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Revisiting Sampson’s theory for hydrodynamic transport in ultrathin nanopores
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Sampson’s theory for hydrodynamic resistance across a zero-length orifice was developed over a century ago.
Although a powerful theory for entrance/exit resistance in nanopores, it lacks accuracy for relatively small-radius
pores since it does not account for the molecular interface chemistry. Here, Sampson’s theory is revisited for
the finite slippage and interfacial viscosity variation near the pore wall. The corrected Sampson’s theory can
accurately predict the hydrodynamic resistance from molecular dynamics simulations of ultrathin nanopores.

DOI: 10.1103/PhysRevResearch.2.043153

I. INTRODUCTION

Advances in experimentation [1–5] and computational
studies [6–8] of fluids in nanoconfinement have led to the
observation of unique properties of fluids. For example, wa-
ter in carbon-based nanopores has been shown to have giant
transport rates [5,8–11], fast rotational motion [12,13], and
rotation-translation coupling [14]. Other solid-state nanopores
such as transition metal dichalcogenides (TMDs) have also
been explored and found to possess high water permeability
and selectivity, making them attractive candidates for wa-
ter desalination [15,16] and nanopower generation [17]. In
addition, in biological nanopores, such as aquaporins, water
exhibits a unique single-file dynamical behavior [18,19] with
a high flux of about 109 molecules per second due to the
charge residues at the pore mouth causing water molecules
to rotate and the conical structure of the pore minimizing
the entrance/exit hydrodynamic resistance. In recent years,
a great deal of attention has been given to two-dimensional
(2D) materials (e.g., single-layer graphene, MoS2) due to their
high transport rates [10,15,20] as flux is expected (classi-
cally) to scale inversely with the thickness of the pore. For
atomically thin pores, the flow rates are dictated by the en-
trance/exit hydrodynamic resistance governed by the viscous
energy dissipation. The entrance/exit effects are also impor-
tant in thicker pores where the resistance inside the pore is
negligible [21,22] [e.g., frictionless flows in carbon nanotubes
(CNTs)]. In CNTs, accurate calculation of slip lengths, from
experimentally measured permeation rates [9], depends on
the accuracy of the theory used to obtain the entrance/exit
resistance. As the entrance/exit resistance dominates the to-
tal resistance in a CNT, a slight error in the estimation of
the entrance/exit resistance could lead to a large error in the
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calculation of slip length. Therefore, the need for an accurate
theory describing the entrance/exit resistance (defined as the
ratio of the pressure drop to the volumetric flow rate, R = �P

Q )
in both ultrathin and thick pores has been recognized in the
past few decades [18,20,23].

Couette [24] in 1890 first introduced the entrance/exit re-
sistance by crudely adding an additional length to the actual
length of the tube in the Hagen-Poiseuille (HP) equation
[25,26] (RHP = 8μh

πa4 , where μ is the viscosity, h is the tube
length/thickness, and a is the tube radius), which describes
the flow in circular tubes independent of the end effects. A
year later, Sampson [27] obtained the exact solution for the en-
trance/exit resistance of a zero-length orifice (RSampson = 3μ

a3 )
within the framework of continuum fluid mechanics. The
Sampson formula was later confirmed experimentally [28]
for h

a < 26. Weissberg [28] further found an upper bound
for the entrance/exit resistance to be 1.154 times that of
the Sampson formula using a variational method. Combin-
ing Sampson and HP equations, Dagan [29] obtained the
total flow resistance across a finite-length orifice [RDagan =
(8h+3πa)μ

πa4 ] using a no-slip boundary condition at the pore
walls. More recently, hydrodynamic entrance/exit resistance
was obtained for hourglass pores by modifying the prefactor
in the Sampson formula based on finite-element calculations
[18,21]. The Sampson formula, however, is found to overes-
timate the hydrodynamic resistance in graphene nanopores
[21,23]. Gravelle et al. [21] attributed this overestimation
to the finite thickness of a single-layer graphene nanopore.
In this work, we show that the lower hydrodynamic resis-
tance in graphene compared to that of the Sampson formula
is due to the finite slippage at the edge of the pore. This
is confirmed by modifying the molecular dynamics (MD)
force-field parameters between water and graphene [resulting
in a fictitious material having the same graphene structure
but a different chemistry (highly hydrophilic)] such that a
no-slip boundary condition is achieved at the pore edge. See
Appendix A for details on the MD simulations performed
in this study. Remarkably, the resistance obtained from MD
simulations for the hydrophilic pore (with no slip) matches the
resistance predicted by the Sampson formula. Motivated by
this observation in MD simulations, we revisit the Sampson
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FIG. 1. (a) The slip lengths in the graphene nanopore are plotted for different radius (a). Finite slip lengths are obtained when using the Wu
et al. [30] force field. (b) Axial velocity profile in the single-layer graphene nanopore (a = 3.54 nm) as a function of the radial distance from the
center of the pore is plotted using the Wu et al. [30] force field (black solid curve) and a fictitious hydrophilic force field (εC−O = 0.9 kcal/mol,
red dashed curve [see Appendix A (Table I) and B (Fig. 8)]). The water accessible radius a is illustrated by an arrow. The water accessible
radius is the length within which the water density is nonzero [see Appendix B (Fig. 8(c))]. In Appendix G, a systematic method of calculating
the accessible radius is discussed.

