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Sailing towards the stars close to the speed of light
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We present a relativistic model for light sails of arbitrary reflectivity and absorptance undertaking nonrectilin-
ear motion. Analytical solutions for a constant driving power and a reduced model for straight motion with an
arbitrary sail’s illumination are given, including for the case of a perfectly reflecting light sail examined in earlier
works. When the sail is partially absorbing incoming radiation, its rest mass and temperature increase, an effect
completely discarded in previous works. It is shown how sailing at relativistic velocities is intricate due to the
existence of an unstable fixed point, when the sail is parallel to the incoming radiation beam, surrounded by two
attractors corresponding to two different regimes of radial escape. We apply this model to the Starshot project
by showing several important points for mission design. First, any misalignment between the driving light beam
and the direction of the sail’s motion is naturally swept away during acceleration toward relativistic speed, yet
leads to a deviation of about 80 A.U. in the case of an initial misalignment of 1 arc sec for a sail accelerated
up to 0.2c toward Alpha Centauri. Then, the huge proper acceleration felt by the probes (of order 2500 g), the
tremendous energy cost (of about 13 kt per probe) for poor efficiency (of about 3%), the trip duration (between
22 and 33 years), the temperature at thermodynamic equilibrium (about 1500 K), and the time dilation aboard
(about 160-days difference) are all presented and their variation with the sail’s reflectivity is discussed. We also
present an application to single trips within the Solar System using double-stage light sails. A spaceship of mass
24 tons can start from Earth and stop at Mars in about seven months with a peak velocity of 30 km/s but at
the price of a huge energy cost of about 5.3 × 104 GW h due to extremely low efficiency of the directed energy
system, around 10−4 in this low-velocity case.
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I. INTRODUCTION

The discovery of the cruel vastness of space beyond the So-
lar System is rather recent in human history, dating back from
the measurement of the parallax of the binary star 61 Cygni by
Bessel in 1838 [1]. This was even pushed orders of magnitude
further by the work of Hubble on intergalactic distances in the
1920s [2,3]. Although not theoretically impossible, interstel-
lar travel has ever been largely considered unfeasible, for a
variety of good reasons. The major drawback lies in the huge
gap between interplanetary and interstellar distances, initially
settled by Bessel’s discovery: the distance to the nearest star
system, Alpha Centauri, is roughly 10 000 times the distance
to planet Neptune, on the outskirts of the Solar System. It
took about 40 years for the fastest object ever launched by
humans, the Voyager space probe, to reach the edges of the
Solar System 18 × 109 km away, at a record cruise velocity
of 17 km/s. Millenia-long trips would then be needed to cross
interstellar distances. Since Bessel’s epoch, we know that the
gap to the stars lies in these four orders of magnitude, needless
to mention the much larger gap to the galaxies.
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There have been many suggestions to go across the stars,
and we refer the reader to [4] for an overview, some of
which could even be considered as plausible, yet unafford-
able, while some others are simply nonphysical. One could
distinguish four categories among the (many) proposals for
achieving interstellar travel: relativistic reaction propulsion,
generation ships, spacetime distortions, and faster-than-light
travels. We claim that only the first category is relevant for
plausible discussions, but giving our arguments here would
go beyond the scope of this paper. Our present paper focuses
on what is perhaps the most plausible proposal among the
first category: directed energy propulsion. This last is based
on radiation pressure and consists of using the impulse pro-
vided by some external radiation or particle beam to propel
the space ships. According to many authors [4–14], this is
maybe the most promising one for three reasons: (1) it does
not require embarking any propellant; (2) it allows reaching
higher velocities than rockets expelling mass and submitted to
the constraints of the Tsiolkovsky equation; and (3) it benefits
from a strong theoretical and technical background including
successful prototypes [14]. However, maybe the major draw-
back of directed energy propulsion lies in its weak efficiency:
the thrust imparted by a radiation beam illuminating some
object with power P is of order P/c. Roughly speaking, 1 N of
thrust requires an illumination on the sail of at least 300 MW.

The idea of using the radiation pressure of sunlight to pro-
pel reflecting sails dates back to the early ages of astronautics
and was suggested by Tsander in 1924 (see [5] for a review
of the idea). Several proposals have been put forth for using
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solar sails for the exploration of the inner Solar System (for
the first proposals, see [15,16]), to reach hyperbolic orbits
with the additional thrust provided by a sail’s desorption
[17], or even to test fundamental physics [18]. Space probes
like Ikaros and NanoSail-D2 have successfully used radiation
pressure from sunlight for their propulsion. However, since
solar illumination decreases as the square of the distance, this
method is interesting for exploring the inner Solar System
but not for deep space missions. The first realization of a
laser in 1960 really opened the way to consider using them in
directed energy propulsion, an idea first proposed by Forward
in 1962 [6]. Since laser sources are coherent sources of light
with large fluxes, one can consider sending energy over large
distances toward a space ship. The Hungarian physicist Marx
proposed in a 1966 paper [19] the same idea independently of
Forward, together with the first relativistic model describing
the straight motion of such a laser-pushed light sail. This paper
was quickly followed by another one by Redding [20] in 1967
that corrected one important mistake made by Marx in the
forces acting on the light sail. Twenty-five years later, Sim-
mons and McInnes revisited Marx’s one-dimensional model
in [21], extending its model to variable illuminating power,
examining the efficiency of the system and and how recycling
the laser beam with mirrors could increase it.

Forward’s idea of laser-pushed light sails for an inter-
stellar journey has seen a strong renewal of interest since
2009 through successive funded research programs that are
still active. As early as 2009, the joint NASA–University of
California Santa Barbara Starlight [22] investigated the large
scale use of directed energy to propel spacecrafts to relativis-
tic speeds, including small wafer scale ones. In 2016, the
Breakthrough Starshot Initiative [23] was initiated to focus
on wafer scale spacecrafts and interstellar fly-bys to Alpha
Centauri with the objective of achieving it before the end
of the century. A nice review on large scale directed energy
application to deep space exploration in the Solar System and
beyond, including many detailed engineering aspects, can be
found in [14].

In the context of these research programs, several authors
have started modeling Solar System and interstellar missions
based on this concept. Some basic one-dimensional modeling
of directed energy propulsion, accounting for some relativistic
effects as well as prospective applications for Solar System
exploration, can be found in [24]. In [7], one can find a
model for a single trip from Earth to Mars with a microwave
beam-powered light sail but they did not give there the details
of their model.The authors of [9–11,13] based their results
on the model by Marx [19], Redding [20], and Simmons
and McInnes [21], which is only valid for one-dimensional
(rectilinear) motion of perfectly reflecting light sails. The case
of arbitrary reflectance has not been considered so far: this
involves inelastic collisions between the propulsive radiation
beam and the light sail, leading to an increase of the rest
mass of the last, as was already shown in [12,25] for differ-
ent types of photon rockets. The authors of [9,11] provided
interesting modeling of the early acceleration phases, nonrel-
ativistic regime, and power recycling in the rectilinear motion
case but did not provide the analytical solutions in terms of
the rapidity as we do here. Reference [13] started from the
Marx–Redding–Simmons-McInnes model and investigated

the possibility to use high-energy astrophysical sources to
drive the light sails during their interstellar journey. Finally,
[10] provided a more complete and realistic physical model
of a light sail’s rectilinear motion, including notably thermal
reemission of absorbed radiation through Poynting-Robertson
effect and a model for development costs. Unfortunately, this
author also only considered rectilinear motion and assumed
the sail’s thermodynamic equilibrium (constant rest mass) all
along the acceleration. We will complete this model here by
giving the general equations of nonrectilinear motion account-
ing for nonperfect reflectivity, partial absorption of incoming
radiation, Poynting-Robertson drag, the sail’s internal energy
and temperature increase, and relaxation towards thermody-
namic equilibrium. In addition, since nonrectilinear motion
has not been considered so far, the effect of a misalignment
of the incoming beam and the sail’s velocity on the trajectory
has not been investigated yet. This paper will propose a rel-
ativistic model for nonrectilinear motion of light sails with
arbitrary power, reflectivity, and absorptance, investigating
their general dynamics and providing useful applications to
the acceleration phase of fly-by missions to outer space or
single trips within the Solar System using a double-stage light
sail.

