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Complexity of quantum motion and quantum-classical correspondence: A phase-space approach
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We discuss the connection between the out-of-time-ordered correlator and the number of harmonics of the
phase-space Wigner distribution function. In particular, we show that both quantities grow exponentially for
chaotic dynamics, with a rate determined by the largest Lyapunov exponent of the underlying classical dynamics,
and algebraically—linearly or quadratically—for integrable dynamics. It is then possible to use such quantities
to detect in the time domain the integrability-to-chaos crossover in many-body quantum systems.
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I. INTRODUCTION

Understanding, characterizing, and measuring the com-
plexity of (many-body) quantum dynamics is a fundamental
problem, also of great practical relevance for the prospects
of quantum information science [1] and more generally of
quantum technologies. In particular, the out-of-time-ordered
correlator (OTOC) (see, e.g., [2–30]) has been put forward
as a measure of chaos in many-body quantum systems [3],
and it has been related to mixing (called scrambling when
referring to quantum information) and thermalization, in dif-
ferent contexts, ranging from condensed matter [2] to black
hole physics [3–5].

In classical mechanics a well-defined notion of complexity
exists, based on local exponential instability of trajectories,
that is, on the positivity of the largest Lyapunov exponent. In
turn, this implies positive algorithmic complexity [31,32], so
that orbits are in practice unpredictable, and the memory of
initial conditions is lost [33].

The above notion of complexity cannot be readily trans-
ferred to quantum mechanics, where trajectories cannot be
defined due to the Heisenberg uncertainty principle. On the
other hand, complexity can be treated on equal footing for
classical and quantum mechanics in phase space, see [34–45]
for first attempts in this direction. The exponential sensitivity
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to initial conditions implies that the density distribution in
the phase space is exponentially stretched and folded, and
therefore becomes complex and intricate on ever smaller and
smaller scales. Therefore, if one wants to reconstruct nu-
merically the increasingly finer details of the phase-space
distribution, it is intuitive to expect that the number of har-
monics (i.e., components in Fourier space) that are excited
also increases exponentially in time [35,38,39]. In an in-
tegrable system this does not happen, as the instability is
typically linear in time [46]. It follows that the growth rate
of the number of harmonics of the phase-space distribution
can be used, similarly to the Lyapunov exponent, as a way to
characterize classical chaos.

One might object that there is the problem of choosing
the phase-space coordinates. However, while the finite-time
results of course depend on the basis, the asymptotic growth
rate does not, as it is given by the largest Lyapunov ex-
ponent [47], which is base-independent. If we consider
action-angle variables of an unperturbed, integrable system,
then a nonintegrable perturbation will lead to an exponential
growth of the number of harmonics with a rate given by the
largest Lyapunov exponent. On the other hand, an integrable
perturbation may distort even strongly unperturbed tori, so
that at short times a large number of harmonics may be ex-
cited, but asymptotically the number of harmonics will grow
linearly in time.

The phase-space approach can be conveniently generalized
to quantum mechanics, using the number of harmonics of the
Wigner function as a suitable measure of the complexity of a
quantum state.

In this paper we study the number of harmonics and the
OTOC, both for classically chaotic and integrable systems.
We show that both quantities can be used to detect, in the time
domain, the crossover from integrability to chaos. Moreover,
we show that the number of harmonics and the OTOC are
connected. Such connection places the OTOC on a broader
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context and reinforces its interpretation as a complexity quan-
tifier. The above results are illustrated numerically for the case
of two nonlinearly coupled oscillators.

II. THEORETICAL BASIS

We start by considering the number of harmonics in clas-
sical mechanics. Let H = H0 + HI be the Hamiltonian of a
N-particle system, where H0 is time-independent and inte-
grable, while H might be either integrable or nonintegrable.
We write the classical distribution function ρ(I, θ; t ) in terms
of the action-angle variables of H0, I = (I1, . . . , IN ) and θ =
(θ1, . . . , θN ). Taking the Fourier transform

ρ(I, θ; t ) = 1

πN

∑
m

ρm(I; t ) exp(im · θ), (1)

we define the second moment of the harmonics distribution as

Mcl
2 (t ) =

∑
m m2

∫ ∞
0 dI|ρm(I; t )|2∑

m

∫ ∞
0 dI|ρm(I; t )|2 . (2)

