as that shown in Fig. 1.

given by �/2, the individual nuclear spins in the thin layer on
the surface of the elastic medium where the SAW propagates
experience the local spin-rotation coupling H̃I = − 1

2 Ĩ · � [2],
where Ĩ is the angular momentum density of the nuclear spins.
Alternatively, using the Barnett field Bω = �/(2γ ) and the
nuclear magnetization m = γ Ĩ (the magnetic moment per unit
volume), the spin-rotation coupling is expressed in the form of
the Zeeman coupling as

H̃I = −m · Bω, (4)

The Barnett field associated with the SAW is oscillating at the
angular frequency ω0 of the SAW, which can be far higher
than those possible with pneumatic spinning of a sample
container. As a consequence, under the out-of-plane static
magnetic field B0 nuclear spins experience resonance when
ω0 = −γ B0.

Since the phase of the Barnett field changes with x, the
transverse magnetization has to change its phase with x in
the same way, in order to be detected by the SAW device.
This requirement is fulfilled either by employing the same
SAW mode both for excitation and detection, or by creating
the helical transverse magnetization using the conventional
radio-frequency excitation in combination with a pulsed field
gradient.

III. SIGNAL-TO-NOISE RATIO

The SNR for the proposed NSAR detection can be ana-
lyzed by following a general formalism developed by Sidles
and Rugar on the SNR of any detectors comprised of a har-
monic oscillator coupled to the precessing magnetic moment
[16]. Indeed, the SNR for both the conventional electrical
detection and mechanical detection of NMR has successfully
been described with this theoretical framework. In the present
case, the equation of motion for the Barnett field Bω(t ) =
Bω(t )ey in the sample on the SAW device is

mB̈ω(t ) + m
ω0

Q
Ḃω(t ) + mω2

0Bω(t ) = f (t ) − ey · M(t ), (5)

where M(t ) is the time-dependent nuclear magnetic moment
and ω0, Q, and f (t ) are the resonance angular frequency,
the quality factor, and the Langevin noise of the magnetic
oscillator, respectively. Here, m is the magnetic mass having
units of kilogram × (meter2/tesla2), with which the magnetic
spring constant κm is expressed as κm = mω2

0 [16]. From the
equipartition theorem, the spectral density Sff of the magnetic
Langevin noise f (t ) is given by

Sff = 4

(
1

ω0Q

)
κmkBT, (6)

where kB is the Boltzmann constant and T is the tempera-
ture of the magnetic oscillator. With the oscillating transverse
magnetic moment, My(t ) = M0ey cos ω0t , we have the follow-
ing rms SNR [16]:


rms =
M0√

2√
Sff�ν

= M0

√
ω0Q

8κmkBT �ν
, (7)

where �ν is the measurement band width.
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To evaluate the SNR, all we need is to deduce the magnetic
spring constant κm in Eq. (7). To this end, let us consider the
Hamiltonian describing the SAW oscillator with a mass μ,
displacement U (t ), and momentum P(t ) as

HSAW = 1

2μ
P(t )2 + 1

2
μω2

0U (t )2 + HI . (8)

Here, P(t ) is obtained by equating the kinetic energy of the
oscillator to the integral of the kinetic energy density of the
SAW over the volume containing a two-dimensional (2D)
Gaussian SAW mode (see Appendix A 2 b), i.e., 1

2μ
P(t )2 =∫

cavity ρu̇u̇∗dv, with ρ being the mass density of the elastic
medium. The last term HI provides the nuclear-spin–oscillator
coupling, which can, from Eq. (B6), be read as (see
Appendix B 2)

HI =
∫

cavity
H̃I dv = − 1

2γ

∫
cavity

m · �dv

= − k

2γ

(
P(t )

ζμ

)
ey · M(t ), (9)

where M(t ) is the nuclear magnetic moment within the spec-
imen put on the SAW cavity. The cavity effectively removes
the spatial degree of freedom of the SAW and makes it pos-
sible to model the SAW mode as a whole as if it were a
single oscillator [17]. Here, the dimensionless constant ζ is a
geometrical factor ranging from 0.1 to 10 (see Appendix B 3),
and ζ 2 can be interpreted as an effective mass coefficient of
the oscillator [17], which, in the current context, is determined
by the overlap between the SAW cavity mode and the shape of
the sample (see Appendix B 2). The thickness of the sample
on the SAW is assumed to be comparable or shorter than
λSAW. We thus have the oscillating Barnett field associated
with the SAW in the cavity as Bω(t ) = Bω(t )ey = ( kP(t )

2γ ζμ
)ey.