In addition, the motion of mirrors under radiation pressure,
possibly up to relativistic velocities, is a wide and important
topic in physics. This topic can be dated back to Einstein’s
famous paper [26] that established special relativity and, par-
ticularly relevant here, relativistic Doppler effect, aberration,
and radiation pressure. The nonrelativistic motion of moving
mirrors under radiation pressure is central for optical inter-
ferometry [27,28] and its high-precision applications among
which is the outstanding detection of gravitational waves. In
plasma physics, thin shells of electrons and ions can constitute
relativistic mirrors that can be accelerated up to relativistic ve-
locities by the intense electromagnetic waves of a laser pulse,
with the possible application to the realization of compact
sources of hard electromagnetic radiation (see, for instance,
[29,30]). However, these “mirrors” are nonrigid, unlike the
solid sails described here. In [29], the relativistic straight
motion of these deformable emergent structures of charged
particles is studied both through statistical mechanics and
through the particle’s relativistic motion in the field of plane
electromagnetic waves [31]. Our general formalism for the
nonrectilinear motion of rigid mirrors under radiation pressure
introduced in this paper might therefore be also of interest for
applications to these relativistic mirrors in plasma physics.

In Sec. II, we recall some fundamental properties of photon
rockets in special relativity, rederiving the relativistic rocket
equation, and apply them to light sails. We then focus on
the general motion of perfectly absorbing “white” sails and
give analytical solutions for the particular case of straight
motion. Then, the case of a perfectly absorbing “black” light
sail is discussed and a model accounting for radiation pressure
of the incoming beam, sail heating, and Poynting-Robertson
drag is established. Finally, we show how one can combine
the previous cases of white and black sails to build a model
for the general motion of “gray” light sails with arbitrary
reflectivity, and useful analytical solutions for straight motion
are provided. In Sec. III, we apply previous results to (i) a
dynamical system analysis of sailing at relativistic velocities,
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showing how intricate this discipline will be; (ii) the acceler-
ation phase of the Starshot mission, providing many related
physical quantities such as the sail’s inclination, distance,
proper velocity and acceleration, internal energy variation,
temperature, time dilation aboard, efficiency, and trip dura-
tion; and (iii) single trips in the Solar System with Forward’s
idea of a multistage light sail [5]. We finally conclude in
Sec. IV with some emphasis on the importance of the pre-
sented results and by giving some perspectives on this paper.

II. GENERAL MOTION OF RELATIVISTIC LIGHT SAILS

A light sail is a spacecraft propelled by the radiation pres-
sure exerted on its reflecting surface by some incident light
beam. In the case of directed energy propulsion, this radiation
is provided by some external power source, like an intense
terrestrial laser. We are interested in determining the trajectory
of the sail as seen from the reference frame of the external
power source. Actually, this a geometrical problem of special
relativity: find the sail’s world line L ≡ [X μ(τ )]μ=0,...,3 =
(cT (τ ), X (τ ),Y (τ ), Z (τ )) [with (cT, X,Y, Z ) Cartesian coor-
dinates in the laser’s frame and τ the sail’s proper time] that
satisfies the following equations of motion:

c
d pμ

dT
= Fμ (1)

where pμ and Fμ are, respectively, the sail’s four-momentum
and the four-force (in units of power) acting on it in the laser’s
frame and T is the source’s proper time. It will later be useful
to consider the equations of motion expressed in terms of the
sail’s proper time:

cṗμ = f μ (2)

where a dot denotes a derivative with respect to proper time τ

and the four-force in these units is given by f μ = γ Fμ where

γ = dT

dτ

is the well-known Lorentz factor accounting notably for time
dilation between the sail and the source. To determine the
world line L, one needs to remember that the sail’s four-
momentum pμ is related to the tangent vector λμ ≡ dX μ

cdτ

and the sail’s rest mass by pμ = m(τ )cλμ(τ ), in general
with variable rest mass m· The tangent vector is a unit
timelike four-vector in spacetime, λμλμ = −1 [with a signa-
ture (−,+,+,+) for Minkowski’s metric], the derivative of
which, the four-acceleration λ̇μ, is orthogonal to it: λμλ̇μ = 0;
in other words, the four-acceleration λ̇μ is a spacelike vector.
The sail’s rest mass m(τ ) is defined by the norm of the four-
momentum, pμ pμ ≡ −m2(τ )c4, and is not constant under the
action of a nonpure force (λμ f μ �= 0). To emphasize this
important feature, we can make use of the relations above
to reformulate the equations of motion (2) as the following
system: ⎧⎨

⎩
ṁc2 = −λμ f μ

mc2λ̇μ = f μ + (λα f α )λμ

Ẋ μ = cλμ

(3)

which are nonlinear in λμ· Therefore, it is obvious that a
constant rest mass requires the four-force f μ to be everywhere

orthogonal to the tangent vector λμ (pure force) which in-
cludes the free motion ( f μ = 0) as a trivial particular case. In
general, the rest mass is therefore not constant as is the case
when absorption of radiation by the sail occurs. We also refer
the reader to [12,25] for several models of photon rockets with
varying rest mass.

Another important additional property arises when one
considers photon rockets [12], i.e., when the driving power
f μ is provided by some incoming or outgoing radiation beam,
which corresponds to absorption and emission photon rockets,
respectively. A light sail is actually a combination of both
cases. During absorption and emission processes, the total
four-momentum pμ

tot = pμ + Pμ of the system rocket (pμ)
and beam (Pμ) is conserved: ṗμ + Ṗμ = 0 or, equivalently,
f μ = −Ṗμ. Then, since the rest mass of the photon always
vanishes, PμPμ = 0, taking its derivative d (PμPμ)/dτ = 0
yields

fμPμ = 0 (4)

which will allow us to build consistent models for the
radiation-reaction four-force ( f μ) = ( f T , c �f ) (with f T the
power associated to the thrust �f ). All quantities with an ar-
row on top of them denote spatial three-vectors in Euclidean
space. Without loss of generality, one can write down the
ansatz (Pμ) = Eb/c(±1, �nb) where Eb stands for the beam
energy; the sign ±1 refers to absorption and emission pro-
cesses, respectively; and �nb is a unit spatial vector pointing in
the direction of the beam propagation. Then, one finds from
Eq. (4) that

f T = ±c �f • �nb (5)

where • stands for the scalar product with the Euclidean met-
ric between three-vectors. An immediate application of this
property arises when one considers the straight motion of a
photon rocket, for which (λμ) ≡ γ (1, β, 0, 0) [β = tanh(ψ )
with ψ the rapidity] for a motion in the X direction. Then,
from Eq. (5), we have that f T (τ ) = ±c f X (τ ) and the equa-
tions of motion Eq. (3) now reduce to{

