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Optimal operation of a three-level quantum heat engine and universal nature of efficiency
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We present a detailed study of a three-level quantum heat engine operating at maximum efficient power
function, a trade-off objective function defined by the product of the efficiency and power output of the engine.
The efficient power function represents a trade-off between the power output and efficiency of a heat engine.
Engines working in the maximum efficient power regime operate at finite power, with finite efficiency lying in
between the regimes of maximum power and maximum efficiency (Carnot efficiency). First, for near-equilibrium
conditions, we find a general expression for the efficiency and establish the universal nature of efficiency at
maximum power and maximum efficient power. Then in the high-temperature limit, optimizing with respect to
one parameter while constraining the other one, we obtain the lower and upper bounds on the efficiency for both
strong as well as weak matter-field coupling conditions. Except for the weak matter-field coupling condition, the
obtained bounds on the efficiency exactly match with the bounds already known for some models of classical
heat engines. Further for weak matter-field coupling, we derive some new bounds on the efficiency of the
engine which lie beyond the range covered by bounds obtained for strong matter-field coupling. We conclude by
comparing the performance of our three-level quantum heat engine in maximum power and maximum efficient
power regimes and show that the engine operating at maximum efficient power produces at least 88.89% of
the maximum power output while considerably reducing the power loss due to entropy production. Finally, to
complete our analysis, we review the experimental setup of a recently realized effective three-level quantum
engine.
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I. INTRODUCTION

The study of quantum heat engines (QHEs) started with
the seminal work of Scovil and Schulz-DuBois (SSD) [1].
In their work, they investigated the thermodynamics of a
three-level maser and showed that its limiting efficiency is
given by Carnot efficiency [2]. Since then, three-level systems
have been employed to study various models of quantum
heat engines (refrigerators) [3–27] and quantum absorption
refrigerators [28–36].

Here, we specifically mention the work of Geva and
Kosloff [4–6] on three-level amplifier. They studied the SSD
engine in the spirit of finite-time thermodynamics using Al-
icki’s definition of heat and work [37], and optimized its
performance with respect to different control parameters.
They showed that in the presence of external electromag-
netic field, one has to incorporate the effect of the field on
the dissipation superoperators in order to satisfy the second
law of thermodynamics. Going one step further, Tannor and
Boukobza formulated a new way of partitioning energy into
heat and work [10–12]. They applied their formulation to
a three-level system simultaneously coupled to two thermal

*vsingh@ku.edu.tr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

baths at different temperatures and to a single-mode of clas-
sical electromagnetic field, and showed that the second law
of thermodynamics is always satisfied without incorporating
the effect of the field on the dissipators [12]. Recently, their
formalism has been used to study the phenomenon of noise-
induced coherence [23] and quantum synchronization [38] in
nanoscale engines.

In this work, we use Tannor and Boukobza’s formal-
ism to analyze the optimal performance of the SSD engine
and set up its correspondence with some classical models
of heat engines. At optimal performance, QHEs operat-
ing at finite power, show remarkable similarity to classical
macroscopic heat engines. For instance, in high-temperature
limit, many models of QHEs [23,39–44] operate at Curzon-
Ahlborn (CA) efficiency, a well-known result in the field
of finite-time thermodynamics [45–47], first obtained for a
macroscopic model of heat engine known as endoreversible
engine [48,49]. Similarly, in the low-dissipation regime [50],
the behavior of quantum and classical heat engines are quite
similar [51,52].

One another feature common in the operation of clas-
sical and QHEs is the universal nature of efficiency [53].
Many models of classical and QHEs show the universality
of efficiency at maximum power (EMP) upto quadratic order
in ηC , i.e., ηMP = ηC/2 + η2

C/8 + O(η3
C ). Van den Broeck

proved that in the linear response regime, ηC/2 is universal for
tight-coupling heat engines [54]. Further, Esposito and coau-
thors established the universality of the second term η2

C/8 by
invoking the symmetry of Onsager coefficients on the nonlin-
ear level [53].
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The universal features of efficiency are not unique to the
EMP, two other optimization functions: omega (�) function
(or ecological function) [55,56] and efficient power (EP) func-
tion [57,58], Pη = ηP (product of the efficiency and power of
the engine), also exhibit universal behavior [59,60]. Here, we
will discuss the universal character of efficiency at maximum
efficient power (EMEP) only. The formal proof of the univer-
sality of EMEP was established in Ref. [60]. It was shown that
the first two universal terms are 2ηC/3 and 2η2

C/27.
In this paper, we study the optimal performance of the SSD

engine operating at maximum efficient power (MEP), a trade-
off optimization function representing a trade-off between the
power output and efficiency of a heat engine, in different
operational regimes and compare its performance with the
engine operating at maximum power (MP). The study of such
objective functions is important from the environmental and
ecological point of view. It is already known that engines op-
erating in the MP regime also waste a lot of power due to large
entropy production [61,62]. Therefore, rather than operating
in the MP regime, the real heat engines should operate near the
MP regime, where they produce slightly smaller power output
with appreciable larger efficiency, which makes them cost-
effective too [62]. The EP function was introduced by Stucki
[57] in the context of the biochemical energy conversion pro-
cess. Engines working in the maximum efficient power regime
operate at finite power, with finite efficiency lying in between
the regimes of maximum efficiency (or Carnot efficiency)
and maximum power. Extending Stucki’s idea, Yan and Chen
(YC) treated EP function as their objective function to inves-
tigate the performance of an endoreversible heat engine [58].
Recently, EP function has attracted considerable interest and
have been employed to study the energy conversion process
in low-dissipation heat engines [63,64], thermionic generators
[65], biological systems [57,66], chemical reactions [67,68],
Feynman’s ratchet and pawl model [69], and in a quantum
Otto engine [70].