To make the connection to the standard equation of
motion, Eq. (5), we need to perform a unitary transfor-
mation [16] to change the canonical variables {U (t ), P(t )}
into {Bω(t ),�(t )}, namely, Bω(t ) = k

2γ ζμ
P(t ) and �(t ) =

− 2γ ζμ

k U (t ). Consequently, the Hamiltonian HSAW in Eq. (8)
becomes

HB = 1

2
ζ 2μ

(
2γ

k

)2

Bω(t )2

+ 1

2

ω2
0

ζ 2μ
( 2γ

k

)2 �(t )2 − Bω(t )ey · M(t ), (10)

and the equation of motion for Bω(t ) becomes the standard
form given by Eq. (5). Here, the magnetic spring constant κm,
given by

κm = ζ 2μ

(
2γ

k

)2

, (11)

is proportional to the gyromagnetic ratio γ squared. From
Eq. (7), 
rms for the proposed NSAR detection scheme grows
as γ 3/2, unlike the conventional nuclear induction scheme
where 
rms ∝ γ 5/2. This difference comes from the fact that
the former NSAR scheme addresses the angular momentum
of nuclei, while the latter conventional NMR addresses the
magnetic moment of nuclei.

FIG. 3. A mode profile of a displacement field Re[ux] at z = 0
and t = 0 within a 2D Gaussian-SAW cavity mode made of LiNbO3

with the beam waist w0 = λSAW. Here, the area of the SAW cavity
can be considered as A = 2λSAW × 40λSAW with λSAW = 40 μm,
thus only the central region of it is depicted. Superimposed is a
sample with its lateral dimension of 2λSAW × 4λSAW (marked by the
green rectangle).

The NSAR can be detected either electronically, or opti-
cally, through the SAW-cavity response. As for the electronic
signal transduction an inter-digitated capacitor converts the
acoustic signal into an electric signal, which is in turn ampli-
fied electronically. The optical transduction can be carried out
through the acousto-optic effect such as the moving-boundary
effect, the photoelastic effect, and electro-optic effect [18].
Note here that as for the latter optical scheme, the signal
carried by SAW can, in principle, be faithfully transferred
into an optical signal with the minimum quantum noise added
[19]. The similar idea of rf signal-to-optical signal transduc-
tion schemes based on electro-mechanical system for NMR
detection have been pursued [20–24].

As concrete examples, let us examine three different spin-
1
2 nuclei, 1H, 13C, and 31P. As for the SAW material, we
take lithium niobate (LiNbO3) with the mass density ρ of
4.65 g/cm3. Targeting the SAW wavelength λSAW of ∼40 μm,
we have the resonance frequency ω0/2π of 88 MHz, which
is determined by the dispersion relation [7]. Since the gyro-
magnetic ratios are γ = 268 × 106, 67.3 × 106, and 108 ×
106 rad s−1 T−1 for 1H, 13C, and 31P, respectively, we need
B0 = 2.1, 8.2, and 5.1 T to bring the nuclear-spin-resonance
frequencies to ω0. The volume of the SAW cavity, Vc =
AλSAW, can be made far smaller than that of the pickup
coil used for the standard inductive detection of NMR. A
SAW cavity having the area A = 2λSAW × 40λSAW should be
feasible [15]. Figure 3 displays a 2D Gaussian-SAW cavity
mode within the xy plane with the beam waist w0 = λSAW.
To deduce the geometric factor ζ , we consider a sample with
its lateral dimension of 2λSAW × 4λSAW and the thickness of
λSAW/100 ∼ 400 nm, which is put on the center of the SAW
cavity as shown by the green rectangle in Fig. 3. The geo-
metric factor ζ is then found to be ∼0.6 (see Appendix B 3).
With these parameters, the magnetic spring constant, Eq. (11)
becomes κm = 9.0 × 10−2, 0.6 × 10−2, and 1.6 × 10−2 J T−2

for 1H, 13C, and 31P, respectively. These values are well-
compared to the one for the inductive method with a small
micro-coil [16]. The quality factor of the SAW cavity could
reach 104 [15], which is 102 times better than those of
the good electromagnetic LC resonators (Q ∼ 102 [16]), we

043200-3



KOJI USAMI AND KAZUYUKI TAKEDA PHYSICAL REVIEW RESEARCH 2, 043200 (2020)

expect the SNR 
rms in Eq. (7) of the NSAR could be sig-
nificantly increased compared with those of the conventional
NMR with the inductive method.