theory and introduce a finite slip length (δ) into the original
theory. Introducing a finite slip length for a nearly zero-length
orifice in Sampson’s theory may be counterintuitive at first;
however, a slip length can be introduced if the velocity at
any cross section is known, e.g., the velocity profile right at
the orifice. The deviation of the resistance in MD simula-
tions from that of the original Sampson theory is found to
be dictated by the ratio of slip length to radius, δ

a . To further
account for the interfacial molecular physics, we corrected the
Sampson theory for the variation of viscosity at the interface
of the graphene membrane. The slip- and viscosity-corrected
Sampson’s theory is able to predict the hydrodynamic resis-
tance from MD simulations for different values of δ

a (which
represents a measure of both the geometry and chemistry
of the pore) with no adjustable parameters. In addition to
MD simulations, steady-state Navier-Stokes (NS) continuum
simulations are carried out where the hydrodynamic resistance
matches the values predicted by the corrected Sampson for-
mula (see Appendix C for more details on NS simulations).

II. ROLE OF SLIPPAGE

Water transport in single-layer graphene nanopores is as-
sociated with slippage at the pore due to the significance
of molecular physics between water molecules and carbon
atoms. Suk et al. [10] investigated water transport in graphene
nanopores where a parabolalike velocity profile with a slip
velocity at the interface was observed. The slip lengths in
graphene are one order of magnitude smaller than those of
infinitely long CNTs where pluglike velocity profiles are ob-
served [8]. Slip length in graphene decreases with an increase
in radius as shown in Fig. 1(a) (see Appendix A for details on
slip calculation). The slip length variation is explained [23] by
the decrease in viscosity and increase in the interfacial friction
coefficient as radius increases. In the original Sampson theory,

a no-slip condition is assumed at the wall and an ellipti-
cal velocity profile is obtained inside the pore. Slippage in
graphene results in higher permeability (or lower resistance)
compared to the permeability predicted by the original Samp-
son theory. In this work, the interaction parameter between
the oxygen atom of water and the carbon atom of graphene
is changed such that a no-slip interface (hydrophilic wall) is
achieved in MD simulations [see Appendix A (Table I) and
Fig. 8]. In Fig. 1(b), the axial velocity profile of the ficti-
tious hydrophilic pore is compared to that of the nonfictitious
graphene (Wu et al. [30] force field) for a radius of 3.54 nm.
The hydrodynamic resistance is directly computed from MD
simulations to be 5.78 ± 0.03 × 1022 Pa s/m3 and 4.21 ±
0.4 × 1022 Pa s/m3, for the hydrophilic pore and graphene
pore, respectively. The resistance obtained for the hydrophilic
pore matches the resistance predicted by the Sampson theory
(RSampson = 3μ

a3 = 5.75 × 1022 Pa s/m3, where μ is taken to be
the bulk viscosity of water (0.85 mPa s) and a is calculated
based on the water accessible radius [see Fig. 1(b)]). Sampson
theory, however, fails to predict the resistance for the graphene
nanopore (where a slip length exists) as it does not include
interfacial physics in the form of slip length and viscosity
variation. Motivated by the results in Fig. 1, the effect of slip
length is introduced into Sampson’s theory in the next section.