The paper is organized as follows. In Sec. II, we discuss the
model of the SSD engine. In Sec. III, we obtain an analytic
expression for the efficiency of the the SSD engine operat-
ing near-equilibrium conditions and show the universality of
the EMP and EMEP. In Secs. IV A and IV B, we optimize
engine’s performance, operating in two different operational
regimes (strong and weak matter-field coupling regimes), with
respect to one parameter only, and obtain the lower and upper
bounds on the EMEP for each case. Section IV C is devoted
to the discussion of universality of efficiency for one param-
eter optimization scheme under the effect of some symmetric
constraints imposed on the control parameters of the engine.
In Secs. V and VI, we compare the performance of the SSD
engine operating at MEP to the engine operating at MP. In
Sec. VII, we discuss the experimental setup of a recently
realized effective three-level quantum engine. We conclude in
Sec. VIII.

II. MODEL OF A THREE-LEVEL QUANTUM
LASER HEAT ENGINE

SSD engine [1] is one of the simplest QHEs. Using the con-
cept of stimulated emission in a population inverted medium,
it converts the incoherent thermal energy of heat reservoirs to

FIG. 1. Model of the SSD engine simultaneously coupled to two
thermal reservoirs at temperatures Tc and Th with coupling constants
�c �h, respectively. The interaction of the system with a classi-
cal single-mode field is represented by λ, the matter-field coupling
constant.

a coherent laser output. The model consists of a three-level
system simultaneously coupled to two thermal reservoirs at
temperatures Th and Tc (Tc < Th), and to a single-mode clas-
sical electromagnetic field (see Fig. 1). The hot reservoir at
temperature Th induces the transition between the ground state
|g〉 and the upper state |1〉, whereas the transition between
the middle state |0〉 and the ground state |g〉 is constantly
de-excited by the cold reservoir at temperature Tc. For the
power output mechanism, states |0〉 and |1〉 are coupled to a
classical single-mode field. The bare Hamiltonian of the three-
level system is given by: H0 = h̄

∑
ωk|k〉〈k| where the sum

runs over all three states and ωk’s represent the corresponding
atomic frequencies. Under the rotating wave approximation,
the following semiclassical Hamiltonian describes the inter-
action of the system with the classical field of frequency
ω: V (t ) = h̄λ(e−iωt |1〉〈0| + eiωt |0〉〈1|); λ is the field-matter
coupling constant. The reduced dynamics of the matter-field
system under the effect of the heat reservoirs is described by
the following form of Lindblad master equation:

ρ̇ = − i

h̄
[H0 + V (t ), ρ] + Lh[ρ] + Lc[ρ], (1)

where Lh and Lc are the dissipation Lindblad superoperators
describing the interaction of the system with the hot and cold
reservoirs, respectively:

Lh[ρ] = �h(nh + 1)(2|g〉〈g|ρ11 − |1〉〈1|ρ − ρ|1〉〈1|)
+�hnh(2|1〉〈1|ρgg − |g〉〈g|ρ − ρ|g〉〈g|), (2)

Lc[ρ] = �c(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ − ρ|0〉〈0|)
+�cnc(2|0〉〈0|ρgg − |g〉〈g|ρ − ρ|g〉〈g|), (3)

where �c and �h are Weisskopf-Wigner decay constants, and
nh(c) = 1/(exp[h̄ωh(c)/kBTh(c)] − 1) is average number of pho-
tons in the mode of frequency ωh(c) in hot (cold) reservoir
satisfying the relations ωc = ω0 − ωg, ωh = ω1 − ωg.

To solve the density matrix equations, it is convenient to
transform to a rotating frame in which semiclassical inter-
action Hamiltonian and the steady-state density matrix ρR
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becomes time-independent [12]. Defining H̄ = h̄(ωg|g〉〈g| +
ω
2 |1〉〈1| − ω

2 |0〉〈0|), an arbitrary operator B in the rotating
frame is given by BR = eiH̄t/h̄Be−iH̄t/h̄. It can be seen that
superoperators Lc[ρ] and Lh[ρ] remain unchanged under this
transformation. Finally, the time evolution of the system den-
sity operator in this rotating frame is given by

ρ̇R = − i

h̄
[H0 − H̄ + VR, ρR] + Lh[ρR] + Lc[ρR] (4)

where VR = h̄λ(|1〉〈0| + |0〉〈1|).
For a weak system-bath coupling, the heat flux, output

power, and efficiency of the SSD engine can be defined, using
the formalism of Ref. [12], as follows:

Q̇h = Tr(Lh[ρR]H0), (5)

P = i

h̄
Tr([H0,VR]ρR), (6)

η = P

Q̇h
. (7)

Here, we have used the sign convention in which all three
energy fluxes: heat flux extracted from the hot bath, heat
flux rejected to the cold bath and the power output are pos-
itive. Substituting the expressions for VR, H0, and Lh[ρR],
and calculating the traces appearing in Eqs. (5) and (6) (see
Appendix A), the heat flux and power output can be written as

Q̇h = ih̄λωh(ρ01 − ρ10), (8)

P = ih̄λ(ω1 − ω0)(ρ01 − ρ10),

= ih̄λ(ωh − ωc)(ρ01 − ρ10), (9)

where ρ01 = 〈0|ρR|1〉 and ρ10 = 〈1|ρR|0〉. Using Eqs. (8) and
(9) in Eq. (7), the efficiency of the engine is given by

η = 1 − ωc

ωh
. (10)

The positive power production condition [see Eq. (A11)] im-
plies that ωc/ωh � Tc/Th, which in turn implies that η � ηC .

III. UNIVERSAL NATURE OF THE EFFICIENCY

In this section, we will explicitly show the universal nature
of both EMP and EMEP. The expressions for the power output

and EP are derived in Appendix A [Eqs. (A11) and (A12)].
Optimization of these equations with respect to control param-
eters ωh and ωc yields very complex equations, which cannot
be solved analytically under the general conditions. However,
close to the equilibrium, they can be solved to yield an analytic
expression for the efficiency upto the second-order term in ηC ,
which is sufficient for our purpose as we want to focus only
on the universal nature of the EMP and EMEP.