There are several other unconventional ways to detect
NMR from small number of spins. They include the resistively
measured scheme with nanoscale point contact in fractional
quantum Hall regime [25] and the magnetic resonance force
microscopy (MRFM) [26,27], as well as the scheme based
on nitrogen-vacancy spin magnetometers [28,29]. The first
scheme is applicable only for internal nuclei and sample-
specific. The latter two methods are tuned to detect spins in
the limited volume and good for three-dimensional imaging.
The proposed NSAR detection scheme is unique in that it is
particularly suitable for 2D thin samples.

IV. PROSPECTS

The question we now ask is to what extent can a sample
be thin? By way of illustration we shall estimate the expected
SNR for the particular case of 77Se contained in WSe2, one
of 2D semiconductors called transition metal dichalcogenides
(TMDs) [30], for which the optically pumped dynamic nu-
clear polarization (DNP) technique [31] is expected to work
[32–34]. Take a monolayer flake of WSe2 with the lateral
size of 160 μm × 80 μm, which matches within the central
region of the Gaussian mode of the 88-MHz SAW cavity
shown in Fig. 3. Obtaining such a large-area single-crystalline
monolayer flake is challenging but we note the promising
developments [35]. With the natural abundance 7.63% of 77Se,
the flake contains ≈2.1 × 1010 77Se nuclei, which is still
four orders of magnitude smaller compared with the number
of spins ever successfully detected by DNP-NMR using the
conventional induction method, where the single-shot rms
SNR was reported to be 0.6 [36]. Under the magnetic field
of B0 = 10.8 T, 77Se nuclei (γ = 51.0 × 106 rad s−1 T−1) on
the SAW cavity can be resonantly excited by the SAW. From
Eq. (7) with T = 4 K and �ν = 10 kHz, we have the single-
shot rms SNR, 
rms ∼ 0.3 × 10−3. Now, assuming 150-fold
improvement of nuclear spin polarization by optically pumped
DNP, the available spins increase up to roughly 3 × 109 and
we have 
rms ∼ 0.04, which suggests that 1000-time average
would allow us to achieve unity SNR. We anticipate the NASR
scheme to bring new insight that help to understand the rela-
tively unexplored role of nuclear spins in 2D semiconductors.

V. CONCLUSION

The oscillating Barnett field created by a small-volume
high-Q SAW cavity can be exploited to detect nuclear spin
resonance through the spin-rotation coupling. The proposed
scheme is particularly well-suited to investigate nuclei in 2D
extended samples. The expected SNR suggests that detection
of an NSAR signal from a single flake of atomically thin
2D semiconductor is feasible once combined with the DNP
technique.
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APPENDIX A: TWO-DIMENSIONAL GAUSSIAN
SURFACE ACOUSTIC MODES

We describe here two-dimensional (2D) Gaussian surface
acoustic wave (SAW) modes. Among these modes, we are
interested in the focused beamlike fundamental mode, which
can have a small beam radius at the beam waist of the order of
tens of micrometers. A cavity that supports the fundamental
mode thus has a very small mode volume, which is instru-
mental in realizing large spin-rotation coupling. We begin by
recapitulating the basic wave equations to equip us with the
notations and all that for the discussion of the 2D Gaussian
SAW modes.

1. Rudimentary information

In an elastic medium with a mass density ρ, bulk modulus
K , and shear modulus μs, the wave equation is given by [7]

ρ
∂2u
∂t2

=
(

K + 1

3
μs

)
∇(∇ · u) + μs∇2u, (A1)

where u represents the displacement vector field. In terms of
the longitudinal phase speed

CL =
(

K + 4
3μs

ρ

)1/2

(A2)

and the transverse phase speed

CT =
(

μs

ρ

)1/2

, (A3)

Eq. (A1) can be rewritten as

∂2u
∂t2

= (
C2

L − C2
T

)∇(∇ · u) + C2
T ∇2u. (A4)

In an infinitely extended medium, the longitudinal and the
transverse waves behave independently with the following
respective wave equations:

∂2uL

∂t2
= C2

L∇2uL (A5)

and

∂2uT

∂t2
= C2

T ∇2uT . (A6)

2. Surface acoustic waves

When the medium is semi-infinite, that is to say, the
medium occupies only up to z = 0 from the bottom along
the z direction, surface acoustic waves (SAWs) emerge. The
displacement vector field is obtained by solving Eq. (A4) with
the free boundary condition at the surface z = 0.
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FIG. 4. Semi-infinite medium and a wave vector k of a SAW.

a. Plane-wave solutions

Suppose now that a monochromatic surface wave infinitely
extended in the y direction propagates in the x direction, as
shown in Fig. 4. In this case, the plane-wave solution of
Eq. (A4) is given by [7]

u =
⎡
⎣ux

0
uz

⎤
⎦ =

⎡
⎢⎣ ikψ0

(
eqLz − 2qLqT

k2+q2
T

eqT z
)
ei(kx−ω0t )

0
qLψ0

(
eqLz − 2k2

k2+q2
T

eqT z
)
ei(kx−ω0t )

⎤
⎥⎦, (A7)

where ψ0 is a scalar constant, ω0 is the angular frequency,
k = 2π

λSAW
is the wave vector along x, and

qL = k
√

1 − κξ, (A8)

qT = k
√

1 − ξ (A9)

are the imaginary wave vectors along z for longitudinal and
transverse modes, respectively, with

κ = C2
T

C2
L

= 1 − 2ν

2(1 − ν)
(A10)

and

ξ = C2
R

C2
T

=
( ω

CT k

)2
, (A11)

and CR being the phase speed of the surface wave (CR < CT <

CL). Here, the Poisson ratio ν in Eq. (A10) is given in terms
of K and μs by

ν = 3K − 2μs

2(3K + μs)
. (A12)

b. Gaussian modes

Now we consider the complications when the plane-wave
condition is forgone. This can be done in two steps. The plane-
wave solution for u in Eq. (A7) can be read as a sum of the two
solutions: namely, the longitudinal plane-wave solution [the
plane-wave solution of Eq. (A5)], which can be obtained by
taking a divergence of a scalar potential, ψ = ψ0eqLzei(kx−ω0t ),
that is,

uL =
⎡
⎣uL;x

0
uL;z

⎤
⎦ = ∇ψ =

⎡
⎣ ikψ0eqLzei(kx−ω0t )

0
qLψ0eqLzei(kx−ω0t )

⎤
⎦, (A13)

and the transverse plane-wave solution (the plane-wave solu-
tion of Eq. (A6)), which can be obtained by taking rotation of

a vector potential, �A = [
0

A0eqT zei(kx−ω0t )

0
], that is,

uT =
⎡
⎣uT ;x

0
uT ;z

⎤
⎦ = ∇ × A =

⎡
⎣−qT A0eqT zei(kx−ω0t )

0
ikA0eqT zei(kx−ω0t )

⎤
⎦, (A14)

with the relation

A0

ψ0
= 2ikqL

k2 + q2
T

(A15)

imposed from the boundary conditions.
The first step to obtain the Gaussian modes is to make the

scalar constants ψ0 and A0 in Eqs. (A13) and (A14) depending
on x and y:

ψ0 → ψ0(x, y), (A16)

A0 → A0(x, y). (A17)

This step induces the changes

uL → uL =
⎡
⎣

(
∂ψ0

∂x + ikψ0
)
eqLzei(kx−ωt )

∂ψ0

∂y eqLzei(kx−ωt )

qLψ0eqLzei(kx−ωt )

⎤
⎦ (A18)

and

uT → uT =
⎡
⎣ −qT A0eqT zei(kx−ωt )

0(
∂A0
∂x + ikA0

)
eqT zei(kx−ωt )

⎤
⎦, (A19)

in Eqs. (A13) and (A14), respectively.
The second step is to insert the ansatz

u = uL + uT (A20)

into Eq. (A4) assuming that the condition Eq. (A15) would
still hold. Before doing this let us tidy up Eq. (A4). Using the
fact that

∂2u
∂t2

= −ω2
0u = −C2

Rk2u (A21)

and keep assuming the monochromaticity of the wave, that is
u ∝ e−iω0t , the time dependent wave equation (A4) becomes
time-independent one