III. SLIP-CORRECTED SAMPSON’S THEORY

The pressure drop, �P, can be obtained from the rate of
energy dissipation using [31]

�P = 2μ

Q

∫
ω2dV + 4μ

Q

∫
(u · ∇)u · ndS, (1)

where μ is the fluid viscosity, Q is the volumetric flow rate, ω

is the vorticity, V is the volume, u is the flow field, and S is the
surface of the boundaries of the system. For simplification, the
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FIG. 2. (a) The confocal hyperbolas and ellipses (denoted by x and t , respectively) in the oblate spheroidal coordinates are shown for an
orifice with a water accessible radius of a. The orifice boundaries are presented in blue. Inside the orifice, the radial distance from the center of
the orifice (denoted by r) is shown by a solid arrow. The oblate spherical coordinates (outside the orifice) and the cylindrical coordinates (inside
the orifice) are related by Eqs. (2) and (3). (b) The schematic of the velocity profile (red curve) and the lengths considered in the Sampson
formulation are shown. The dotted line is the tangent line to the velocity profile at r = a whose intersection with z = 0 defines the slip length
δ. d is a virtual length within which the velocity is zero. Note that the cylindrical sections of the two schematics have finite thicknesses (the
actual pore thickness is zero in the theory) merely for the sake of clear presentation.

second term in Eq. (1) can be neglected assuming the velocity
on the boundaries of S to be zero. In this work, ultrathin pores
are represented by a zero-length orifice. Oblate spheroidal
coordinates are used outside the orifice and cylindrical co-
ordinates inside the orifice as shown in Fig. 2(a). x and t in
the oblate spheroidal coordinates are related to the cylindrical
coordinates z and r using

r2 = [t2 + (a + d )2](1 − x2), (2)

z2 = t2x2, (3)

where d is the virtual length, characterizing the slip length
as discussed later in more detail, in the radial direction of
the cylindrical coordinates. The vorticity in Eq. (1) can be
expressed in terms of the stream function ψ using [32]

rω = −D2ψ, (4)

where D2 is the differential operator (see Appendix E for the
definition of D2). Using Eqs. (1)–(4), the pressure drop can be
rewritten as

�P = 4πμ

Q

∫ 1

0

∫ ∞

0

1

t2 + (a + d )2x2

{[
t2 + (a + d )2

1 − x2

] 1
2

× ∂2ψ

∂t2
+

[
1 − x2

t2 + (a + d )2

] 1
2 ∂2ψ

∂x2

}2

dtdx. (5)

The exact stream function, ψo = 1
2π

Qx3, which Sampson [27]
obtained for flow through a zero-length orifice, when used in
Eq. (5) results in the famous Sampson formula, �P = 3μQ

a3 .
A trial stream function [Eq. (6)] is used that best mimics the
flow fields in the simulations (a velocity jump at the depletion
region boundary and an almost vanishing velocity near the

outside walls [see Appendix D, Fig. 10]) by setting the stream
function (or velocity) to zero from 0 < x � b:

ψ =
{

1
2π

Qx3 for b < x � 1,

0 for 0 < x � b,
(6)

where b in the oblate spheroidal coordinates corresponds to
d [the virtual length within which the velocity is set to zero
as shown in Fig. 2(b)] in the cylindrical coordinates when
r = a at the edge of the pore (t = 0). The stream function
in (6) satisfies the boundary conditions used in the original
Sampson theory [Ut = 0 and Ux = 0 as t → ∞, Ut = 0 and
Ux = 0 at x = 0 (outside the orifice tube), and Ur = 0 and
Uφ = 0 at r = a + d (inside the orifice tube where t = 0)].
φ is the angular coordinate inside the orifice tube. Using the
trial stream function, the streamline that corresponds to the
slip velocity inside the pore smoothly varies across the pore as
shown in Appendix D, Fig. 10(a) (the dashed curve at x = b).
Therefore, the velocity direction at the vertex point, where we
have the sharp pore corners, is smoothly varying. The stream
function in Eq. (6), however, results in a velocity discontinuity
at x = b. This discontinuity can be eliminated by considering,
for example, another trial stream function (see Appendix F for
more details) which leads to an almost similar hydrodynamic
resistance as that obtained from the stream function in Eq. (6).
Using Eq. (2), b can be expressed in terms of the virtual length
d as follows:

b =
(

d

a + d

)(
1 + 2a

d

) 1
2

. (7)

Slip length is related to the slip velocity, which is the t compo-
nent of velocity at r = a, using the relation Uslip = δ ∂Ut

∂r at the
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pore [Ut (t = 0 and r = a) = Uslip]. Ut can be obtained from
the stream function ψ using

Ut = 1

rhx

∂ψ

∂x
= 3Q

2π

x2

[t2 + (a + d )2]
1/2[t2 + (a + d )2x2]