As mentioned in Introduction, the appearance of the first
two universal terms in the Taylor series of the EMP was
first proven by Esposito and coauthors for tight-coupling
heat engines possessing a left-right symmetry in the system.
We briefly outline the algorithm followed in Ref. [53]. The
following formalism is valid for the engines obeying tight-
coupling condition between the energy flux IE and matter
flux I:

IE (x, y) = εI (x, y), (11)

where x and y are dimensionless scaled energies (to be spec-
ified later). The above equation implies that the energy is
exported by the particles of a given energy ε. The general
formula for the EMP is given by

η = ηC

2
+

(
1 + M

∂xL

)
η2

C

4
+ O

(
η3

C

)
, (12)

where L = −I ′
1(x, x) and M = I ′′

11(x, x)/2. Further, for the
systems possessing a left-right symmetry, the inversion of
flux,

I (x, y) = −I (y, x), (13)

leads to the condition 2M = −∂xL, which reduces the second
term in Eq. (12) to η2

C/8, thus establishing the universality of
the coefficient 1/8 under the symmetry specified by Eq. (13).

To explore the universal nature of the efficiency in the SSD
model, we must first identify the flux term. In our model,
energy is transported from hot to cold reservoir by the flux
of photons. Comparing Eq. (A11) with Eq. (11), we identify I
as follows:

I (x, y) = 2λ2�c�h(ex − ey)

λ2[(ex + 2)(ey − 1)�c + (ex − 1)(ey + 2)�h] + �c�h(ex+y + ex + ey)
( ex�c

ex−1 + ey�h
ey−1

) . (14)

In the above equation, we have put x ≡ h̄ωc/kBTc and y ≡ h̄ωh/kBTh, and used the expressions nh = 1/(ey − 1) and
nc = 1/(ex − 1). By inspecting Eq. (14), we can see that symmetry criterion (13) is satisfied for �h = �c. Under this condition,
we should observe the universality of efficiency for the SSD model. We confirm this observation by explicitly calculating the
form of efficiency in Eq. (12). By evaluating expressions for L, M, and ∂xL for the current I given in Eq. (14), and substituting
in Eq. (12), we find

η = ηC

2
+ η2

C

4

[(
(eα + 1)�c

(
(eα − 1)2(eα + 2)λ2 + e2α (eα − 4)�2

h

) + e3α (eα − 1)�2
c �h + (eα − 2)(eα − 1)3λ2�h

)
2(�c + �h)((eα − 1)2(e2α + 2)λ2 + e2α (eα (eα − 2) − 2)�c�h)

]
+ O

(
η3

C

)
,

(15)
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where α is the solution of the transcendental equation,1

α

(
− 1

eα + 2
+ 1

2 − 2eα
+ (eα − 1)λ2

(eα − 1)2λ2 + e2α�c�h
+ 1

2

)
= 1, (16)

which can be solved by specifying the numerical values of λ,
�h and �c. For λ2 = �h�c, the solution of the above equation
yields α = 2.9327. For the symmetric dissipation, �c = �h,
the term inside the square bracket in Eq. (15) becomes equal
to 1/2, yielding the coefficient of the second term as 1/8, and,
hence proving our assertion.

A. Universality of the EMEP

The general expression for the EMEP analogous to Eq. (12)
is [60]

η = 2ηC

3
+

(
1 + M

∂xL

)
4η2

C

27
+ O

(
η3

C

)
. (17)

Comparing Eqs. (12) and (17), we can see that in order to
obtain the explicit expression for the EMEP, we just have to
replace η2

C/4 by 4η2
C/27 in Eq. (15); everything else remains

the same. Since, for �h = �c, the term inside the square
bracket in Eq. (15) is 1/2, we obtain the second term as
2η2

C/27.
From the above procedure, we can conclude that if the

universal nature of the EMP can be established for a model un-
der consideration, the universality of the EMEP automatically
follows. The universal character of the EMEP has already
been established for the low-dissipation [63], endoreversible
[58,71], and nonlinear irreversible [60] models of classical
heat engine. Ours is the first study of a QHE in which the
universality of the EMEP is explored and explicitly shown.

B. Global optimization of efficient power function
in the low-temperature limit

Now, we study the operation of the SSD engine in the
low-temperature regime. In the low-temperature limit, we as-
sume h̄ωc,h � kBTc,h, such that nc,h � e−h̄ωc,h/kBTc,h � 1. The
EP function [Eq. (A12)] in this case is given by

Pη = 2h̄λ2�c�h(nh − nc)(ωh − ωc)2

ωh(�c + �h)(λ2 + �c�h)
. (18)

In our previous work [25], we have proven the equivalence
of the SSD engine operating in the low-temperature limit
to Feynman’s ratchet and pawl engine [72–74], a classical
heat engine based on the principle of Brownian fluctuations.
Hence, the analysis of this section is also valid for Feynman’s
model. Maximization of Eq. (18) with respect to ωh and ωc,
and a little simplification yields the following equations:

eh̄ωh/kBTh−h̄ωc/kBTc = 1 − h̄ωh(ωh − ωc)

kBTh(ωh + ωc)
, (19)

eh̄ωh/kBTh−h̄ωc/kBTc = 2kBTc

h̄(ωh − ωc) + 2kBTc
. (20)

1The transcendental equation is obtained by substituting the expres-
sion for L and ∂xL in equation x = −2L/∂xL (see Ref. [53]).

It is not possible to obtain an analytic solution of these two
equations for ωh and ωc. However, combining Eqs. (10), (19)
and (20), and writing in terms of ηC = 1 − Tc/Th, we obtain
the following transcendental equation:

(2ηC − η)(η − ηC )

η(1 − ηC )
= ln

[
2(1 − ηC )

2 − η

]
. (21)

It is clear from the Eq. (21) that the efficiency does not depend
on the system-parameters and depends on ηC only. We plot
Eq. (21) in Fig. 2 and compare the EMEP (EMP) of the
cold the SSD engine with the corresponding EMEP (EMP)
of endoreversible or low-dissipation heat engines.

