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High-fidelity composite quantum gates for Raman qubits
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We present a general systematic approach to design robust and high-fidelity quantum logic gates with Raman
qubits using the technique of composite pulses. We use two mathematical tools—the Morris-Shore and Majorana
decompositions—to reduce the three-state Raman system to an equivalent two-state system. They allow us to
exploit the numerous composite pulses designed for two-state systems by extending them to Raman qubits.
We construct the NOT, Hadamard, and rotation gates by means of the Morris-Shore transformation with the
same uniform approach: sequences of pulses with the same phases for each gate but different ratios of Raman
couplings. The phase gate is constructed by using the Majorana decomposition. All composite Raman gates
feature very high fidelity, well beyond the quantum computation benchmark values, and significant robustness
to experimental errors. All composite phases and pulse areas are given by analytical formulas, which makes the
method scalable to any desired accuracy and robustness to errors.
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I. INTRODUCTION

Composite pulses (CPs)—sequences of pulses with well-
defined relative phases—have enjoyed tremendous success
as a basic control tool of simple quantum systems over
the past 40 years. Developed in nuclear magnetic resonance
(NMR) [1], they have spread due to their unique features
to many other fields, including trapped ions [2–11], neutral
atoms [12], doped solids [13–16], optical atomic clocks [17],
cold-atom interferometry [18–20], optically dense atomic en-
sembles [21], quantum dots [22–27], nitrogen-vacancy centers
in diamond [28], magnetometry [29], optomechanics [30],
etc. Recently, many new types of CPs have been developed
in order to boost the fidelity of some well-known quan-
tum control techniques, e.g., rapid adiabatic passage [13,31],
stimulated Raman adiabatic passage [15,32], Ramsey interfer-
ometry [9,17], and dynamical decoupling [14].

Composite pulse sequences feature a unique combination
of ultrahigh fidelity similar to resonant excitation and robust-
ness to experimental errors similar to adiabatic techniques.
Moreover, CPs offer great flexibility unseen in other control
techniques: They can produce broadband (BB), narrowband
(NB), passband (PB), and virtually any desired excitation
profile. These features render CPs ideal for applications
in quantum computation and quantum technologies in gen-
eral [33].

Quantum technologies use qubits which are implemented
either as a directly or indirectly coupled two-state quantum
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system. For example, in trapped ions, the electronic states of
the ions are used as qubits of two types: optical and radio-
frequency (rf) qubits. Optical qubits consist of an electronic
ground state and a metastable state, with lifetimes of the
order of seconds, while the rf qubits are usually encoded in
the hyperfine levels of the electronic ground states of the
ion. Either of these come with their advantages and disad-
vantages. It has been shown that by using dressing fields
in the rf-qubit configuration, one can suppress decoherence,
caused by magnetic-field fluctuations, by as many as three
orders of magnitude [34,35]. Rf qubits can be manipulated
directly [36], by Raman transitions [37], or by combinations
of these [34,35]. For a directly coupled qubit, just two states
suffice and CPs are implemented directly to them. For in-
directly coupled qubit states, via an ancillary middle state,
CPs are scarce, if any, because their construction requires
control of more complicated multistate quantum dynamics.
Techniques for producing two-qubit gates, using microwaves,
have also been developed [38].

In this paper, stimulated by the advances described above,
we develop a general systematic approach for creating robust
and high-fidelity quantum gates in Raman-type qubits. Our
method is based on the use of composite pulse sequences,
adapted for a three-state system. While the vast amount of
literature on composite pulses has been focused on two-
state systems, studies of CPs in higher dimensional systems
also exist [11,39–46]. Our method uses two powerful math-
ematical techniques: the Morris-Shore transformation [47]
and the Majorana decomposition [48], which map the three-
state Raman system onto equivalent two-state systems. Below
we briefly introduce these two techniques and then design
composite implementations of the single-qubit gates used in
quantum computing.

We assume that the Raman qubit consists of two ground
states, |0〉 and |1〉, coupled to an excited state |2〉, as illustrated
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FIG. 1. (Left) � system, representing a Raman qubit, consisting
of states |0〉 and |1〉 coupled to an excited state |2〉. (Right) After the
Morris-Shore (a) or Majorana (b) transformations, the Raman system
reduces to an effective two-state problem.

in Fig. 1 (left). Both the Morris-Shore (MS) transforma-
tion [47] and the Majorana decomposition [48] allow one to
reduce the three-state Raman system to a two-state problem,
Fig. 1 (right). To apply the MS transformation, a two-photon
resonance is assumed, as shown schematically in Fig. 1 (top
left). In contrast, the Majorana decomposition assumes SU(2)
symmetry of the system; see Fig. 1 (bottom left). We note that
when the one-photon detuning in Fig. 1 (top left) is large,
we can adiabatically eliminate state |2〉 and obtain an effec-
tive two-state system {|0〉, |1〉}. However, the large detuning
reduces the effective coupling |0〉 ↔ |1〉 and increases the
gate time. The Morris-Shore and Majorana decompositions
work for any detuning, and even on resonance, when the
dynamics, and the gates, are fastest. In the derivation of our
method, we first assume that the excitation is resonant. After
that, this condition is relaxed and the presence of detuning is
considered.