1/2
,

(8)
where hx is the scale factor in the oblate spheroidal coordi-
nates (see Appendix E for the definition of the scale factors
hx, ht , and hφ). The slip length δ (the ratio of Ut to ∂Ut

∂r at
t = 0 and r = a) can then be expressed in terms of the virtual
length d as

δ = d2 + 2ad

a
. (9)

In Eq. (9), for a given radius, the slip length is obtained
corresponding to a value of d . Now using Eqs. (6), (7), and (9),
the pressure drop in Eq. (5) can be expressed in terms of the
ratio of slip length to radius (α = δ

a ). The Sampson formula
corrected for slippage is, therefore, given by

RSampson
Slip−corrected = �P

Q
= 3μ

a3

[
1 + 2

(
α

1+α

)3/2 − 3
(

α
1+α

)
(1 + α)3/2

]
.

(10)
As α → 0 (δ → 0 or a → ∞), when there is no slippage
or the radius is very large compared to the slip length, the
hydrodynamic resistance in Eq. (10) reduces to the original
Sampson resistance (RSampson

Slip−corrected → RSampson = �P
Q = 3μ

a3 ).
The hydrodynamic resistance predicted by the slip-corrected
Sampson formula normalized by that of the original Samp-

son formula (
RSampson

Slip−corrected

RSampson = [
1+2(

α
1+α

)
3/2−3(

α
1+α

)

(1+α)3/2 ]) as a function

of the ratio of radius to slip length ( 1
α

= a
δ

) is plotted in
Fig. 3. The slip-corrected Sampson’s theory is able to match
the hydrodynamic resistance from MD and NS simulations
(used as the reference methods) for all the graphene pore radii
and water-carbon interaction parameters (which characterize
the interface chemistry or the slip length) except for small
values of a

δ
< 1. Tables I and II summarize all the MD and NS

simulations performed in this study. The original Sampson’s
theory, however, fails to predict the hydrodynamic resistance
from MD simulations for a

δ
< 300.

IV. VISCOSITY-CORRECTED SAMPSON’S THEORY

The slip-corrected Sampson formula underestimates the
hydrodynamic resistance for small values of a

δ
< 1 as it does

not account for the variation of the interfacial viscosity at
the membrane in the MD simulations. It is known that the
viscosity of water at graphitic interfaces reduces (due to the
higher than bulk diffusion) and enhances (due to the highly
layered structure of water) for the flow parallel and perpen-
dicular to the plane of the interface, respectively [23,33,34].
The average effective interfacial shear viscosity (within the
interface layer with a thickness of Lint = 0.8 nm) is calcu-
lated in MD simulations using the Green-Kubo formulation
(refer to Ref. [23] for more details) to be μint = 0.98 mPa s.
Lint is the distance from the graphene wall within which the
viscosity variation takes place as shown in Fig. 4. To find
the thickness of the interfacial layer, a separate MD simu-
lation is carried out [Fig. 4(a); a flat graphene membrane
(no pores) with water molecules (containing ∼118 000 atoms
with dimensions of 16.3 nm × 3 nm × 3 nm)]. In Fig. 4(b),

[27]

FIG. 3. Comparison of the hydrodynamic resistance (R) obtained
from MD simulations, NS continuum simulations, and the corrected
Sampson’s theory to that of the original Sampson’s theory (blue
dash-dotted line) for different radius-to-slip length ratios ( 1

α
= a

δ
).

For smaller ratios (small radii or large slip lengths), the original
Sampson formula overestimates the resistance from MD simulations
(black solid symbols). The slip-corrected Sampson formula [green
solid curve, Eq. (10)] describes the flow quite well from NS sim-
ulations (purple hollow symbols) as well as MD simulations. The
inclusion of viscosity correction, in addition to the slippage [red
dashed curve, Eq. (14)] near the graphene interface leads to a good
match with MD simulations [as viscosity variation take places in
MD simulations (in NS simulations, the viscosity is assumed to be
uniform)].

considering all the shear components of the stress tensor, the
average viscosity (μave = μ12+μ13+μ23

