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Resonance frequency and radiative Q-factor of plasmonic and dielectric modes of small objects
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The electromagnetic scattering resonances and modes of a nonmagnetic object much smaller than the incident
wavelength in vacuum can be either described by the electroquasistatic approximation of the Maxwell’s equa-
tions if its permittivity is negative or by the magnetoquasistatic approximation if its permittivity is positive and
sufficiently high. Nevertheless, these two approximations fail to correctly account for the frequency shift and
the radiative broadening of the resonances when the size of the object becomes comparable to the wavelength
of operation. In this paper, the radiation corrections to the electroquasistatic and magnetoquasistatic resonances
and modes of arbitrarily shaped objects are derived, which only depend on the quasistatic current modes. Then,
closed-form expressions of the frequency shift and the radiative Q-factor of both plasmonic and dielectric modes
of small objects are introduced, where the dependencies on the material and the size of the object are factorized.
In particular, it is shown that the radiative Q-factor explicitly depends on the multipolar components of the
quasistatic mode and its corrections.
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I. INTRODUCTION

There exist two mechanisms through which a nonmagnetic
homogeneous object, assumed small compared to the incident
wavelength in vacuum, may resonate.

The first resonance mechanism occurs in small metal
nanoparticles with negative permittivity, and it arises from the
interplay between the energy stored in the electric field and
the kinetic energy of the free electrons of the metal. When the
object is very small compared to the wavelength in vacuum,
these resonances are well described by the electroquasistatic
approximation of the Maxwell’s equations [1–5] and associ-
ated to the negative values of permittivity in correspondence
of which source-free solutions exist. However, it is known
that as the size of the object becomes comparable to the
incident wavelength, this approximation is unable to describe
the radiative shift and broadening of these resonances.

The second resonance mechanism occurs in small objects
of high and positive permittivity, and it arises from the inter-
play between the polarization energy stored in the dielectric
and the energy stored in the magnetic field. Manifestation
of this kind of resonance can be found at microwave [6–9]
and optical [10–14] frequencies. When the object is very
small compared to the free-space wavelength, and the per-
mittivity very high, these resonances are well described by
the magnetoquasistatic approximation of the Maxwell’s equa-
tions [15], where the normal component of the displacement
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current density field vanishes on the surface of the particle
[15,16]. In particular, these resonances are associated with
the eigenvalues of the magnetostatic integral operator express-
ing the vector potential in terms of the displacement current
density [15]. Unfortunately, when the permittivity of the di-
electric material is moderately high, as happens, for instance.
in the visible spectral range [10–14], the size of the object
has to be comparable to the incident wavelength to trigger
a resonant response. In this scenario, the magnetoquasistatic
approximation is unable to describe the frequency shift and
the broadening of these resonances.

In light of these observations, to describe the electro-
magnetic resonances of objects of size comparable to the
incident wavelength, one may be tempted to abandon the qua-
sistatic approximation altogether and then turn to the full
Maxwell’s equations, using one of several possible spec-
tral approaches, including the quasinormal modes [17,18],
the characteristic modes [19,20], or the material-independent
modes [21,22]. There are certainly some advantages in doing
so, including the fact that the full-wave formulations would
enable, given unlimited computational resources, the treat-
ment of objects of any size. In fact, scattering resonances
have been already investigated by considering full-wave
eigenvalue problems based on volume (e.g., Refs. [23–25]),
surface (e.g., Refs. [26–30]), and line integral formulations of
the Maxwell’s equations [31]; differential formulations (e.g.,
Refs. [32,33]); and Mie theory (e.g., Refs. [17,22,34,35]). For
a recent review, see Ref. [18]. However, the resulting reso-
nance frequencies and Q-factors depend on the morphology,
material, and size of the object. A change of any of these
parameters would require an entirely new calculation. These
dependencies are buried below the computational layer and
cannot be factorized.

Closed-form expressions of the Q-factor and the frequency
shift of both plasmonic and dielectric modes, where the
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dependencies on the material and size of the object are
factorized, are highly desirable. They would enable the classi-
fication of the resonances and facilitate their engineering [36],
including the coupling with emitters [37–40], because they
could be used as a target for the design [41,42]. Moreover,
in many applications, the size of metal or dielectric objects
does not exceed the free-space wavelength of operation [13].
These are powerful incentives to pursue the extension of the
two quasistatic scattering limits to include radiation effects.

In the literature, there already exist closed-form expres-
sions for the resonance frequency shift and Q-factors in few
scenarios.

For electrically small antennas, physical limitations on the
Q-factor have been the subject of numerous papers [43–48],
starting from the classical works of Wheeler [49] and Chu
[50].

For plasmonic resonators, Mayergoyz et al. derived the
second-order correction to electroquasistatic eigenvalues [51],
starting from Maxwell’s equations in differential form. Wang
and Shen derived the expression of the Q-factor of a plas-
monic mode, when the nonradiative losses are dominant [4].
The derivation of a general expression for the Q-factor of
plasmonic modes when radiative losses are dominant [52]
remains unexplored.

For high-index dielectric resonators, Van Bladel introduced
closed-form expressions for the Q-factor of the magnetic
dipole mode and provided the Q-factor of specific higher
order modes of a rotationally symmetric object [16], consid-
ering an asymptotic expansion of the Maxwell’s equation in
differential form in terms of the inverse of the index of re-
fraction. Following Van Bladel’s work, De Smedt derived the
frequency shift and Q-factor of a rotationally symmetric ring
resonator [53]. General expressions for both the frequency
shift and radiative factor have not been derived yet.

In this paper, the radiation corrections for both the electro-
quasistatic and magnetoquasistatic resonances and resonant
modes of arbitrarily shaped nonmagnetic homogeneous and
isotropic objects are introduced, using an integral formulation
of the Maxwell’s equations and treating the size parameter of
the object as a small parameter.

Then, closed-form expressions of the frequency shift and
the radiative Q-factor of both plasmonic and dielectric modes
of small objects are introduced, where the dependencies on
the material and the size of the object are factorized. Specifi-
cally, the relative resonance frequency shift of any mode (with
respect to the quasistatic resonance position) is a quadratic
function of the size parameter at the quasistatic resonance,
whose prefactor depends on the ratio between the second-
order eigenvalue correction and the quasistatic eigenvalue.
Furthermore, the radiative Q-factor is an inverse power func-
tion of the size parameter whose exponent is the order ni of the
first nonvanishing imaginary eigenvalue correction, while the
prefactor is the ratio between the quasistatic eigenvalue and
the nith-order imaginary correction, which explicitly depends
on the multipolar components of the quasistatic mode.

This paper is organized as follows. First, the scatter-
ing resonances and modes in the quasistatic regimes are
briefly summarized in Sec. II. Then, in Sec. III, the full-
wave scattering problem is formulated and an eigenvalue
problem governing the scattering resonances and modes is

introduced. This eigenvalue problem is solved perturbatively
in Secs. IV and V, starting from the electroquasistatic and
magnetoquasistatic limits, treating the size parameter as a
small parameter. Collecting same-order terms, closed-form
radiation corrections are found. In Sec. VI, the frequency shift
and the Q-factor are obtained as a function of these radiation
corrections. In Sec. VII, the catalogs of plasmonic and pho-
tonic resonances are introduced. They constitute a synthetic
classification of the modes of a homogeneous nonmagnetic
objects, and depend only on its morphology but not on its
size, material, and frequency of operations. This classification
may help the description of the elementary building blocks of
the nanocircuitry envisioned by Engheta et al. in Ref. [54].
Eventually, the introduced formalism is validated by investi-
gating the resonance frequency and Q-factors in the scattering
response of metal and dielectric objects of size comparable to
the incident wavelength.

II. MODES AND RESONANCES IN THE QUASISTATIC
REGIME

A homogeneous, isotropic, nonmagnetic, linear material
occupies a volume �, of characteristic linear dimension lc,
bounded by a closed surface ∂� with an outward-pointing
normal n̂. The material has relative permittivity εR, and it is
surrounded by vacuum. There exist two mechanisms through
this object may resonate in the quasistatic regime [15].

A. Electroquasistatic modes and resonances

The first resonance mechanism is the electroquasistatic res-
onance, occurring in metals (more in general, in objects whose
dielectric permittivity has a negative real part) where the in-
duced electric charge plays a central role. These resonances
are associated with the eigenvalues χ

‖
h of the electrostatic

integral operator Le that gives the electrostatic field as a
function of the surface charge density [55]:

χ
‖
h Le

{
j‖h
} = j‖h, (1)

where the expression of Le is

Le
{
j‖h
} = −∇̃

∮
∂�̃

g0(r̃ − r̃′)j‖h(r̃′) · n̂(r̃′)dS̃′, (2)

g0(r̃ − r̃′) = 1
4π |r̃−r̃′ | is the static Green’s function in vacuum.

In Eqs. (1) and (2), the spatial coordinates have been nor-
malized by lc, i.e., r̃ = r/lc, �̃ is the corresponding scaled
domain, ∂�̃ is the boundary of �̃, and ∇̃ is the scaled gradient
operator.

The quasistatic oscillations, represented by the electro-
quasistatic (EQS) current modes j‖h, arise from the interplay
between the energy stored in the electric field and the kinetic
energy of the free electrons in the metal. The spectrum of the
operator Le is discrete [51,55]. Each EQS mode j‖h is char-
acterized by a real and negative eigenvalue χ

‖
h , which is size

independent [51]. The modes {j‖h}h∈N are longitudinal vector
fields: They are both curl-free and divergence-free (div-free)
within the object but have nonvanishing normal component to
the object surface [51,55]. This normal component is related
to the induced surface charge density on ∂�̃, and satisfies the
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charge-neutrality condition, i.e.,∮
∂�̃

j‖h(r̃′) · ñ(r̃′) dS̃′ = 0. (3)

Moreover, the EQS modes are orthonormal,

〈j‖h, j‖k〉�̃ = δh,k, (4)

accordingly to the scalar product

〈f, g〉�̃ =
∫

�̃

f∗(r̃) · g(r̃)dṼ . (5)

Under the normalization (4), the electrostatic energy of the hth
EQS current mode is

We
{
j‖h
} = 1

2ε0

1(−χ
‖
h

) . (6)

The electric dipole moment P‖
E,h of the EQS mode j‖h is

defined accordingly to Eq. (A1) of Appendix A. If the mode
j‖h exhibits a vanishing electric dipole moment, i.e.,∥∥P‖

E,h

∥∥ = 0, (7)

it is called dark; otherwise it is bright.

B. Magnetoquasistatic modes and and resonances

The second resonance mechanism is the magnetoqua-
sistatic resonance, occurring in dielectric objects with high
and positive permittivity, where the displacement current den-
sity field plays a central role. These resonances are associated
with the eigenvalues κ⊥

h of the magnetostatic integral operator
Lm that gives the vector potential as a function of the current
density [15],

κ⊥
h Lm

{
j⊥h
} = j⊥h , (8)

with

j⊥h (r̃) · n̂(r̃)
∣∣
∂�̃

= 0 ∀r̃ ∈ ∂�̃, (9)

where Lm is

Lm
{
j⊥h
}
(r̃) =

∫
�̃

g0(r̃ − r̃′)j⊥h (r̃′)dṼ ′. (10)

Equation (8) holds in the weak form in the functional space
equipped with the inner product (5), and constituted by the
transverse vector fields which are div-free within �̃ and hav-
ing zero normal component to ∂�̃.

The quasistatic oscillations represented by the magneto-
quasistatic (MQS) current density modes j⊥h arise from the
interplay between the polarization energy stored in the di-
electric and the energy stored in the magnetic field [15]. The
spectrum of the magnetoquasistatic operator (8) is discrete,
too [15]. The MQS current mode j⊥h is characterized by a
real and positive eigenvalue κ⊥

h , which is size independent.
The current modes {j⊥h }h∈N are transverse modes: They have
a nonzero curl within the object, but are divergence-free and
have a vanishing normal component on the object surface
[15]. Each current mode j⊥h has zero electric dipole moment,
namely, ∫

�̃

j⊥h (r̃′)dṼ = 0. (11)

Furthermore, the MQS current density modes are orthonor-
mal: 〈

j⊥h
∣∣j⊥k 〉 = δh,k . (12)

Under this normalization, the magnetostatic energy of the hth
electroquasistatic current mode is

Wm
{
j⊥h
} = μ0

2

1

κ⊥
h

. (13)

The current mode j⊥h generates a vector potential

A
{
j⊥h
}
(r̃) = μ0

4π

∫
�̃

g0(r̃ − r̃′)j⊥h (r̃′)dṼ ′. (14)

Among the MQS current modes, there exists a subset of
modes generating a vector potential A{j⊥h } with zero normal
component to ∂�̃, i.e.,

n̂(r̃) · A
{
j⊥h
}
(r̃) = 0, ∀r̃ ∈ ∂�̃; (15)

namely A{j⊥h }(r̃) is a transverse field. In this paper, a MQS
mode belonging to this subset is called A⊥ mode. The A⊥
modes are also solution of the problem (8) in a strong form
(in the space of square integrable vector fields).

The longitudinal set of EQS current modes {j‖h}h∈N and the
transverse set of MQS {j⊥h }h∈N modes are orthogonal accord-
ingly to the scalar product (5), and together are a complete
basis of the vector space of square integrable divergence-free
vector fields in �.

III. ELECTROMAGNETIC MODES AND RESONANCES

The full-wave scattering problem can be formulated by
considering as unknown the current density field J induced in
the object. This current density particularizes into conduction
current in metals at frequencies below interband transitions,
polarization current in dielectrics, sum of conduction and po-
larization currents in metals in the frequency ranges where
interband transitions occur. The object is illuminated by a
time harmonic electromagnetic field Re{Einc(r)eiωt }. In the
frequency domain, the field J(r) is related to the electric field
E(r) by J(r) = iωε0χ (ω)E(r) where χ (ω) = (εR(ω) − 1) is
the electric susceptibility of the object and ε0 is the vacuum
permittivity. Both the vector field E and J are divergence-free
in the region � occupied by the object due to the homogeneity
and isotropy of the material. The induced current density is
solution of the full-wave volume integral equation [56–58]:

J(r)

iωε0χ
= − 1

iωε0
∇

∮
∂�

g(r − r′)J(r′) · n̂(r′)dS′

− iωμ0

∫
�

g(r − r′)J(r′)dV ′ + Einc(r),

∀r ∈ �, (16)

where μ0 is the vacuum permeability, g(r − r′) =
e−ik0r/4π |r − r′| is the Green’s function in vacuum,
k0 = ω/c0, and c0 = 1/

√
ε0μ0. The surface and volume

integrals represent the contributions to the induced electric
field of the scalar and vector potentials, respectively. Then,
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Eq. (16) is rewritten as [25]
J(r̃)

χ
− L {J}(r̃) = iωε0Einc(r̃), ∀r̃ ∈ �̃, (17)

where the spatial coordinates are normalized as r̃ = r/lc,

L {J}(r̃) = −∇̃
∮

∂�̃

g(r̃ − r̃′, x)J(r̃′) · n̂(r̃′)dS̃′

+ x2
∫

�̃

g(r̃ − r̃′, x)J(r̃′)dṼ ′, (18)

�̃ is the scaled domain, ∂�̃ is boundary of �̃, ∇̃ is the
scaled gradient operator, x is the size parameter x = 2π lc/λ,
g(r̃ − r̃′, x) is the Green’s function in vacuum

g(r̃ − r̃′, x) = 1

4π

e−ix|r̃−r̃′|

|r̃ − r̃′| = 1

4π

e−ix�r̃

�r̃
, (19)

and �r̃ = |r̃ − r̃′|.
The spectral properties of the linear operator L play a very

important role in any resonant scattering mechanism. Since L
is compact its spectrum is countable infinite. The operator L
is symmetric but not self-adjoint. For any value of the size
parameter x, its eigenvalues are complex with positive imag-
inary part. The eigenfunctions corresponding to two different
eigenvalues are not orthogonal in the usual sense: They are
biorthogonal [21,22].

The eigenvalue problem [25]

L {jh} = 1

γh
jh (20)

splits into the two eigenvalue problems (1) and (8) (see
Secs. II A and II B) in the quasistatic regime x � 1 (small ob-
ject). This fact was already shown for 2D objects in Ref. [30]
and for 3D objects in Ref. [15]. The eigenfunctions of L
that in the limit x → 0 tend to the EQS modes are indicated
with {uh(r̃)} and the corresponding eigenvalues are indicated
as {χh}. These eigenfunctions are called plasmonic modes.
Dually, the set of eigenfunctions of L that in the limit x → 0
tend to the MQS modes are indicated with {vh(r̃)} and the cor-
responding eigenvalues are indicated with κh/x2. Although in
the limit x → 0, the eigenvalues κh/x2 diverge, the quantities
κh remain constant. These eigenfunctions are called dielectric
modes. Forestiere and Miano et al. in Refs. [22,34] used the
adjectives plasmonic and photonic mode instead of plasmonic
and dielectric mode to identify the same two sets, while in
Ref. [35] the authors called them longitudinal and transverse
modes. All these nomenclatures are equivalent. It was shown
that this two sets of modes, even if this distinction is made
in the long-wavelength regime, remain well distinguishable
and have different properties even in the full-wave regime
[22,30,34].

The union of the two sets {uh(r̃)} and {vh(r̃)} is a basis for
the unknown current density field in Eq. (16). Its solution is

expressed as

J(r̃) = χ

[ ∞∑
h=1

χh

χh − χ
〈u∗

h, Einc〉�̃ uh(r̃)

+
∞∑

h=1

κh

κh − χx2
〈v∗

h, Einc〉�̃ vh(r̃)

]
, (21)

where both the set of modes {uh(r̃)} and {vh(r̃)} are normal-
ized, 〈u∗

h, uh〉 = 1, and 〈v∗
h, vh〉 = 1 for any h. This expansion

is very useful because it separates the dependence on the ma-
terial from the dependence on the geometry [21,22,25,30,31]
and has been used in different contexts [34,59,60].

In the next two sections, we develop a perturbation the-
ory to evaluate the plasmonic and dielectric resonances and
resonant modes of an object with arbitrary shape and size
parameter x � 1, by starting from the corresponding modes
in the quasistatic regime.