ṁc2 = f T (τ ) exp(∓ψ )
mc2ψ̇ = ± f T (τ ) exp(∓ψ )

which can be directly integrated to give

m(τ ) = m0 exp(±ψ )· (6)

The rest mass is therefore higher (lower) than m0 = m(τ = 0)
for an absorption (emission) photon rocket (see the above-
mentioned sign convention). This result can be put in the
following familiar form:

�V = c

∣∣∣∣m2 − m2
0

m2 + m2
0

∣∣∣∣ (7)

where �V = βc is the velocity increase from rest. Equation
(7) is nothing but a relativistic generalization of the Tsi-
olkovsky equation for photon rockets, as obtained for the first
time by Ackeret in [32] with a different approach. It is impor-
tant to keep in mind the equivalence of relation (6) between
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the inertial mass m of the photon rocket and the rapidity ψ

and the relativistic Tsiolkovsky equation (7).
With these general elements on photon rockets, we can now

build several models of light sails, either perfectly reflecting
(white) sails, perfectly absorbing (black) sails, or partially
reflecting (gray) sails.

A. Nonrectilinear motion of a perfectly reflecting light sail

In this section, we will generalize the light sail model
of Marx–Redding–Simmons-McInnes [19–21] for rectilinear
motion to any arbitrary motion of the light sail. To compute
the sail’s trajectory from the equations of motion Eqs. (1)–
(3), one needs a model for the driving four-force f μ that
the radiation beam applies on the sail. The propulsion of a
reflecting light sail is twofold: first, photon absorption com-
municates momentum to the sail; second, photon emission
achieves recoil of the sail. The case of a perfectly reflecting
white light sail corresponds to no variation of the rest mass
(internal energy). According to Eq. (3), this happens under the
condition that λμ f μ

tot = 0 where the total four-force f μ
tot is the

sum of the four-forces due to incident and reflected beams f μ
in

and f μ
ref . Since we have that (λμ) = γ (1, β�ns) (with �ns a unit

spatial vector pointing in the direction of the sail’s motion),
the condition of keeping constant the sail’s rest mass yields

f T
tot = βc( �fin + �fref ) • �ns, (8)

which is different than Eq. (5) since �ns �= �nb. The perfectly
reflecting white sail is indeed a combination of both emission
and absorption photon rockets and, thus, Eq. (6) does not
hold (the white sail mass is constant) and neither does the
relativistic Tsiolkovsky equation (7).

Let us now focus on the time component of the four-force
f T = dEsail/dτ (with τ the sail’s proper time) which repre-
sents the time variation of the sail’s energy Esail due to the
twofold interaction with the beam. The infinitesimal variation
of the sail’s energy due to the incident beam is given by
dEin = (IS/c)dw where w = cT − || �R|| is the retarded time,
I is the intensity of the beam (in W/m2), and S is the sail’s
reflecting surface. Indeed, the energy dE that is emitted by
the source during the proper time interval dT will reach the
sail moving at β = || �V ||/c = d (|| �R||)/(cdT ) with some delay
(β > 0) or advance (β < 0), so that dEin = (1 − β )dE (see
also [10] for a spacetime diagram). Therefore, one can write,
recalling that dT = γ dτ ,

f T
in = γ

dEin

dT
= P(1 − β )γ (9)

where we set P = IS = dE/dT as the emitted power as
measured in the source’s frame. Similarly, the infinitesimal
variation of the sail’s energy due to the reflected beam is given
by dEref = (P′/c)du = P′(1 + β )dT where u = cT + || �R|| is
the advanced time. In this case, the amount of energy dE that
is reflected by the sail during dT is measured by any observer
in the source’s frame as dEref = dE (1 + β ), where the factor
(1 + β ) accounts for the sail’s motion with respect to this
observer. One can thus write

f T
ref = γ

dEref

dT
= P′(1 + β )γ , (10)

where P′ = I ′S where P′ = dE/dT and I ′ are the power
and intensity of the reflected light beam as measured in the
source’s frame.

We can now turn on the thrusts �f(in,ref). Since the total four-
momentum of the sail and the beam is conserved during each
process of radiation emission and absorption that constitutes
the reflection, the thrusts �f(in,ref) must verify Eqs. (4) and (5),
such that we have

c �f(in,ref) = f T
(in,ref)�n(in,ref). (11)

From the Snell-Descartes law of reflection, we have that

�nin • �ns = −�nref • �ns ≡ cos(θ ).

Putting Eqs. (9)–(11) and the above equation into the con-
straint of constant rest mass Eq. (8), we find

P(1 − β )[1 − β cos(θ )] = −P′(1 + β )[1 + β cos(θ )] (12)

together with the following expressions for the components of
the four-force:

f T
tot = 2Pγ β cos(θ )

(
1 − β

1 + β cos(θ )

)
,

c �ftot = Pγ (1 − β )

(
�nin − 1 − β cos(θ )

1 + β cos(θ )
�nref

)
. (13)

In the particular case of straight motion, one has that θ = 0
(�nin = −�nref = �ns) and the four-force reduces to

mc2 dγ

dτ
≡ f T

tot = 2Pγ β

(
1 − β

1 + β

)
,

mc2 d (γ β )

dτ
≡ c f X

tot = 2Pγ

(
1 − β

1 + β

)
, (14)

which are the same equations of motion as in [21]. The last of
these equations was integrated numerically in [9–11] and also
used as a starting point of [13]. However, when the power of
the incident radiation beam P is constant, there is a simple
analytical solution. Indeed, reexpressing the system Eqs. (14)
in terms of the rapidity ψ [γ = cosh(ψ ) and β = tanh(ψ )]
gives the single equation

ψ̇ = 2P

mc2
exp(−2ψ )

the solution of which for a sail starting at rest at τ = 0 is

ψ = 1
2 log (1 + 4s) (15)

or, maybe more conveniently, in terms of the velocity in the
laser’s frame,

β = V

c
= 2s

1 + 2s
(16)

where the dimensionless time s is given by s = τ/τc with
τc = mc2/P the characteristic time of the light sail travel. For
constant power of the incident radiation beam, the light sail
takes an infinite amount of time to reach the speed of light, its
terminal velocity.

Let us now focus on the nonrectilinear motion of the light
sail which is described by the equations of motion with the
four-force Eqs. (3) and (13). We recall the ansatz for the
tangent vector: (λμ) = γ (1, β�ns) with �ns a unit spatial vec-
tor in the direction of the sail’s motion and introducing the

043186-4



SAILING TOWARDS THE STARS CLOSE TO THE SPEED … PHYSICAL REVIEW RESEARCH 2, 043186 (2020)

FIG. 1. Sketch of the perfectly reflecting light sail: the light source is located at the origin of coordinates, and the incident beam hits the
sail with an angle θ with respect to the velocity of the sail before it is reflected following the same angle, due to the Snell-Descartes reflection
law.

rapidity ψ as γ = cosh(ψ ) and β = tanh(ψ ). Let us consider
the X axis as the line between the light source located at the
origin of coordinates and the destination and �eX as the unit
three-vector along the X direction (see also Fig. 1). Due to
the Snell-Descartes reflection law, the three-vectors �ns, the
direction of the sail’s motion (also normal to the sail’s surface
S), and �nin,ref (the directions of the incident and reflected
radiation beams, respectively) are coplanars. We can therefore
choose the Y axis (with associated unit three-vector �eY ) so that
this plane of reflection corresponds to the (X,Y ) plane without
loss of generality. The incident radiation beam is emitted from
the source and later hits the sail, so that �nin = �R/|| �R|| with
�R the sail’s position vector. The direction of motion �ns does
not necessarily point towards the destination and one might
have to use this model to compute course correction. Let us
denote by θ the angle of incidence of the radiation beam and
the sail’s surface, �ns • �nin = cos(θ ) = −�ns • �nref (where the
last equality is due to the Snell-Descartes reflection law), and
denote by φ the angle between the sail’s direction of motion
and the destination �ns • �eX = cos(φ)· We can therefore work
with the following ansatz:

�nT
s = (cos(φ), sin(φ), 0),

�nT
in = (cos(φ − θ ), sin(φ − θ ), 0),

�nT
ref = (− cos(φ + θ ),− sin(φ + θ ), 0),

θ = φ − arctan

(
Y

X

)
. (17)

Figure 1 provides an illustration of the triplet of unit vectors
�ns,in,ref and the angles used.