3 ) is calculated in differ-
ent slabs (parallel to the graphene sheet) with a thickness
of 0.3 nm each (the black symbols). As shown, most of the
variation takes place within ∼0.8 nm of the graphene wall.
Therefore, Lint is set to be 0.8 nm and the average effective
interfacial viscosity is calculated to be μint = 0.98 mPa s. To
obtain the pressure drop from Eq. (5), the integration must
be carried out such that the viscosity is μint = 0.98 mPa s
for 0 < z � Lint and μbulk = 0.85 mPa s, elsewhere. The in-
terval 0 < z � Lint corresponds to 0 < t � Lint

x in the oblate
spheroidal coordinates using Eq. (3). Therefore, Eq. (5) can be
rewritten as

�P = 4π

Q

∫ 1

0

∫ ∞

0
μ(x, t ) f (x, t )dtdx

= 4π

Q

∫ 1

0

[∫ Lint
x

0
μint f (x, t )dt +

∫ ∞

Lint
x

μbulk f (x, t )dt

]
dx,

(11)

where f (x, t ) is the integrand in Eq. (5). The interfacial
viscosity can be expressed in terms of the bulk viscos-
ity and an excess viscosity (μint = μexcess + μbulk where
μexcess = 0.13 mPa s for graphene). The pressure drop in
Eq. (11) can be rewritten in terms of the excess and bulk
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(a) (b)

FIG. 4. (a) Simulation box for water viscosity calculation near a water-graphene interface. Oxygen, hydrogen, and carbon atoms are
shown in red, white, and cyan, respectively. The interfacial layer (Lint) within which viscosity varies is shown. (b) Viscosity as a function of
the distance from the graphene surface is shown (black symbols). The bulk viscosity (μbulk = 0.85 mPa s) is indicated by the dashed red line.
For the viscosity-corrected curve in Fig. 3, μexcess = 0.13 mPa s, Lint = 0.8 nm, and a constant slip length of δ = 1.5 nm are assumed.

viscosities as

�P = 4πμexcess

Q

∫ 1

0

∫ Lint
x

0
f (x, t )dtdx+4πμbulk

Q

×
∫ 1

0

∫ ∞

0
f (x, t )dtdx, (12)

where the second term is simply the pressure drop in Eq. (5).
In other words, the total pressure drop in Eq. (12) is the sum
of the pressure drop across the orifice with bulk viscosity and

an additional pressure drop due to the excess viscosity at the
interface. Therefore, the total hydrodynamic resistance can be
given by

RSampson
Slip−viscosity−corrected = RSampson

Slip−corrected + RSampson
excess−viscosity, (13)

where RSampson
Slip−corrected is the slip-corrected Sampson for-

mula in Eq. (10) and the hydrodynamic resistance due
to the excess viscosity can be obtained from integrat-
ing the first term in Eq. (12) (the effect of slippage for
the viscosity-corrected term is neglected for simplicity) as
follows:

RSampson
excess–viscosity = 6μexcess

πa3

[
tan−1(β ) + ln

(
1

β2
+ 1

)(
3β

2
+ β3

)
− β

]
, (14)

where β is the ratio of the interfacial layer thickness to radius
(β = Lint

a ). In Fig. 3, the hydrodynamic resistance predicted by
the slip- and viscosity-corrected Sampson formula normalized
by that of the original Sampson formula as a function of the
ratio of the radius of the pore to the slip length is compared
with the MD simulations. The slip- and viscosity-corrected
Sampson’s theory gives rise to a good match with the hy-
drodynamic resistance from the MD simulations even for
small values of a

δ
where the slip-corrected Sampson’s theory

fails. The additional resistance due to the excess interfacial
viscosity is dictated by β = Lint

a . In Fig. 5, the normalized
additional resistance is plotted as a function of β. As β → 0
(Lint → 0 or a → ∞), when the interfacial viscosity variation
length is negligible or the radius is very large compared to
the interfacial layer thickness, the excess viscosity hydrody-
namic resistance approaches zero (RSampson

excess–viscosity → 0). The

normalized RSampson
excess–viscosity reaches a plateau beyond a critical

β for which most of the hydrodynamic pressure drop takes

place within Lint. In other words, Lint becomes comparable
to the hydrodynamic pressure drop length. In Dagan’s theory
[29], the effective length over which the pressure drop takes
place is given by hDagan = h + 3

8πa. For a zero-length orifice,
as h → 0, the ratio of the hydrodynamic pressure drop length
to radius is found to be hDagan

a = 3
8π = 1.178, which exactly

corresponds to the critical value of β at which the excess
viscosity hydrodynamic resistance reaches a plateau.