II. MORRIS-SHORE (MS) TRANSFORMATION

The Morris-Shore transformation requires the Hamiltonian
of the � system to have the form

H(t ) = h̄

2

⎡
⎣ 0 0 �0(t )eiφ0

0 0 �1(t )eiφ1

�0(t )e−iφ0 �1(t )e−iφ1 2�

⎤
⎦, (1)

where � is the single-photon frequency detuning and �0,1(t )
are the Rabi frequencies of the two transitions, which
must share the same time dependence, �0 = ξ0 f (t ) and
�1 = ξ1 f (t ). We assume that the two phases are equal,
φ0 = φ1 ≡ φ. We introduce the root-mean-square (rms)
Rabi frequency �(t ) =

√
�0(t )2 + �1(t )2 = ξ f (t ), where

ξ =
√

ξ 2
0 + ξ 2

1 . Without loss of generality, we assume that∫
f (t )dt = π . The two pulse areas are Ak = ξkπ (k = 0, 1),

and the rms pulse area is A = ξπ . The MS transformation de-

composes the three-state system into a decoupled (dark) state
|d〉 = (ξ1|0〉 − ξ0|1〉)/ξ and a two-state system, consisting of
a state |c〉 = (ξ0|0〉 + ξ1|1〉)/ξ coupled to the excited state |2〉,
as shown in Fig. 1 (top right) [43,47]. The Hamiltonian in the
MS basis is HMS(t ) = 1

2 h̄[�(t )eiφ |c〉〈2| + H.c.] + h̄�|2〉〈2|.
The corresponding MS propagator in the basis {|d〉, |c〉, |2〉}
in the most general form reads

UMS = e−iδ

⎡
⎣eiδ 0 0

0 a beiφ

0 −b∗e−iφ a∗

⎤
⎦, (2)

where a and b are complex Cayley-Klein parameters and
δ = ∫

�dt/2 is a phase factor coming from the representation
of the Hamiltonian. For resonant excitation, we have a =
cos(A/2) and b = −i sin(A/2). The propagator in the original
basis reads

U(φ) = e−iδ

ξ 2

⎡
⎣ aξ 2

0 + eiδξ 2
1 ξ0ξ1(a − eiδ ) ξ0ξbeiφ

ξ0ξ1(a − eiδ ) eiδξ 2
0 + aξ 2

1 ξ1ξbeiφ

−ξ0ξb∗e−iφ −ξ1ξb∗e−iφ ξ 2a∗

⎤
⎦.

(3)
If we apply a sequence of such pairs of pulses, each with some
relative phase φk , we can use the phases as free parameters to
construct composite Raman gates.

III. MAJORANA DECOMPOSITION

The Majorana decomposition reduces a multistate system
with the SU(2) symmetry to a two-state problem. Explicitly, it
maps the three-state Hamiltonian

H(t ) = h̄

2

⎡
⎣ −2� 0 �(t )eiφ

0 2� �(t )e−iφ

�(t )e−iφ �(t )eiφ 0

⎤
⎦ (4)

onto the two-state Hamiltonian HM (t ) = 1
2
√

2
h̄[�(t )eiφ|↓〉〈↑|

+ H.c.] + 1
2 h̄�(|↑〉〈↑| − |↓〉〈↓|) [11,43,48]. If the two-state

propagator is parameterized as

UM =
[

a beiφ

−b∗e−iφ a∗

]
, (5)

then the three-state propagator is

U(φ) =

⎡
⎢⎣

a2 b2e2iφ
√

2abeiφ

b∗2e−2iφ a∗2 −√
2a∗b∗e−iφ

−√
2ab∗e−iφ

√
2a∗beiφ |a|2 − |b|2

⎤
⎥⎦.

(6)

We shall use this mapping to design high-fidelity composite
Raman gates.

We are now ready to construct composite Raman imple-
mentations of the basic single-qubit quantum gates: The X ,
Hadamard, rotation, and phase-shift gates.