Thanks to these parametrizations, the equations of motion
Eqs. (3) and (13) now reduce to

ψ̇ = 2
P

mc2

(
1 − β

1 + β cos(θ )

)
cos(θ ),

θ̇ = −
(
ψ̇ + c

R
sinh(ψ )

)
sin(θ ),

Ṙ = c sinh(ψ ) cos(θ ), (18)

where R2 = X 2 + Y 2 is the distance from the source to the
sail and where P, the power of the incident radiation beam, is
an arbitrary function. The sail’s rest mass m is constant in the
case of a perfectly reflecting white sail. These equations will
be investigated further in the next section on applications.

B. Relativistic motion of a perfectly absorbing light sail

The case of a perfectly absorbing black sail corresponds
to a perfectly inelastic collision between the photons of the
incident radiation beam and the sail, in which the total energy
of the beam is converted into both internal and kinetic energy
of the sail. As a consequence, the rest mass of the sail is no
longer constant. The four-force ( f μ) = ( f T , c �f ) (with �f the
thrust) acting on the sail is now given by the driving power

f T
in = P(1 − β )γ (19)

(see previous section) and the thrust

c �f = f T
in �nin, (20)

according to Eq. (4). Therefore, the motion of the black sail is
rectilinear and directed along the direction �nin of the incident
radiation beam. Since the black sail is an absorption rocket
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[Eq. (20) satisfies Eqs. (4) and (5)], its physical properties
verify Eq. (6) and the relativistic Tsiolkovsky equation (7).

Without loss of generality, we can identify the X axis to
the direction of destination as viewed from the source. The
vector �nt

in = �nt
s ≡ (cos(φ), sin(φ), 0) is collinear to the sail’s

position vector and the tangent vector to the sail’s world line
is given by (λμ) = (cosh(ψ ), sinh(ψ )�nin ) so that the corre-
sponding equations of motion Eqs. (3) can be written:

Ṙ = c sinh(ψ ),

ṁc2 = Pe−2ψ,

mc2 sinh(ψ )ψ̇ = Pe−ψ [1 − cosh(ψ )e−ψ ], (21)

mc2 cosh(ψ )ψ̇ = Pe−ψ [1 − sinh(ψ )e−ψ ],

with R the Euclidean distance to the source and φ = const
since the motion is rectilinear. Substracting the last two pre-
vious equations yields simply mc2ψ̇ = Pe−2ψ and therefore
m(τ ) = m0eψ , which is exactly Eq. (6) for an absorption
photon rocket, while the rapidity is given by integrating the
simple equation

de3ψ

dτ
= 3

P

m0c2
(22)

for any given function P modeling the power of the incident
radiation beam.

However, one should also consider that part of the photons
that has been absorbed by the black sail is thermally reemitted
through blackbody radiation, as is done in [10]. Due to the
sail’s motion, the reemission is anisotropic and produces a
Poynting-Robertson drag on the black sail as a reaction force.
If one considers that thermal cooling is isotropic in the sail’s
rest frame, then the four-force for this drag is given by [33]

f T
PR = −Pradγ ,

c �fPR = −Pradγ β�ns (23)

where

Prad = αP
1 − β

1 + β
(24)

is the power thermally radiated away by the black sail un-
der the form of incoherent radiation. The parameter α is
given by α = 1 − A with A the sail’s absorptance, so that
α describes the part of the incoming radiation power that
is thermally reemitted. In [33], dust particles totally reemit
the incoming radiation so that it keeps its rest mass m con-
stant, which corresponds to our case α = 1. The case α =
1 therefore corresponds to blackbody radiation and thermal
equilibrium, since then the rest mass stays constant (see be-
low) and so does internal energy and temperature. The case
α = 0 corresponds to the previous pure black sail without
thermal cooling. However, laser-pushed light sails will be hit
by tremendous incoming power that might be totally radiated
away by thermal cooling, and this could be modeled by α �= 1.
This imperfect cooling will make the sails heat and when their
thermal capacity is exceeded, they will simply melt. This is
therefore an important parameter to take into account.

Accounting both for the radiation pressure from the incom-
ing radiation beam and the Poynting-Robertson drag, the total
four-force on the black sail is given by f μ

tot = f μ
in + f μ

PR using

Eqs. (19), (20), and (23) and leads to the following equations
of rectilinear motion (since �nin = �ns):

ṁc2 = (1 − α)Pe−2ψ,

mc2ψ̇ = Pe−2ψ.

These equations can be readily integrated to give

m = m0e(1−α)ψ, (25)

ψ̇ = P

m0c2
e−(3−α)ψ (26)

for arbitrary power function P.
In the case of constant power P, Eqs. (26) can be directly

integrated to give the following solutions for the evolutions of
the rest mass m and the rapidity ψ :

m = m0[1 + (3 − α)s]
1−α
3−α , (27)

ψ = 1

3 − α
log [1 + (3 − α)s] (28)

with s = τ/τc the proper time in units of the characteristic
time τc = m0c2/P and where we assumed the sail starts at rest
at τ = 0. For α = 0 (pure black sail without thermal cooling),
the velocity in the laser’s frame is then simply given by

β = V

c
= Ṙ

cγ
= (1 + 3s)2/3 − 1

(1 + 3s)2/3 + 1
, (29)

while for α = 1 (perfect thermal reemission) one finds

β = s

1 + s
, (30)

which, together with Eq. (16) for the white sail, constitutes a
useful set of relations to keep within easy reach for performing
estimations. From these results, one can also directly see the
differences between a white sail and a black one with thermal
cooling. During rectilinear motion, the white sail perfectly
reflects backward the incoming radiation, therefore benefiting
from twice the incoming momentum to accelerate, while the
black sail with Poynting-Robertson drag only benefits from
one times the incoming power since it thermally radiates
isotropically (in its rest frame). The isotropic thermal reemis-
sion of radiation does not give rise to any net acceleration
as is the case for white sails in which the reemission is
directional.

It must be noticed that, even in the presence of thermal
reemission modeled by the Poynting-Robertson drag, the rest
mass of the sail is in general not constant. The only exception
is for perfect thermal reemission (α = 1) for which the mass
of the absorbing sail stays constant but then the evolution of
the velocity is still different than in the white sail case. This
model for the black sail with radiation cooling will be used to
model the acceleration phase of the Starshot mission.