Making use of the properties of the Fourier transform, Mcl
2 (t )

can also be written as

Mcl
2 (t ) =

∫
dIdθ

∑
k

∣∣ ∂
∂θk

ρ(I, θ; t )
∣∣2∫

dIdθ|ρ(I, θ; t )|2 . (3)

Due to the Hamiltonian evolution, the denominator of Eq. (3)
is constant in time. So the behavior of Mcl

2 (t ) is determined
by the numerator, notably by the behavior of ∂

∂θk
ρ(I, θ; t ) for

different k. We obtain [48]

Mcl
2 (t ) =

∫
dχ(0)

∣∣∇̃ρ0[χ(0)]
∣∣2 ∑N

k=1[δIk (t )]2

d2
∫

dχ(0)|ρ0[χ(0)]|2 , (4)

where χ(t ) = [θ1(t ), . . . , θN (t ), I1(t ), . . . , IN (t )] is the action-
angle vector at time t , ∇̃ = ( ∂

∂I1
, . . . , ∂

∂IN
,− ∂

∂θ1
, . . . ,− ∂

∂θN
) a

modified gradient, ρt [χ(t )] the classical distribution function,
and δIk (t ) indicates the deviation of the kth action at time t ,
for two points in phase space, whose initial positions are χ(0)

and χ(0) + δχ(0), respectively, with δχ(0) = d
˜∇ρ0[χ(0)]

|˜∇ρ0[χ(0)]| and

d → 0. From Eq. (4) one finds that the behavior of the number
of harmonics in classical case is determined by the quantities
δIk (t ). In the integrable case, δIk (t ) typically increases linearly
with time, and thus Mcl

2 (t ) has a quadratic growth. For the
chaotic case, δIk (t ) increases exponentially with time, and so
is the case for Mcl

2 (t ). For a numerical confirming evidence,
see below.

In the quantum case, for the sake of simplicity
we limit ourselves to systems whose Hamiltonian Ĥ
can be written in terms of a set of bosonic creation-
annihilation operators. That is, Ĥ = Ĥ0 + Ĥ1, where
Ĥ0 = Ĥ0(n̂1, . . . , n̂N ) is time-independent and integrable,
while Ĥ1 = Ĥ1(â†

1, . . . , â†
N , â1, . . . , âN ; t ), with [âi, â j] =

[â†
i , â†

j ] = 0, [â†
i , â j] = δi j , and the number operators

n̂i = â†
i âi. The Wigner function of a state, which is described

by a density operator ρ̂(t ), can be written as [49–51]

W (α,α∗; t ) = 1

π2N h̄N

∫
d2η exp

(
η∗ · α√

h̄
− η · α∗

√
h̄

)
× Tr[ρ̂(t )D̂(η)], (5)

where η = (η1, . . . , ηN ) and α = (α1, . . . , αN ) are N-
dimensional complex variables, and the displacement operator

D̂(η) = exp

[
N∑

i=1

(ηiâi
† − η∗

i âi )

]
. (6)

We then consider the Fourier expansion of the Wigner
function,

W (α,α∗; t ) = 1

πN

∑
m

Wm(I; t ) exp(im · θ), (7)

where Ik and θk are related to αk by αk = qk+ipk√
2

= √
Ikeiθk .

Here Ik and θk can be regarded as a polar coordinates in
the (qk, pk ) plane. The number of harmonics is estimated by√
M2, where M2(t ) = ∑

m |m|2Wm(t ) is the second moment
of the harmonics distribution, with

Wm(t ) =
∫

dI|Wm(I; t )|2∑
m

∫
dI|Wm(I; t )|2 . (8)

In terms of density matrix ρ̂(t ), we can also
write [35,38,40,42]

Wm(t ) =
∑

nk>0 |〈n + m|ρ̂(t )|n〉|2∑
nk>0,

∑
(mk+nk )>0 |〈n + m|ρ̂(t )|n〉|2 . (9)

Following [35,39], M2(t ) can be written as

M2(t ) =
∑

k Tr(|[ρ̂(t ), Îk]|2)

h̄2Tr[ρ̂2(t )]
, (10)

where Îk = h̄n̂k . In the case of a pure state |ψ (t )〉,

M2(t ) = 2
∑

k[
Ik (t )]2

h̄2 , (11)

where

[
Ik (t )]2 = 〈ψ (t )|Î2
k |ψ (t )〉 − 〈ψ (t )|Îk|ψ (t )〉2 (12)

is the variance for measurement at time t , corresponding to
observable Îk .