IV. X GATE

The X gate is defined as the Pauli’s matrix X̂ = σ̂x =
|1〉〈0| + |0〉〈1|, and it is the quantum equivalent of the classi-
cal NOT gate. One way to produce the Raman X gate, as seen
from Eq. (3), is to choose the Rabi frequency amplitudes as
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ξ0 = −ξ1 = √
2. Then a = −1 and b = 0, and the propagator

reads

U =
⎡
⎣0 1 0

1 0 0
0 0 −1

⎤
⎦, (7)

which is the X gate for the qubit {|0〉, |1〉}. This operation,
however, suffers from the drawbacks of resonant excitation:
Errors in the experimental parameters (Rabi frequencies,
pulse durations, detuning) reduce the fidelity.

The composite pulses overcome these drawbacks. For Ra-
man transitions, instead of a single pair of pulses, we use a
sequence of N pulse pairs with well-defined relative phases.
The overall propagator reads

U(N ) = U(φN )U(φN−1) · · · U(φ2)U(φ1), (8)

where U(φ) is the propagator for a single pulse pair, Eq. (3)
or Eq. (6). We measure the performance of the X gate in the

figures below by the infidelity D =
√∑

jk |Xjk − U (N )
jk |2, de-

fined as the Frobenius distance between the target gate X and
the actual propagator U(N ). Therefore, a perfect performance
corresponds to D = 0.

A. Morris-Shore decomposition

As is evident from Eqs. (2) and (3), a composite sequence
in the original basis transforms into a composite sequence in
the MS basis. This feature allows us to use the vast library
of composite pulses in two-state systems to design Raman
composite pulses. We note that the π pulse (7) in the original
basis corresponds to a 2π pulse in the MS basis. Hence, our
goal is to obtain a robust 2π pulse in the MS basis, which will
map onto a robust π pulse in the original basis.

The 2π CPs are not as ubiquitous in the literature as π CPs.
We propose here to create a 2π CP by merging two broadband
(BB) π CPs BN , each consisting of N pulses,

C2N = BNBN . (9)

As BN we can use the BB composite sequences [49]

BN = Bφ1 Bφ2 . . . BφN , (10a)

φk = k(k − 1)

N
π, (k = 1, . . . , N ). (10b)

Here B = π (1 + ε) is a nominal π pulse (i.e., for error ε = 0)
and φk is the relative phase of the kth pulse. For N = 3,
we have the famous sequence B3 = B0B2π/3B0 and hence
C6 = B3B3 = B0B2π/3B0B0B2π/3B0. The CP (9) features error
compensation in both the populations and the phases of the
propagator, which makes it suitable for gates. This is be-
cause this type of broadband 2π pulses is in fact a special
case of the phase-gate composite pulses, derived earlier [50].
This sequence applies to the MS basis. To obtain each of
the nominal π pulses, we choose ξ0 = −ξ1 = 1√

2
. Therefore,

each πφk pulse in the MS basis corresponds to the pulse
pair (Q0

φk
,−Q1

φk
) ≡ Qφk in the original basis, where Q0,1 =

π√
2
(1 + ε) are nominal π/

√
2 pulses, and φk corresponds to

FIG. 2. (a) Infidelity of the X and H gates as a function of the
pulse area error for a composite sequence of two, six, and ten pairs
of pulses (N = 1, 3, 5) by using the MS transformation. The explicit
sequences for N = 3 and N = 5 are given by Eqs. (11). The dashed
curves show the corresponding infidelities in the presence of a small
detuning, �T = 0.1 [see Eq. (13)]. (b) Same as top, but using the
Majorana decomposition and the pulse sequence (16).

the same phase in the two fields. Therefore, the first two BB
composite Raman sequences read

X6 = Q0Q 2
3 πQ0Q0Q 2

3 πQ0, (11a)

X10 = Q0Q 2
5 πQ 6

5 πQ 2
5 πQ0Q0Q 2

5 πQ 6
5 πQ 2

5 πQ0. (11b)

The infidelity of the resulting X gate for such sequences is
shown in Fig. 2 (top, solid lines).

B. Nonzero detuning

When one-photon detuning is present, as illustrated in
Fig. 1 (top), we can proceed in the following way. Instead
of a = −1, as in the resonant case, now we need to obtain
a = −eiδ , as seen from the propagator (3). This can be done
by producing a phase gate F̂ = exp[iησz], with a phase η =
π + δ. A robust composite phase gate can be produced by a
sequence of two BB π CPs, the first one with a zero phase and
the second with a phase η [50].