Near equilibrium, a perturbative solution for the Eq. (21) is
available and is given by [69]

ηSSD
cold = 2ηC

3
+ 2η2

C

27
+ 11η3

C

243
+ O(η4

C ). (22)

Hence, again in this regime, we are able to show the existence
of the first two universal terms (2ηC/3 and 2η2

C/27) for a two-
parameter optimization scheme.

IV. LOCAL OPTIMIZATION

Since for the unconstrained regime, general solution for the
two-parameter optimization of the SSD engine is not avail-
able, in the following, we will optimize the performance of
the engine with respect to one control parameter only while

FIG. 2. Comparison of the EMEP (EMP) of the SSD engine
operating in low-temperature limit with ηYC (ηCA). The EMEP (EMP)
of the SSD engine is higher than that of low-dissipation and endore-
versible engines which operate at ηYC (ηCA).
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keeping the other one fixed at a constant value. In the high-
temperature limit, it is possible to obtain analytic expressions
for the EMP and EMEP. In this limit, we put nh ≈ kBTh/h̄ωh

and nc ≈ kBTc/h̄ωc.

A. High-temperature and strong-coupling regime

Assuming the strong matter-field coupling (λ � �h,c), the
expression for EP function in the high-temperature limit can
be written as

Pη = 2h̄�h(ωh − ωc)2(ωc − τωh)

3ωc(ωcγ + τωh)
. (23)

It is important to mention that two-parameter optimization
of the EP function given in Eq. (23) is not possible. Such
a two-parameter optimization scheme leads to the trivial so-
lution, ωc = ωh = 0, which is not useful result. It indicates
that a unique maximum of Pη with respect to both ωc and
ωh cannot exist. It can be argued as follows. For the given
values of the bath temperatures and the coupling constants,
under the scaling (ωc, ωh) → (βωc, βωh), where β is a certain
positive number, the EP function also scales as Pη → βPη.
Hence, there cannot exist a unique optimal solution (ω∗

h , ω∗
c )

that yields a unique maximum for EP function. The same
is also true for the optimization of the power output of the
engine with respect to ωc and ωh. Therefore we will perform
optimization with respect to one parameter only while keeping
the other one fixed. First, we keep ωh fixed, then optimizing
EP [Eq. (23)] with respect to ωc, i.e., setting ∂Pη/∂ωc = 0, we
evaluate EMEP as

ηPη
ωh

= 1 − (γ − 3)τ + √
γ + 1

√
τ
√

γ (τ + 8) + 9τ

4γ
, (24)

where γ = �h/�c. For a given value of τ , ηPη
ωh

is a monotoni-
cally increasing function of γ . Hence, we can obtain the lower
and upper bounds of EMEP by setting γ → 0 and γ → ∞,
respectively. Writing in terms of ηC = 1 − τ , we have

2ηC

3
� ηPη

ωh
� 1 − 1

4
(1 − ηC )

(
1 +

√
1 + 8

1 − ηC

)
≡ ηYC .

(25)
Recently, η

Pη

− ≡ 2ηC/3, has also been obtained as the lower
bound of the low-dissipation heat engines operating at MEP
[63,64]. The upper bound ηYC obtained here was first obtained
by Yan and Chen for an endoreversible heat engine [58].
Hence, we name it after them. ηYC can also be obtained for
symmetric low-dissipation heat engines [63].

Alternately, we may fix the value of ωc and optimize EP
function with respect to ωh. In this case, we get the following
equation:

τ 2ω3
h + τ (2γ + τ )ωcω

2
h − (γ + 2τ )ω2

cωh − γω3
c

ωcγ + ωhτ
= 0. (26)

Due to Casus irreducibilis (see Appendix C), the roots of the
cubic polynomial in the numerator of Eq. (26) can only be
expressed in terms of complex radicals, although the roots are
real actually. Still, Eq. (26) can be solved for the limiting cases

FIG. 3. Efficiency η versus the Carnot efficiency ηC for different
operational regimes. The curves under shaded area represent EMEP.
Dashed curves represent the corresponding EMP.

γ → 0 and γ → ∞. For γ → 0, the EMEP is evaluated at
YC value. For γ → ∞, we obtain η

Pη

+ = (3 − √
9 − 8ηC )/2.

Hence, EMEP lies in the range

ηYC � η
Pη

ωc � 1
2 (3 −

√
9 − 8ηC ) ≡ η

Pη

+ . (27)

Upper bound η
Pη

+ obtained here also serves as the upper bound
of the low-dissipation model of heat engines [63,64]. The
same expression also appears in the optimization of Feyn-
man’s model operating at MEP in high-temperature regime
[69].

The corresponding efficiency bounds for the optimization
of the power output of the SSD engine are given by [23]

ηP
− ≡ ηC

2
� ηP

ωh
� 1 −

√
1 − ηC ≡ ηCA, (28)

ηCA � ηP
ωc

� ηC

2 − ηC
≡ ηP

+. (29)

Comparing Eqs. (25) and (27) with Eqs. (28) and (29), we
can conclude that the SSD engine operating under MEP is far
more efficient than the engine operating at MP (see Fig. 3).

B. Weak coupling in the high-temperature regime

In addition to the strong matter-field coupling regime
(λ � �h,c), we can also find analytic expressions for the ef-
ficiency in weak matter-field coupling regime (λ � �h,c). In
the high-temperature limit (nc,h � 1), the first two terms in
the denominator of Eq. (A12) can be ignored. Plus we need
extreme dissipation conditions, i.e., either �c � �h (γ → 0)
or �c � �h (γ → ∞). Hence, for γ → 0 and γ → ∞,
Eq. (A12) can be approximated by the following two equa-
tions, respectively:

Pη(γ→0) = 2h̄λ2(nh − nc)(ωh − ωc)2

3ωhnhn2
c�c

, (30)

Pη(γ→∞) = 2h̄λ2(nh − nc)ωh − ωc)2

3ωhncn2
h�h

. (31)
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TABLE I. Taylor series expansions for the various forms of EMEP and EMP obtained under different operational conditions.