C. General model for arbitrary relativistic motion of a
nonperfect light sail

So far we have been considering two extreme cases of a
light sail: the perfectly reflecting case (the white sail), which
has reflectivity ε = 1, and the perfectly absorbing one, which
has ε = 0. In the first, the rest mass of the sail is constant,
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while, in the second, inelastic collisions can lead to a variation
of the internal energy (rest mass), unless radiative cooling
is efficient enough to balance energy absorption. We now
need a model for any intermediate values of the reflectivity
ε ∈ [0, 1]. Let us therefore write the four-force acting on a
gray sail with reflectivity ε as follows:

f μ
g = ε f μ

w + (1 − ε) f μ

b (31)

where f μ

w,b stand for the four-forces of the particular cases of a
perfectly reflecting (white) sail ε = 1 and a perfectly absorb-
ing (black) sail ε = 0, respectively. The incoming energy is
therefore partly reflected [the white part of the decomposition
Eq. (31)], partly converted into rest mass energy (if absorp-
tance A = 1 − α �= 0), and partly thermally radiated away (if
A = 1 − α �= 1). Both last effects were included in the black
sail model of the previous section. We assume here there is no
power transmitted through the sail.

For a perfectly reflecting (white) sail, we have
f μ
w = f μ

in + f μ
ref , the composition of incident and reflected

beams, with f T
in = P(1 − β )γ , f T

ref = −Pγ (1 − β )[1 −
β cos(θ )]/[1 + β cos(θ )], and c �fin,ref = f T

in,ref �nin,ref . For a
perfectly absorbing (black) sail with Poynting-Robertson
drag, we use f μ

b = f μ
in + f μ

PR with c �fin = f T
in �ns and

f μ
PR = −P′

radγ (1, β�ns) with P′
rad = αP(1 − β )/(1 + β ).

After some simplifications, the equations of motion for the
gray sail can be obtained as

ṁc2 = P(1 − α)(1 − ε)e−2ψ,

ψ̇ = P

mc2

(
1 − β

1 + β

)(
1 − ε

1 − β cos(θ ) − 2 cos(θ )

1 + β cos(θ )

)
,

φ̇ = −2ε
P

mc2

(
1 − β

1 + β cos(θ )

)
sin(θ ) cos(θ ). (32)

Since the trajectory of the sail is given by L =
(cT (τ ), X (τ ),Y (τ ), Z = 0), finding the trajectory’s
unknowns T (τ ), X (τ ), and Y (τ ) requires integrating the tan-
gent vector field λμ = dX μ/(cdτ ) = (cosh(ψ ), sinh(ψ )�ns),
with �nt

s = (cos(φ), sin(φ), 0) and φ = θ + arctan (Y/X ). It
can be checked with some algebra that these most general
equations of motion reduce to the previous cases for ε = 1
(white sail) or ε = 0 (black sail).

We can directly derive an analytical solution for the
straight motion of a gray sail. The analytical model below
can therefore be used for quickly computing estimations of
the rectilinear trajectory. The tangent vector for rectilinear
motion along X is given by (λμ) = γ (1, β, 0, 0), such that
�nT

s = (1, 0, 0) = �nT
in = −�nT

ref . The four-force acting on the
gray sail is given by the decomposition Eq. (31). The white
sail component of the four-force is given by

f T
w = 2Pγ β

1 − β

1 + β
,

f X
w = 2Pγ

1 − β

1 + β

from Eq. (14). The black sail component of the four-force is
given by f μ

b = f μ
in + f μ

PR, with the Poynting-Robertson drag

given by Eqs. (23) and (24). Regrouping all these elements
into Eq. (31), one can express the four-force acting on the gray
sail in terms of the rapidity ψ as

f T = Pγ
1 − β

1 + β
[1 + β + α(ε − 1) − ε(1 − β )], (33)

f X = Pγ
1 − β

1 + β
[1 + β + ε(1 − β ) − αβ(1 − ε)]. (34)

The equations of motion in this case simply reduce to

ṁc2 = P(1 − ε)(1 − α)e−2ψ,

mψ̇c2 = P(1 + ε)e−2ψ,

which, in the case of constant ε and α, give

m = m0 exp

(
(1 − ε)(1 − α)

1 + ε
ψ

)
, (35)

ψ̇ = P

m0c2
(1 + ε) exp

(
−3 + ε + α(ε − 1)

1 + ε
ψ

)
(36)

for arbitrary variable power P. In the simplest case of constant
power P, the following analytical solution can be found:

m = m0{1 + [3 + ε + α(ε − 1)]s} (1−ε)(1−α)
3+ε+α(ε−1) ,

ψ =
(

1 + ε

3 + ε + α(ε − 1)

)
× log {1 + [3 + ε + α(ε − 1)]s} (37)

for a gray sail with reflectivity ε and absorptance 1 − α, start-
ing from rest with rest mass m0 (s = τ/τc with τc = m0c2/P).
These results are consistent with the previously obtained
particular solutions for (ε, α) = 1 [Eq. (15)] and (ε, α) = 0
[Eqs. (27) and (28)].

III. APPLICATIONS

We propose here three applications of the original light sail
model derived in the previous section. First, we present the
general dynamics of perfectly reflecting light sails, then we
apply our model to fly-by missions at relativistic velocities,
and finally we apply our model to a single trip with double-
stage light sails.

A. Sailing at relativistic velocities

Let us consider the general motion of perfectly reflecting
white light sails, as given by Eqs. (18). In this model, the
sail is reflective on both sides of its surface S. Figure 2
presents several trajectories of light sails coming from in-
finity at τ → −∞ and passing closest to the laser source
at τ = 0 with distance R0 = Rmin for different velocities β0

and inclination θ0. After the closest approach, the sail is de-
flected by the light source depending on the sail’s velocity
at closest approach ψ0 and the sail’s inclination θ0 there.
A complete study of the light sail’s phase diagram is given
in Figs. 3 and 4. First, this system admits only one fixed
point (θ = π/2, ψ ′ = 0), which is an unstable saddle point.
Indeed, a linear stability analysis of system (18) indicates that
the Jacobian of the right-hand side has two eigenvalues of
opposite signs (λ1,2 = (1 ± √

1 + 4/R)/2; R � 0). This un-
stable equilibrium point is surrounded by two attractors (θ →
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FIG. 2. Various trajectories of perfectly reflecting white sails
with driving power P decaying as 1/R2. A star indicates the location
of the laser source, and a square indicates one particular position of
the light sail with an associated reflecting surface and vector triplets
�ns,in,ref .

0, ψ ′ → 0) and (θ → π,ψ ′ → −2) [(θ → π,ψ ′ → 0) for
power decaying as 1/R2]. Due to this configuration of the
phase space, there are trajectories starting and ending with �ns

collinear (θ = 0) or anticollinear (θ = π ) to the incident beam
for vanishing velocities β0 at closest approach (loop-shaped
trajectories drawn with straight lines in Figs. 3 and 4). But if
velocity at closest approach β0 is large enough trajectories can
overcome the unstable fixed point and transit from the vicinity
of one attractor to the other. This is the case of trajectories
shown in dashed lines in Figs. 3 and 4.

This singular configuration of the phase space, with
two attractors surrounding an unstable equilibrium, makes
laser sailing at relativistic speed an intricate and delicate
discipline.