IV. PLASMONIC MODES AND RESONANCES

To evaluate the plasmonic resonances of small particles, it
is convenient to recast the eigenvalue problem (20) as

− uh(r̃) − χh ∇̃
∮

∂�̃

g(r̃ − r̃′, x)uh(r̃′) · n̂(r̃′) dS̃′

+ χh x2
∫

�̃

g(r̃ − r̃′, x)uh(r̃′)dṼ ′ = 0 ∀r̃ ∈ �̃. (22)

When the free-space wavelength λ = 2πc0/ω is large in
comparison with the characteristic dimension lc, the size pa-
rameter x can be treated as a small parameter, and the Green’s
function g(r̃ − r̃′, x), the current mode uh, and the eigenvalue
χh can all be expanded in terms of x in the neighborhood of
the EQS resonance with eigenvalue χ

‖
h and mode j‖h:

χh = χ
‖
h + χ

(1)
h x + χ

(2)
h x2 + χ

(3)
h x3 + · · ·

=
∞∑

k=0

χ
(k)
h xk , (23)

uh = j‖h + u(1)
h x + u(2)

h x2 + u(3)
h x3 + . . .

=
∞∑

k=0

u(k)
h xk , (24)

g(r̃ − r̃′, x) = 1

4π

(
�r̃−1 − ix − �r̃

2!
x2 + i

�r̃2

3!
x3 + · · ·

)

= 1

4π

∞∑
k=0

(−i)k �r̃k−1

k!
xk . (25)

By using Eqs. (23), (24), and (25), Eq. (22) becomes

− 4π

∞∑
k=0

u(k)
h xk −

( ∞∑
k=0

χ
(k)
h xk

)
∇̃
∮

∂�̃

( ∞∑
k=0

(−i)k �r̃k−1

k!
xk

)( ∞∑
k=0

u(k)
n,hxk

)
dS̃′

+
( ∞∑

k=0

χ
(k)
h xk

)∫
�̃

( ∞∑
k=0

(−i)k �r̃k−1

k!
xk

)( ∞∑
k=0

u(k)
h xk+2

)
dṼ ′ = 0, ∀r ∈ �̃, (26)
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where u(k)
n,h = u(k)

h · n|
∂�̃

and χ
(0)
h = χ

‖
h and u(0)

h = j‖h. In Appendix D, all the details of the derivation of radiation corrections for
plasmonic resonances and modes are reported. Here only the main results are shown. In the following, the EQS current modes
are normalized accordingly to Eq. (4), i.e. ‖j‖h‖ = 1, ∀h.

Matching the first-order terms in Eq. (26), it is obtained that the first order corrections vanish regardless of the object’s shape:

χ
(1)
h = 0, (27)

u(1)
h (r̃) = 0 ∀r ∈ �̃. (28)

Collecting the second order terms in Eq. (26), and applying the normal solvability condition of Fredholm integral equations
[61,62], the second order correction χ

(2)
h is derived:

χ
(2)
h = −(

χ
‖
h

)2 1

4π

(∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

|r̃ − r̃′|
2

j‖n,h(r̃′)dS̃′dS̃ +
∫

�̃

j‖h(r̃) ·
∫

�̃

j‖h(r̃′)
|r̃ − r̃′| dṼ ′dṼ

)
, (29)

where j‖n,h(r̃) = j‖h(r̃) · n̂(r̃)|
∂�̃

is a scalar field defined on the object’s surface ∂�̃. Accordingly to Eq. (29), χ (2)
h is real. Moreover,

the first term in parenthesis in Eq. (29) (starting from the left) originates from the radiative self-interaction of the surface
charge density associated to the EQS current mode through the scalar potential. The second term is instead proportional to the
magnetostatic energy of the current mode j‖h. A second order correction to the EQS modes has been already derived in Ref. [51]
by expanding the Maxwell’s equation in differential form. It will be demonstrated in Eq. (59) that χ

(2)
h is associated with the

frequency-shift of the h-th plasmonic mode.
The second order correction of the associated plasmonic mode u(2)

h has both longitudinal and transverse components, denoted
as u(2)‖

h and u(2)⊥
h , respectively:

u(2)
h = u(2)‖

h + u(2)⊥
h =

∞∑
k = 1
k �= h

α
(2)
h,k j‖k +

∞∑
k=1

β
(2)
h,k j⊥k , (30)

where the longitudinal part u(2)‖
h is represented in terms of the EQS modes basis {j‖k}k∈N , and the transverse part u(2)⊥

h in terms
of the MQS modes basis {j⊥k }k∈N . The expansion coefficients are:

α
(2)
h,k = 1

4π

χ
‖
k χ

‖
h

χ
‖
k − χ

‖
h

(∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

|r̃ − r̃′|
2

j‖n,k (r̃′)dS̃′dS̃ +
∫

�̃

j‖h(r̃) ·
∫

�̃

j‖k (r̃′)
|r̃ − r̃′| dṼ ′dṼ

)
, ∀k �= h (31)

β
(2)
h,k = 1

4π
χ

‖
h

∫
�̃

j‖h(r̃) ·
∫

�̃

j⊥k (r̃′)
|r̃ − r̃′| dṼ ′dṼ , ∀k ∈ N. (32)

Matching the third order terms in Eq. (26), the third order
correction χ

(3)
h is obtained:

χ
(3)
h = i

1

6π

(
χ

‖
h

)2∥∥P‖
E,h

∥∥2
, (33)

which is purely imaginary and proportional to the squared
norm of the dipole moment P‖

E,h of the h-th EQS
mode.

As it will be demonstrated in Eq. (61), χ
(3)
h determines the

radiative Q-factor of h-th plasmonic mode. However, for dark
modes χ

(3)
h vanishes. In this case, to retrieve information about

the radiative Q-factor, it is mandatory to consider the fifth
order perturbation χ

(5)
h . For dark modes, it can be expressed in

terms of the electric quadrupole tensor
↔
Q‖

E|h of the h-th EQS

mode, and its components Q‖
E|h|i j :

χ
(5)
h = i

1

80π

(
χ

‖
h

)2

[∑
i j

(
Q‖

E|h|i j

)2 − 1

3

(
Tr

↔
Q‖

E

)2
]

(34)

where Tr is the trace operator, and
↔
Q‖

E|h is defined by Eq. (A2)
of the Appendix A. Thus, the fifth order correction is purely
imaginary and it is related to the power radiated to infinity by
the electric quadrupole.

The outlined procedure can be iteratively applied: if the
fifth order correction vanishes, the next order correction that
may give an imaginary contribution is the seventh, which can
be calculated by matching the terms of corresponding-order
in Eq. (26).

V. DIELECTRIC MODES AND RESONANCES

To evaluate the dielectric resonances beyond the quasistatic
regime it is convenient to recast the eigenvalue problem (20)
as

− x2vh(r̃) − κh∇̃
∮

∂�̃

g (r̃ − r̃′, x) vh (r̃′) · n̂(r̃′) dS̃′

+ κh x2
∫

�̃

g (r̃ − r̃′, x) vh
(
r̃′) dṼ ′ = 0 ∀r̃ ∈ �̃. (35)
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The Green function g(r̃ − r̃′, x), the mode vh and the corresponding eigenvalue κh are expanded at x = 0 in the neighborhood of
MQS eigenvalue κ⊥

h and mode j⊥h :

κh = κ⊥
h + κ

(1)
h x + κ

(2)
h x2 + . . . =

∞∑
k=0

κ
(k)
h xk, (36)

vh = j⊥h + v(1)
h x + v(2)

h x2 + · · · =
∞∑

k=0

v(k)
h xk . (37)

By substituting Eqs. (36), (37), and (25) in Eq. (35) the following equation is obtained:

− 4π

∞∑
k=0

v(k)
h xk+2 −

( ∞∑
k=0

κ
(k)
h xk

)
∇̃
∮

∂�̃

( ∞∑
k=0

(−i)k �r̃k−1

k!
xk

)( ∞∑
k=0

v
(k)
h n xk

)
dS̃′

+
( ∞∑

k=0

κ
(k)
h xk

)∫
�̃

( ∞∑
k=0

(−i)k �r̃k−1

k!
xk

)( ∞∑
k=0

v(k)
h xk+2

)
dṼ ′ = 0, ∀r ∈ �̃, (38)

where v
(k)
h n = v(k)

h · n|
∂�

, κ
(0)
h = κ⊥

h and v(0)
h = j⊥h . In Ap-

pendix E, all the details on the derivation of radiation
corrections for dielectric resonances are reported. Here,
only the main results are highlighted. In the following, the
MQS are normalized accordingly to Eq. (12), i.e., ‖j⊥h ‖ = 1
∀h.

By matching the terms of corresponding order in Eq. (38),
it is possible to demonstrate that first-order corrections vanish
regardless of the shape of the object:

κ
(1)
h = 0, (39)

v(1)
h (r̃) = 0, ∀r ∈ �̃. (40)

The second-order correction κ
(2)
h is a real quantity, namely,

κ
(2)
h = (κ⊥

h )2

4π

[∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ

+
∞∑

k=1

χ
‖
k

4π

∣∣∣∣
∫

�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′|dṼ ′dṼ

∣∣∣∣
2
]
. (41)

The first term in parentheses in Eq. (41) originates from the
radiative self-interaction of the MQS mode j⊥h through the
vector potential. The second terms is a summation, where
each addend is proportional to the ratio of the magnetostatic
interaction energy between the MQS current mode j⊥h and the
EQS current mode j‖k , i.e.,

WmI
{
j‖k, j⊥h

} = μ0

8π

∫
�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′| dṼ ′dṼ , (42)

to the electrostatic energy of the EQS current mode j‖k [using
Eq. (6)]. The MQS current mode j⊥h may be an A⊥ mode,
generating a transverse vector potential, according to the def-
inition (15). In this case, since every EQS current mode is
longitudinal, and transverse and longitudinal functions are
orthogonal according to the scalar product (5), the energy
WmI{j‖k, j⊥h } vanishes ∀k, and Eq. (41) further simplifies:

κ
(2)
h = (κ⊥

h )2

4π

∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ

for A⊥ modes. (43)

As will be demonstrated in Eq. (69), κ
(2)
h is associated with

the frequency shift of dielectric modes.
The second-order correction v(2)

h to the current density
mode has both longitudinal and transverse components, de-
noted as v(2)‖

h and v(2)⊥
h , which can be in turn expanded in

terms of EQS and MQS current modes, respectively:

v(2)
h = v(2)‖

h + v(2)⊥
h =

∞∑
k=1

α
(2)
h,k j‖k +

∞∑
k = 1
k �= h

β
(2)
h,k j⊥k , (44)

where

α
(2)
h,k = − χ

‖
k

4π

∫
�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′|dṼ ′dṼ , ∀k, (45)

β
(2)
h,k = κ⊥

k κ⊥
h

κ⊥
h − κ⊥

k

1

4π

[∫
�̃

j⊥k (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ −
∞∑

s=1

α
(2)
h,s

∫
�̃

j‖s (r̃′) ·
∫

�̃

j⊥k (r̃)

|r̃ − r̃′|dṼ ′dṼ

]
, ∀k �= h.

(46)
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Although any MQS mode has a zero electric dipole mo-
ment, its second-order radiative correction v(2)

h may exhibit
a nonzero electric dipole moment P(2)

E|h, given by

P(2)
E|h =

∞∑
k=1

α
(2)
h,k P‖

E|k, (47)

where P‖
E|k is the electric dipole moment of the kth EQS mode

j‖k . For A⊥ modes, the longitudinal part of v(2)
h vanishes, and

they do not display electric dipole moment up to this order.
The third-order correction κ

(3)
h is purely imaginary and

depends on the magnetic dipole moment P⊥
M,h of the mode

j⊥h :

κ
(3)
h = i

(
κ⊥

h

)2 1

6π

∥∥P⊥
M,h

∥∥2
, (48)

where P⊥
M,h is defined in Eq. (A3). The third-order correction

to the mode, i.e., v(3)
h , is purely transverse and thus can be

expanded in the basis of MQS modes

v(3)
h = v(3)⊥

h =
∞∑

k = 1
k �= h

β
(3)
h,k j⊥k , (49)

where the expansion coefficient β
(3)
h,k depends on the dot prod-

uct of the magnetic dipole moments P⊥
M|h and P⊥

M|k of the hth
and kth MQS modes:

β
(3)
h,k = i

1

6π

κ⊥
k κ⊥

h

κ⊥
h − κ⊥

k

P⊥
M|h · P⊥

M|k ∀h �= k. (50)

As will be shown in Eq. (71), the correction κ
(3)
h , if nonvan-

ishing, determines the radiative Q-factor of the hth dielectric
mode.

However, κ
(3)
h vanishes when the corresponding magnetic

dipole moment is zero. In this case, the next imaginary cor-
rection has order 5 and has the following expression:

κ
(5)
h = i

(κ⊥
h )2

80π

∑
i j

(
Q⊥

M|h|i j

)2 + i
(κ⊥

h )2

6π

∥∥P⊥
E2|h − P(2)

E|h
∥∥2

,

(51)

where
↔
Q⊥

M|h is the magnetic quadrupole tensor of the hth MQS
mode, introduced in Eq. (A5), and Q⊥

M|h|i j are its components,

P⊥
E2|h is the toroidal dipole defined in Eq. (A4), and P(2)

E|h is

the electric dipole moment of the second-order correction v(2)
h ,

introduced in Eq. (47). In conclusion, the fifth order correction
depends on the power radiated to infinity by the magnetic
quadrupole

↔
Q⊥

M|h and by an effective electric dipole resulting

from the interference between the P⊥
E2|h and P(2)

E|h.
For A⊥ modes, Eq. (51) further simplifies:

κ
(5)
h = i

(
κ⊥

h

)2

{
1

80π

∑
i j

(
Q⊥

M|h|i j

)2 + 1

6π

∥∥P⊥
E2|h

∥∥2

}
. (52)

The outlined procedure can be iteratively applied. If the
fifth-order correction vanishes, the next order correction that

may give an imaginary contribution is the seventh, which can
be calculated by matching the terms of ninth order in Eq. (38).

VI. RESONANCE FREQUENCY AND Q-FACTOR

In the previous section, the second-order corrections χ
(2)
h ,

κ
(2)
h and nonvanishing imaginary corrections χ

(ni )
h , κ

(ni )
h of the

lowest order, called ni, are derived in closed form for both
plasmonic and dielectric modes. They depend neither on the
size of the object nor on its permittivity, but only on the
morphology of the EQS and MQS modes. In this section,
closed-form expressions of the resonance frequency and Q-
factors are obtained in terms of these corrections for both
metal and dielectric objects. The modes are assumed to be
noninteracting. Moreover, throughout this work, we use the
definition of Q-factor as the inverse of the −3-dB fractional
bandwidth.

A. Plasmonic resonances

It is now assumed that the object is made of a time-
dispersive metal described by the Drude model [63,64],

χ (ω) = − ω2
p

ω(ω − iν)
, (53)

where ωp and ν are the plasma and collision angular frequen-
cies, and ν � ωp. It is also useful to define the quantity

xp = ωp

c0
lc = 2π

lc
λp

, (54)

where λp is the plasma wavelength. The EQS resonance fre-
quency ω

‖
h of the hth EQS mode j‖h is defined as the frequency

at which the real part of the metal susceptibility Re{χ (ω)}
matches the EQS eigenvalue χ

‖
h , i.e.,

x‖
h

xp
= ω

‖
h

ωp
= 1√

−χ
‖
h

, (55)

where x‖
h = (ω‖

h/c0)lc is the size parameter at the EQS reso-
nance.

In the full-wave scenario, the resonance of the hth plas-
monic mode uh (which tends to j‖h in the quasistatic limit) is
defined by setting to zero the real part of the denominator of
the hth addend of the first summation in Eq. (21). Thus, the
value xh of the size parameter at the plasmonic resonance is
the value of x at which the real part of the metal susceptibility
χ (ω) matches the real part of the corresponding eigenvalue
χh(xh) of Eq. (20), i.e.,

Re{χh} = Re {χ (ωh)} ≈ −ω2
p

ω2
h

= −x2
p

x2
h

, (56)

and ωh is the corresponding resonance frequency. Equation
(56) is the resonance condition of the plasmonic modes. For
small particles xp � 1, by retaining only the real and imagi-
nary nonzero corrections of the lowest order in Eq. (23), the
plasmonic eigenvalue χh(x) is approximated as

χh(x) ≈ χ
‖
h + χ

(2)
h x2 + χ

(ni )
h xni , (57)
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where ni is the order of the first nonzero imaginary correction
χ

(ni )
h . By using Eq. (57) in (56), and solving the resulting

biquadratic equation, the resonance frequency is obtained:

ωh

ωp
= xh

xp
= 1√

2xp

√√√√√ χ
‖
h

χ
(2)
h

⎛
⎝
√√√√1 − 4

χ
(2)
h(

χ
‖
h

)2 x2
p − 1

⎞
⎠. (58)

In the limit xp � 1, the frequency shift of the plasmonic
resonance with respect to the EQS resonance, i.e., �ωh =
ωh − ω

‖
h, and the corresponding shift in the resonance size

parameter, i.e., �xh = xh − x‖
h , can be approximated as

�ωh

ω
‖
h

= �xh

x‖
h

≈ −1

2

χ
(2)
h

χ
‖
h

(
x‖

h

)2
, xp � 1. (59)

In conclusion, the relative frequency shift of any plasmonic
mode is a quadratic function of x‖

h , whose prefactor is one
half the ratio between the second-order correction χ

(2)
h and

the EQS eigenvalue χ
‖
h .

The radiative Q-factor Q‖r
h of the hth plasmonic mode is ob-

tained by considering the inverse of the fractional bandwidth
of the hth addend of the first summation in Eq. (21), assuming
negligible nonradiative losses, and using the expansion (57):

Q‖r
h ≈

∣∣∣∣ χ
‖
h

χ
(ni )
h

∣∣∣∣( 1

xh

)ni

. (60)

The Q-factor is an inverse power function of the size parame-
ter at the resonance, whose exponent is the order ni of the first
nonvanishing imaginary correction χ

(ni )
h , while the prefactor

is the ratio between the EQS eigenvalue χ
‖
h and the correction

χ
(ni )
h .

In Fig. 1, the algorithm for the calculation of the radia-
tive Q-factor of any plasmonic mode is summarized by a
flowchart. First, the EQS current modes and corresponding
eigenvalues are computed by solving the eigenvalue problem
(1). Thus, if the hth mode is bright, namely it exhibits a nonva-
nishing electric dipole moment P‖

E|h, it follows that χ
(3)
h �= 0,

ni = 3, and the Q-factor is obtained by combining Eqs. (33)
and (60):

Q‖r
h ≈ 6π

χ
‖
h

∥∥P‖
E|h

∥∥2

( 1

xh

)3

. (61)

By expressing in Eq. (61) the EQS eigenvalue χ
‖
h in terms of

the electrostatic energy We{j‖h} of the mode j‖h [using Eq. (6)],
Q‖r

h is also found equal to 2π times the ratio of We{j‖h} to the
energy radiated to infinity in a period by the electric dipole
P‖

E|h at the resonance frequency ωh.
Instead, for a dark mode with nonvanishing electric

quadrupole tensor, it follows that χ
(5)
h �= 0, ni = 5, and the

Q-factor is determined by combining Eqs. (34) and (60),

Q‖r
h ≈ 80π

χ
‖
h

[∑
i j

(
Q‖

E|h|i j

)2 − 1
3

(
Tr

↔
Q‖

E|h
)2]( 1

xh

)5

, (62)

which is also equal to 2π times the ratio of the electrostatic
energy of the hth EQS mode to the energy radiated to infinity

in a period by the electric quadrupole
↔
Q‖

E|h at the resonance
frequency ωh. If the electric quadrupole moment is also van-
ishing, the outlined process can be iterated by considering
higher order electric multipoles.