EMEP EMP

η
Pη

−− = 2
3 ηC − 2

27 η2
C − 14

243 η3
C + O

(
η4

C

)
ηP

−− = 1
2 ηC − 1

8 η2
C − 1

16 η3
C + O

(
η4

C

)
η

Pη

− = 2
3 ηC ηP

− = 1
2 ηC

ηYC = 2
3 ηC + 2

27 η2
C + 10

243 η3
C + O

(
η4

C

)
ηCA = 1

2 ηC + 1
8 η2

C + 1
16 η3

C + O
(
η4

C

)
η

Pη

+ = 2
3 ηC + 4

27 η2
C + 16

243 η3
C + O

(
η4

C

)
ηP

+ = 1
2 ηC + 2

8 η2
C + 2

16 η3
C + O

(
η4

C

)
η

Pη

++ = 2
3 ηC + 6

27 η2
C + 18

243 η3
C + O

(
η4

C

)
ηP

++ = 1
2 ηC + 3

8 η2
C + 3

16 η3
C + O

(
η4

C

)

Optimization of Eqs. (30) and (31) with respect to ωc (ωh

fixed) yields the following bounds on the efficiency:

η
Pη

−− ≡ 1

8

[
3(1 + ηC ) −

√
9η2

C − 14ηC + 9
]
� η

P′
η

ωh �
2ηC

3
.

(32)
Note that the above bounds lie below the parametric area
bounded by the efficiency curves (area bounded between solid
red and blue curves in Fig. 3) given in Eqs. (25) and (27).
To the best of our knowledge, these are the new bounds (area
bounded between solid brown and solid blue curves in Fig. 3),
which are not previously obtained for any model of classical
or QHE. Similarly, for the optimization of Eqs. (30) and (31)
with respect to ωh (ωc fixed), EMEP lies in the range

1

2
(3 −

√
9 − 8ηC ) � η

P′
η

ωh �
2ηC

3 − ηC
≡ η

Pη

++. (33)

Similar to the above case, the area covered (area bounded
between solid red and violet curves in Fig. 3) by efficiency
curves in Eq. (33) lie above the parametric area bounded by
the efficiency curves given in Eq. (27) (see Fig. 3).

The corresponding expressions for the EMP show similar
trend (see Fig. 3), and, are given by

ηP
−− ≡ 1

3

(
1 + ηC −

√
1 − ηC + η2

C

)
� ηP′

ωh
� ηC

2
, (34)

ηC

2 − ηC
� ηP′

ωc
� −1 + ηC +

√
1 − ηC + η2

C ≡ ηP
++. (35)

Again, the bounds obtained in Eqs. (34) and (35) have not
been previously reported for any model of classical or QHE.

We summarize our findings in Table I. As can be seen from
Table I, Taylor’s series expansions for different expressions
for the EMP and EMEP show very interesting behavior. For
the EMEP, the first universal term 2ηC/3 is present in all
cases, and the second terms constitute an arithmetic series
with common difference 2η2

C/27. Similarly for the EMP, the
first universal term ηC/2 is present in all cases, and the second
term increases by η2

C/8 in going from the first case to the last
case. Additionally, the third terms in the series expansion of

various forms of the EMP also constitute an arithmetic series
with a common difference η3

C/16.

C. Universality of efficiency in one-parameter optimization

Now, we explore the universal nature of efficiency for one-
parameter optimization scheme. We notice that if we put �c =
�h (γ = 1), in Eq. (24), the obtained form of the efficiency,

η
Pη

ωh(γ=1) = 1

2
(3 − ηC −

√
(1 − ηC )(9 − 5ηC ))

= ηC

3
+ η2

C

27
+ O

(
η3

C

)
, (36)

does not include the second universal term 2η2
C/27 unlike

the case of global optimization over the two parameters as
shown in Sec. II. We attribute this to the nature of optimiza-
tion scheme. The parametric space available to the control
variables is different for two different optimization schemes,
hence explaining the difference between them. However, one
can still retain the second order universal term 2η2

C/27 if
one imposes an extra symmetric condition on the constraints
of the optimization. The constraints are symmetric in the
sense that under the exchange of the control variables, the
constraint equation remains unchanged. The physics of such
constraints is explored in Ref. [75]. Here, we want to focus
only on the universal character of the efficiency under such
constraints. For instance, if we impose a symmetric constrain,
viz, ωc + ωh = k, optimization of Eq. (23) with respect to ωh

leads to the following equation:

x3 + −(3 − 7τ )

2(1 − τ )
x2 + −2τ (3 + 4τ )

2(1 − τ )(1 + τ )
x

+ τ (2 + 3τ )

2(1 − τ )(1 + τ
= 0, (37)

where we have put x = ωc/k for simplicity. The above equa-
tion is not solvable in terms of real radicals due to Casus
irreducibilis (see Appendix C). However, the equation can
be solved in terms of trigonometric functions [76], and the
solution is given by

x = −A

3
+ 2

3

√
A2 − 3B cos

[
1

3
arccos

(
−2A3 − 9AB + 27C

2(A2 − 3B)3/2

)]
, (38)

where A = −(3 − 7τ )/2(1 − τ ), B = −2τ (3 + 4τ )/2(1 − τ )(1 + τ ), and C = τ (2 + 3τ ). Substituting above expression in the
equation η = 1 − ωc/ωh = (1 − 2x)/(1 − x) (using ωh = k − ωc), and taking its series expansion, we have

η
Pη

k = 2

3
ηC + 2

27
η2

C + O
(
η3

C

)
, (39)
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which clearly shows the presence of the first two universal
terms. In a similar manner, for another symmetric constraint
ωc ωh = k′, the expression for efficiency, η = 1 − k′/ω2

h, turns
out to be

η
Pη

k′ = 1 − 3τ 2M1/3

9τ 4 + 36τ 3 + 19τ 2 + M[M − τ (3τ + 4)]

= 2

3
ηC + 2

27
η2

C + 23

486
η3

C + O
(
η4

C

)
, (40)

and we again retain the second universal term 2η2
C/27. Here,

M = √
k f (τ ), is function of τ only.