B. Acceleration phase of a nanoprobe interstellar mission

Let us apply our results to the Starshot mission
[9–11,13,23]. This project aspires to send tiny light sails of 1-g
mass-scale towards Proxima Centauri for a fly-by at a cruise
velocity of about 20% that of light. The extreme kinetic energy
would be provided by a gigantic ground-based laser during an
acceleration phase lasting a few hours. The probes will then
freely fly toward Proxima Centauri, which they should reach
within about 20 years. Let us therefore consider a rest mass
at start m0 of 1 g and a powerful laser source emitting light
with power P0 = 4 GW. We also assume, following [11], that
the size of the laser source is 10 km and that of the sail is
10 m so that is the maximal distance. If the laser’s wavelength
is 1064 nm, then the maximum distance Dmax up to which
the laser beam completely encompasses the sail is about 0.3
A.U. The characteristic time τc = m0c2/P0 of this system is

FIG. 3. Phase diagram in the plane (ψ,ψ ′) of the perfectly re-
flecting white sail. The upper plot is for constant power P while
the lower plot shows the case of driving power P decaying as 1/R2.
Straight lines correspond to β0 = 0 and dashed lines correspond to
β0 = 0.9.

about 6.2 h. We can now study the acceleration phase of
such spacecrafts starting from rest as a function of the sail’s
reflectivity ε, with the model derived in the previous section
(including Poynting-Robertson drag).

In order to determine the gray sail’s trajectory, one needs
to integrate the tangent vector field λμ and use Eqs. (32). One
must also complete this set of equations by a model for the
power of the incident radiation beam P as well as for the
sail’s absorptance A = 1 − α, which are free functions in our
formalism. For the driving power P, we will consider here the
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FIG. 4. Phase diagram in the plane (θ, ψ ′) of the perfectly re-
flecting white sail. The upper plot is for constant power P while the
lower plot shows the case of driving power P decaying as 1/R2. The
dots and the triangles, respectively, indicate the location of the unsta-
ble saddle point (θ = π/2, ψ ′ = 0) and the attractors (θ → 0, ψ ′ →
0) and (θ → π,ψ ′ → −2) [(θ → π,ψ ′ → 0) for decaying power].
Straight lines correspond to β0 = 0 and dashed lines correspond to
β0 = 0.9.

following simple model, which was introduced in [11]

P =
{

P0; D < Dmax

P0
(Dmax

D

)2
; D � Dmax

(38)

where D(τ ) = [X 2(τ ) + Y 2(τ ) + Z2(τ )]1/2 is the time-
dependent Euclidean distance between the source of the
propelling radiation and the sail and Dmax is the maximum

distance at which the beam spot encompasses the sail’s surface
S. This maximum distance is related to the sail’s characteris-
tic size R; the one of the beam source, r; and the radiation
wavelength λ by the following relation (see [11]):

Dmax ≈ rR

2λ

up to some order of unity geometrical factor depending on
the shape of the beam source. In this model, the energy that
propels the sail beyond the distance Dmax decays as the inverse
of its distance to the source. A more sophisticated but also
more realistic model for the beam power is the Goubau beam
of [10], the shape of which is qualitatively similar to the
simple model of [11] used here.

In order to determine a model for the absorptance A =
1 − α, one must recall that the radiated power Prad = (1 −
ε)αP(1 − β )/(1 + β ) is related to the sail’s temperature T
by the Stefan-Boltzmann law: Prad = σST 4 with σ ≈ 5.67 ×
10−8 W/(m2 K4) and S the sail’s surface. The absorptance is
therefore varying with time, as driving power P decreases and
the sail’s velocity increases with the distance. The variation
of the sail’s temperature is also related to that of rest mass
(internal energy) by

Ṫ = c2

CV
ṁ

with CV the sail’s specific heat. Deriving Stefan-Boltzmann’s
law with respect to proper time τ leads one to write down an
additional differential equation for α:

α̇ = αP
(

2Pψ̇ + dP
dR

sinh(ψ )

)

+ · · · 4CP7/4

(
1 + β

1 − β

)1/4

α3/4ṁ (39)

where P = P/P0, R is the sail’s distance to the source, and

C =
(

σS

P0(1 − ε)

)1/4 c2

CV
·

Equation (39) completes the system Eqs. (32).
The first point we propose to address is the evolution of

the absorptance during the very early phases of acceleration.
Since the constant C is large, for a specific heat CV of order
2 kJ/(kg K) (like that of graphene [34] at 1500 K, see below),
a sail’s surface of S = 16 m2 (see also [10]), and a reflectivity
ε of 99.9%, one has that C ≈ 1010. The last term in the right-
hand side of Eq. (39) is therefore dominant, leading to a very
fast evolution of α. Starting at rest from a sail’s initial tem-
perature of 100 K, one has that α(τ = 0) ≈ 10−5 and quickly
evolves toward vanishing absorptance α → 1 where the sail’s
thermodynamic state converges towards thermal equilibrium
(constant temperature and rest mass). Figure 5 represents the
evolution of both the sail’s absorptance 1 − α and temperature
over a short time range of 10−2 s with the specifications given
above. The value of the absorptance A = 1 − α reached after
10−2 s is around 10−8, the temperature is around 1500 K, and
the variation of internal energy is around 2.5 MJ. In what fol-
lows, we will therefore assume vanishing absorptance α = 1
in our simulations over a longer duration.
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FIG. 5. Evolution of the absorptance 1 − α (a) and of the sail’s
temperature (b) for the following parameters: P0 = 4 GW, S =
16 m2, CV = 1900 J/(kg K), and a reflectivity ε of 99.9%.

We now move on to consider the aiming accuracy to reach
such a far-away destination such as Proxima Centauri. Indeed,
at the start the light sails might not be perfectly perpendicular
to the incident radiation beam or to the direction of destina-
tion. As before, let us denote by θ and φ the angles between
the vector �ns normal to the sail’s surface and the incident
radiation beam �nin = �R/|| �R|| and the direction eX from the
laser’s source to the destination. One last angle is �, which
gives the position of the light sail with respect to the destina-
tion. One piece of good news is that any small misalignment
will be quickly corrected naturally during the acceleration
phase. Indeed, Fig. 6 gives the evolution of the three angles
θ, φ, and � characterizing the gray sail’s dynamics. One can
see that the initial misalignment θ0 = 1′′ (1 arc sec) quickly
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FIG. 6. Evolution of the angles θ (straight line), φ (dotted line),
and � (dashed line) in the very early phases of acceleration for five
values of ε equally spaced between 0 and 1.

vanishes after the start of the acceleration phase. This is due
to the vicinity of the attractor (θ = 0, ψ ′ = 0) presented in the
previous section. For perfectly reflecting light sails (ε = 1),
the Snell-Descartes reflection law imposes φ = � + θ at all
times. Since θ goes to zero and φ remains almost constant,
this yields � → φ ≈ θ0 so that the sail’s velocity (angle φ)
quickly aligns with the incident radiation beam (angle �) and
the sail’s trajectory becomes radial, in the direction � ≈ θ0.
As a consequence, the transverse deviation at the destination
is given by Y ≈ Rdesθ0 with Rdes the distance between the
source and the destination. Therefore, an initial misalignment
θ0 of only 1 arc sec simply results in the case of Starshot in
a deviation of 81 A.U. after a Rdes = 4.4-light-year trip. Our
model allows also accounting for an initial error in aiming to
the destination, i.e., �0 �= 0, which leads to the same asymp-
totic behavior: θ → 0 and � → φ.