For completeness, we also consider the opposite regime,
dominated by nonradiative losses. In this case, the non-
radiative Q-factor Q‖nr

h is obtained as the inverse of the
fractional bandwidth of the hth addend of the first summation
in Eq. (21), assuming negligible radiative losses. It has the
expression

Q‖nr
h = ωh

ν
≈ ωp

ν
√−χ

. (63)

Equation (63) is not new, but it was already shown by Wang
and Shen in Ref. [4].

In an intermediate regime, the resulting Q-factor, indicated
with Q‖

h, can be obtained as [65]

1

Q‖
h

= 1

Q‖r
h

+ 1

Q‖nr
h

. (64)

B. Dielectric resonances

It is now assumed that the object is made of a nondispersive
dielectric material with positive susceptibility χ � 0, with
Im {χ} � Re {χ}. The size parameter x⊥

h = (ω⊥
h /c0)lc at the

resonance of the hth MQS mode j⊥h is defined as the value of
x at which the real part of the susceptibility χ matches the
eigenvalue κ⊥

h /x2, namely,

x⊥
h = ω⊥

h

c0
lc =

√
κ⊥

h

Re {χ} , (65)

and ω⊥
h is the corresponding MQS resonance frequency.

In the full-wave regime, the resonance of the hth dielectric
mode vh (which tends to j⊥h in the quasistatic limit) is defined
by setting to zero the real part of the denominator of the hth
addend of the second summation in Eq. (21). Thus, the value
of size parameter xh = (ωh/c0)lc at the dielectric resonance is
the value of x at which the real part of the eigenvalue κh/x2

matches the quantity Re {χ}
Re {κh} = Re {χ}x2. (66)

This is the resonance condition for dielectric modes, and ωh is
the dielectric resonance frequency. For small particles x � 1,
by keeping only the real and imaginary nonzero corrections of
the lowest order in Eq. (36), the dielectric eigenvalue κh(x) is
approximated as

κ (x) ≈ κ⊥
h + κ

(2)
h x2 + κ

(ni )
h xni , (67)

where ni is the order of the first nonzero imaginary correction
κ

(ni )
h . By using Eq. (67) in (66) and solving the resulting

quadratic equation, the resonance size parameter is obtained:

xh = ωh

c0
lc ≈

√
κ⊥

h

Re {χ} − κ
(2)
h

= x⊥
h√

1 − κ
(2)
h /Re {χ}

. (68)

For high-index dielectrics Re {χ} � 1, the relative frequency
shift of the hth dielectric resonance with respect to the MQS
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FIG. 1. Algorithm to compute the radiative Q-factor of either plasmonic or dielectric resonances of a small homogeneous isotropic
nonmagnetic object. In the plasmonic case, the EQS current modes and corresponding eigenvalues are computed. If the hth EQS mode is
bright with nonvanishing electric dipole moment P‖

E|h, its radiative Q-factor is given by Eq. (61). Instead, for a dark mode with nonvanishing

electric quadrupole tensor
↔
Q‖

E|h, the Q-factor is given by (62). If
↔
Q‖

E|h is also vanishing, the outlined process can be iterated by considering
higher order electric multipoles. In the dielectric case, the MQS current modes and corresponding eigenvalues are computed. Thus, if the hth
MQS mode exhibits a nonvanishing magnetic dipole moment P⊥

M|h, the radiative Q-factor is given by Eq. (71). Instead, if the magnetic dipole

vanishes, but at least one among the magnetic quadrupole
↔
Q⊥

M|h|i j , and the effective dipole moment resulting from the difference of the toroidal

dipole P⊥
E2|h and of the electric dipole moment of the second-order mode correction P(2)

E|h is nonvanishing, the radiative Q-factor is given by
Eq. (72). If they are all vanishing, the outlined algorithm has to be iterated and higher order multipoles considered.

resonance frequency �ωh = ωh − ω⊥
h , and the corresponding

shift in the resonance size parameter, i.e., �xh = xh − x⊥
h , are

�ωh

ω⊥
h

= �xh

x⊥
h

≈ κ
(2)
h

Re {χ} = κ
(2)
h

κ⊥
h

(
x⊥

h

)2
, Re {χ} � 1.

(69)
In conclusion, the relative frequency shift of any dielectric
mode is a quadratic function of x⊥

h , whose prefactor is
approximately the ratio between the second-order correction
κ

(2)
h and the quasistatic eigenvalue κ⊥

h .

The radiative Q-factor Q⊥r
h of the hth dielectric mode is

obtained as the inverse of the fractional bandwidth of the hth
addend of the second summation in Eq. (21), assuming negli-
gible nonradiative losses Im {χ} ≈ 0 and using the expansion
(67):

Q⊥r
h ≈

∣∣∣∣ κ⊥
h

κ
(ni )
h

∣∣∣∣( 1

xh

)ni

. (70)

The radiative Q-factor is an inverse power function of the
size parameter whose exponent is the order ni of the first
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FIG. 2. Catalog of plasmonic resonances of a sphere. The electroquasistatic current density modes are ordered according to their
eigenvalues χ ‖

n . The second-order correction χ (2)
n and the nonvanishing imaginary correction χ (ni )

n of lowest order ni are shown on the right of
the corresponding panel, while the value of ni is shown on the top right enclosed in a circle.

nonvanishing imaginary correction κ
(ni )
h , while the prefactor

is the ratio between the quasistatic eigenvalue κ⊥
h and κ

(ni )
h .

In Fig. 1, the algorithm for the calculation of the radiative
Q-factor of any dielectric mode is summarized by a flowchart.
First, the MQS current modes and corresponding eigenvalues
are computed by solving the eigenvalue problem (8). Thus, if
the mode exhibits a nonvanishing magnetic dipole moment,
Q⊥r

h has the following expression, obtained by combining
Eqs. (70) and (48):

Q⊥r
h ≈ 6π

κ⊥
h

∥∥P⊥
M|h

∥∥2

( 1

xh

)3

. (71)

By expressing, by Eq. (13), the MQS eigenvalue κ⊥
h in terms

of the magnetostatic energy Wm{j⊥h } of the mode j⊥h , Q⊥r
h is

also found equal to 2π times the ratio of Wm{j⊥h } to the energy
radiated to infinity in a period by the magnetic dipole P⊥

M|h at
the resonance frequency ωh.

Instead, if the magnetic dipole vanishes, but at least one
among the magnetic quadrupole moment

↔
Q⊥

M|h|i j , and the ef-
fective dipole moment resulting from the difference of the
toroidal dipole moment P⊥

E2|h and the dipole moment of the

second-order mode correction P(2)
E|h is nonvanishing, the radia-

tive Q-factor has the following expression:

Q⊥r
h ≈ 1

κ⊥
h

[
1

80π

∑
i j

(
Q⊥

M|h|i j

)2 + 1
6π

∥∥P⊥
E2|h − P(2)

E|h
∥∥2
]( 1

xh

)5

.

(72)
The above Q-factor is also equal to 2π times the ratio of
the magnetostatic energy of the hth MQS mode to the sum
of the energies radiated to infinity in a period by the mag-
netic quadrupole

↔
Q⊥

M|h and by the effective dipole moment

P⊥
E2|h − P(2)

E|h, at the resonance frequency ωh.

If they are all vanishing, the outlined algorithm has to be
iterated, and higher order multipoles have to be considered.

In dielectric resonators, the opposite regime, dominated by
nonradiative losses, is less common. Nevertheless, it is now
considered for completeness. In this case, the nonradiative
Q-factor Q⊥nr

h is obtained as the inverse of the factional band-
width of the hth addend of the second summation in Eq. (21),
assuming dominating nonradiative losses:

Q⊥nr
h = (κ⊥

h )2

Im{χ}
(

1

xh

)2

≈ Re {χ}
Im {χ} , (73)

In an intermediate regime, the Q-factor, indicated with Q⊥
h , is

obtained as [65]

1

Q⊥
h

= 1

Q⊥r
h

+ 1

Q⊥nr
h

. (74)

VII. RESULTS AND DISCUSSION

Once the shape of an homogeneous object is assigned, its
catalogs of plasmonic and dielectric modes can be introduced.
The two catalogs are shown in Figs. 2 and 3 for a sphere,
in Figs. 6 and 7 for a finite-size cylinder, and in Figs. 10
and 11 for a triangular prism. The catalogs illustrate the EQS
and MQS current modes, where each set is ordered according
to their real quasistatic eigenvalues χ

‖
h and κ⊥

h , respectively.
Besides the quasistatic eigenvalue, each resonance is also
characterized by the second-order corrections κ

(2)
h and χ

(2)
h ,

and the lowest-order (nonvanishing) imaginary corrections
κ

(ni )
h , χ

(ni )
h , where ni is odd with ni � 3. In both tables, the

value of ni is also highlighted, enclosed in a circle on the top
right of each panel. Dielectric modes are labeled with “A⊥”
if they generate a transverse vector potential, accordingly to
Definition (15). The information contained in these two cata-
logs depends neither on the permittivity of the object nor on

FIG. 3. Catalog of dielectric resonances of a sphere. The magnetoquasistatic current density modes are ordered according to their eigen-
value. The second-order correction and the nonvanishing imaginary correction of lowest order ni are shown on the right of the corresponding
panel, while the value of ni of each mode is shown on the top right enclosed in a circle. The current modes generating a transverse vector
potential are labeled with “A⊥.”
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its size nor on the frequency of operation; it only depends on
the morphology of the object.

The catalogs of plasmonic and dielectric resonances con-
tain essential information to characterize and engineer the
electromagnetic scattering of small objects. Specifically, the
relative frequency shift of both plasmonic and dielectric res-
onances is a quadratic function of the size parameter at the
quasistatic resonance, whose prefactor is −χ

(2)
h /(2 χ

‖
h ) for

plasmonic modes and κ
(2)
h /κ⊥

h for dielectric resonances, re-
spectively. Furthermore, the radiative Q-factor is an inverse
power function of the size parameter at the resonance, whose
exponent is exactly the order ni, while the prefactor is the ratio
χ

‖
h /χ

(ni )
h for plasmonic and κ⊥

h /κ
(ni )
h for dielectric modes. This

prefactor only depends on the quasistatic eigenvalue and on
the multipolar components of the quasistatic mode.

In this paper, the electrostatic eigenvalue problem (1) is
solved by the surface integral method outlined in Refs. [1,51]
using a triangular mesh. The magnetoquasistatic eigenvalue
problem (8) is solved by the numerical method presented
in Ref. [15] by using loop basis functions defined on a
hexahedral mesh. Then, the radiation correction for both plas-
monic [Eqs. (29), (33), and (34)] and dielectric eigenvalues
[Eqs. (41), (48), and (51) are computed using standard quadra-
ture formulas, and, if singular, using the formulas provided by
Graglia [66,67].

A. Sphere

The plasmonic and dielectric resonances of a sphere of
radius R are now investigated. The characteristic length lc
is assumed equal to the radius R. The sphere is the ideal
shape to numerically validate the radiation corrections, be-
cause the quasistatic modes, the corresponding eigenvalues,
and radiation corrections have analytic expressions, which
are given in Appendix B. In the current section, these same
quantities are calculated numerically and compared to their
analytic counterparts. In particular, the surface mesh used
for the calculation of EQS modes has 1500 nodes and 2996
triangles, while the hexahedral mesh used for the calculation
of MQS modes has 6527 nodes, 6048 hexahedra, and 11 665
edges. The same two meshes are also used for the computation
of the surface and volume integrals of the radiation correc-
tions. In Appendix F, the radiation correction of Eqs. (29),
(33) and of (41), (48) are analytically calculated in few
scenarios.

1. Catalog of plasmonic resonances

The catalog of plasmonic resonances of a sphere is shown
in Fig. 2. The radiation corrections are calculated numerically
and analytically, and the numerical error is shown in Table I.
The three degenerate EQS modes j‖

e
o
m1

with m = 0, 1 (namely

j‖e01, j‖e11, and j‖o11) are associated to the lowest eigenvalue
χ

‖
1 = −3. The analytic expression of the modes is given in

Eq. (B2) of Appendix B, while one of them is depicted in
Fig. 2(a). They are bright and represent three electric dipoles
oriented along mutually orthogonal directions. Their second-
order correction χ

(2)
1 = −2.4 is calculated both numerically,

performing the integrals in Eq. (29), and analytically by

TABLE I. EQS eigenvalues of a sphere and their radiative cor-
rections, obtained numerically by Eqs. (29), (33), and (34) and
analytically by Eq. (B1). Relative error.

# j‖
e
o

m1
j‖
e
o

m2

χ ‖
n Numeric −3.00 −2.50

Analytic −3 −2.5
Error [%] 0.12 0.2

χ (2)
n Numeric −2.38 −0.350

Analytic −2.4 −0.357
Error [%] 1.1 3.0

χ (3)
n Numeric 1.98 ≈10−9

Analytic 2 0
Error [%] 1.17

χ (5)
n Numeric 0.0833

Analytic 0.0816
Error [%] 2.1

using Eq. (B1b). The third-order correction χ
(3)
1 = +2 i is

proportional to the squared magnitude of their electric dipole
moment, and it is calculated both numerically by Eq. (33) and
analytically by Eq. (B1c).

The next five degenerate EQS modes are j‖
e
om2

with m =

0, 1, 3. They are dark and exhibit a nonvanishing electric
quadrupole tensor. These modes are exemplified in Fig. 2(b).
The second-order correction is χ

(2)
2 = −0.35. The third-order

correction χ
(3)
2 vanishes since these modes are dark. The

imaginary correction of the lowest order is χ
(5)
2 = 0.0833i,

given by Eq. (34) and analytically by Eq. (B1c). It only de-
pends on the electric quadrupole tensor of the EQS mode.

A similar line of reasoning can be also applied to octupolar
modes j‖

e
om3

shown in Fig. 2(c) and to the hexadecapolar modes

j‖
e
om4

shown in Fig. 2(d).

2. Catalog of dielectric resonances

The catalog of dielectric resonances of a sphere is shown
in Fig. 3. The radiation corrections are calculated numerically
and analytically, and the numerical error is shown in Table II.
The MQS current modes j⊥TE

e
om11

with m = 0, 1 (namely j⊥TE
e011 ,

j⊥TE
e111 , and j⊥TE

o111) are associated to the lowest MQS eigenvalue,
i.e., κ⊥TE

11 . The analytic expressions of the modes and of the
corresponding MQS eigenvalues are given in Eqs. (B6) and
(B5a) of Appendix B. The current modes j⊥TE

e
o
m11

are three

degenerate magnetic dipoles oriented along three orthogonal
axis; one of them is shown in Fig. 3(a). They are A⊥ modes
because they generate a transverse vector potential, namely
with zero normal component to ∂�̃, according to the defi-
nition given in Sec. II B. Thus, the second-order correction
κ

TE (2)
11 has the simplified expression (43), because the magne-

tostatic interaction energy between j⊥TE
e
om11

and any EQS current
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TABLE II. MQS eigenvalues of a sphere and their radiative
corrections, obtained numerically by Eqs. (41), (48), and (51) and
analytically by Eqs. (B5) and (B9). Relative error.

j⊥TE
e
o

m11
j⊥TM
e
o

m11
j⊥TE
e
o

m21

√
κ⊥

nl Numeric 3.16 4.53 4.52
Analytic 3.14 4.49 4.49
Error [%] 0.64 1.81 1.04

κ
(2)
nl Numeric −3.02 −3.08 −1.69

Analytic −3 −3 −1.67
Error [%] 0.67 2.3 1.2

κ
(3)
nl Numeric 2.0 0 0

Analytic 2 0 0
Error [%] 0.14

κ
(5)
nl Numeric 2.1 0.22

Analytic 2 0.22
Error [%] 4.9 0.7

mode vanishes, i.e., WmI{j‖e
om′n′

, j⊥TE
e
om11

} = 0 ∀m′, n′ � m′. The

second-order correction also feature the analytic expression
(B5b). The third-order correction κ

TE (3)
11 is given by Eq. (48)

and is proportional to the squared magnitude of the magnetic
dipole moment of the mode; its analytic expression is given in
Eq. (B5c).

The next three degenerate modes, namely j⊥TM
e
om11

with m =

0, 1, are shown in Fig. 3(b). The modes analytic expression is
given in Eq. (B10). Each of them generates a vector potential
with a nonvanishing longitudinal component. Specifically, the
magnetostatic interaction energies between the current modes
j⊥TM
e
om11

and the EQS modes j‖
e
om′1

with m′ = 0, 1 [shown in

Fig. 2(a)] are nonvanishing. They contribute to the second-
order correction κ

TM (2)
11 , as prescribed by Eq. (41). The

second-order correction has also the analytic expression given
in Eq. (B9b). The third-order correction κ

TM (3)
11 vanishes be-

cause the magnetic dipole moment of these modes is zero.
Thus, the first nonvanishing imaginary correction is κ

TM (5)
11 ,

given by Eq. (51) and analytically by Eq. (B9c). Since the
modes j⊥TM

e
om11

have a vanishing magnetic quadrupole tensor, the

correction κ
TM (5)
11 originates only from an effective dipole mo-

ment resulting from the interplay between the dipole moment
of the second-order mode correction and the toroidal dipole.

The next five degenerate modes are j⊥TE
e
o
m21

with m = 0, 1, 2

and are shown in Fig. 3(c). As already pointed out in Ref. [15],
the modes j⊥TE

e
om21

have the same MQS eigenvalue of j⊥TM
e
om11

. Nev-

ertheless, unlike them, they are A⊥ modes. For this reason, the
second-order correction κ

TE (2)
21 has the simplified expression

(43). Their magnetic dipole moment is zero, and thus the
third-order correction vanishes. The toroidal dipole moment
is zero as well as the electric dipole moment of the second-
order mode correction. Nevertheless, the magnetic quadrupole
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FIG. 4. Power Wabs absorbed by a Drude metal sphere (ν =
10−4ωp) with radius R = lc as a function of ω/ωp = x/xp for xp =
0.1 (a), xp = 0.5 (b), and xp = 0.5 (c). The sphere is centered in
(0, 0, 0) and it is excited by a point source oriented along x̂, i.e.,
Einc(r) = N(3)

e11, at position (0, 0, 1.5R), as in the inset. The resonance
frequencies obtained by Eq. (58) are shown with vertical dashed
lines. Horizontal lines show the FWHM of the broadest peaks.

tensor is nonvanishing and the fifth-order correction κ
TE (5)
21

can be calculated by Eq. (52).
The outlined method can be iterated to describe the degen-

erate modes j⊥TM
e
om21

with m = 0, 1, 2, shown in Fig. 3(d), which

involve higher order multipoles.