If the detuning is small, |�| 
 �, 1/T , where T is the
pulse width, we can replace the sequence of two broadband
CPs (9) with phased CPs,

C2N = BN (0)BN (δ), (12)

and in such way obtain an approximation to the phase gate
F̂ . Explicitly, the total sequence for N = 3, analogous to the
sequence (11a), is

X6 = Q0Q 2
3 πQ0QδQ 2

3 π+δQδ. (13)

The infidelity of the X gate for such sequences is shown in
Fig. 2 (top, dashed lines).
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FIG. 3. Infidelity of the X gate as a function of the pulse area
error for (a) composite sequence of 10 pairs of pulses (N = 5),
obtained by the sequence (14) of two universal CPs, in the presence
of moderate detuning and (b) BB1 composite sequence (15) in the
presence of large detuning. The adiabatic elimination in the bottom
frame uses �0 = �1 = 40π/T .

If the detuning is moderate, |�| ∼ �, 1/T , one can use
CPs with double compensation in the pulse area and the de-
tuning, and produce the X gate as in Eq. (12). For instance, the
five-pulse universal CP [51] U5 = B0B 5

6 πB 1
3 πB 5

6 πB0 produces
a composite X gate in the presence of moderate detuning by
applying the sequence

X10 = Q0Q 5
6 πQ 1

3 πQ 5
6 πQ0QδQ 5

6 π+δQ 1
3 π+δQ 5

6 π+δQδ. (14)

The performance is illustrated in Fig. 3 (top frame).
Finally, if the detuning is large, |�| � �, 1/T , one can

adiabatically eliminate the excited state |2〉 and obtain an
effective two-state system with the effective two-photon cou-
pling �eff = −�0�

∗
1/(2�).1 We can directly apply CPs in

this system. Therefore, by applying a composite π pulse with
phase stabilization, we achieve an X gate, up to a global phase,
due to the present Stark shift after the adiabatic elimination.
One prominent example of such pulse sequence is the BB1
composite pulse [53],

BB1 = Bζ B3ζ B3ζ Bζ B0, (15)

where ζ = arccos(−1/4). We note that now Bφ denotes a
nominal π pulse associated with the effective two-photon
coupling �eff, the implementation of which requires very large
pulse areas, Ak � π (k = 0, 1). The infidelity in this case
is plotted in Fig. 3 (bottom). Although the latter sequence
contains only five pulse pairs, compared to six and 10 in the

1A more accurate approach for elimination of state |2〉, which
is applicable not only for large but even for moderate and small
detuning, uses the effect of adiabatic population return [52].

previous ones, it requires much larger total pulse area in order
to have effective nominal π pulses, and hence this X gate is
much slower.

C. Majorana decomposition

The X gate can be also produced by using the Majorana
decomposition. As seen from Eq. (6), if the Cayley-Klein
paramaters a and b correspond to complete population transfer
in the two-state system (a = 0, |b| = 1), the same will be valid
in the Raman system as well. Hence, we can again use the
BB1 composite pulse (15). However, each of the πφk pulses
corresponds to a pair (R0

φk
, R1

φk
) ≡ Rφk in the original basis,

where R = π
√

2(1 + ε) = 2Q. Explicitly, the Majorana com-
posite Raman X gate reads

X5 = Rζ R3ζ R3ζ Rζ R0. (16)

We note that this composite sequence has the same total pulse
area (5 × √

2π ) as the N = 5 sequence (11b) used in the
MS approach (2 × 5 × π/

√
2), and therefore we can compare

the performance of the two methods; see Fig. 2. As seen in
the figure, by using the CPs, adapted for the Raman qubit,
we obtain a robust and high-fidelity X gate in either cases.
We also see that by using the MS approach, we achieve a
higher fidelity for the same total pulse area than the Majorana
method.

V. HADAMARD GATE

The Hadamard gate reads 1√
2
(σx + σz ). As seen from

Eq. (6), we cannot generate this gate by using the Majorana
decomposition, and hence we only use the MS approach.

It follows from Eq. (3) that for ξ0 =
√

2 + √
2 and ξ1 =√

2 − √
2, we have

U = −

⎡
⎢⎣

1√
2

1√
2

0
1√
2

− 1√
2

0

0 0 1

⎤
⎥⎦, (17)

which, up to an irrelevant global sign, is the Hadamard
transform of the qubit {|0〉, |1〉}. As for the X gate, the MS
propagator corresponds to a 2π pulse, since ξ = 2. Therefore,
we can use the same phases (10b) to build our composite
sequence. This time, however, πφk in the MS basis corre-
sponds to the pulse pair [(ξ0π/2)φk , (ξ1π/2)φk ] ≡ Sφk in the
original basis, instead of the (Q0

φk
, Q1

φk
) pair used for the X

gate. Therefore, we can use the composite sequences for the
X gate and only change the Rabi frequencies. For example,
the X gate CPs (11) are replaced by

H6 = S0S 2
3 πS0S0S 2

3 πS0, (18a)

H10 = S0S 2
5 πS 6

5 πS 2
5 πS0S0S 2

5 πS 6
5 πS 2

5 πS0, (18b)

which produce composite Raman Hadamard gates. The in-
fidelities of the composite Hadamard gates, produced by
sequences, consisting of two, six, and 10 pairs of pulses, are
plotted in Fig. 2 (top).