Since any small initial misalignment θ0 � π/2 is swept
away by the driving force, the sail’s trajectory shortly becomes
close to rectilinear. Figure 7 represents the evolution of veloc-
ity in the source’s frame, proper acceleration a ≈ cdβ/dτ felt
by the light sail, and distance R to the source for various values
of its reflectivity ε. The velocity quickly saturates once the sail
overcomes Dmax and the driving power decays with the inverse
square of distance. It must be pointed out that the Starshot
space probes will experience an effective gravitational field
(given by proper acceleration) as large as 2500 times that of
Earth during the first hour of acceleration toward their cruise
velocity. During this extreme first hour they will cross the
distance to Dmax, of about 1/3 A.U., and they will reach a dis-
tance equivalent to that of Jupiter in only 4 h. The energy cost
spent by the driving source E0 = P0T (with T ≈ 4 h the total
duration of the acceleration phase) to achieve that is about
5.4 × 1013 J or 12.9 kt (the equivalent of one Little Boy class
A bomb) per Starshot probe. One can therefore ask what is the
efficiency of such an energetic waste. This is given by exam-
ining the ratio of the total kinetic energy EK = (mγ − m0)c2
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FIG. 7. Evolution of the light sail’s velocity (a), proper accelera-
tion (b), and distance to the source (c) with time for five values of ε

equally spaced between 0 and 1. Straight lines give the results for a
decaying driving power given by Eq. (38) while dashed lines are for
constant power.

communicated to each probe to the source’s energy cost E0.
The efficiency is about 3.4% for white sails (ε = 1) and 1.8%
for black sails at thermodynamic equilibrium (ε = 0, α = 1).
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FIG. 8. (a) Evolution of time dilation T/τ − 1 aboard during
the acceleration phase for various sails’ reflectivity ε. Straight lines
indicate the prediction for constant power. (b) Trip duration of the
Starshot probes towards Proxima Centauri as a function of the sail’s
reflectivity ε.

Almost perfectly reflecting white sails (ε ≈ 1) have also the
advantages of shorter trip duration toward Proxima Centauri
and lower temperature at thermodynamic equilibrium, should
they survive the acceleration phase and the trip (see also [13]).

As shown in Fig. 8, white sails (ε = 1) arrive at a desti-
nation nearby Proxima Centauri in about 22 years against 30
years for black sails (ε = 0), from the point of view of mission
control on Earth. Indeed, time aboard these relativistic probes
will also elapse slower, by about 2% for white sails as also
shown in Fig. 8. Once integrated over the whole duration of
the mission, this represents almost a difference of 162 days
between on-board time and mission control time at the end
of the mission (22 years for ε = 1). From the point of view
of the Starshot probes, this relativistic effect will shorten the
effective trip duration by 162 days. This effect must be taken
into account to wake up on-board instrumentation and start
the scientific program at the right local time, otherwise the
destination system will be missed by almost 5.6 × 103 A.U.
(= 0.2c × 162 days).
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FIG. 9. Evolution of the Starshot probe’s blackbody temperature
during acceleration phase (a) and final temperature at the end of the
acceleration phase as a function of the sail’s reflexivity ε (b).

We can now conclude this analysis of the Starshot project
by giving the evolution of the Starshot probe’s temperature
at thermodynamic equilibrium, as is done in Fig. 9. Black-
body temperature quickly stabilizes during the acceleration
phase as a result of driving power decay and convergence
towards terminal velocity. The final temperature at the end
of acceleration depends nonlinearly on the sail’s reflectivity
ε: while around 1500 K above 99.9% reflectivity, it reaches
5500 K at 70% and almost 8000 K at 0%. These results
strongly motivate the investigation of carbon-based structures
like graphene [for which the specific heat at 1500 K is around
1.8 kJ/(kg K)] [34] or metamaterials allowing one to manipu-
late thermal radiation [35] for the design of Starshot’s extreme
sails.

C. Single trips in the Solar System with two-stage light sails

In the context of large scale directed energy propulsion,
several interesting proposals for the exploration of the Solar
System at sublight velocities have been made (see, for in-
stance, [14]). Among these, the idea of reconverting on-board

the laser’s illumination to drive an ion thruster leads to an
efficient solution for high-mass missions. We do not pretend
to propose a detailed Solar System mission here but rather we
revisit Forward’s idea of multistage light sails with the tools
established in this paper.

The major issue with laser-pushed light sails, according
to the pioneer Marx in [19], was the slow-down once ap-
proaching the destination since this external propulsion cannot
be reversed. That is why Forward suggested in [5] to use
multistage light sails: the large sail that is used during the
acceleration phase separates at some point between an outer
ring and a central breaking sail to which a payload is attached.
After separation, the laser source is still propelling the outer
sail, that stays on an accelerated trajectory while the payload
reverses its own sail to catch the reflected light coming from
the outer ring and uses its radiation pressure to reduce its
speed.

We propose to revisit this idea with our model by giving
a detailed trajectory of a single trip inside the inner Solar
System, beyond the simple description made in [5]. For the
sake of simplicity, we will restrict ourselves to rectilinear mo-
tion. The abscissas of the outer ring and payload Xo,p indicate
their distance to the laser source. To determine the trajectory
of the double-stage light sail, we make use of equations of
motion Eqs. (35) and (36). During the acceleration phase, the
inner payload sail and the outer ring sail are bound and evolve
together at distance Xo = Xp and with total rest mass mtot =
mo + mp. The light source illuminates the outer sail with
power Po given by the following function [see also Eq. (38)]:

Po =
{

P0; Xo,p < X1

P0
( X1

Xo,p

)2
; X � X1

(40)

where P0 is the power emitted by the light source located at
the origin of coordinates. X1 stands for the maximal distance
at which the light source completely encompasses the outer
sail and after which the illumination decreases as the inverse
of the distance squared. At some point the outer ring sail
separates from the inner payload ring, which now uses its
front reflective surface to collect light reflected from the outer
sail to decelerate. The payload sail then enters a deceleration
phase which is driven by the following power function:

Pp =
{−Po; (Xo − Xp) < X2

−Po
( X2

Xo−Xp

)2
; (Xo − Xp) � X2

(41)

where Po is the power acting on the outer sail Eq. (40), X2

is the maximal distance at which the light reflected from the
sail completely covers the payload’s sail located at Xp, and
Xo � Xp is the position of the accelerating outer sail.

Figure 10 presents a typical example of a rectilinear sin-
gle trip performed with two-stage light sails. We consider a
payload of rest mass mp = 20 tons and an outer sail of mass
mo = 4 tons (hence a total mass of 24 tons) powered by a laser
source of power P0 = 10 GW. Following [11], if we assume a
sail of thickness 1 μm and density 1.4 g/cm3, then the radius
of the outer sail with a mass of 4 tons is ≈954 m. We also
assume the laser source is capable to illuminate the outer sail
with constant power up to a distance X1 of 5 A.U. after which
the illumination starts decreasing with the inverse square of
the distance to the source. Similarly, the outer sail is able to
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FIG. 10. Evolution of the outer and inner payload sails’ veloci-
ties (a) and distance (b). A dotted line indicates the cruise velocity of
the Voyager 1 probe.

completely illuminate the inner payload sail up to a relative
distance X2 = Xo − Xp which we choose to be equal to 5 A.U.
in the example of Fig. 10. The light source is used to both
accelerate and decelerate the double-stage spaceship, which
means that it must completely illuminate the outer sail over a
large distance (here X1 = 5 A.U.) covering both deceleration
and acceleration. If the outer sail has a radius of 954 m as we
have seen above, this could be achieved with a directed energy
system of radius close to 2 km, assuming an infrared laser of
wavelength equal to 1064 nm (Nd:YAG laser, see also [11]).