We now turn to OTOC, defined as the expectation of the
square commutator of two operators taken at different times:

C(t ) = 〈|[Â(t ), B̂(0)]|2〉. (13)

It is interesting to remark that the numerator of the right-hand
side (rhs) of Eq. (10), which measures the number of har-
monics (the denominator is constant in time for Hamiltonian
evolution), turns out to be a particular kind of OTOC, with
Â(t ) = ρ̂(t ) and B̂(0) = Îk , and the average taken over the
whole Hilbert space. In the following, however, we consider a
more commonly used expression for OTOC,

Cpp(t ) = − 1

h̄2 〈ψ0|[ p̂1(t ), p̂1(0)]2|ψ0〉, (14)

where p̂1 is the momentum operator for one particle (denoted
as particle 1) and |ψ0〉 is the initial state (at time t = 0) of the
composite, N-particle system.

The classical correspondence of Cpp(t ), denoted as Ccl
pp(t ),

is obtained by the canonical substitution 1
ih̄ [Â, B̂] → {A, B}PB,
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where the right-hand side is the Poisson bracket of the classi-
cal variables A and B. We obtain

Ccl
pp(t ) =

∫
dγ (0)ρ0[γ (0)]{p1(t ), p1(0)}2

PB

=
∫

dγ (0)ρ0[γ (0)]

(
δp1(t )

δq1(0)

)2

, (15)

where γ (t ) = [q1(t ), . . . , qN (t ), p1(t ), . . . , pN (t )] and
ρ0[γ (0)] is the initial distribution of the classical ensemble
corresponding, in the quantum case, to the Wigner function of
the initial state. It is clear from Eq. (15) that the behavior of

Ccl
pp(t ) is determined by the quantity ( δp1(t )

δq1(0) )
2
. In the integrable

case, δp1(t ) increases linearly with time, and therefore Ccl
pp(t )

is expected to be a quadratic function of time, while in the
chaotic case δp1(t ) has an exponential growth, and so is
Ccl

pp(t ).
Barring subtle points related to the phase-space averag-

ing procedure [48], we can conclude that both Mcl
2 (t ) and

the OTOC Ccl
pp(t ) grow exponentially for chaotic classical

systems, with a rate given by twice the largest Lyapunov
exponent λL(r0) of the trajectory started at the center of the
initial distribution, assumed to be narrow:

Mcl
2 (t ),Ccl

pp(t ) ∝ exp[2λL(r0) t]. (16)

While the short-time behavior depends on the chosen phase-
space coordinates, the growth rate, which is determined by the
largest Lyapunov exponent, does not.

III. NUMERICAL RESULTS

To illustrate the above analytical results, we consider a
model of two coupled oscillators, whose Hamiltonian is

Ĥ = 1

2

(
p̂2

1 + q̂2
1

) + 1

2

(
p̂2

2 + q̂2
2

) + β

4

(
q̂4

1 + q̂4
2

) + 1

2
q̂2

1q̂2
2,

(17)
where Ĥ0 is written as

Ĥ0 = 1
2

(
p̂2

1 + q̂2
1

) + 1
2

(
p̂2

2 + q̂2
2

)
. (18)

This model allows us to investigate both the integrable
case β = 1, the chaotic case β 
 1, and the crossover be-
tween the two regimes. As initial state |ψ0〉 we consider the
tensor product of Gaussian wave packets for both particles.
We average our numerical data over N initial conditions,
with the centers of the (Gaussian) Wigner functions randomly
distributed within the energy shell [E0 − δE/2, E0 + δE/2],
with δE 
 E . In our dimensionless units the width in qk and
pk (k = 1, 2) of the initial Wigner functions is proportional
to

√
h̄, with h̄ effective Planck constant. In the classical case,

we average over the corresponding initial Gaussian distribu-
tions [52].