In the presence of detuning, one can proceed in the same
way as for the X gate. The 2π pulse, which produces a
propagator with a = −1, is replaced by a phase gate, which
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produces a = −eiδ , or alternatively, a universal CP can be
used, in the case of moderate detuning. For large detuning,
again adiabatic elimination and the half-π BB1 pulse [53] can
be used.

VI. ROTATION GATE

In order to produce composite rotation gates, we proceed
in a way similar to the X and Hadamard gates. Let us set
ξ0 = 2 sin(θ/2) and ξ1 = −2 cos(θ/2). This choice produces
a 2π pulse in the MS basis, just as before. Then the propagator
reads

U =
⎡
⎣cos θ sin θ 0

sin θ − cos θ 0
0 0 −1

⎤
⎦. (19)

This propagator describes a qubit rotation, although not in the
usual form eiθσy . As an example, for a robust π/3 rotation,
we use a composite sequence with the same phases as in the
previous two subsections, but each MS πφk pulse is produced
by the pair [(π/2)0

φk
, (−π

√
3/2)1

φk
] in the original basis. It can

be shown that the infidelity of the rotation gate does not de-
pend on the angle θ and is therefore the same as the infidelity
of the X and Hadamard gates. This is because these can be
considered as rotations with θ = π/2 and π/4, respectively.
Even more, an analytic formula for the infidelity of the X ,
Hadamard, and rotation gates can be derived,

D = 2 sin2N
(πε

2

)
, (20)

which demonstrates that the robustness of each of the com-
posite gates, produced by the MS approach, is of the order
O(ε2N ).

VII. PHASE GATE

The phase gate reads F̂ = exp[iησ̂z/2]. The composite ver-
sion of this gate cannot be produced by the MS approach but
only by the Majorana decomposition. We notice that if the
two-state propagator (5) is a phase gate with a phase η/2, then
the three-state propagator (6) is a phase gate with a phase η.
Therefore, in order to produce a composite Raman phase gate
we can use the available two-state CPs. A number of compos-
ite phase gates have been presented in Ref. [50] and we can
directly implement them for the Raman qubit following the
above argument. As a specific example, the sequence of two
three-pulse π CPs B3(0)B3(η/2), i.e.,

F6 = R0R 2
3 πR0R 1

2 ηR 2
3 π+ 1

2 ηR 1
2 η, (21)

produces a composite Raman phase gate of phase η. This
approach can be applied for arbitrarily long sequences by
using longer BB CPs of Eq. (10a) with the phases (10b). In

FIG. 4. Infidelity of the phase shift gate as a function of the pulse
area error for a composite sequence of two, six, and 10 pairs of pulses
(N = 1, 3, 5) and η = π/4. The explicit pulse sequence for N = 3 is
given by Eq. (21).

Fig. 4, the infidelity of these sequences up to N = 5 is plotted
for η = π/4. This value of η corresponds to the T gate, which
is widely used in quantum computing [33]. As seen from the
figure, composite pulses implement robust and high-fidelity
phase gates.

VIII. DISCUSSION AND CONCLUSIONS

In this work, we developed a systematic framework for
creating robust and high-fidelity quantum gates in Raman
qubits. Our approach uses composite sequences of pulse pairs
and is based on two transformations, the Morris-Shore trans-
formation and the Majorana decomposition. These allow the
three-state Raman problem to be treated as a two-state system
and hence to benefit from the vast amount of broadband com-
posite pulses developed for simple two-state systems. We have
constructed and numerically demonstrated the X , Hadamard,
rotation, and phase (including the S, T , and Z gates) gates. The
X , Hadamard, and rotation gates, in particular, are constructed
in the same manner, using composite sequences with the same
phases and the same rms pulse area of 2π of each pulse pair,
but different ratios of the Raman couplings. Implementations
for both on-resonance and arbitrarily detuned (small, medium,
and large) ancilla middle states are presented. One could eas-
ily apply this general approach to other commonly used gates
like the Y gate. The proposed composite Raman gates can
allow one to implement single-qubit operations at ultrahigh
fidelity and resilient to experimental errors, as required for
efficient quantum computation.
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