C2
Rk2u + (

C2
L − C2

T

)∇(∇ · u) + C2
T ∇2u = 0. (A22)

Dividing this equation by C2
T , we have our version of

Helmholtz’s equation:

ξk2u +
(

1

κ
− 1

)
∇(∇ · u) + ∇2u = 0. (A23)

Inserting the ansatz u in Eq. (A20) into Helmholtz-like
Eq. (A23), we have a partial differential equation for ψ0(x, y).
After some lengthy manipulation, the equation can be read as

ieqLz

√
1 − ζ

√
1 − κζ

[
∂2ψ0

∂y2
+ 2ik

∂ψ0

∂x

]

+ 2iκ eqT z

ζκ − 2

[
∂2ψ0

∂y2
+ 2ik

∂ψ0

∂x

]
= 0. (A24)

The function ψ0(x, y) has to satisfy this equation for any value
of z. Thus we have

∂2ψ0(x, y)

∂y2
+ 2ik

∂ψ0(x, y)

∂x
= 0. (A25)
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This is nothing but the familiar one having the Gaussian
solutions.

c. Fundamental mode

The solutions of Eq. (A25) form the Gaussian modes [37].
Note here that since ψ0(x, y) is two-dimensional, it makes the
form a bit different from the well-known three-dimensional
Gaussian modes of electromagnetic waves. Let us now ana-
lyze the fundamental mode. Assume that the solution is given
by the following Gaussian form [37]:

ψ0(x, y) = α exp

[
i

(
p(x) + k

2q(x)
y2

)]
, (A26)

with two complex functions of x, p(x), and q(x), which are
called the complex phase shift and the complex beam parame-
ter, respectively. The later parameter q(x) in particular plays a
decisive role for the Gaussian mode. Hereafter, the amplitude
of the mode α is considered to be normalized (α = 1). To
explicitly obtain p(x) and q(x) let us plug the form (A26) into
Eq. (A25), we have two differential equations

∂q(x)

∂x
= 1, (A27)

∂ p(x)

∂x
= i

2q(x)
. (A28)

The solution of Eq. (A27) can be written as

q(x) = q0 + x = −i

(
πw2

0

λSAW

)
+ x. (A29)

Here, q0 = q(0) is the value of the complex beam parameter at
x = 0 (beam waist), where the value becomes pure imaginary

q0 = −i( πw2
0

λSAW
) with w0 being interpreted as the beam radius

at the beam waist. This mystic statement can be revealed to
be reasonable when we decompose the complex parameter
q(x) into two real parameters the radius of curvature of the
wavefront R(x) and the beam radius w(x) as

1

q(x)
= 1

R(x)
+ i

(
λSAW

πw(x)2

)
, (A30)

where R(x) = ∞ at x = 0. With Eqs. (A29) and (A30), we
have the following useful relations:

w(x) = w0

√
1 +

(
λSAWx

πw2
0

)2

, (A31)

R(x) = x

[
1 +

(
πw2

0

λSAWx

)2
]
. (A32)

With the solution for q(x) given by Eq. (A29), the solution
of Eq. (A28) can be written as

p(x) = i

2
ln

[
1 + i

(
λSAWx

πw2
0

)]
= i

2
ln

[
w(x)

w0
eiθ (x)

]
,

(A33)

FIG. 5. A mode profile of a displacement field Re[ux] in
Eq. (A36) for the case of w0 = 0.5 λSAW (the beam waist diameter
is λ) with λSAW = 40 μm. The material is assumed to be LiNbO3.

where

θ (x) = tan−1

(
λSAWx

πw2
0

)
. (A34)

Putting everything together, we have the following normalized
form of the fundamental mode:

ψ0(x, y) =
√

w0

w(x)
exp

(
− y2

w(x)2

)

× exp

[
−i

(
θ (x)

2
− k

2R(x)
y2

)]
. (A35)

The real part of the ux at z = 0 and t = 0 can then be obtained
by inserting this form into Eq. (A20),

Re[ux] = Re

[(
∂ψ0(x, y)

∂x
+ ikψ0(x, y)

−qT
2ikqL

k2 + q2
T

ψ0(x, y)

)
eikx

]
, (A36)

which are plotted in Figs. 5 and 6 for the cases of w0 =
0.5 λSAW (the beam waist diameter is λSAW) and w0 = λSAW

(the beam waist diameter is 2 λSAW), respectively.