After the separation, the lighter outer sail is freed from its
heavier inner payload sail and therefore undergoes a stronger
acceleration and a quickly increasing relative distance to
the payload. This implies that the duration of the breaking
phase is shorter than the acceleration one and that the decay
of the illumination of the inner payload sail arrives earlier
as the outer sail quickly goes out of the distance X2 at which
the light from the outer sail completely illuminates the inner
payload sail. The lighter the outer sail the more important its
postseparation acceleration and the more important this effect.

In the example illustrated in Fig. 10, the acceleration phase
of the double-stage 24-ton spaceship lasts for 4.2 months, after
which it reaches a cruise velocity of about 30 km/s, almost
doubling the current record of 17 km/s held by the Voyager
1 probe. The separation of the payload from the outer ring
sail then occurs and a breaking phase decelerates the payload
for about three months. After that, the illumination from the
outer sail quickly fades away, and the outer sail has reached
a velocity of about 160 km/s and a distance Xo of 7 A.U.
which is X2 = 5 A.U. further than the distance reached by the
payload. It takes about seven months for the 20-ton payload
to reach a distance of 2 A.U., roughly the average distance
separating planets Earth and Mars. The total energy spent by
the laser source to make this trip possible is huge, around
2 × 1017 J or 45 000 kt. The efficiency of the directed energy
system at the end of the acceleration phase is very poor, close
to 10−4·

IV. CONCLUSION

Among a true mess of various ideas for making interstel-
lar travel possible, some were not as fanciful as could have
appeared on first sight. In fact, interstellar travel might well
have been invented almost 60 years ago by Forward [6] and
Marx [19]. Their vision was to use the then freshly realized
laser to propel reflecting sails at relativistic velocities, towards
the stars. This rather old idea has taken a long time to be
fully explored within relativity. Curiously, Forward, although
a renowned specialist of this discipline, did not push his idea
very far into formalism and detailed computations in the rela-
tivistic limit in his papers on the subject. A relativistic model
for the straight motion of a perfectly reflecting light sail was
introduced by Marx in 1966 [19], then seriously corrected
by Redding in 1967 [20] before being revisited into its final
form in 1992 by Simmons and McInnes in a pedagogical pa-
per. Under the recent burst of interest accompanying NASA’s
Starlight, Breakthrough Initiative, and other programs in the
previous two decades, this restricted model has served as a
basis for a variety of interesting extensions [7,9–11,14,24].
Unfortunately, these attempts did not revise the fundamentals
of the Marx–Redding–Simmons-McInnes model into special
relativity, which lead to some incompleteness of the recent
models and sometimes confusing presentations. For instance,
one major drawback of these recent papers is that they did
not explore the case of nonpure forces. By doing this, we
have been able to provide a model for predicting the sail’s
temperature at thermodynamic equilibrium. In addition, the
nonrectilinear motion of a light sail has not been investigated
so far.

This paper introduced the appropriate formalism to go
beyond this situation, by deriving the general model for the
nonrectilinear motion of partially reflecting gray light sails
starting from general principles in special relativity. As part
of the family of photon rockets, the light sails have to deal
with four-forces that obey several constraints and exhibit sev-
eral interesting properties, including the variation of their rest
mass when inelastic collisions with the incoming radiation oc-
cur. The general model of gray sails is built on a combination
of two particular cases: first, the one of perfectly reflecting
white sails which have a general planar motion; second, the
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one of perfectly absorbing black sails the motion of which
is along the direction of the incoming radiation beam and
ruled by the push of external radiation pressure and the drag
force from the Poynting-Robertson effect. Our model requires
numerical integration although in simplistic cases analytical
solutions allow crude approximations.

We also presented three applications of our model. First,
sailing at relativistic velocities has been shown to be intri-
cate due to the instability of the equilibrium when the sail
stands parallel to the incoming beam. Whatever the initial
conditions outside of this unstable point, any light sail will
naturally relax toward two possible positions with the velocity
anti- or colinear with the direction of the incoming beam
both with c as asymptotic speed. This behavior will allow
light sails to spontaneously align with the incoming beam
while accelerated, yielding a prediction for a deviation from
their initial aim. Second, we provide the predictions of our
model on the Starshot mission, within some generic nonre-
strictive assumptions that could be easily adapted if desired.
The model accounts for initial deviations of the sail’s position
and velocity vectors from the direction of the destination,
which produces non-negligible deviations at arrival. To show
this, we have provided a simple example with a small initial
misalignment of 1-arc-sec amplitude, and our predictions on
the light sail’s velocity, proper acceleration, and distance are
comparable to those of previous works [9–11], although ac-
counting for transverse deviation, rest mass, and temperature
variation when the sail is partially absorbing. There are several
important points for mission design that have been derived
here: aiming accuracy, proper acceleration and mechanical
constraints, increase of the sail’s temperature, time dilation
effect and wake-up time of the probe’s internal systems, and
propulsion efficiency and the need to seriously consider power
recycling to improve it. Third, we provide a very simple
model of a single trip in the Solar System with a ton-scale
two-stage light sail and a gigawatt-scale laser, to illustrate
the potential interest of this technique for interplanetary
exploration.

Of course, the results presented here are not exhaustive
and should be carefully extended to a more realistic numer-
ical modeling prior to any directed energy mission. While
our model is valid for nonrectilinear motion and general sail
reflectivity and absorptance, there are several physical effects
that must be added to compute a precise trajectory of such an
intricate (and costly) mission towards far-away planets or even
stars. This includes modeling of the environment: incoming
beam properties and interaction with the sail, gravitational

influences, Solar System constraints (e.g., a free path from a
ground-based laser and a sail), interplanetary and interstellar
media, magnetic fields, and anisotropic thermal radiation, to
name but a few. Several papers have already started investi-
gating some of these effects (see, for instance, [10,13] for a
review), which could now benefit from the general formalism
presented here. Other concerns of the authors are telecom-
munication and astronavigation issues which must take into
account several effects from general relativity (see [12] for a
first approach in the case of straight motion of photon rockets).
Following [10], we agree that a serious effort of physical
and numerical modeling, beyond simplistic models sometimes
solved using spreadsheets, must be made prior to any launch.
We also think that small scale ground-based experiments and
flying prototypes will be necessary to calibrate the models
and adjust numerical simulations (see [10] for an interesting
suggestion).

The key idea of Forward and Marx that could well make
interstellar travel possible one day is undoubtedly the ex-
ternalization of the propulsion’s energy source. As Forward
already envisions in [5], the most obvious primary energy
source for that purpose is the almost inexhaustible amount
of energy radiated by the Sun. But this means it has to be
collected by huge amounts, probably on a planetary scale, and
converted into intense radiation beams that will be efficient
for propulsion but potentially also for other dangerous aims.
The sending of one single tiny probe, of gram mass scale,
toward Alpha Centauri individually requires as much energy
as the one delivered by several kilotons of TNT. Besides this
frightening energy waste, cost estimation for such a program
is of the order of 10 × 109 dollars [10]. Of course, it is natural
to wonder whether the stars are worth these sacrifices, no mat-
ter their appealing beauty to the stargazer. In many respects,
like exploration of the unknown and maybe one day our own
survival, they certainly are. Yet, it is a charming idea that the
key to reach the stars could lie in the glare of their close and
lovely yellow dwarf cousin.
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