3. Point source excitation

The sphere is now excited by a point source. Specifically,
the sphere of radius R is centered in the origin, while the
point source is oriented along x̂ and it is positioned at rd =
(0, 0, 1.5R), namely

Einc(r) = N(3)
e11(r − rd ), (75)

where N(3)
e11 is a vector spherical wave function of the ra-

diative kind, defined in Eq. (C1) of Appendix C following
Ref. [68]. Under the same excitation conditions, two different
scenarios are investigated. In the first one, shown in Fig. 4,
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FIG. 5. Power Wabs absorbed by a dielectric sphere with radius
R = lc, and susceptibility χ = (a) 104 − 1i, (b) 99 − 0.01i, and
(c) 14.45 − 0.1456i, as a function of x

√
χ . The sphere is centered

in (0, 0, 0) and it is excited by point source oriented along x̂, e.g.,
Einc(r) = N(3)

e11 at position (0, 0, 1.5R), as in the inset. The first three
resonance positions obtained by Eq. (68) are shown with vertical
dashed lines. Horizontal lines show the FWHM of the broadest
peaks.

the sphere is made of a Drude metal; in the second one,
shown in Fig. 5, it is made of a high-index dielectric. In both
cases, low losses are assumed: This hypothesis is essential
for a quantitative comparison between the predicted radiative
Q-factor and fractional bandwidth of the peaks, which would
have been otherwise often dominated by nonradiative losses.
The absorbed power spectrum Wabs is chosen as physical
observable. It is normalized by the geometrical cross section
π l2

c , and features the expression

Wabs

π l2
c

= x

2πζ0
(−Im{εR})

∫
�̃

‖E(r̃)‖2dṼ , (76)

where E is the total electric field within the particle and
ζ0 = √

μ0/ε0 is the vacuum characteristic impedance. In this
section, it is calculated by the Mie analytic solution [68]
combined with the translation-addition theorem for vector

spherical wave functions (VSWFs) [69,70] that is used to
translate the VSWF of the point source excitation into the
corresponding VSWFs set centered in the sphere’s center. The
maximum multipolar expansion order for the Mie solution is
assumed to be 20.

The reason behind the choice of the point source as excita-
tion and of the absorbed power as physical observable is that
without these two hypothesis, some modes may not be excited
or probed.

The radiative shift of the peaks of Wabs and their Q-factors
are investigated as the object size increases. In particular, the
plasmonic and dielectric resonance frequencies are compared
against the frequencies at which the curve has a peak, denoted
as ω̂h. Similarly, the Q-factors of plasmonic and dielectric
modes are validated against the corresponding heuristic Q-
factors, given by the ratio of the resonance frequency ω̂h to the
width �ωFWHM,h of the resonance curve between two points,
at the either side of the resonance, where the ordinate is the
half of the maximum absorbed power, namely the full width
at half maximum (FWHM) [71],

Q̂h = ω̂h

�ωFWHM,h
. (77)

In the Wabs spectra of Figs. 4 and 5, a segment joining the two
ordinates at half maximum is also shown.

Metal sphere. A metal sphere is investigated in Fig. 4,
assuming a low-loss Drude metal with ν = 10−4ωp. The ab-
sorbed power spectra Wabs are evaluated as a function of
x/xp = ω/ωp for three different values of xp: 0.1 in Fig. 4(a),
0.5 in Fig. 4(b), and 1 in Fig. 4(c). It is useful to contextualize
the chosen values of xp to actual materials: For a gold sphere
[72] with ωp ≈ 6.79 T rad/s, they correspond to R = 4.5 nm
[Fig. 4(a)], R = 22 nm [Fig. 4(b)], and R = 45 nm [Fig. 4(c)].
The resonance positions of the first three excited plasmonic
modes, which in the quasistatic limit tend to the EQS modes
j‖e11 (electric dipole), j‖e12 (electric quadrupole), and j‖e13 (elec-
tric octupole), are obtained by Eq. (58) and are shown with
vertical dashed lines (blue, red, yellow, respectively).

In the small particle limit, accordingly to Eq. (59), the
relative frequency shift of any resonance (with respect to its
quasistatic position) is a quadratic function of the size param-
eter at the EQS resonance, whose prefactor depends on the
ratio between the second-order correction χ (2)

n and the EQS
eigenvalue χ‖

n . Using the value of corrections shown in Fig. 2,
this ratio is found to be significantly larger for j‖e11 than for j‖e12

and j‖e13, and thus the dipole mode j‖e11 is expected to exhibit
the largest frequency shift.

Moreover, the order ni of the first nonvanishing imaginary
correction is 3 for the electric dipole mode j‖e11, 5 for the
electric quadrupole mode j‖e12, and 7 for electric octupole
mode j‖e13; thus, the dipole mode is also expected to undergo
the largest radiative broadening.

In Fig. 4(a), xp = 0.1 and the radius R is small compared
to the plasma wavelength λp, and thus the EQS approximation
works well: Eq. (55) exactly predicts the occurrence of the
Wabs peaks.

In Fig. 4(b), xp is increased to 0.5, and the Wabs peaks
undergo a broadening and shift from their quasistatic posi-
tion, in particular the peak associated to the electric dipole
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TABLE III. Resonance frequencies ωn and Q-factors Q‖r
n , Q‖nr

n ,
Q‖

n of the first plasmonic modes of a Drude metal sphere (ν =
10−4ωp), and their heuristic estimates ω̂n and Q̂n.

xp j‖e11 j‖e12

0.5 Theory ωn/ωp 0.560 0.628
Heuristic ω̂n/ωp 0.560 0.632
Theory Q‖r

n 68.3 1010
Q‖nr

n 5660 6280
Q‖

n 67.5 3813
Heuristic Q̂n 66.6 3875

1 Theory ωn/ωp 0.523 0.616
Heuristic ω̂n/ωp 0.515 0.6133
Theory Q‖r

n 10.5 340
Q‖nr

n 5229 6159
Q‖

n 10.5 320
Heuristic Q̂n 7.15 340

j‖e11. Nevertheless, the resonance positions obtained through
Eq. (58), which incorporates the radiation corrections, accu-
rately predict the occurrence of the Wabs peaks. In Table III,
the resonance frequencies ωn are compared against the corre-
sponding peak positions ω̂n, and the Q-factors are compared
against their heuristic counterparts. In particular, the radiative
and nonradiative Q-factors are calculated by Eqs. (60) and
(63) and combined to obtain the total Q-factor by Eq. (64).
Analytic expressions for the radiative Q-factors of the EQS
modes of a sphere are also derived in (B3), which agree with
the ones provided in Ref. [73]. As expected, for xp = 0.5 the
Q-factor of the dipole mode is the lowest one, and it is limited
by radiative losses, unlike all the others.

Eventually, in Fig. 4(c) xp = 1, and thus R is comparable
to the plasma wavelength λp. The peaks experience a fur-
ther shift; nevertheless, thanks to the radiation corrections,
Eq. (58) is still able to accurately locate the resonances with
an error <1.5%, as shown in Table III. Also, the Q-factors are
predicted with good accuracy. The Q-factor of the dipole and
the quadrupole modes are now both dominated by radiative
losses.

High-index sphere. In Fig. 5, the power absorbed by a
sphere made of a nondispersive high-index dielectric with
low losses is investigated as a function of the parameter
x
√

χ . Three different values of susceptibility χ are con-
sidered, namely χ = 104 − 1i, χ = 99 − 0.01i, and χ =
14.45 − 0.1456 i.

TABLE IV. Resonance position xh
√

χ and Q-factors Q⊥r
h , Q⊥nr

h ,
Q⊥

h of the first dielectric modes of a dielectric sphere with different
values susceptibility χ , and their heuristic estimates x̂h

√
χ and Q̂h.

χ j⊥TE
o111 j⊥TM

e111 j⊥TE
o121

99–0.01 i Theory xh
√

χ 3.095 4.456 4.423
Heuristic x̂h

√
χ 3.113 4.477 4.441

Theory Q⊥r
h 163 579 5043

Q⊥nr
h 104 104 104

Q⊥
h 163 547 3352

Heuristic Q̂h 171 448 3731

14.45–0.145 i Theory xh
√

χ 2.860 3.863 4.255
Heuristic x̂h

√
χ 2.907 4.237

Theory Q⊥
h ≈ Q⊥r

h 11.60 9.6 51.7
Heuristic Q̂h 13 43

The resonance positions of the three dielectric modes
which tend in the quasistatic limit to the MQS modes j⊥TE

o111
(magnetic dipole), j⊥TM

e111 , and j⊥TE
o121 (magnetic quadrupole) are

obtained by Eq. (68). They are highlighted in Fig. 5 by blue,
red, and yellow vertical dashed lines, respectively. Accord-
ingly to Eq. (69), the resonance frequency shift is a quadratic
function of the size parameter at the MQS resonance, whose
prefactor depends on the ratio between the second-order cor-
rection and the MQS eigenvalue. Using the corrections’ values
reported in Fig. 3, this ratio is found to be larger for the
magnetic dipole j⊥TE

o111 than for j⊥TM
e111 or j⊥TM

e111 , and thus this
mode is expected to undergo the largest frequency shift.

In Fig. 5(a), it is assumed χ = 104 − i and x ∈
[0.025, 0.065]. The size parameter is very small and the MQS
approximation works well: The predictions of Eqs. (65) and
(68) agree and exactly predicts the occurrence of the Wabs

peaks.
In Fig. 5(b), it is assumed χ = 99 − 0.01i and x ∈

[0.25, 0.65]. The peak position red shifts against the MQS po-
sition, but Eq. (68), which includes the radiation corrections,
predicts the occurrence. In Table IV, the expected resonance
frequencies and Q-factors are compared against the peak posi-
tions and the corresponding heuristic Q-factors. In particular,
the radiative and nonradiative Q-factors are calculated by
Eqs. (70) and (73) and combined by Eq. (74). Analytic ex-
pressions of the Q-factors of MQS modes of a sphere are also
provided in Eqs. (B7) and (B12) of the Appendix. The agree-
ment of the total Q-factors with their heuristic counterparts is
good. The radiative damping determines the broadening of the

FIG. 6. Catalog of plasmonic resonances of a finite-size cylinder with lc = R = H . The electroquasistatic current density modes j‖h are
ordered according to their eigenvalue χ

‖
h . Their field lines are shown with black arrows on representative planes, and their normal component

on ∂� is represented with colors. The second-order correction χ
(2)
h , and the nonvanishing imaginary correction χ

(n)
h of lowest order ni are

shown on the right of the corresponding panel, while the value of ni is also highlighted on the top right enclosed in a circle.
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FIG. 7. Catalog of dielectric resonances of a finite-size cylinder with lc = R = H . The magnetoquasistatic current density modes are
ordered according to their eigenvalue κ⊥

h . The second-order correction κ
(2)
h and the nonvanishing imaginary correction κ

(n)
h of lowest order ni

are shown on the right of the corresponding panel, while the value of ni is also highlighted on the top right enclosed in a circle. The current
modes generating a transverse vector potential are labeled with A⊥.

magnetic dipole modes, while nonradiative mechanisms play
an important role for remaining peaks.

Eventually, in Fig. 5(c), a silicon sphere with χ = 14.45 −
0.1456i is investigated in the range x ∈ [0.64, 1.6]. The radius
is now comparable to the incident wavelength. The shift of the
peaks against the MQS position is significant, but including
the radiation corrections, Eq. (68) predicts their occurrence
with an error � 2%. As shown in Table IV, the predicted
Q-factors are very close to their heuristic counterparts and
dominated by radiative losses. The second peak is not visible
anymore due to the radiative broadening, and its heuristic
peak position and Q-factor cannot be evaluated.

B. Finite-size cylinder

A finite-size cylinder with radius R and height H = R
is now considered. The edges are rounded with a curvature
radius of R/10. The characteristic length lc is assumed to be
equal to the radius R. The triangular surface mesh used for the
calculation of the EQS modes has 2063 nodes and 4122 tri-
angles. The hexahedral mesh used for the calculation of MQS
modes has 6060 nodes, 5148 hexahedra, and 9433 edges.

1. Catalog of plasmonic resonances

The catalog of the first four plasmonic resonances is shown
in Fig. 6. The two degenerate EQS current modes {j‖1′, j‖1′′ }
have the smallest EQS eigenvalue. They represent two elec-
tric dipoles oriented along mutually orthogonal directions,
which are orthogonal to the cylinder’s axis, and thus they are
bright. The second-order correction χ

(2)
1 = −3.94 is obtained

by Eq. (29). The third-order correction χ
(3)
1 = +2.92 i, given

by Eq. (33), is proportional to the squared magnitude of the
electric dipole moment of the EQS modes.

The next EQS modes are two degenerate couples, namely
{j‖2′ , j‖2′′ } and {j‖3′ , j‖3′′ }, shown in Figs. 6(b) and 6(c). They
are dark; thus, the third-order corrections χ

(3)
2 and χ

(3)
3 van-

ish. In both cases, the lowest order of the first nonvanishing
imaginary correction is the fifth. Accordingly to Eq. (34),
χ

(5)
2 and χ

(5)
3 depend on the electric quadrupole tensor of the

corresponding EQS mode.

In Fig. 6(d), the EQS mode j‖4 is shown. This mode is asso-
ciated to an electric dipole aligned along the cylinder’s axis;
thus, it is bright. The second-order correction is χ

(2)
4 = −4.47.

The third-order correction is proportional to the squared mag-
nitude of the electric dipole moment of the EQS current mode;
its value is χ

(3)
4 = +0.71 i.

2. Catalog of dielectric resonances

The catalog of the first six dielectric resonances of the
finite-size cylinder is presented in Fig. 7. The mode j⊥1 is
associated to the lowest MQS eigenvalue, shown in Fig. 7(a),
which is a magnetic dipole oriented along the cylinder axis.
The current mode j⊥1 is an A⊥ mode, since it generates a
vector potential with a longitudinal component of the vector
potential which is numerically negligible. Thus, the magneto-
static interaction energy between the current mode j⊥1 and any
EQS current mode is zero, and the second-order correction
κ

(2)
1 is simply given by Eq. (43). The third-order correction is

proportional to the squared magnitude of the magnetic dipole
moment of j⊥1 , accordingly to Eq. (48).

The successive couple of degenerate modes {j⊥2′ , j⊥2′′ },
shown in Fig. 7(b), are magnetic dipoles oriented along two
mutually orthogonal directions, which are both orthogonal to
the cylinder’s axis. Analogously to j⊥1 , they are A⊥ modes,
and similar considerations apply.

The next degenerate modes, namely {j⊥3′ , j⊥3′′ }, are shown in
Fig. 7(c). They are known as HEM12δ within the antenna com-
munity [9]. Unlike the previous modes, these current modes
generate a vector potentials with a nonvanishing longitudinal
component. Thus, accordingly to Eq. (41), the second-order
correction κ

(2)
3 also depends on the interaction energy between

the MQS current modes j⊥3′ and j⊥3′′ and the two horizontal
EQS current modes j‖1′ , j‖1′′ , shown in Fig. 6(a). The coupling
with the remaining EQS modes is instead negligible. Since
the modes j⊥3′ and j⊥3′′ have zero magnetic dipole moment, the
third-order correction vanishes. The imaginary correction of
the lowest order is κ

(5)
3 , and it is determined by the multipolar

contribution from the toroidal dipole moment P⊥
E2|3 and from

the electric dipole moment of the second-order correction
P(2)

E|3.
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The next mode is j⊥4 , also known [9] as TM01δ , and it
is shown in Fig. 7(d). It generates a vector potential with
a nonvanishing longitudinal component. In particular, its
magnetostatic interaction energy with the EQS mode j‖4 con-
tributes to the second-order correction κ

(2)
4 of Eq. (41). The

mode j⊥4 has zero magnetic dipole moment, thus κ
(3)
4 = 0,

while its fifth-order correction is nonvanishing and determined
by the multipoles P⊥

E2|4 and P(2)
E|4.

The subsequent two sets of degenerate modes {j⊥5′ , j⊥5′′ } and
j⊥6 , shown in Figs. 7(e) and 7(f), are A⊥ modes. Therefore, in
both cases, the second-order correction is given by Eq. (43).
They exhibit zero magnetic dipole moment and thus vanishing
third-order correction. The fifth-order corrections κ

(5)
5 and κ

(5)
6

can be calculated by Eq. (52) and originate from the mag-
netic quadrupoles

↔
Q⊥

M|5 and
↔
Q⊥

M|6 of the corresponding MQS
modes.

3. Point source excitation

Now, the finite-size cylinder is excited by a point source.
Specifically, the cylinder of radius R and height H = R is
centered in the origin, its axis is oriented along ẑ, while
the point source is oriented along ŷ and it is positioned at
rd = (R, 0, 1.5R), namely

Einc(r) = N(3)
o11(r − rd ). (78)

Assuming the same geometry and excitation conditions, two
different scenarios are investigated. In the first one, the cylin-
der is made of a Drude metal, and in the second, it is made
by a high-index dielectric. The absorbed power spectrum is
calculated by an in-house full-wave numerical method based
on surface integral equations [74], using a triangular mesh
with 1106 nodes and 2208 triangles. The frequency shift and
the broadening of the resonances are analyzed.

Metal cylinder. In Fig. 8, the first scenario is investigated,
assuming a low-loss Drude metal with ν = 10−3ωp. The ab-
sorbed power Wabs is shown as a function of x/xp = ω/ωp for
three different values of xp: 0.1 in Fig. 8(a), 0.5 in Fig. 8(b),
and 1 in Fig. 8(c). For gold cylinders, by assuming, as in
Ref. [72], ωp ≈ 6.79 T rad/s, the three values of xp corre-
spond to R = 4.5 nm (a), R = 22 nm (b), and R = 45 nm
(c). The expected resonance positions of the first three sets
of plasmonic modes, which in the quasistatic limit tend to the
EQS modes {j‖1′, j‖1′′ }; {j‖2′ , j‖2′′ }, and {j‖3′ , j‖3′′ }, are obtained by
Eq. (58), and are shown in Fig. 8 with vertical dashed lines
(blue, red, and yellow, respectively).

In Fig. 8(a), it is assumed xp = 0.1. The radius is sig-
nificantly smaller than the plasma wavelength and the EQS
approximation alone accurately predicts the occurrence of the
Wabs peaks through Eq. (55). The nonradiative losses cause the
broadening of all peaks.