Numerical results for the number of harmonics and the
OTOC are shown in Figs. 1 and 2, respectively. Here we
average over different initial states as follows:

lnM2(t )= 1

N

N∑
k=1

lnM(k)
2 (t ), ln Cpp(t )= 1

N

N∑
k=1

ln C(k)
pp (t ),

(19)

FIG. 1. Dependence of the averaged number of harmonics on
time for different value of h̄ and in the classical case (a) in the chaotic
regime for β = 0 (the dashed line indicates the exponential growth of
M2, with rate 1.2 equal to two times a generalized largest Lyapunov
exponent); (b) in the integrable regime β = 1, where t is given in
logarithmic scale (the dashed line indicates the quadratic growth
of M2). In the classical case we average over 100 different initial
ensembles and in the quantum case over 100 initial states, distributed
randomly within the energy shell with E0 = 8, δE = 0.002. To avoid
effects due to the size of h̄, which are not relevant to determine the
growth rate, here we subtract the t = 0 value.

where M(k)
2 (t ) and C(k)

pp (t ) are the number of harmonics and
OTOC starting from the kth initial condition, and N , as dis-
cussed above, is the number of initial conditions we consider
within the energy shell. Such averaging addresses the prob-
lem of spurious exponential growth in integrable systems,
due to unstable fixed points in phase space rather than to
chaos [30,56]. With the averaging (19), we can unambigu-
ously associate the exponential (quadratic) growth of M2(t )
and Cpp(t ) to chaos (integrability). Indeed, in agreement
with theoretical predictions, it is seen that both quantities,
in the semiclassical regime and for chaotic dynamics, grow
exponentially, with a rate determined by the largest Lya-
punov exponent λL [47,48]. On the other hand, the growth is
quadratic when the system is integrable. In all cases, it is clear
that the quantum results converge to the classical ones when
the effective Planck constant h̄ → 0. For the OTOC, it appears
that the quantum to classical correspondence, as expected,
is valid up to the logarithmic time scale in the chaotic case
tE ∼ ln(1/h̄)/λL [53], while in the integrable case the corre-
spondence is valid up to a much longer time, growing as 1/h̄.
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FIG. 2. Dependence of averaged OTOC on time for different
value of h̄ and in the classical case, (a) in the chaotic regime for
β = 0; (b) in the integrable regime β = 1. In the classical case,
the results are averaged over 100 different initial ensemble and in
quantum case over 100 initial states, respectively, distributed ran-
domly in the same energy shell as in the previous figure. The dashed
lines indicate exponential (top) and quadratic (bottom) growth. In the
chaotic case, the growth rate is the same as the one in Fig. 1 for the
number of harmonics.

With regard to the number of harmonics, it can be seen that the
convergence of quantum results to the classical ones requires
smaller values of h̄. The deviation of M2(t ) from Mcl

2 (t )
is determined by the deviation of the Wigner function from
the corresponding classical distribution function. Though we
consider initial coherent states, for which the Wigner function
is everywhere positive and exactly equal to the corresponding
classical distribution, nonlinear dynamics generates negative
fringes in the Wigner function, which usually deviates from
the classical distribution function at times much shorter than
the Ehrenfest time. Thus to reveal the integrable or chaotic na-
ture of dynamics from the quadratic or exponentially growth
of the number of harmonics, one needs a smaller h̄ than for
the OTOC.

The different time dependence between integrable and
chaotic regime for number of harmonics and OTOC suggests
that these quantities can be used to detect the crossover from
integrability to chaos in the time domain. To provide a clear
evidence of this expectation, we plot in Fig. 3 an average
velocity vo = Cpp(t

o )/t
o , where t

o indicates the time at which
Cpp reaches half of its saturation value. The figure shows
that the crossover to chaos takes place in the region around

FIG. 3. Average velocity vo in the growth of OTOC and distance
to chaos measured by 
. Data for 
 are for h̄ = 1/64, while for
vo h̄ = 1/8. To get a better comparison of the results, vo is rescaled
to its maximal value. The arrow roughly indicates the value of β for
the transition to chaos.

β = 0.2. This is in agreement with results obtained from
energy-level statistics [54], which is the ordinary tool to detect
such a transition. In the later case, we consider a parameter 
,
defined as


 =
∫ ∞

0 |P(s) − Pw(s)|ds∫ ∞
0 |Pp(s) − Pw(s)|ds

, (20)

where P(s) is the nearest-level-spacing distribution of the
system, and Pw(s)[Pp(s)] is the Wigner-Dyson (Poisson) dis-
tribution. The quantity 
 measures the distance between the
level spacings distribution of our model and the Poisson and
Wigner-Dyson distributions, normalized in such a way that

 = 0 corresponds to Wigner-Dyson and 
 = 1 to Poisson
distribution. Variation of 
 versus β shows the same crossover
region around β = 0.2.