APPENDIX B: NUCLEAR-SPIN–OSCILLATOR COUPLING

1. From SAW field to an oscillator

Let us imagine a SAW cavity carrying the fundamental
mode that we have considered in Sec. A 2 c. The cavity effec-
tively removes the spatial degree of freedom of the velocity

FIG. 6. A mode profile of a displacement field Re[ux] in
Eq. (A36) for the case of w0 = λSAW (the beam diameter is 2 λ) with
λSAW = 40 μm. The material is assumed to be LiNbO3.
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field u̇(x, y, z; t ) and makes it possible to model the SAW
mode as if it were an oscillator with a mass μ = ρVc, where ρ

is the mass density of the elastic medium and Vc is the cavity
volume [15]. For the sake of concreteness, we shall henceforth

assume Vc = T × W × L = λSAW × 2λSAW × 40λSAW, where
T , W , and L are the thickness, the width, and the length of
the SAW cavity. The Hamiltonian describing the oscillator is
given by

HSAW = 1

2μ
P(t )2 + 1

2
μω2

0U (t )2, (B1)

where U (t ) and P(t ) are the displacement and the momentum of the oscillator. Here, the cycle average of P(t )2 is obtained by
equating the kinetic energy of the oscillator to the integral of the kinetic energy density of standing-wave SAW over the SAW
cavity, that is,

1

2μ
〈P(t )2〉 = 1

2

∫
cavity

ρ〈(u̇ + u̇∗)︸ ︷︷ ︸
2Re[u̇]

· (u̇ + u̇∗)︸ ︷︷ ︸
2Re[u̇]

〉dv =
∫

cavity
ρu̇ · u̇∗dv

= ω2
0ρ

∫
cavity

{(
k2 + q2

L

)|ψ0|2e2qLz + 4k2q2
L

k2 + q2
T

|ψ0|2e2qT z − 4k2qL(qL + qT )

k2 + q2
T

|ψ0|2e(qL+qT )z +
∣∣∣∣∂ψ0

∂y

∣∣∣∣2

e2qLz

}
dv, (B2)

where u is given by Eqs. (A18)–(A20) with ψ0(x, y) is given by Eq. (A35). Here, we neglect the contribution from the terms
with ∂ψ (x,y)

∂x since ∂ψ0(x,y)
∂x ∼ ψ0(x,y)

40λSAW
and is far less than kψ (x, y), qLψ (x, y), qT ψ (x, y), and ∂ψ (x,y)

∂y ∼ ψ0(x,y)
2λSAW

for our cavity. From
Eq. (B2), we can assume

P(t ) = 2μω0Uc cos ω0t (B3)

and

U (t ) = 2Uc sin ω0t, (B4)

where Uc has a dimension of length and is defined by

Uc = 1√
Vc

[∫
cavity

{(
k2 + q2

L

)|ψ0|2e2qLz + 4k2q2
L

k2 + q2
T

|ψ0|2e2qT z − 4k2qL(qL + qT )

k2 + q2
T

|ψ0|2e(qL+qT )z +
∣∣∣∣∂ψ0

∂y

∣∣∣∣2

e2qLz

}
dv

] 1
2

. (B5)

2. Nuclear-spin–oscillator coupling

We now consider how the oscillator discussed in Sec. B 1, emerged when the SAW field has been integrated within the
Gaussian SAW cavity, interacts with the nuclear spins in the sample on the SAW cavity. The Hamiltonian for the nuclear-spin–
oscillator coupling is given by integrating the interaction energy density H̃I over the volume of the SAW cavity, that is,

HI =
∫

cavity
H̃I dv = − 1

2γ

∫
cavity

m · �dv, (B6)

where m is the nuclear magnetization (the magnetic moment per unit volume) and � is the vortex field (for standing-wave SAW),
which can be expressed as

� = ∇ × (u̇ + u̇∗)︸ ︷︷ ︸
2Re[u̇]

= ω0

(
2kqL

k2 + q2
T

)⎡
⎢⎣ ik ∂ψ0(x,y)

∂y eqT z

(k2 − q2
T )ψ0(x, y)eqT z

qT
∂ψ0(x,y)

∂y eqT z

⎤
⎥⎦ei(kx−ω0t ) + c.c. (B7)

Note that ψ0(x, y) given by Eq. (A35) has the maximum at y = 0, where ψ0(x, y) 
 ∂ψ0(x,y)
∂y . We thus approximate ∂ψ0(x,y)