In Fig. 8(b), it is assumed xp = 0.5. The absorption peaks
begin to shift with respect to the their quasistatic position, in
particular the one associated to the horizontal electric dipoles
j‖1′ and j‖1′′ . Nevertheless, Eq. (58), by including the radiation
correction, predicts their occurrence with a relative error less
than 0.5%, as shown in Table V. In this table, the Q-factors
obtained by Eqs. (60), (63), and (64) are also compared
against their heuristic counterparts, defined in Eq. (77), and
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FIG. 8. Power Wabs absorbed by a Drude metal cylinder (ν =
10−3ωp) with radius R = lc and height H = R as a function of
ω/ωp = x/xp for xp = 0.1 (a), xp = 0.5 (b), and xp = 0.5 (c). The
cylinder is centered in (0, 0, 0) and it is excited by a point source
oriented along ŷ, i.e., Einc(r) = N(3)

o11 at position (R, 0, 1.5R), as in
the inset. The resonance frequencies obtained by Eq. (58) are shown
with vertical dashed lines. Horizontal lines show the FWHM of the
broadest peaks.

TABLE V. Resonance frequencies ωh and Q-factors Q‖r
h , Q‖nr

h ,
and Q‖

h of the first plasmonic modes of a Drude metal cylinder
(ν = 10−3ωp) with R = H , and their heuristic estimates ω̂h and Q̂h.

xp {j‖1′ , j‖1′′ } {j‖2′ , j‖2′′ } {j‖3′ , j‖3′′ }
0.5 Theory ωh/ωp 0.465 0.5363 0.5480

Heuristic ω̂h/ωp 0.464 0.5364 0.5478
Theory Q‖r

h 120 2279 2596
Q‖nr

h 465 536 547
Q‖

h 95 523 537
heuristic Q̂h 100 412 547

1 Theory ωh/ωp 0.439 0.528 0.541
Heuristic ω̂h/ωp 0.435 0.527 0.539
Theory Q‖r

h 17.8 768 865
Q‖nr

h 439 528 540
Q‖

h 17.1 313 332
Heuristic Q̂h 17 310 292
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a good agreement is found. In particular, the Q-factor of the
the modes j‖1′ and j‖1′′ is limited by their radiative losses, while
the Q-factors of the modes j‖2′ j‖2′′ and j‖3′ j‖3′′ are limited by
nonradiative damping mechanisms.

In Fig. 8(c), it is assumed xp = 1. The cylinder has radius
comparable to the plasma wavelength. Despite the further
shift of the peaks, the radiation corrections are still able to
correctly locate the resonances, with an error less than 0.5%
(see Table V). Moreover, Table V shows that while the broad-
ening of the first peak arises from the radiative damping, both
radiative and nonradiative damping contribute to the broaden-
ing of the second and third peaks. The total Q-factor is also in
good agreement with the heuristic Q-factor in the investigated
cases.

High-index cylinder. The power absorbed by a cylinder
constituted by a nondispersive high-index dielectric with low
losses is now investigated as a function of x

√
χ . Three dif-

ferent values of χ , namely χ = 104 − 1i, χ = 99 − 0.01i,
and χ = 14.45 − 0.1456i, are considered in Figs. 9(a), 9(b)
and 9(c), respectively. The resonance positions obtained by
Eq. (68), of the first six sets of dielectric modes, which in the
quasistatic limit tend to the MQS modes j⊥1 , {j⊥2′ , j⊥2′′ }, {j⊥3′ , j⊥3′′ },
{j⊥4′ , j⊥4′′ }, {j⊥5′ , j⊥5′′ }, and j⊥6 , are shown with dashed vertical lines
(blue, red, yellow, violet, green, and cyan, respectively).

In Fig. 9(a), it is assumed that χ = 104 − 1i and x ∈
[0.00275, 0.055]. The size parameter is very small and even
the MQS approximation alone (without corrections) accu-
rately predicts the occurrence of the peaks by Eq. (65).

Next, in Fig. 9(b), it is assumed that χ = 99 − 0.01i and
x ∈ [0.0275, 0.55]. The peaks undergo a shift from their qua-
sistatic positions, but Eq. (68), by taking into account the
second-order radiation correction, predicts their occurrence
with an error < 0.2%. The resonance positions and Q-factors
of j⊥1 , {j⊥2′ , j⊥2′′ }, and j⊥6 are compared in Table VI against the
peak positions and heuristic Q-factors. Good agreement is
found.

Eventually, in Fig. 9(c), a silicon cylinder with χ =
14.45 − 0.1456i is investigated in the range x ∈ [0.72, 1.44].
The size parameter is now of the order of 1 and the peaks
undergo a significant shift and broadening. Nevertheless, the
MQS approximation equipped with radiation corrections is
able to predict through Eq. (68) the peak occurrence with
an error of less than 2.5%, as shown in Table VI. In this
same table, the corresponding Q-factors, all dominated by
radiative losses, are also shown and are very close to their
heuristic counterpart. The resonance associated to {j⊥3′ , j⊥3′′ }
(vertical yellow dashed line) only corresponds to a shoulder
in the Wabs curve due to the radiative broadening, and thus
it was not possible to define its heuristic resonance position.
Furthermore, the interplay of the modes {j⊥4′ , j⊥4′′ } and {j⊥5′ , j⊥5′′ }
results in only one Wabs peak. For these reasons, they are not
reported in Table VI.

C. Triangular prism

A triangular prism with basis edge L and height H = L/2
is now investigated. The edges and corners are rounded with a
curvature radius of L/20. The characteristic length is assumed
to be equal to half of the edge length, i.e., lc = L/2. The trian-
gular surface mesh used for the calculation of EQS resonances
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FIG. 9. Power Wabs absorbed by a finite-size cylinder with ra-
dius R = lc, height H = R, and χ = (a) 104 − 1i, (b) 99 − 0.01i,
(c) 14.45 − 0.1456i, as a function of y = x

√
χ . The cylinder is

centered in (0, 0, 0) and it is excited by a point source excitation
oriented along ŷ, e.g., Einc(r) = N(3)

o11, at position (R, 0, 1.5R). The
first three resonance positions obtained by Eq. (68) are shown with
vertical dashed lines. Horizontal lines show the FWHM of the broad-
est peaks.

TABLE VI. Resonance position xh
√

χ and Q-factors Q⊥r
h , Q⊥nr

h ,
and Q⊥

h of the dielectric modes 1,2,6 of a dielectric cylinder (H =
R) with different susceptibility χ , and their corresponding heuristic
estimates x̂h

√
χ and Q̂h.

χ {j⊥1 , j⊥1′ } {j⊥2 , j⊥2′ } j⊥6

99–0.01 i Theory xh
√

χ 3.209 3.986 5.248
Heuristic x̂h

√
χ 3.214 3.980 5.230

Theory Q⊥r
h 147 118 3117

Q⊥nr
h 104 104 104

Q⊥
h 144 116 2615

Heuristic Q̂h 156 126 2615

14.45–0.1456 i Theory xh
√

χ 2.935 3.600 4.989
Heuristic x̂h

√
χ 3.007 3.677 4.938

Theory Q⊥
h ≈ Q⊥r

h 10.74 8.87 32.6
Heuristic Q̂h 11.5 8.67 31.9
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FIG. 10. Catalog of plasmonic resonances of a triangular prism with basis edge L and height H = L/2, assuming lc = L/2. The
electroquasistatic current density modes j‖h are ordered according to their eigenvalue χ

‖
h . Their normal component on ∂� is shown with a

surface color plot. The second-order correction χ
(2)
h , and the nonvanishing imaginary correction χ

(n)
h of the lowest order ni are shown on the

right of each panel. The value of ni is also highlighted on the top right of each panel.

has 2349 nodes and 4694 triangles, while the hexahedral mesh
used for the calculation of MQS resonances has 2520 nodes,
2025 hexahedra, and 3592 edges.

1. Catalog of plasmonic resonances

The catalog of the first four plasmonic resonances of a
triangular prism is presented in Fig. 10. The first two degen-
erate EQS current modes are {j‖1′ , j‖1′′ }, depicted in Fig. 10(a).
They represent two electric dipoles oriented along mutually
orthogonal directions and are indeed bright. The third-order
correction is proportional to the squared magnitude of their
electric dipole moment, according to Eq. (33).

The next EQS modes {j‖2′ , j‖2′′ } exhibit a quadrupolar char-
acter. They are described in Fig. 10(b). They are dark; for this
reason, the third-order correction χ

(3)
2 vanishes. Nevertheless,

they have a nonvanishing electric quadrupole tensor, and thus
the fifth-order correction χ

(5)
2 is nonzero according to Eq. (34).

The successive EQS mode j‖3 is bright and corresponds to
a vertical electric dipole. The third-order correction χ

(3)
3 is

proportional to the squared magnitude of its electric dipole
moment of j‖3.

The next EQS mode j‖4 exhibits a quadrupolar character.
It is shown in Fig. 10(d). It is dark, and thus the third-order
correction χ

(3)
4 vanishes. Nevertheless, it has a nonvanishing

electric quadrupole tensor and the fifth-order correction χ
(5)
4

is nonzero and given by Eq. (34).

2. Catalog of dielectric resonances

The catalog of the first six dielectric resonances of the
finite-size triangular prism is presented in Fig. 11. The mode
j⊥1 , shown in Fig. 11(a), is associated to the lowest MQS
eigenvalue. It is a magnetic dipole oriented along the ver-
tical axis. The current mode j⊥1 is an A⊥ mode, since the
longitudinal part of the vector potential generated by j⊥1 is
numerically negligible. This fact exemplifies that A⊥ modes
can be also found in nonrotationally symmetric objects. Thus,
the second-order correction κ

(2)
1 is simply given by Eq. (43).

The third-order correction is proportional to the squared mag-
nitude of the magnetic dipole moment of j⊥1 , accordingly to
Eq. (48).

The next two degenerate modes {j⊥2′ , j⊥2′′ } are in-plane mag-
netic dipoles; one of them is shown in Fig. 11(b). They are A⊥
modes with a nonvanishing magnetic dipole moment and the
considerations made for j⊥1 also apply here.

The next mode j⊥3 is shown in Fig. 11(c). The vector
potential generated by the current mode j⊥3 has a nonvanish-
ing longitudinal component. In particular, the magnetostatic
interaction energy between j⊥3 and the vertical EQS current
modes j‖3, shown in Fig. 10(c), contributes to the second-order
correction κ

(2)
3 . Since the mode j⊥3 has zero magnetic dipole,

the third-order correction vanishes. The imaginary correction
of the lowest order is κ

(5)
3 , and it is determined by the effective

dipole resulting from the interference between the toroidal
dipole moment P⊥

E2|3 and the electric dipole moment of the

second-order correction P(2)
E|3.

FIG. 11. Catalog of dielectric resonances of a triangular prism with basis edge L and height H = L/2, assuming lc = L/2. The mag-
netoquasistatic current density modes are ordered according to their eigenvalue κ⊥

h . The second-order correction κ
(2)
h and the nonvanishing

imaginary correction κ
(n)
h of lowest order ni are shown on the right of the corresponding panel, while the value of ni is also highlighted on the

top right enclosed in a circle. The current modes generating a transverse vector potential are labeled with A⊥.
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The next degenerate modes are {j⊥4′ , j⊥4′′ }, described in
Fig. 11(d). They generate a vector potential with a nonvanish-
ing longitudinal component. Specifically, the magnetostatic
interaction energy between them and two EQS electric dipole
modes j‖1′ , j‖1′′ is nonvanishing and contributes to the second-
order correction κ

(2)
4 in Eq. (41). Since j⊥4′ , j⊥4′′ have zero

magnetic dipole moment, κ
(3)
4 = 0, while the fifth-order cor-

rection is nonvanishing and determined by the multipoles
P⊥

E2|4 and P(2)
E|4.

The subsequent two sets of MQS modes, i.e., {j⊥5′ , j⊥5′′ } and
j⊥6 , shown in Figs. 11(e) and 11(f), are A⊥ modes. Therefore,
the second-order correction is given by Eq. (43). These modes
exhibit zero magnetic dipole moment and thus have vanish-
ing third-order correction. The fifth-order corrections can be
calculated by Eq. (52), and in both cases originate from the
magnetic quadrupole of the MQS mode.

VIII. CONCLUSIONS

Maxwell’s equations provide an exhaustive description
of classical electromagnetic phenomena, from the simplest
to the most sophisticated ones. However, in many appli-
cations, wave phenomena occurring at short timescales are
of no practical concern, and the fields may be described
by either the electroquasistatic or the magnetoquasistatic
approximation, i.e., the approximations behind the descrip-
tion of capacitors and inductors. This is also the case for
light scattering: Resonances in metal or high-index objects,
assumed much smaller than the vacuum wavelength, may
be respectively described by the electroquasistatic or the
magnetoquasistatic approximation. Unfortunately, both ap-
proximations are unable to predict the frequency shift and
radiative Q-factors, which arise from the coupling with the
radiation.

In this paper, closed-form expressions for the radia-
tion corrections to the real and imaginary parts of both
electroquasistatic and magnetoquasistatic eigenvalues and
of the corresponding modes are derived. These correc-
tions only depend on the quasistatic current mode dis-
tribution. The expression of the radiation corrections are
greatly simplified if the magnetoquasistatic mode gener-
ates a transverse vector potential, namely with vanishing
normal component to the surface of the object (A⊥-
mode).

Closed form expressions of the frequency shift and the
radiative Q-factor of both plasmonic and dielectric modes of
small objects are introduced, where the dependencies on the
material and the size of the object are factorized. The relative
frequency shift of any mode is a quadratic function of the
size parameter at the quasistatic resonance, whose prefactor
depends on the ratio between the second-order correction and
the quasistatic eigenvalue. The radiative Q-factor is an inverse
power function of the size parameter whose exponent is the
order ni � 3 of the first nonvanishing imaginary correction,
while the prefactor is the ratio between the the static eigen-
value and its nith-order imaginary correction. Specifically, the
prefactor only depends on the quasistatic eigenvalue and on
the multipolar components of the quasistatic modes and their
corrections.

The scattering modes of small objects can be then natu-
rally classified in two catalogs of plasmonic and dielectric
resonances, containing the essential information to analyze
and engineer the electromagnetic scattering from small ob-
jects. In these tables, the resonances are sorted accordingly
to their real quasistatic eigenvalue and characterized by the
second-order correction and by the nonvanishing imaginary
correction of the lowest order, i.e., ni. All the quantities
contained in these tables depend neither on the size nor on
the permittivity but only on the quasistatic mode morphol-
ogy.

The introduced expressions for the resonance frequency
and Q-factor are successfully validated by predicting the res-
onance peaks and their broadening in the absorption spectra
of a sphere and a finite-size cylinder. Both Drude metals and
high-index dielectric are considered.

APPENDIX A: MULTIPOLES

The electric dipole moment P‖
E|h of the hth electroqua-

sistatic current mode j‖h is defined as

P‖
E|h =

∫
�̃

j‖h dṼ =
∮

∂�̃

(
j‖h · n̂

)
r̃ dS̃ (A1)

and the electric quadrupole tensor
↔
Q‖

E|h as

↔
Q‖

E|h =
∫

�̃

r̃ j‖h + j‖h r̃ dṼ =
∮

∂�̃

(
j‖h · n̂

)
r̃r̃ dS̃, (A2)

where, with respect to standard definitions of electric multi-
poles [75], the prefactor 1/( jω) is omitted.

The magnetic dipole moment P⊥
M|h of the hth magnetoqua-

sistatic current mode j⊥h is defined as

P⊥
M|h = 1

2

∫
�̃

r̃ × j⊥h dṼ , (A3)

the toroidal dipole P⊥
E2|h as [75]

P⊥
E2|h = 1

6

∫
�̃

r̃ × j⊥h × r̃ dṼ , (A4)

and the magnetic quadrupole
↔
Q⊥

M|h tensor as

↔
Q⊥

M|h = 1

3

∫
�̃

[(r̃ × j⊥h )r̃ + r̃(r̃ × j⊥h )] dṼ . (A5)

APPENDIX B: QUASISTATIC MODES OF A SPHERE

A sphere of radius R is considered, and the characteristic
dimension is assumed equal to the radius lc = R. The formulas
of radiation corrections presented in this section can be extrap-
olated by perturbing the denominators of the Mie coefficients
in the neighborhood of their EQS and MQS resonances, and
they can also be directly obtained from the Padè expansion
of the Mie coefficients found by Tzarouchis and Sihvola in
Refs. [76,77].
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FIG. 12. Quasistatic modes of a sphere. Electroquasistatic modes j‖e1n with n = 1, 2, 3. The magnetoquasistatic modes are divided into two
subsets: the TM MQS modes j⊥TM

e1nl (r̃, θ, φ) with n = 1, 2, 3 and l = 1, 2, 3, and the TE modes (A⊥ modes) j⊥TE
o1nl (r̃, θ, φ) with n = 1, 2, 3 and

l = 1, 2, 3.

1. Electroquasistatic modes

In particular, the EQS eigenvalues of a sphere and their
radiative corrections are [76,77]

χ‖
n = −2n + 1

n
, (B1a)

χ (2)
n = − 2

n2

(n + 1)(2n + 1)

(3 + 2n)(2n − 1)
, (B1b)

χ (2n+1)
n = +i

(n + 1)

[n(2n − 1)!!]2 , (B1c)

where n = 1, 2, 3, . . . and (2n − 1)!! = 1 × 3 × 5 × · · · ×
(2n − 1). Each eigenvalue χ‖

n is associated to a set of 2n + 1
degenerate current modes with m = 0, 1, 2, . . . , n and differ-
ent parities, whose analytic expressions are

j‖
e
omn

= 1√
αmn

[(cos mφ

sin mφ

)
nPm

n (cos θ ) r̂ + dPm
n (cos θ )

dθ

× cos mϕ θ̂ + (− sin mφ

+ cos mφ

)
m

Pm
n (cos θ )

sin θ
φ̂

]
, (B2)

αmn = 2π (δm + 1)
(m + n)!(n + 1)n−1

(2n + 1)(n − m)!nn−2
,

where the subscripts e and o denote even and odd, and Pm
n are

the associated Legendre functions of the first kind of degree n
and order m as defined and normalized in Ref. [68]. The pref-
actor αmn guarantees that ‖j‖

e
o
mn

‖ = 1. As an example, the EQS

modes j‖e1n with n = 1, 2, 3 are shown in Fig. 12.
The radiative quality factor of plasmonic resonances is

obtained by using Eqs. (B1a) and (B1c) in Eq. (60):

Q‖r
n = n

[(2n + 1)!!]2

(n + 1)(2n + 1)

( 1

xh

)2n+1

. (B3)

For instance, for electric dipole, quadrupole, octupole is

Q‖r
1 = 3

2

1

x3
1

, Q‖r
2 = 30

x5
2

, Q‖r
3 = 1181

x7
3

. (B4)

Equation (B3) coincides with the formulas provided by Colas
des Francs in Ref. [73].