IV. DISCUSSION AND CONCLUSION

We showed that both the number of harmonics and OTOC
are convenient tools to characterize complexity in classi-
cal and quantum mechanics. Both quantities can be used,
similarly to spectral statistics, to detect the crossover from in-
tegrability to chaos. In contrast with spectral statistics, which
can only provide information on the integrable or chaotic
nature of dynamics, OTOC and number of harmonics also
measure the “strength” of chaos, as provided by the largest
Lyapunov exponent. In this connection, we recall that noninte-
grable systems with zero Lyapounov exponent (e.g., irrational
polygonal billiards) exhibit Wigner-Dyson statistics.

While in classical mechanics the (exponential or quadratic)
growth of both quantities continues forever, in quantum me-
chanics it eventually saturates due to the discreteness of
quantum phase space, i.e., its noncommutative geometry.
In particular, for chaotic dynamics and in the semiclassi-
cal regime the saturation value of number of harmonics and
OTOC can be obtained using the eigenstate thermalization hy-
pothesis [55]. We obtain [48] lnM2(∞), ln Cpp(∞) ∝ − ln h̄.

043178-4



COMPLEXITY OF QUANTUM MOTION … PHYSICAL REVIEW RESEARCH 2, 043178 (2020)

Note that, as the growth of number of harmonics and OTOC
is exponential in time, saturation takes place on the timescale
logarithmically short in h̄.

It is also interesting to comment on the relationship be-
tween OTOC and number of harmonics. While in the quantum
case the link can be understood by interpreting the second
moment of the harmonics distribution as a particular kind
of OTOC, it is the phase-space picture which allows a more
intuitive connection. When considering canonical variables,
the classical OTOC is the phase-space average of their squared
Poisson bracket, which in turn is related to exponential sen-
sitivity of trajectories, see Eq. (15) for the case of Cpp.
On the other hand, the number of harmonics can be seen
as the phase-space average of

∑
k[δIk (t )]2, with Ik action

variables for the unperturbed Hamiltonian, over a modified
distribution function, see Eq. (4). For both quantities, it is
the integrable or nonintegrable nature of the perturbation
which determines their growth in time. While the relationship
between OTOC and number of harmonics is generic, an in-
tuitive understanding of their connection on the basis of the
phase-space approach still has to be developed for many-body
quantum systems without classical analog, i.e., for quantum
spin chains.

The last point we want to mention here is that the second
moment M2(t ) of the harmonics distribution can, in principle,
be measured experimentally, by making use of the multiple
quantum coherence (MQC) experiments, which is a method
already used to measure OTOC [57]. To measure M2(t ),
one can adapt the method of [58]. To simplify writing, we
consider the one-dimensional case. Let |n〉 be the eigenstates
of the number operator n̂: n̂|n〉 = n|n〉. One can divide the
density matrix of an arbitrary state ρ̂(t ) into blocks as ρ̂(t ) =

∑
m ρ̂m(t ), where

ρ̂m(t ) =
∑

n−n′=m

ρnn′ (t )|n〉〈n′|. (21)

The Frobenius norm Im[ρ̂(t )] = (‖ρ̂m(t )‖)2 =
tr[ρ̂†

m(t )ρ̂m(t )] = ∑
n−n′=m |ρnn′ (t )|2, is related to Wm(t )

[see Eq. (9)] as follows:

Im[ρ̂(t )] = Wm(t )

tr[ρ̂2(t )]
. (22)

To measure Im[ρ̂(t )], one can evovle ρ̂0 into ρ̂(t ), apply
Ŵ (φ) = e−in̂φ , evolve backward (echo experiment) to ρ̂ f , and
measure the probability to find the system in the initial state,
given by tr[ρ̂0ρ̂ f ]. Since Ŵ (φ)ρ̂m(t )Ŵ †(φ) = eimφρ̂m(t ), we
obtain

tr[ρ̂0ρ̂ f ] =
∑

m

Im[ρ̂(t )]e−imφ. (23)

Finally, by Fourier transforming the signal with respect to φ,
one obtains the MQC spectrum {Im[ρ̂(t )]}, and the second
moment of the harmonics distribution:

M2(t ) = tr[ρ̂2
m(t )]

∑
m

m2Im[ρ̂(t )]. (24)
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