∂y ∼ 0,
so that the vortex field �(t ) has only the y-component, namely, �(t ) = �(t )ey with

�(t ) = 2ω0kqL

(
k2 − q2

T

k2 + q2
T

)
eqT z(ψ0(x, y)ei(kx−ω0t ) + c.c.). (B8)

We note two important points here. First, the oscillating
vortex field �(t ) along the y-axis can be considered as a sum
of a pair of rotating components in the opposite directions.
For nuclei having the positive (negative) gyromagnetic ra-
tio γ , only the clockwise (counter-clockwise) component is
relevant. Second, the phase of �(t ), and thereby that of the

rotating component, changes linearly with x. This implies that
a simple π

2 pulse created by the conventional NMR coil would
not produce such transverse magnetization that is detectable
with the SAW device, because the phase of the signal contri-
bution in one place on the SAW destructively interferes with
that in another. Mathematically, naively integrating the vortex
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field over the cavity with a uniformly distributed transverse
magnetization m would result in cancellation of the integrated
nuclear-spin–oscillator coupling, that is, HI = 0.

To have the nonzero nuclear-spin–oscillator coupling, the
magnetization m has to be prepared in such a way that
the profile of the excited magnetization constructively yields
the nonzero total integrated spin-rotation coupling. We now
consider two possible excitation schemes and then the resul-
tant nuclear-spin–oscillator coupling used for detecting the
nuclear surface acoustic resonance (NSAR).

a. Excitation scheme I

A simple way to develop the detectable helical transverse
nuclear magnetization is to use the same local spin-rotation
coupling for both the excitation and detection processes.
Initially, the nuclear magnetization is assumed to be in ther-
mal equilibrium in the polarizing static field B0. Then, the
SAW cavity is excited to switch on the nuclear-spin–oscillator
coupling H̃I given in Eq. (B6), so that the individual local
magnetization starts to be rotated about the axis in the xy
plane, whose phase is determined by that of the local vortex
field. When the SAW excitation is continued until the angle of
rotation has reached π/2, the x-dependent local magnetization
becomes

m(0) = mB
1

max |�(0)|�(0)ex

= mB

2ψ0(0, 0)
eqT z(2Re[ψ0(x, y)eikx])ex, (B9)

where mB is the initial thermal magnetization under the mag-
netic field B0 along z axis before exciting the cavity and

max |�(0)| = 4ω0kqL

(
k2 − q2

T

k2 + q2
T

)
ψ0(0, 0) (B10)

is the maximum value of �(0) within the sample volume
Vs. The magnetization m(0) is along x axis and its sign is
alternating as moving along x axis. After the initial excitation
pulse the magnetization starts precessing about z axis. When
ignoring relaxation, the y component of the magnetization

FIG. 7. The geometric factors ζ as a function of the thickness t of
the sample, where the sample geometry is t × 2λSAW × 4λSAW with
λSAW = 40 μm. Here, the sample is assumed to be placed on the
center of the SAW cavity whose mode profile is depicted in Fig. 6.
The larger point corresponds to the value ζ for the reference sample
thickness of t = λSAW

100 = 400 nm.

FIG. 8. The geometric factors ζ as a function of the width w of
the sample, where the sample geometry is λSAW

100 × w × 4λSAW with
λSAW = 40 μm. Here, the sample is assumed to be placed on the
center of the SAW cavity whose mode profile is depicted in Fig. 6.
The larger point corresponds to the value ζ for the reference sample
thickness of w = 2λSAW = 80 μm.

at t after applying a quasi-instantaneous π
2 pulse at t = 0 is

given by

my(t ) = m0 sin ω0t, (B11)

where m0 is defined as

m0 = mB

2ψ0(0, 0)
eqT z(2Re[ψ0(x, y)eikx]). (B12)

The spatial profile of the vortex field is now engraved in the
magnetization my(t ), which will, in the end, result in
the nonzero total integrated spin-rotation coupling, HI in
Eq. (B6).

b. Excitation scheme II

An alternative scheme uses a pulsed field gradient Bz(x),
which linearly varies with x. The effect of Bz(x), applied
immediately after the π/2 pulse for an interval τ , is to create
a periodic phase grating of the transverse magnetization, i.e.,
the magnetization helix in the xy plane. The condition to attain