2. Magnetoquasistatic modes

The MQS modes are divided in two sets. The first set is
composed of the current modes which have no radial com-
ponent. Since the corresponding electric field has the same
property, these modes are called transverse electric (TE) MQS
modes. These current modes also generate a vector potential
with vanishing normal component to the object’s boundary, so
they are A⊥ modes. The second set of current modes generate
a magnetic field with vanishing radial component so they are
called transverse magnetic (TM) MQS modes. These current
modes generate instead a vector potential with nonvanishing
normal component to the object’s boundary.

a. TE MQS modes

The first set of MQS modes is made by the set of TE MQS
modes which coincides with the A⊥ mode of a sphere. Their
eigenvalues and the corresponding corrections are [76,77]

κ⊥ TE
nl = (zn−1,l )

2, (B5a)

κ
TE (2)
nl = −2n + 1

2n − 1
, (B5b)

κ
TE (2n+1)
nl = +i

2

[(2n − 1)!!]2 , (B5c)

where znl denotes the lth zero of the spherical Bessel function
jn. Each eigenvalue κ⊥ TE

nl is associated to a set of 2n + 1
degenerate current modes with m = 0, 1, 2, . . . , n and with
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even and odd parity, whose analytic expression is

j⊥TE
e
o
mnl

(r̃, θ, φ) = 1√
βmnl

[
m
(− sin mφ

+ cos mφ

)Pm
n (cos θ )

sin θ
θ̂

− (cos mφ

sin mφ

)dPm
n (cos θ )

dθ
ϕ̂

]
jn(zn−1,l r̃) (B6)

βmnl = 2π (δm + 1)
n(n + 1)(m + n)!

2(2n + 1)(n − m)!
j2
n (zn−1,l ),

where the prefactor βmnl guarantees that ‖j⊥TE
e
omnl

‖ = 1. As an

example, the odd MQS modes j⊥TE
o1nl (r̃, θ, φ) with m = 1, n =

1, 2, 3, and l = 1, 2, 3 are shown in Fig. 12.
The radiative quality factor of the TE MQS modes is ob-

tained by combining Eqs. (B5a) and (B5c) with (70):

Q⊥TEr
n,l = [zn−1,l (2n − 1)!!]2

2

( 1

xnl

)2n+1

. (B7)

For instance, for the magnetic dipole and quadrupole,

Q⊥TEr
1,1 = π2

2

1

x3
1

≈ 4.9

x3
1,1

; Q⊥TEr
2,1 = 9 z2

1,1

2

1

x5
2,1

≈ 90.7

x5
2,1

. (B8)

b. TM MQS modes

The second set of MQS modes is made by the set of
TM MQS modes. Their eigenvalues and the corresponding
corrections are [76,77]

κ⊥ TM
nl = (znl )

2, (B9a)

κ
TM (2)
nl = −n + 2

n
, (B9b)

κ
TM (2n+3)
nl = +i

2

n2[(2n − 1)!!]2 . (B9c)

Each eigenvalue κ⊥ TM
nl is associated to a set of 2n + 1

degenerate current modes with m = 0, 1, 2, . . . , n and with

even and odd parity whose analytic expression is

j⊥ TM
e
omnl

(r̃, θ, φ)

= 1√
γmnl

{(cos mφ

sin mφ

)
n(n + 1)Pm

n (cos θ )
jn(znl r̃)

znl r̃
r̂

+
(cos mφ

sin mφ

)dPm
n (cos θ )

dθ

1

znl r̃

d

dr̃
[r̃ jn(znl r̃)] θ̂

+ m
(− sin mφ

+ cos mφ

)Pm
n (cos θ )

sin θ

1

znl r̃

d

dr̃
[r̃ jn(znl r̃)] ϕ̂

}
,

(B10)

γmnl = π (1 + δm)
n(n + 1)(n + m)!

(2n + 1)2(n − m)!

× [
(1 + n) j2

n−1(znl ) + n j2
n+1(znl )

]
, (B11)

where the prefactor γmnl guarantees that ‖j⊥ TM
e
omnl

‖ = 1. The

subscripts e and o denote even and odd, and Pm
n (·) are the

associated Legendre function of the first kind of degree n and
order m.

The MQS modes j⊥TM
e1nl (r̃, θ, φ) with n = 1, 2, 3 and l =

1, 2, 3 are shown in Fig. 12.
The radiative quality factor of the TE MQS modes is ob-

tained by combining Eqs. (B9a) and (B9c) with Eq. (70):

Q⊥ TMr
nl = [n zn,l (2n − 1)!!]2

2

( 1

xnl

)2n+3

. (B12)

As an example the toroidal electric dipole mode has radiative
Q factor:

Q⊥ TMr
1,1 = z2

1,1

2

1

x5
1,1

≈ 10.1

x5
1,1

. (B13)

APPENDIX C: POINT SOURCE EXCITATION

Following Ref. [68], the explicit expression of the vector spherical wave function N(3)
e
o11

of the radiative kind is

N(3)
e
o11

= −(cos φ

sin φ

)(− i

(k0r)3 + 1

(k0r)2

)
2 sin θe−ik0r r̂ + (cos φ

sin φ

)
cos θ

(
− i

(k0r)3 + 1

(k0r)2 + i

(k0r)

)
e−ik0r θ̂

+ (− sin φ

+ cos φ

)(− i

(k0r)3 + 1

(k0r)2 + i

(k0r)

)
e−ik0r φ̂, (C1)

where the subscripts e and o denote even and odd. Equation (C1) is proportional to the electric field radiated in vacuum by the
electric dipole p = x̂ when the parity index is e and by p = ŷ when the parity index is odd. Those fields can be exactly obtained
by multiplying Eq. (C1) by the factor i 1

4πε0

ω3

c3 .

APPENDIX D: DERIVATION OF RADIATION CORRECTIONS FOR PLASMONIC MODES AND RESONANCES

In this appendix the derivation of the radiation corrections for the plasmonic modes and resonances is carried out in detail, by
matching same order terms in Eq. (26).
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1. Zero order

Collecting the zeroth-order terms in Eq. (26), the following integrodifferential equation is obtained:

u(0)
h (r̃) + χ

(0)
h

1

4π
∇̃
∮

∂�̃

�r̃−1u(0)
n,h(r̃′) dS̃′ = 0 ∀r̃ ∈ �̃. (D1)

The problem (D1) is the EQS auxiliary eigenvalue problem introduced in Eq. (1) of the main paper. Thus,

χ
(0)
h = χ

‖
h , (D2)

and the zeroth-order current density field is purely longitudinal:

u(0)
h (r̃) = j‖h(r̃) ∀r̃ ∈ �. (D3)

2. First order

Matching the first-order terms in Eq. (26), the following integrodifferential equation is obtained:

−4πu(1)
h (r̃) + iχ‖

h��������∇̃
∮

∂�̃

j‖n,h(r̃′)dS̃′ − χ
(1)
h ∇̃

∮
∂�̃

�r̃−1 j‖n,h(r̃′) dS̃′ − χ
‖
h ∇̃

∮
∂�̃

�r̃−1u(1)
n,h(r̃′)dS̃′ = 0 ∀r̃ ∈ �̃, (D4)

where the second term from the left vanishes due to the charge neutrality condition [Eq. (3) of the main paper], and Eqs. (D2)
and (D3) were used. Thus, Eq. (D4) can be rewritten as

u(1)
h + χ

‖
h

(
1

4π
∇̃
∮

∂�̃

�r̃−1u(1)
n,h(r̃′) dS̃′

)
= −χ

(1)
h

1

4π
∇̃
∮

∂�̃

�r̃−1 j‖n,h(r̃′) dS̃′, ∀r̃ ∈ �̃. (D5)

Since χ
‖
h is an eigenvalue of the left-hand side of Eq. (D5), a solution of Eq. (D5) exists only under the condition that its

right-hand side is orthogonal to the corresponding current mode j‖h, accordingly to the scalar product introduced in Eq. (5) of the
main paper. This is the so-called normal solvability condition of Fredholm integral equations [61,62]. Consequently,

χ
(1)
h

1

4π

∫
�̃

j‖h(r̃) ·
(

∇̃
∮

∂�̃

�r̃−1 j‖n,h(r̃′)dS̃′
)

dṼ = χ
(1)
h

χ
‖
h

∥∥j‖h
∥∥2 = 0, (D6)

where Eq. (D1) has been used. Thus, the integral equation (D5) is only solvable if

χ
(1)
h = 0. (D7)

Regardless of the object’s shape, the first-order correction to EQS eigenvalues vanishes. As a result of Eq. (D7), the integral
equation (D5) only admits the trivial solution

u(1)
h (r̃) = 0 ∀r̃ ∈ �. (D8)

3. Second order

Collecting the second-order terms in Eq. (26), the following integrodifferential equation is obtained (div- and curl-free
functions within � which have nonzero normal component on ∂�̃):

u(2)
h + χ

‖
h

1

4π
∇̃
∮

∂�̃

�r̃−1u(2)
n,h(r̃′) dS̃′

= −χ
(2)
h

1

4π
∇̃
∮

∂�̃

�r̃−1 j‖n,h(r̃′) dS̃′ + χ
‖
h

1

4π
∇̃
∮

∂�̃

�r̃
2!

j‖n,h(r̃′) dS̃′ + χ
‖
h

1

4π

∫
�̃

�r̃−1j‖h(r̃′) dṼ ′, ∀r̃ ∈ �̃. (D9)

Since χ
‖
h is an eigenvalue of the left-hand side of Eq. (D9) (in the space of longitudinal function), according to the normal

solvability condition [61,62] a solution of Eq. (D9) exists only under the condition that its right-hand side is orthogonal to the
eigencurrent j‖h:

∥∥j‖h
∥∥2 χ

(2)
h

χ
‖
h

+ χ
‖
h

4π

∫
�̃

j‖h(r̃) · ∇̃
∮

∂�̃

�r̃
2!

j‖n,h(r̃′)dS̃′dṼ + χ
‖
h

4π

∫
�̃

j‖h(r̃) ·
∫

�̃

�r̃−1j‖h(r̃′)dṼ ′dṼ = 0 (D10)

Using the divergence theorem in the above equation, it is found that the Eq. (D9) is solvable when

χ
(2)
h = −

(
χ

‖
h

)2

∥∥j‖h
∥∥2

1

4π

(∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

|r̃ − r̃′|
2

j‖n,h(r̃′)dS̃′dS̃ +
∫

�̃

j‖h(r̃) ·
∫

�̃

j‖h(r̃′)
|r̃ − r̃′| dṼ ′dṼ

)
. (D11)
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The second-order radiative correction χ
(2)
h results from two contributions: The first term in parentheses in Eq. (D11) is associated

to the radiative self-interaction of the surface charges of the plasmon mode j‖h through the scalar potential. The second term is
instead proportional to the magnetostatic energy of the current mode j‖h:

Wm
{
j‖h
} = 1

2

∫
�̃

j‖h · A
{
j‖h
}
dṼ = μ0

8π

∫
�̃

j‖h(r̃) ·
∫

�̃

j‖h(r̃′)
|r̃ − r̃′| dṼ ′dṼ , (D12)

where A{j‖h} is the vector potential generated by the current j‖h in free space. The second-order correction to the EQS mode has
both longitudinal and transverse components, called u(2)‖

h and u(2)⊥
h , respectively:

u(2)
h (r̃) = u(2)‖

h (r̃) + u(2)⊥
h (r̃), ∀r̃ ∈ �̃. (D13)

The longitudinal part u(2)‖
h belongs to the space of longitudinal functions (div- and curl-free functions within � which have

nonzero normal component on ∂�̃). It can be represented in terms of the basis of EQS current modes {j‖k}k∈N

u(2)‖
h =

∞∑
k=1

α
(2)
h,k j‖k . (D14)

By using Eq. (D14) into Eq. (D9), and solving the resulting equation in the weak from by testing along the element of the basis
{j‖k}k∈N , it is obtained that α

(2)
h,h = 0 and

α
(2)
h,k = 1

4π

1∥∥j‖k
∥∥2

χ
‖
k χ

‖
h

χ
‖
k − χ

‖
h

(∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

|r̃ − r̃′|
2

j‖n,k (r̃′)dS̃′dS̃ +
∫

�̃

j‖h(r̃) ·
∫

�̃

j‖k (r̃′)
|r̃ − r̃′| dṼ ′dṼ

)
,∀k �= h. (D15)

The transverse part u(2)⊥
h belongs to the space of transverse functions (div-free functions within �̃ and with zero normal

component on ∂�̃), and can be represented in terms of the basis of the magnetoquasistatic current modes {j⊥k }k∈N

u(2)⊥
h =

∞∑
k=1

β
(2)
h,k j⊥k . (D16)

By substituting the expansion (D16) in Eq. (D9) and testing the resulting equation in the transverse vector space, spanned by the
MQS current modes {j⊥k }k∈N , the expansion coefficients are found:

β
(2)
h,k = 1

4π

χ
‖
h

‖j⊥k ‖2

∫
�̃

j‖h(r̃) ·
∫

�̃

j⊥k (r̃′)
|r̃ − r̃′| dṼ ′dṼ ∀k ∈ N. (D17)

4. Third order

Matching the third-order terms in Eq. (26), the following integrodifferential equation for the third-order correction u(3)
h is

obtained

χ
‖
h ∇̃

∮
∂�̃

�r̃−1u(3)
n,h(r̃′)dS̃′ + 4πu(3)

h (r̃)

= −χ
(3)
h ∇̃

∮
∂�̃

�r̃−1 j‖n,h(r̃′)dS̃′ − iχ‖
h ∇̃

∮
∂�̃

�r̃2

3!
j‖n,h(r̃′)dS̃′ − iχ‖

h

∫
�̃

j‖h(r̃′)dṼ ′ ∀r̃ ∈ �̃. (D18)

Because of the normal solvability condition [61,62], a solution of Eq. (D18) (in the weak form in the space of longitudinal
functions) exists only if its right-hand side is orthogonal to the EQS mode j‖h:

−4π
χ

(3)
h

χ
‖
h

∥∥j‖h
∥∥2 + iχ‖

h

∫
�̃

j‖h(r̃) · ∇̃
∮

∂�̃

�r̃2

3!
j‖n,h(r̃′)dS̃′dṼ + iχ‖

h

∫
�̃

j‖h(r̃)dṼ ·
∫

�̃

j‖h(r̃′)dṼ ′ = 0, (D19)

where the fact that j‖h is an eigenvector of the EQS operator is used. Thus, the third-order correction χ
(3)
h is immediately obtained:

χ
(3)
h = i

(
χ

‖
h

)2

∥∥j‖h
∥∥2

1

4π

(∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

�r̃2

3!
j‖n,h(r̃′)dS̃′dS̃ +

∫
�̃

j‖h(r̃)dṼ ·
∫

�̃

j‖h(r̃′)dṼ ′
)

. (D20)

The above expression can be further manipulated, and eventually rewritten in terms of the multipolar components of the qua-
sistatic mode. By using the fact that �r̃2 = |r̃ − r̃′|2 = (r̃ − r̃′) · (r̃ − r̃′) = ‖r̃‖2 + ‖r̃′‖2 − 2r̃ · r̃′, the first term in parentheses
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of Eq. (D20) is recast as follows:

∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

�r̃2

3!
j‖n,h(r̃′)dS̃dS̃′ =

�������(∮
∂�̃

j‖n,h(r̃)dS̃

)
·
(∮

∂�̃

‖r̃′‖2

3!
j‖n,h(r̃′)dS̃′

)

+
��������(∮

∂�̃

j‖n,h(r̃′)dS̃′
)

·
(∮

∂�̃

‖r̃‖2

3!
j‖n,h(r̃)dS̃

)
− 1

3

(∮
�̃

r̃Jn,h(r̃)dS̃
)

·
(∮

∂�̃

r̃′Jn,h(r̃′)dS̃′
)

= −1

3

∥∥P‖
E|h

∥∥2
, (D21)

where the definition of electric dipole moment [Eq. (A1) in Appendix A] and the charge neutrality condition were used. The
second term in parentheses of Eq. (D20), by using the definition of electric dipole moment, can be written as

(∫
�̃

j‖h(r̃′)dṼ
)

·
(∫

�̃

j‖h(r̃′)dṼ ′
)

= ∥∥P‖
E|h

∥∥2
. (D22)

Eventually, by using Eqs. (D21) and (D22) into Eq. (D20), the third-order correction is expressed in terms of the electric dipole
moment of the EQS mode:

χ
(3)
h = i

1

6π

(
χ

‖
h

)2

∥∥j‖h
∥∥2

∥∥P‖
E|h

∥∥2
. (D23)

The third-order correction of the current density mode is entirely longitudinal, i.e., u(3)⊥
h = 0:

u(3)
h = u(3)‖

h . (D24)

This fact can be directly obtained from Eq. (D18), using the property that transverse function has zero dipole moment. The
current density u(3)‖

h belongs to the space of longitudinal functions. Thus, it can be represented in terms of the basis of the EQS
current modes {j‖k}k∈N

u(3)‖
h =

∞∑
k=1

α
(3)
h,k j‖k . (D25)

By substituting Eq. (D25) into Eq. (D18), we obtain α
(3)
h,h = 0 ∀h ∈ N and

α
(3)
h,k = i

χ
‖
h χ

‖
k

χ
‖
h − χ

‖
k

1

4π

(∮
∂�̃

j‖n,k (r̃)
∮

∂�̃

|r̃ − r̃′|2
3!

j‖n,h(r̃′)dS̃′dS̃ +
∫

�̃

j‖k (r̃)dṼ ·
∫

�̃

j‖h(r̃′)dṼ ′
)

∀h �= k. (D26)

By using the same arguments used in the derivation of Eqs. (D21) and (D22), it is immediately seen that (D26) can be also
written as

α
(3)
h,k = i

1

6π

1∥∥j‖k
∥∥2

χ
‖
h χ

‖
k

χ
‖
h − χ

‖
k

(
P‖

E,h · P‖
E,k

) ∀h �= k. (D27)

5. Fifth order

As shown in the main paper, dark plasmonic modes exhibit vanishing third-order correction χ
(3)
h . In this case, to retrieve

information about the radiative Q-factor, it is mandatory to consider the fifth-order perturbation χ
(5)
h . By collecting the fifth-order

terms in Eq. (26), the following integrodifferential equation for the fifth-order correction u(5)
h is obtained:

4πu(5)
h (r̃) + χ

‖
h ∇̃

∮
∂�̃

�r̃−1u(5)
n,h(r̃′) dS̃′ = +iχ‖

h ∇̃
∮

∂�̃

�r̃4

5!
j‖n,h(r̃′) dS̃′ − χ

(2)
h ∇̃

∮
∂�̃

�r̃−1u(3)
n,h(r̃′) dS̃′

− iχ (2)
h ∇̃

∮
∂�̃

�r̃2

3!
j‖n,h(r̃′) dS̃′ + χ

(3)
h ∇̃

∮
∂�̃

�r̃
2

j‖n,h(r̃′) dS̃′ − χ
(5)
h ∇̃

∮
∂�̃

�r̃−1 j‖n,h(r̃′) dS̃′

+ χ
‖
h

∫
�̃

�r̃−1u(3)
h (r̃) dṼ ′ + iχ‖

h

∫
�̃

�r̃2

3!
j‖h(r̃) dṼ ′ − iχ‖

h

∫
�̃

u(2)
h (r̃) dṼ ′, ∀r̃ ∈ �̃. (D28)

Because of the normal solvability condition [61,62], a solution of Eq. (D28) (in the weak form in the space of longitudinal
functions) exists only under the condition that its right-hand side is orthogonal to the current mode j‖h, namely when the following
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condition is verified:

χ
(5)
h = − 1

4π

χ
‖
h∥∥j‖h
∥∥2

[
iχ‖

h

∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

�r̃4

5!
j‖n,h(r̃′)dS̃′dṼ − χ

(2)
h

∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

�r̃−1u(3)
n,h(r̃′)dS̃′dṼ

− iχ (2)
h

∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

�r̃2

3!
j‖n,h(r̃′)dS̃′dṼ + χ

(3)
h

∮
∂�̃

j‖n,h(r̃)
∮

∂�̃

�r̃
2

j‖n,h(r̃′)dS̃′dṼ

+ χ
‖
h

∫
�̃

j‖h(r̃) ·
∫

�̃

�r̃−1u(3)
h (r̃′)dṼ ′dṼ + iχ‖

h

∫
�̃

j‖h(r̃) ·
∫

�̃

�r̃2

3!
j‖h(r̃′)dṼ ′dṼ − iχ‖

h

(∫
�̃

j‖h(r̃)dṼ

)

·
(∫

�̃

u(2)
h (r̃′)dṼ ′

)]
. (D29)

By assuming that the hth EQS mode is dark, namely that the dipole moment of the hth EQS mode P‖
E,h is zero, the third-order

corrections χ
(3)
h = 0 and u(3)

n,h = 0 vanish. The integrals below also vanish for the same reason:∫
�̃

j‖h(r̃)dṼ = PE,h = 0,∫
�̃

j‖h(r̃) · ∇̃
∮

∂�̃

�r̃2 j‖n,h(r̃′)dS̃′dṼ = 2
∥∥P‖

E,h

∥∥2 = 0.