We can also obtain the first two universal terms (ηC/2
and η2

C/8) in the series expansion of the EMP for the op-
timization under symmetric constraints. Thus, for the SSD
model, we have shown that to establish the universality of
efficiency upto the quadratic order term in ηC , we have to
impose an additional symmetric condition in addition to the
condition γ = 1. Similar is also true for the optimization of
an ultrahot Otto engine [75] and Feynman’s ratchet model

[77] both of which possess a certain left-right symmetry in the
system.

V. FRACTIONAL LOSS OF POWER AT THE
MAXIMUM ECOLOGICAL FUNCTION

AND MAXIMUM POWER OUTPUT

In this section, we make a comparison of the performance
of the SSD engine operating at MEP to that of operating at MP.
In both cases, we find the expressions for the fractional loss
of power due to entropy production, Ṡtot = Q̇c/Tc − Q̇h/Th.
Power loss due to entropy production is given by: Plost =
T2Ṡtot = Q̇c − (1 − ηC )Q̇h. Further using the definitions of
power output P = Q̇h − Q̇c and efficiency η = P/Q̇h, the ratio
of power loss to power output can be derived as

R ≡ Plost

P
= ηC

η
− 1. (41)

We calculate the ratio R in four different cases: two for the
optimization of EP with respect to ωc (ωh fixed) in the extreme
dissipation limits when γ → 0 and γ → ∞, and similar two
cases for optimization with respect to ωh (ωc fixed). Using
Eqs. (25) and (41), we have

RPη

ωh (γ→0) = 1
2 , RPη

ωh (γ→∞) = 1
4 [

√
(9 − ηC )(1 − ηC ) − (1 − ηC )]. (42)

Similar equations for the optimization of Pη with respect to ωh for a fixed ωc can be obtained by using Eqs. (27) and (41):

RPη

ωc (γ→0) = RPη

ωh (γ→∞), RPη

ωc (γ→∞) = 1
4 (

√
9 − 8c − 1). (43)

For near-equilibrium conditions (ηC → 0), all the above equa-
tions approach the value 1/2 (also see Fig. 4). The fractional
loss of power is lower for the case with fixed ωc than with
a fixed ωh. With increasing Carnot efficiency ηC , fractional
loss of power decreases, which is natural as, for higher ηC ,
the engine also operates with higher efficiency wasting less

FIG. 4. Comparison of the ratios of power lost to the useful
power for two different optimization functions: EP function and
power output. The lower-lying curves [Eqs. (42) and (43)] represent
the case when EP function is optimized whereas the upper lying
curves [Eqs. (44) and (45)] represent the corresponding case for the
optimization of power output.

fuel. Also, note that RPη

ωc (γ→0) = RPη

ωh (γ→∞), as expected, since

the corresponding efficiencies are also equal, η
Pη

ωh(γ→∞) =
η

Pη

ωc (γ→0) = ηYC , as can be seen from Eqs. (25) and (27). For
the SSD engine operating at MP, the ratios of power loss to
power output for the different cases discussed above, are given
by [25]

RP
ωh (γ→0) = 1, RP

ωh (γ→∞) =
√

1 − ηC . (44)

RP
ωc (γ→0) = RP

ωh (γ→∞), RP
ωc (γ→∞) = 1 − ηC . (45)

FIG. 5. Comparison of the ratio R′ of the power output at MEP
to the MP [Eqs. (46) and (47)].
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As can be seen from Fig. 4, the curves representing the
optimal power case follow the same trend as noted for the
optimal EP. More importantly, for small values of ηC (near-
equilibrium), the curves (lower set) for optimal EP lie well
below the curves (upper set) for optimal power. We specif-
ically mention the case where RP

ωh (γ→0) = 1, which implies

that in this case, power loss is equal to the power output. The
corresponding case for the optimal EP presents us with a much
better scenario. In this case, RPη

ωh (γ→0) = 1/2, which implies
that loss of power is half of the power output. It indicates
that EP function is a good target function to optimize if our
preference is fuel conservation.

VI. RATIO OF POWER AT THE MAXIMUM EFFICIENT POWER TO THE MAXIMUM POWER

Since the fractional loss of power is less when our the SSD engine operates at MEP as compared to the case when the engine
is operating at MP, it is useful to calculate the ratio (R′) of power at MEP to optimal power. Dividing Eq. (B5) by Eq. (B6), and
taking the limits γ → 0 and γ → ∞, we get the following two expressions, respectively:

R′
ωh (γ→0) = 8

9
, R′

ωh (γ→∞) = 9 − 5ηC − 3
√

(1 − ηC )(9 − ηC )

4(1 − √
1 − ηC )2

. (46)

Similar equations can be obtained for optimization over ωh (fixed ωc) and are given by

R′
ωc (γ→0) = R′

ωh (γ→∞), R′
ωc (γ→0) = (3 − √

9 − 8ηC )(4ηC − 3 + √
9 − 8ηC )

4η2
C

. (47)

For very small temperature differences, i.e., ηC → 0, the ratio R′ = 8/9, which shows that at least 88.89% of the MP is produced
in the MEP regime, which is a considerable amount keeping in mind that the power loss in MEP regime is at least 1/2 of the
case when the engine operates at MP. It is clear from Fig. 5 that ratio R′ increases with increasing ηC , which is expected behavior
since the efficiency also increases, while the dissipation decreases.