FIG. 9. The geometric factors ζ as a function of the length l of
the sample, where the sample geometry is λSAW

100 × 2λSAW × l with
λSAW = 40 μm. Here, the sample is assumed to be placed on the
center of the SAW cavity whose mode profile is depicted in Fig. 6.
The larger point corresponds to the value ζ for the reference sample
thickness of l = 4λSAW = 160 μm.
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mode matching is given by

γ

(
∂Bz

∂x

)
λSAWτ = 2π. (B13)

For instance, a typical clinical MRI can produce a gradient
field of the order of 0.1 T/m. For microimaging systems, even
stronger gradient fields by an order of magnitude are feasible.
Then, for 1H spins with γ = 268 × 106 rad s−1 T, the width of
the gradient pulse may be adjusted to ≈590 μs.

c. Detection

Let us suppose that the transverse magnetization my(t ),
represented as

my(t ) = m0 cos ω0t, (B14)

has been prepared. This can be done by changing the phase of
the excitation pulse, or, considering the quasi-instantaneous π

2
pulse is applied at t = − π

2ω0
with the excitation scheme dis-

cussed in Sec. B 2 a. With Eqs. (B8) and (B14) the interaction
Hamiltonian, Eq. (B6), becomes

HI (t ) = − 1

2γ

∫
sample

�(t )my(t )dv

= − 1

2γ

∫
sample

2ω0kqL

(
k2 − q2

T

k2 + q2
T

)
eqT z(ψ0(x, y)ei(kx−ω0t ) + c.c.)m0 cos ω0tdv. (B15)

Here, we shall note two things: First, since the magnetization my(t ) in Eq. (B14) is nonzero only within the sample, the integral
in Eq. (B15) is accordingly running only over the sample region. Second, since the magnetization is excited in such a way that its
projection onto the y axis is given by my(t ) = m0 cos ω0t , we can employ the rotating-wave approximation to pickup the in-phase
component, (2Re[ψ0(x, y)eikx] cos ω0t ), from (ψ0(x, y)ei(kx−ω0t ) + c.c.) in Eq. (B15). As a result we have, with Eq. (B12),

HI ∼ − k

2γ

[
2ω0

∫
sample

qL

(
k2 − q2

T

k2 + q2
T

)
eqT z(2Re[ψ0(x, y)eikx] cos ω0t )m0 cos ω0tdv

]

= − k

2γ

[
2ω0

∫
sample

qL

(
k2 − q2

T

k2 + q2
T

)
1

2ψ0(0, 0)
(eqT z(2Re[ψ0(x, y)eikx])2 cos ω0t )mB cos ω0tdv

]

= − k

2γ
[2ω0Us] cos ω0t ey · M(t ), (B16)

where Us is defined by

Us = 1

Vs

∫
sample

qL

(
k2 − q2

T

k2 + q2
T

)
1

2ψ0(0, 0)
(2eqT zRe[ψ0(x, y)eikx])2dv, (B17)

having a dimension of length, and M(t ) is the uniformly oscillating magnetic moment along y, which is given by

M(t ) = M0ey cos ω0t (B18)

with M0 = mBVs being the nominal magnetic moment within the sample.
With Eq. (B3), the spin-rotation coupling Hamiltonian, Eq. (B16), can then be expressed in terms of P(t ) as

HI = − k

2γ
(2ω0Us cos ω0t )

P(t )

2μω0Uc cos ω0t
ey · M(t ) = − k

2γ

(
P(t )

ζμ

)
ey · M(t ). (B19)

Here, we have introduced a dimensionless geometric factor ζ as

ζ = Uc

Us
, (B20)

where Uc and Us both have a dimension of length and are defined by Eqs. (B5) and (B17), respectively.

3. Geometrical factor ζ

The geometrical factor ζ appeared in Eq. (B19) can be interpreted as the square root of the effective mass coefficient of the
oscillator [17], which, in the current context, is determined by the overlap between the SAW cavity mode and the shape of the
sample. Figures 7, 8, and 9 show the geometric factors ζ as we change the thickness (t), the width (w), and the length (l) of
the sample from the reference sample geometry, Vs = t × w × l = λSAW

100 × 2λSAW × 4λSAW with λSAW = 40 μm, respectively.
Here, the sample is assumed to be placed on the center of the SAW cavity whose mode profile is depicted in Fig. 6.
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