(D30)

Thus, Eq. (D29) becomes

χ
(5)
h = −i

(
χ

‖
h

)2

∥∥j‖h
∥∥2

1

4π

[∮
∂�̃

j‖n,h(r̃) ·
∮

∂�̃

�r̃4

5!
j‖n,h(r̃′)dS′dS̃ +

∫
�̃

j‖h(r̃) ·
∫

�̃

�r̃2

3!
j‖h(r̃′)dṼ ′dṼ

]
. (D31)

The above expression can be further manipulated and eventually rewritten in terms of the multipolar components of the
quasistatic mode, specifically in terms of the electric quadrupole moment of the EQS mode j‖h, called

↔
Q‖

E|h, whose components

are denoted as Q‖
E|h|i j . The electric quadrupole is defined by Eq. (A2) in Appendix A. For dark EQS modes, the following

identities holds: ∮
∂�̃

j‖n,h(r̃) ·
∮

∂�̃

|r̃ − r̃′|4
5!

j‖n,h(r̃′)dS′dS̃ = 1

60

[
2
∑

i j

Q‖
E|h|i j + (

Tr
↔
Q‖

E|h
)2
]
, (D32)

∫
�̃

j‖h(r̃) ·
∫

�̃

|r̃ − r̃′|2
3!

j‖h(r̃′)dṼ ′dṼ = − 1

12

∑
i j

Q‖
E|h|i j, (D33)

where Tr is the trace operator. By using Eqs. (D32) and (D33) in Eq. (D31), the fifth-order correction is eventually expressed in
terms of the power radiated to infinity of the electric quadrupole component

↔
Q‖

E|h of the hth EQS mode:

χ
(5)
h = i

1

80π

(
χ

‖
h

)2

∥∥j‖h
∥∥2

[∑
i j

Q‖
E|h|i j − 1

3

(
Tr

↔
Q‖

E|h
)2
]
. (D34)

APPENDIX E: DERIVATION OF RADIATION CORRECTIONS FOR DIELECTRIC MODES AND RESONANCES

In this appendix the derivation of the radiation corrections for the dielectric modes and resonances is carried out in detail, by
matching same order terms in Eq. (38).

1. zero order

Matching the zeroth-order terms of Eq. (38), the following equation is obtained:

κ
(0)
h ∇̃

∮
∂�̃

�r̃−1v
(0)
h n (r̃′)dS̃′ = 0, ∀r̃ ∈ �̃. (E1)

Therefore, assuming κ
(0)
h �= 0, v

(0)
h n vanishes on ∂�, namely,

v
(0)
h n (r̃) = 0, ∀r̃ ∈ ∂�̃. (E2)

Thus, v(0)
h is a purely transverse vector field.
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2. First order

Matching the first-order terms in Eq. (38) and by also considering Eq. (E2), the following equation is obtained:

κ
(0)
h ∇̃

∮
∂�̃

�r̃−1v
(1)
h n (r̃′)dS̃′ = 0, ∀r̃ ∈ �̃. (E3)

Therefore, also the normal component to ∂� of the first-order correction to any MQS current mode vanishes on ∂�, namely,

v
(1)
h n (r̃) = 0 ∀r̃ ∈ ∂�̃. (E4)

3. Second order

Collecting the second-order terms in Eq. (38), the following integrodifferential equation is obtained:

−4πv(0)
h (r̃) − κ

(0)
h ∇̃

∮
∂�̃

�r̃−1v
(2)
h n (r̃′) dS̃′ + κ

(0)
h

∫
�̃

�r̃−1v(0)
h (r̃′) dṼ ′, ∀r̃ ∈ �̃. (E5)

By enforcing Eq. (E5) in the weak form in the space of transverse functions (div-free functions in �̃, which also exhibit vanishing
normal component to ∂�̃), the magnetoquasistatic (MQS) problem introduced in Eq. (8) of the main paper is obtained. Thus,

κ
(0)
h = κ⊥

h , (E6)

v(0)
h (r̃) = j⊥h (r̃), ∀r̃ ∈ �̃, (E7)

where κ⊥
h and j⊥h are the MQS eigenvalue and the MQS current modes, respectively. However, by testing the same equation,

(E5), in the space of longitudinal functions (div-free and curl-free function in �̃ but with a nonvanishing normal component to
∂�̃), the longitudinal component of the second-order mode perturbation v(2)

h , called v
(2)
h n , can be calculated. The derivation of

v
(2)
h n is straightforward, if v(2)‖

h is expanded in terms of the EQS (longitudinal) current modes:

v(2)‖
h =

∞∑
k=1

α
(2)
h,k j‖k . (E8)

By substituting (E8) in Eq. (E5), and by projecting the resulting expression in the space of longitudinal functions, which is
spanned by the set of EQS modes {j‖h}h∈N , the expansion coefficients α

(2)
h,k are determined:

α
(2)
h,k = − χ

‖
k

4π

1∥∥j‖k
∥∥2

∫
�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′|dṼ ′dṼ . (E9)

Each coefficient α
(2)
h,k is proportional to the magnetostatic interaction energy between the MQS current mode j⊥h and the EQS

current modes j‖k , denoted as WmI{j‖k, j⊥h }:

WmI
{
j‖k, j⊥h

} = 1

2

∫
�̃

j‖k · A
{
j⊥h
}
dṼ = μ0

8π

∫
�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′| dṼ ′dṼ , (E10)

where A{j⊥h } is the vector potential generated by the current mode j⊥h . If the hth MQS current mode generates a purely transverse
vector potential, i.e. it is a A⊥ mode accordingly to definition (15), the interaction energy between it and any EQS mode is
vanishing.

We recall that, accordingly to Eq. (11) of the main paper, any magnetoquasistatic mode has a zero electric dipole moment.
Nevertheless, accordingly to Eq. (E8), its second-order radiative correction v(2)

h may exhibit a nonzero electric dipole moment,
called P(2)

E|h. It is given by

P(2)
E|h =

∞∑
k=1

α
(2)
h,k P‖

E|k, (E11)

where P‖
E|k is the electric dipole moment of the kth EQS mode j‖k . For A⊥ modes, the longitudinal part of v(2)

h vanishes, and also

P(2)
E|h vanishes.

4. Third order

Matching the third-order terms of Eq. (38), the following equation is obtained:

4πv(1)
h (r̃) − κ⊥

h

∫
�̃

�r̃−1v(1)⊥
h (r̃′) dṼ ′ = −κ⊥

h ∇̃
∮

∂�̃

�r̃−1v
(3)
h n (r̃′) dS̃′ − κ

(1)
h ∇̃

∮
∂�̃

�r̃−1v
(2)
h n (r̃′) dS̃′

+ iκ⊥
h ��������∇̃

∮
∂�̃

v
(2)
h n (r̃′) dS̃′ + κ

(1)
h

∫
�̃

�r̃−1j⊥h (r̃′) dṼ ′ − ixκ⊥
h
������∫

�̃

j⊥h (r̃′) dṼ ′ = 0 ∀r̃ ∈ �̃, (E12)
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where it was used that v(1)
h = v(1)⊥

h [according to Eq. (E4)], the charge neutrality condition [Eq. (3) of the main paper], and the
fact that the MQS modes have zero dipole moment [Eq. (11) of the main paper]. Since κ⊥

h is an eigenvalue of the left-hand
side of Eq. (E12) (in the weak form in the space of transverse functions), the normal solvability condition states that a solution
of Eq. (E12) exists only under the condition that the its right-hand side is orthogonal to the corresponding eigencurrent j⊥h .
Consequently, we have

κ
(1)
h

1

4π

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃−1j⊥h (r̃′)dṼ ′dṼ = κ
(1)
h

κ⊥
h

∥∥j⊥h
∥∥2 = 0. (E13)

Thus, irrespective of the shape of the object, the first-order correction is always zero:

κ
(1)
h = 0, (E14)

v(1)
h (r̃) = 0, ∀r̃ ∈ �̃. (E15)

By using Eq. (E14) and testing Eq. (E12) in the space of longitudinal functions, it is obtained that

v
(3)
h n = 0. (E16)

5. Fourth order

Collecting the fourth-order terms in Eq. (38) and exploiting Eqs. (E2), (E6), (E7), and (E14)–(E16), the following integrodif-
ferential equation for the second-order correction of the current density mode v(2)

h is obtained:

4πv(2)
h (r̃) − κ⊥

h

∫
�̃

�r̃−1v(2)⊥
h (r̃′) dṼ ′

= −κ⊥
h ∇̃

∮
∂�̃

�r̃−1v
(4)
h n (r̃′) dS̃′ − κ

(2)
h ∇̃

∮
∂�̃

�r̃−1v
(2)
h n (r̃′) dS̃′ + κ⊥

h ∇̃
∮

∂�̃

�r̃
2

v
(2)
h n (r̃′) dS̃′

− κ⊥
h

∫
�̃

�r̃
2

j⊥h (r̃′) dṼ ′ + κ⊥
h

∫
�̃

�r̃−1v(2)‖
h (r̃′) dṼ ′ + κ

(2)
h

∫
�̃

�r̃−1j⊥h (r̃′) dṼ ′ ∀r̃ ∈ �̃, (E17)

where the second-order correction v(2)
h has been decomposed into its longitudinal and transverse components, i.e., v(2)

h = v(2)‖
h +

v(2)⊥
h . Since κ⊥

h is an eigenvalue of the left-hand side of Eq. (E17), the normal solvability condition states that a solution of
Eq. (E17) in the weak form in the space of transverse functions exists only under the condition that the its right-hand side is
orthogonal to the corresponding current mode j⊥h . Consequently, by enforcing the orthogonality of the right-hand side with j⊥h ,
and expanding v(2)‖

h in terms of the EQS basis set {j‖h}k∈N according to Eq. (E8), the following equation is obtained:

κ
(2)
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃−1j⊥h (r̃′)dṼ ′dṼ

= κ⊥
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃
2

j⊥h (r̃′)dṼ ′ − κ⊥
h

∞∑
k=1

α
(2)
k

∫
�̃

j‖k (r̃′) ·
∫

�̃

j⊥h (r̃)

|r̃ − r̃′|dṼ ′dṼ . (E18)

Replacing the explicit expression of α
(2)
h,k , by using Eq. (E9), the second-order correction is obtained:

κ
(2)
h = (κ⊥

h )2

4π

1

‖j⊥h ‖2

(∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ +
∞∑

k=1

χ
‖
k

4π

1∥∥j‖k
∥∥2

∣∣∣∣
∫

�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′|dṼ ′dṼ

∣∣∣∣
2
)

. (E19)

The second-order radiative correction κ
(2)
h originates from two contribution: The first term in parentheses in Eq. (E19) represents

the radiative self-coupling of the volumetric current density j⊥h mediated by the vector potential; the second term is instead is
associated to the magnetostatic interaction energy between the MQS current mode j⊥h and the EQS current mode j‖k . For “A⊥”
modes, Eq. (E19) further simplifies:

κ
(2)
h = (κ⊥

h )2

4π

1

‖j⊥h ‖2

∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ for A⊥ modes. (E20)

Once the condition (E19) is satisfied, the normal solvability condition guarantees the existence of a solution of Eq. (E17). Its
expression is now derived. The transverse part v(2)⊥

h belongs to the functional space spanned by the MQS current modes {j⊥k }k∈N ,
and therefore it may be expanded as

v(2)⊥
h =

∞∑
k=1

β
(2)
hk j⊥k . (E21)
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By substituting the expansion (E21) into Eq. (E17), and then solving the resulting equation in the weak form by testing it using
the set of MQS modes {j⊥k }∈N , it is obtained that β

(2)
h,h = 0 and

β
(2)
h,k = κ⊥

k κ⊥
h

κ⊥
h − κ⊥

k

1

4π

1

‖j⊥k ‖2

[∫
�̃

j⊥k (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ −
∞∑

s=1

α
(2)
h,s

∫
�̃

j‖s (r̃′) ·
∫

�̃

j⊥k (r̃)

|r̃ − r̃′|dṼ ′dṼ

]
. (E22)

Replacing the explicit expression of α
(2)
h,k , found in Eq. (E9), Eq. (E22) becomes

β
(2)
h,k = κ⊥

k κ⊥
h

κ⊥
h − κ⊥

k

1

4π

1

‖j⊥k ‖2

[∫
�̃

j⊥k (r̃) ·
∫

�̃

|r̃ − r̃′|
2

j⊥h (r̃′)dṼ ′dṼ

+
∞∑

s=1

χ‖
s

4π

1∥∥j‖s
∥∥2

(∫
�̃

j‖s (r̃′) ·
∫

�̃

j⊥k (r̃)

|r̃ − r̃′|dṼ ′dṼ

)(∫
�̃

j‖s (r̃′) ·
∫

�̃

j⊥h (r̃)

|r̃ − r̃′|dṼ ′dṼ

)]
. (E23)

6. Fifth order

By matching the fifth-order terms in Eq. (38) and using Eqs. (E2), (E6), (E7), and (E14)–(E16), together with the charge
neutrality condition of EQS modes and the property that the MQS modes have zero dipole moment, the following equation is
found:

4πv(3)
h (r̃)−κ⊥

h

∫
�̃

�r̃−1v(3)⊥
h (r̃′) dṼ ′ = −κ⊥

h ∇̃
∮

∂�̃

�r̃−1v
(5)
h n (r̃′) dS̃′−iκ⊥

h ∇̃
∮

∂�̃

�r̃2

3!
v

(2)
h n (r̃′) dS̃′ − iκ⊥

h

∫
�̃

v(2)‖
h (r̃′) dṼ ′

+ κ
(3)
h

∫
�̃

�r̃−1j⊥h (r̃′) dṼ ′ + iκ⊥
h

∫
�̃

�r̃2

3!
j⊥h (r̃′) dṼ ′ ∀r̃ ∈ �̃. (E24)

Since κ⊥
h is an eigenvalue of the left-hand side of (E24) (in the weak form in the space of transverse functions), the normal

solvability condition states that a solution of Eq. (E24) exists only under the condition that the its right-hand side is orthogonal
to the corresponding eigencurrent j⊥h . Thus, by projecting the right-hand side of Eq. (E24) along j⊥h , the following equation is
obtained:

−κ
(3)
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃−1j⊥h (r̃′)dṼ ′dṼ − iκ⊥
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃2

3!
j⊥h (r̃′) dṼ ′dṼ = 0. (E25)

By using the fact that j⊥h is a MQS current mode, the explicit expression for κ
(3)
h is found:

κ
(3)
h = −i

(κ⊥
h )2

‖j⊥h ‖2

1

4π

∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|2
6

j⊥h (r̃′)dṼ ′dṼ . (E26)

The above expression can be further manipulated, and eventually rewritten in terms of the multipolar components of the
quasistatic mode. By using the identity |r̃ − r̃′|2 = |r̃|2 + |r̃′|2 − 2r̃ · r̃′, and the fact that the current distribution j⊥h has vanishing
electric dipole and electric quadrupole moments, the following identity is obtained:∫

�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|2
6

j⊥h (r̃′)dṼ ′dṼ = −1

6

(∫
�̃

j⊥h (r̃) × r̃ dṼ

)
·
(∫

�̃

j⊥h (r̃′) × r̃′ dṼ ′
)

= −2

3

∥∥P⊥
M|h

∥∥2
. (E27)

By using the above identity, Eq. (E26) becomes

κ
(3)
h = i

(κ⊥
h )2

‖j⊥h ‖2

1

6π

∥∥P⊥
M|h

∥∥2
, (E28)

where P⊥
M|h is the magnetic dipole moment of the hth MQS mode defined in Eq. (A3) in Appendix A.