VII. EXPERIMENTAL SETUP OF AN EFFECTIVE
THREE-LEVEL HEAT ENGINE

The three-level model of heat engine can be realized ex-
perimentally. In fact, an effective three-level continuous SSD
heat engine has already been realized experimentally with
nitrogen-vacancy centers in diamond [78]. In the following,
we will briefly explain the setup of the experiment conducted.

The working medium of the engine consists of an ensemble
of negatively charged nitrogen vacancy centers in diamond.
The nitrogen-vacancy center consists of a ground spin-triplet
3A2 {| + 1〉g, |0〉g, | − 1〉g}, two excited spin triplets as well as
three intermediate singlets (1E1,2 and 1A1). The degeneracy of
the ground and excited states can be lifted by applying a mag-
netic field. Due to the orbital averaging at room temperature,
the two excited state triplets can be treated as a single triplet
3E {| + 1〉e, |0〉e, | − 1〉e} [78]. Further, the upper (1A1) of the
three singlets decays directly into the lower pair 1E and has
a very short lifetime (<1 ns), thereby allowing us to treat the
three singlet states as an effective single state |0′〉. By optical
excitation [represented by solid brown arrows in Fig. 6(a)], the
system is excited to 3E triplet. Then the system relaxes back
into the ground state triplet {| + 1〉g, |0〉g, | − 1〉g} both by spin
preserving radiative decay [solid green arrows in Fig. 6(a)]
and spin nonpreserving nonradiative decay [diagonal solid
blue arrows in Fig. 6(a)] through the meta-stable intermediate
state |0′〉. As an effect of the spin nonpreserving nonradiative
decay, the effective rate of population excitation from |0〉g

to |0′〉 is much lower than the decay rate from |0′〉 to |0〉g,
while the effective excitation rate from | + 1〉g to |0′〉 is almost
equal to its corresponding decay rate [79]. Thus, under the
incoherent optical pumping, the |0〉g − |0′〉 and | + 1〉g − |0′〉
subsystems can be considered as coupled to the cold and
hot baths, respectively. This results in population inversion
between the levels |0〉g and |1〉g, which makes the system

FIG. 6. Schematics of a three-level quantum heat engine. (a) The
relevant energy levels of the nitrogen vacancy center, and spin
preserving radiative as well as spin nonpreserving nonradiative tran-
sitions between them. (b) The effective three-level heat-engine. The
circles represent the steady-state populations. The wavy black arrows
represent resonant microwave field and stimulated emission, extract-
ing work.

ready for the lasing action. Then an external microwave field,
resonant with the | + 1〉g ←→ |0〉g may be applied to extract
work in the form of stimulated emission of microwave ra-
diation. Since all microwave transitions involving the level
| − 1〉g are out of resonance, its contribution to the extracted
work can be neglected. Hence, the effective system contains
only three levels |1〉g, |0〉g, and |0′〉 [see Fig. 6(b)].

The overall working scheme of the effective three-level
model explained above is very similar to our model of three-
level SSD engine. In the schematic diagram of the SSD model
in Fig. 1, levels |0〉 and |1〉 play the role of | + 1〉g and |0〉g

(see Fig. 6), respectively. The only difference is that in our
model, ground state |g〉 is connected to both heat reservoirs
whereas, in the real experimental setup, meta-stable level |0′〉
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plays the same role. However, the overall goal of both schemes
remains the same, i.e., to convert incoherent energy of ther-
mal reservoirs into the work by masing (or lasing) action.
Moreover, we can also draw the schematics of our SSD model
exactly similar to the above-said effective three-level system
without affecting the results obtained throughout the paper.
Finally, it is worth to mention that besides the SSD engine,
an another three-level heat engine, employing �-type atomic
system as the working fluid, based on electromagnetically
induced transparency has been demonstrated experimentally
[80].

VIII. CONCLUDING REMARKS

We have thoroughly investigated the performance of the
SSD engine operating under the conditions of MEP and side
by side compared its performance with the engine operating
at MP. First, for close to the equilibrium conditions, we found
an analytic solution for the efficiency of the SSD engine and
explicitly showed the universality of the first two terms of both
EMP and EMEP under the symmetric dissipation (γ = 1)
condition. Then, we carried out optimization of the EP func-
tion alternatively with respect to one of the control frequencies
ωc or ωh while keeping the other one fixed at a constant value.
In the high-temperature limit, we were able to find lower and
upper bounds on the EMEP for strong (λ � �h,c) as well as
for weak (λ � �h,c) matter-field coupling conditions. Then,
we showed that the obtained form of the EMEP in case of
one-parameter optimization shows the universal features of
efficiency only in the presence of an extra symmetry imposed
on the control parameters of the engine. It is important to
highlight that except for the weak matter-field coupling (λ �
�h,c) condition, the obtained expressions of the EMEP and
EMP in all cases discussed above are the same as obtained
for different models of classical heat engine. Specifically, in
the weak matter-field coupling regime, we obtained some new
bounds on the efficiency of the SSD engine which lie beyond
the area covered by bounds obtained for strong matter-field
coupling.

Finally, we have compared the optimal performance of the
SSD engine operating at MEP to that of operating at MP.
It can be inferred that fraction loss of power due to entropy
production is appreciably low in the case of heat engine op-
erating at MEP while at the same time it produces at least
88.89% of the MP output. This indicates that EP function
is a good optimization function and real engines should be
designed to operate along the lines of maximizing EP function
if our preference is environment and fuel conservation. To
complete our discussion, we have provided the details of a
recent experiment setup in which a three-level heat engine has
been demonstrated.
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APPENDIX A: STEADY-STATE SOLUTION
OF DENSITY MATRIX EQUATIONS

Here, we provide steps to solve the equations for density
operator in the steady-state. Substituting the expressions for
H0, H̄ , V0, and using Eqs. (2) and (3) in Eq. (4), the time
evolution of the matrix elements of the density operator are
given by the following equations:

ρ̇11 = iλ(ρ10 − ρ01) − 2�h[(nh + 1)ρ11 − nhρgg], (A1)