The corresponding correction to the current density mode can be now derived. The transverse current density v(3)⊥
h may be

expanded in terms of the MQS current modes as

v(3)⊥
h =

∞∑
k=1

β
(3)
hk j⊥k . (E29)

By substituting Eq. (E29) in Eq. (E24) and testing the resulting equation in the space of transverse functions, spanned by the
magnetoquasistatic modes {j⊥h }k∈N , it is found that β

(3)
h,h = 0 and

β
(3)
h,k = −i

κ⊥
k κ⊥

h

κ⊥
h − κ⊥

k

1

4π

1

‖j⊥k ‖2

∫
�̃

j⊥k (r̃) ·
∫

�̃

|r̃ − r̃′|2
3!

j⊥h (r̃′)dṼ ′dṼ , ∀h �= k. (E30)
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Equation (E30) can be rewritten in terms of the magnetic dipoles P⊥
M|h and P⊥

M|k of the hth and kth MQS modes, respectively:

β
(3)
h,k = i

1

6π

1

‖j⊥k ‖2

κ⊥
k κ⊥

h

κ⊥
h − κ⊥

k

P⊥
M|h · P⊥

M|k . (E31)

Starting from Eq. (E24), it is also possible to derive the longitudinal component of the fifth-order mode correction, namely
v(5)

h . Indeed, by testing Eq. (E24) in the space of longitudinal function, which is spanned by the EQS current modes, and
expanding v(5)

h in the same EQS basis, i.e.,

v(5)‖
h =

∞∑
k=1

α
(5)
h,k j‖k, (E32)

it is obtained that

− κ⊥
h

∞∑
s=1

α
(5)
h,s

∫
�̃

j‖k (r̃) · ∇̃
∮

∂�̃

�r̃−1 j‖s (r̃′)dS̃′dṼ = iκ⊥
h

∞∑
s=1

α
(2)
h,s

∫
�̃

j‖k (r̃) · ∇̃
∮

∂�̃

�r̃2

3!
j‖s (r̃′)dS̃′dṼ

+ iκ⊥
h

∫
�̃

j‖k (r̃) ·
∫

�̃

v(2)‖
h (r̃′)dṼ ′dṼ − κ⊥

h

∞∑
s=1

β
(3)
h,s

∫
�̃

j‖k (r̃) ·
∫

�̃

�r̃−1j⊥s (r̃′)dṼ ′dṼ

− κ
(3)
h

∫
�̃

j‖k (r̃) ·
∫

�̃

�r̃−1j⊥h (r̃′)dṼ ′dṼ − iκ⊥
h

∫
�̃

j‖k (r̃) ·
∫

�̃

�r̃2

3!
j⊥h (r̃′)dṼ ′dṼ . (E33)

Assuming that the hth MQS mode has vanishing magnetic dipole moment, namely P⊥
M|h = 0, then κ

(3)
h = 0 and β

(3)
h,k = 0. Thus,

Eq. (E33) becomes

α
(5)
h,k = i

χ
‖
k∥∥j‖k
∥∥2

1

4π

[ ∞∑
s=1

α
(2)
h,s

∮
∂�̃

j‖n,k (r̃)
∮

∂�̃

�r̃2

3!
j‖n,s(r̃

′)dS̃dS̃′ +
∞∑

s=1

α
(2)
h,s

(∫
�̃

j‖k (r̃)dṼ
)

·
(∫

�̃

j‖s (r̃′)dṼ ′
)

−
∫

�̃

j‖k (r̃) ·
∫

�̃

|r̃ − r̃′|2
3!

j⊥h (r̃′)dṼ ′dṼ

]
. (E34)

By assuming that j⊥h has zero magnetic dipole moment, and by exploiting the fact that j⊥h has zero electric dipole and electric
quadrupole moments, while j‖k has zero magnetic dipole moment, the following identities can be demonstrated:∮

∂�̃

j‖n,k (r̃)
∮

∂�̃

�r̃2

3!
j‖n,s(r̃

′)dS̃dS̃′ = −1

3
P‖

E|k · P‖
E|s, (E35)

(∫
�̃

j‖k (r̃)dṼ
)

·
(∫

�̃

j‖s (r̃′)dṼ ′
)

= P‖
E|k · P‖

E|s, (E36)

∫
�̃

j‖k (r̃) ·
∫

�̃

|r̃ − r̃′|2
3!

j⊥h (r̃′)dṼ ′dṼ = 2

3
P⊥

E2|h · P‖
E|k. (E37)

By using the above identities in Eq. (E34), it is obtained that

α
(5)
h,k = i

1

6π

χ
‖
k∥∥j‖k
∥∥2

[( ∞∑
s=1

α
(2)
h,s P‖

E|s

)
− P⊥

E2|h

]
· P‖

E|k . (E38)

By recalling that the dipole moment of the second-order mode correction is [see Eq. (E11)]

P(2)
E|h =

∞∑
s=1

α
(2)
h,s P‖

E|s. (E39)

Equation (E38) has the final form

α
(5)
h,k = i

1

6π

χ
‖
k∥∥j‖k
∥∥2

[
P(2)

E|h − P⊥
E2|h

] · P‖
E|k. (E40)

7. Seventh order

As shown in the main paper, the MQS modes with zero magnetic dipole moment exhibit vanishing third order correction
κ

(3)
h . In this case, to retrieve information about the radiative Q-factor, it is mandatory to consider the fifth-order perturbation κ

(5)
h .
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Collecting the seventh-order terms in Eq. (38), we arrive at the following integrodifferential equation for v(5)
h :

4πv(5)
h − κ⊥

h

∫
�̃

�r̃−1v(5)⊥
h (r̃′) dṼ ′

= −κ
(5)
h ∇̃

∮
∂�̃

�r̃−1v
(2)
h n (r̃′) dS̃′ + κ

(3)
h ∇̃

∮
∂�̃

�r̃
2!

v
(2)
h n (r̃′) dS̃′ − iκ (2)

h ∇̃
∮

∂�̃

�r̃2

3!
v

(2)
h n (r̃′) dS̃′

+ iκ⊥
h ∇̃

∮
∂�̃

�r̃4

5!
v

(2)
h n (r̃′) dS̃′ − κ

(3)
h ∇̃

∮
∂�̃

�r̃−1v
(4)
h n (r̃′) dS̃′ − iκ⊥

h ∇̃
∮

∂�̃

�r̃2

3!
v

(4)
h n (r̃′) dS̃′

+ κ⊥
h ∇̃

∮
∂�̃

�r̃
2!

v
(5)
h n (r̃′) dS̃′ − κ

(2)
h ∇̃

∮
∂�̃

�r̃−1v
(5)
h n (r̃′) dS̃′ − κ⊥

h ∇̃
∮

∂�̃

�r̃−1v
(7)
h n (r̃′) dS̃′

+ κ
(5)
h

∫
�̃

�r̃−1j⊥h (r̃′) dṼ ′ − iκ⊥
h

∫
�̃

�r̃4

5!
j⊥h dṼ ′ + κ

(3)
h

∫
�̃

�r̃−1v(2)
h dṼ ′

− iκ (2)
h

∫
�̃

v(2)
h (r̃′) dṼ ′ + iκ⊥

h

∫
�̃

�r̃2

3!
v(2)

h (r̃′) dṼ − κ⊥
h

∫
�̃

�r̃
2!

v(3)
h dṼ ′

+ κ
(2)
h

∫
�̃

�r̃−1v(3)
h dṼ ′ − iκ⊥

h

∫
�̃

v(4)
h (r̃′) dṼ ′ + κ⊥

h

∫
�̃

�r̃−1v(5)‖
h (r̃′) dṼ ′. (E41)

Since κ⊥
h is an eigenvalue of the left-hand side of Eq. (E41) (in the weak form in the space of transverse functions), the normal

solvability condition states that a solution of Eq. (E41) exists only under the condition that the its right-hand side is orthogonal
to the corresponding MQS mode j⊥h . Thus, by projecting the right-hand side of Eq. (E41) along j⊥h , the fifth-order correction is
obtained:

κ
(5)
h = κ⊥

h

‖j⊥h ‖2

1

4π

(
iκ⊥

h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃4

5!
j⊥h (r̃′)dṼ ′dṼ − κ

(3)
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃−1v(2)
h (r̃′)dṼ ′dṼ +

− iκ⊥
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃2

3!
v(2)

h (r̃′)dṼ ′dṼ + κ⊥
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃
2!

v(3)
h (r̃′)dṼ ′dṼ

− κ
(2)
h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃−1v(3)
h (r̃′)dṼ ′dṼ − κ⊥

h

∫
�̃

j⊥h (r̃) ·
∫

�̃

�r̃−1v(5)‖
h (r̃′)dṼ ′dṼ

)
. (E42)

If the hth current mode has a vanishing magnetic dipole moment P⊥
M|h = 0, then κ

(3)
h = 0 and v(3)

h = 0. Thus, Eq. (E42) becomes

κ
(5)
h = i

(κ⊥
h )2

‖j⊥h ‖2

1

4π

[∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|4
5!

j⊥h (r̃′)dṼ ′dṼ

−
∞∑

k=1

α
(2)
h,k

∫
�̃

j‖k (r̃) ·
∫

�̃

|r̃ − r̃′|2
3!

j⊥h (r̃′)dṼ ′dṼ + i
∞∑

k=1

α
(5)
h,k

∫
�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′|dṼ ′dṼ .

]
(E43)

Equation (E43) can be rewritten in terms of the multipolar components of the MQS current mode j⊥h . In order to achieve this
goal, it is convenient to introduce some identities. Using Eq. (E9), it is obtained that∫

�̃

j‖k (r̃) ·
∫

�̃

j⊥h (r̃′)
|r̃ − r̃′|dṼ dṼ ′ = −α

(2)
h,k

χ
‖
k

4π
∥∥j‖k

∥∥2
. (E44)

Moreover, by using the following identities, ∣∣∣∫
�̃

|r̃|2 j⊥h (r̃)dṼ
∣∣∣2 = 16

∥∥P⊥
E2|h

∥∥2
, (E45)∫

�̃

∫
�̃

|r̃ · r̃′|2j⊥h (r̃) · j⊥h (r̃′)dṼ dṼ ′ = 3

2

∑
i j

(
Q⊥

M|h|i j

)2 + 12
∥∥P⊥

E2|h
∥∥2

, (E46)

it is possible to prove that ∫
�̃

j⊥h (r̃) ·
∫

�̃

|r̃ − r̃′|4
5!

j⊥h (r̃′)dṼ dṼ ′ = 1

20

∑
i j

(
Q⊥

M|h|i j

)2 + 2

3

∥∥P⊥
E2|h

∥∥2
, (E47)
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where Q⊥
M|h|i j are the components of the magnetic quadrupole

↔
Q⊥

M|h of the hth MQS mode, while P⊥
E2|h is the toroidal dipole of

the hth MQS mode. These multipoles are defined in Eqs. (A5) and (A4) in Appendix A, respectively. By using the identities
(E44), (E47), and (E37), together with the expression of α

(5)
hk , provided in Eq. (E38), Eq. (E43) becomes

κ
(5)
h = i

(κ⊥
h )2

‖j⊥h ‖2

[
1

80π

∑
i j

(
Q⊥

M|h|i j

)2 + 1

6π

∥∥P⊥
E2|h

∥∥2 − 1

6π

( ∞∑
k=1

α
(2)
h,kP‖

E|h

)
· P⊥

E2|h

+ 1

6π

[( ∞∑
s=1

α
(2)
h,s P‖

E|h

)
− P⊥

E2|h

]
·
( ∞∑

k=1

α
(2)
h,kP‖

E|h

)]
. (E48)

Eventually, recalling the definition of the electric dipole moment P(2)
E|h of the second-order mode correction v(2)

h , introduced in
Eq. (E11),

κ
(5)
h = i

(κ⊥
h )2

‖j⊥h ‖2

[
1

80π

∑
i j

(
Q⊥

M|h|i j

)2 + 1

6π

∥∥P⊥
E2|h − P(2)

E|h
∥∥2

]
. (E49)

For A⊥ modes, the fifth-order correction simplifies as follows:

κ
(5)
h = i

(κ⊥
h )2

‖j⊥h ‖2

[
1

80π

∑
i j

(
Q⊥

M|h|i j

)2 + 1

6π

∥∥P⊥
E2|h

∥∥2

]
forA⊥ modes. (E50)

APPENDIX F: SOME EXAMPLES OF CALCULATION OF RADIATION CORRECTIONS

In this Appendix, the use of the radiation corrections formulas is exemplified for the electric and magnetic dipole modes of a
sphere.

1. Electric dipole mode of a sphere

In this section, the radiation corrections are calculated for the electroquasistatic mode j‖e01 of a sphere, which is associated
to the EQS eigenvalue χ

‖
1 = −3. This mode is an electric dipole oriented along ẑ. The analytic expression of the mode can be

found by replacing m = 0 and n = 1 in Eq. (B2) of Appendix B, and it is reported below:

j‖e01 =
√

3

4π

(
cos θ r̂ − sin θ θ̂

) =
√

3

4π
ẑ. (F1)

The corresponding surface charge density j‖n,e01 = j‖e01 · n̂ has the expression

j‖n,e01 = j‖e01 · n̂ =
√

3

4π
cos θ. (F2)

The second-order correction χ
(2)
1 is obtained by Eq. (29) of the main paper:

χ
(2)
1 = −(

χ
‖
1

)2 1

4π

(∮
∂�̃

j‖n,e01(r̃)
∮

∂�̃

|r̃ − r̃′|
2

j‖n,e01(r̃′)dS̃′dS̃ +
∫

�̃

j‖e01(r̃) ·
∫

�̃

j‖e01(r̃′)
|r̃ − r̃′| dṼ ′dṼ

)
, (F3)

Then, the first integral in parentheses is evaluated:∮
∂�̃

j‖n,e01(r̃)
∮

∂�̃

|r̃ − r̃′|
2

j‖n,e01(r̃′)dS̃dS̃′ = − 8

15
π. (F4)

Next, the second integral is computed:∫
�̃

j‖e01(r̃) ·
∫

�̃

j‖e01(r̃′)
|r̃ − r̃′| dṼ ′dṼ = 3

4π

∫
�̃

∫
�̃

1

|r̃ − r̃′| dṼ ′dṼ . (F5)

In Eq. (F5), the inner volume integral is proportional to the electrostatic potential in the interior of a uniformly charged sphere,
and thus it has the expression: ∫

�̃

1

|r̃ − r̃′| dṼ ′ = 2π

(
1 − r̃2

3

)
, (F6)

and thus by using Eq. (F6) in Eq. (F5) it is obtained that∫
�̃

j‖e01(r̃) ·
∫

�̃

j‖e01(r̃′)
|r̃ − r̃′| dṼ ′dṼ = 3

4π
4π

∫ 1

0
2π

(
1 − r̃2

3

)
r̃2dr̃ = 6π

[
r̃3

3
− r̃5

15

]1

0

= 8

5
π. (F7)
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Eventually, by using Eqs. (F4) and (F7) in Eq. (F3), the second-order correction is obtained:

χ
(2)
1 = − 9

4π

(8

5
π − 8

15
π
)

= − 9

4π

(16

15
π
)

= −12

5
. (F8)

The third-order correction χ
(3)
1 is given by Eq. (33) of the main paper:

χ
(3)
1 = i

1

6π

(
χ

‖
1

)2∥∥P‖
E,1

∥∥2
. (F9)

The electric dipole moment of the current distribution, following the definition (A1), is

P‖
E|1 =

∫
�̃

j‖e01dṼ =
√

4π

3
ẑ. (F10)

Eventually, by using Eq. (F10) in Eq. (F9),

χ
(3)
1 = i

1

6π

(
χ

‖
1

)2∥∥P‖
E,1

∥∥2 = i
1

6π
9
(4π

3

)
= 2i. (F11)

2. Magnetic dipole mode of a sphere

Now, the radiation corrections are calculated for the mag-
netoquasistatic TE mode jTE⊥

e011 of a sphere, which is associated
to the eigenvalue κ⊥TE

11 = π2. The mode analytic expression is
given by Eq. (B6) in Appendix B, namely

j⊥TE
e011 (r̃, θ, φ) = 1√

β011

[
−dP0

1 (cos θ )

dθ

]
j1(π r̃)φ̂,

β011 = 4

3π
,

(F12)

where the value of β011 guarantees the normalization
‖j⊥TE

e011‖ = 1. By substituting in Eq. (F12) the expressions of
the spherical Bessel function and of the associated Legendre
functions, namely

j1(z) =
[ sin (z)

z2
− cos z

z

]
, (F13)

P0
1 (cos θ ) = cos θ, (F14)

the mode assumes the explicit form below:

j⊥TE
e011 (r̃, θ, φ) =

√
3π

4
sin θ

[
sin (π r̃)

(π r̃)2 − cos π r̃

π r̃

]
φ̂. (F15)

The vector potential generated by the current mode j⊥TE
e011 does

not have a component orthogonal to the particle surface, and
thus it is an A⊥ mode. Thus, the second-order correction can
be calculated by Eq. (43) of the main paper:

κ
TE(2)
11 = (κ⊥TE

11 )2

4π

[∫
�̃

j⊥TE
e011 (r̃)

·
∫

�̃

|r̃ − r̃′|
2

j⊥TE
e011 (r̃′)dṼ ′dṼ

]
= −3. (F16)

The third-order correction κ
TE(3)
11 can be calculated by Eq.

(48) of the main paper:

κ
TE(3)
11 = i

(
κ⊥ TE

11

)2 1

6π

∥∥P⊥
M|e011

∥∥2
. (F17)

In order to calculate the third-order correction, the magnetic
dipole moment P⊥TE

M|e011 of the current mode is indeed required.
Using the definition (A3) in Appendix A, and considering that
r̃ × φ̂ = −r̃θ̂,

P⊥TE
M|e011 = 1

2

∫
�̃

r̃ × j⊥TE
e011 (r̃)dṼ

= −
√

3π

4

1

2

∫
�̃

sin θ

[
sin (π r̃)

(π r̃)2 − cos π r̃

π r̃

]
r̃θ̂dṼ .

(F18)

Using the fact θ̂ = cos θ cos φx̂ + cos θ sin φŷ − sin θ ẑ, and
noting that the magnetic dipole moment components along x̂
and ŷ vanish due to the symmetry, Eq. (F18) becomes

P⊥TE
M|e011 = ẑ

√
3π

4

1

2

∫
�̃

r̃ sin2 θ

[
sin (π r̃)

(π r̃)2 − cos π r̃

π r̃

]
dṼ

= ẑ

√
3π

4

1

2
2π

(∫ 1

0
r̃3

[
sin (π r̃)

(π r̃)2 − cos π r̃

π r̃

]
dr̃

)

×
(∫ π

0
sin3 θdθ

)

= ẑ

√
3π

4

1

2
2π

3

π3

4

3
= ẑ

√
3π

2

π2
. (F19)

In conclusion, by combining (F17) and (F19):

κ
TE(3)
11 = i

(
κ⊥TE

11

)2 1

6π

∥∥P⊥TE
M|e011

∥∥2 = iπ4 1

6π

(
3π

4

π4

)
= 2i.

(F20)
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