ρ̇00 = −iλ(ρ10 − ρ01) − 2�c[(nc + 1)ρ00 − ncρgg], (A2)

ρ̇10 = −[�h(nh + 1) + �c(nc + 1)]ρ10 + iλ(ρ11 − ρ00), (A3)

ρ11 = 1 − ρ00 − ρgg, (A4)

ρ̇01 = ρ̇∗
10. (A5)

Solution of the Eqs. (A1)–(A5) in the steady state [ρ̇mn = 0
(m, n = 0, 1)] yields

ρ10 = iλ(nh − nc)�c�h

λ2[(1 + 3nh)�h + (1 + 3nc)�c] + �c�h[1 + 2nh + nc(2 + 3nh)][(1 + nc)�c + (1 + nh)�h]
(A6)

and

ρ01 = ρ∗
10. (A7)

Evaluation of the trace in Eq. (6) leads to the following form of output power,

P = ih̄λ(ωh − ωc)(ρ01 − ρ10), (A8)

Similarly calculating the trace in Eq. (5), heat flux Q̇h from the hot reservoir can be written as

Q̇h = −h̄ωh(2�h[(nh + 1)ρ11 − nhρgg]). (A9)

Employing the steady-state condition ρ̇11 = 0 [Eq. (A1)], Eq. (A9) becomes

Q̇h = ih̄λωh(ρ01 − ρ10). (A10)
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Substituting Eqs. (A6) and (A7) in Eq. (A8), we get the final expression for the power output. Since EP function is just power
output multiplied by the efficiency, we have the following expressions for power output and EP, respectively:

P = 2h̄λ2�c�h(nh − nc)(ωh − ωc)

λ2[(1 + 3nh)�h + (1 + 3nc)�c] + �c�h[1 + 2nh + nc(2 + 3nh)][(1 + nc)�c + (1 + nh)�h]
, (A11)

Pη = 2h̄λ2�c�h(nh − nc)(ωh − ωc)2

ωhλ2[(1 + 3nh)�h + (1 + 3nc)�c] + �c�h[1 + 2nh + nc(2 + 3nh)][(1 + nc)�c + (1 + nh)�h]
. (A12)

APPENDIX B: OPTIMIZATION OF P AND Pη

IN HIGH-TEMPERATURE AND
STRONG-COUPLING REGIME

In the high-temperatures limit, nh and nc can be approxi-
mated as

nh = 1

eh̄ωh/kBTh − 1
� kBTh

h̄ωh
, nc = 1

eh̄ωc/kBTc − 1
� kBTc

h̄ωc
.

(B1)

Using Eq. (B1) in Eq. (A11) and (A12) and dropping the terms
containing �c,h in comparison to λ, we can write P and Pη in
terms of γ = �h/�c and τ = Tc/Th in the following form:

P � 2h̄�h(ωh − ωc)(ωc − τωh)

3(ωcγ + τωh)
, (B2)

Pη � 2h̄�h(ωc − τωh)(ωh − ωc)2

3ωh(ωcγ + τωh)
. (B3)

1. Expressions for power at MEP and MP

a. For fixed ωh

Optimizing Pη given in Eq. (B3) with respect to ωc by
setting setting ∂P/∂ωc = 0, we have

ω∗
c = γ τωh + √

γ + 1
√

τ
√

γ τ + 8γ + 9τωh − 3τωh

4γ
. (B4)

Using Eq. (B4) in Eq. (B2), we evaluate the expression for
power of the engine operating at MEP:

P
P∗

η

ωh

=2h̄�hωh(γ (5τ + 4) − 3
√

γ + 1
√

τ
√

(γ + 9)τ + 8γ + 9τ )

12γ 2
.

(B5)

Similarly, the expression for optimal power is given by

P∗
ωh

= 2h̄�hωh(γ + 2τ + γ τ − 2
√

(γ + 1)τ (γ + τ ))

3γ 2
. (B6)

b. For fixed ωc

Since this case, Casus irreducibilis arises, in order to find
the analytic expression for the efficiency, we have to take the

limits γ → 0 and γ → ∞ in Eq. (23) before optimizing it.
For γ → 0, Eq. (23) is reduced to

Pη(γ→0) = 2h̄�h(ωh − ωc)2(ωc − τωh)

3τωcωh
. (B7)

Keeping ωc fixed, and optimizing with respect to ωh, EMEP
is evaluated at ηYC value. For γ → ∞, Eq. (23) can be
written as

Pη(γ→∞) = 2h̄�c(ωh − ωc)2(ωc − τωh)

3ωcωh
. (B8)

Optimization with respect to ωh (fixed ωc) yields η =
(3 − √

9 − 8ηC )/2.

APPENDIX C: CASUS IRREDUCIBILIS

While solving a cubic equation, the case of Casus ir-
reducibilis may arise [81,82]. Casus irreducibilis arises
when the discriminant D = 18abcd − 4b3d + b2c2 − 4ac3 −
27a2d2 of a cubic equation

ax3 + bx2 + cx + d = 0 (a, b, c, d are real) (C1)

is always positive, i.e., D > 0. In this case, all three roots
of the cubic equation are real. If the roots cannot be found
using the rational root test, then the given polynomial is Casus
irreducibilis and complex-valued expressions are needed to
express the roots in radicals.

In our case, we have to solve the following cubic equation:

τ 2ω3
h + τ (2γ + τ )ωcω

2
h − (γ + 2τ )ω2

cωh − γω3
c = 0. (C2)

The discriminant D of the above equation is given by

D = 4(γ + 1)τ 2(8γ 3τ + γ 3 + 12γ 2τ 2 + 6γ 2τ

+ 6γ τ 3 + 12γ τ 2 + τ 4 + 8τ 3)ω6
c . (C3)

Since all the parameters ωc, γ , τ are positive, D > 0. So the
polynomial in Eq. (C2) presents us with the case of Casus
irreducibilis.
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