V. FINAL REMARKS

Sampson’s theory has been recently used to describe the
flow in ultrathin pores and to understand the entrance/exit
hydrodynamic resistance in nanotubes. Although a powerful
theory, it fails to predict the flow in small-diameter graphene
nanopores. Here, we show that the pore slippage, which is
not accounted for in the original Sampson theory, plays an
important role. The original Sampson theory is revisited and
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FIG. 5. Hydrodynamic resistance due to the excess interfacial
viscosity [Eq. (14)] normalized by the hydrodynamic resistance of
the original Sampson theory is plotted as a function of the ratio of
the interface layer thickness to radius, β = Lint

a . In Eq. (14), μexcess =
0.13 mPa s and Lint = 0.8 nm are obtained from MD simulations. For
small β (negligible interfacial viscosity variation or large radii), the
excess hydrodynamic resistance is insignificant. For large β (when
it is comparable to the ratio of the effective hydrodynamic pressure
drop length to radius), the contribution of the excess resistance to the
total resistance becomes important (as shown for small a

δ
in Fig. 3).

corrected for the slippage and the variation of viscosity at
the membrane interface. We introduced a set of formulas
for the slip- and viscosity-corrected Sampson’s theory which

results in good agreement with data from MD and NS sim-
ulations as well as experiments. The permeation coefficients
predicted using the corrected Sampson theory are compared
to the experimentally measured permeations in single-layer
graphene nanopores in Fig. 6(a). The discrepancy between
the permeation coefficients obtained from the experiments
and the Sampson theory are possibly due to (i) lack of ac-
curate force fields for graphene nanopores where quantum
and other effects could be important (as MD simulations
are used as the reference model for calculating slip lengths),
(ii) challenging flow rate measurements and existence of de-
fects and contaminants in experiments, and (iii) inaccurate
measurement of pore radii in experiments (a slight change
in the value of the radius results in a large change in the
permeation coefficient predicted by the Sampson theory, etc.).
The ratio of slip length to the radius of the pore is the key
parameter in explaining the flow in ultrathin nanopores. Since
the slip length depends on the chemistry of the membrane,
our theory is applicable to any 2D material or ultrathin pore
(e.g., pores in graphene, TMDs, boron nitride, phosphorene).
With the recent interest in nanoporous 2D materials having
potential applications in water desalination [15,35], energy
generation [17], and healthcare [36,37], there is a need for
more accurate theories such as the one developed here. Note
that the model presented here ideally works for circular pores
in 2D materials (see Appendix H). We should also note that
our model does account for the effect of the possible charge
distributions at the pores on the hydrodynamic flow. Aside
from porous 2D materials and other porous ultrathin mem-
branes, accurate estimation of entrance/exit hydrodynamic
resistance is required in frictionless nanotubes (e.g., CNTs)

(a) (b)

[27]
[11]

FIG. 6. (a) Comparison of the predicted permeation coefficients from the correct Sampson theory with the experimentally [45–48]
and computationally [10,49] measured permeation coefficients. The filled square symbols are the experimental data taken directly from
Refs. [45–48], the filled triangle symbols are the MD simulations data from other studies [10,49], and the circle symbols are the predicted
permeation coefficients from the corrected Sampson theory. (b) Slip length in a 15-nm-radius CNT (with a length of 700 nm), estimated from
the experimental total hydrodynamic resistance Rtotal (or inverse of permeation coefficient) given in Secchi et al. [9], is plotted as a function of
varying entrance/exit hydrodynamic resistance REntrance−exit (magenta curve). The estimated CNT slip length varies significantly depending on
the entrance/exit resistance obtained from different models (symbols). An accurate theory, therefore, is necessary to estimate the slip lengths
inside CNTs (or in any other nanotubes) from the experimentally measured permeation coefficients.
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FIG. 7. (a) Simulation box for water across a single-layer graphene nanopore. (b) Membrane view of a nanopore with a radius of 3.54 nm.
Oxygen, hydrogen, and carbon atoms are shown in red, white, and cyan, respectively.

to quantitatively describe the flow both inside and outside of
the nanotubes. For example, estimation of slip lengths inside
CNTs from experimentally measured permeation coefficients
(or hydrodynamic resistance) relies on the theories used to
obtain the resistance at the ends and inside the CNTs. The
total resistance can be written as the sum of the Sampson
resistance and HP resistance, Rtotal = REntrance−exit + RHP

CNT
=

Cμ

a3 + 8μh
π (a4+4a3δCNT ) . Rtotal, which is typically obtained from ex-

perimental measurements [9], is dominated by REntrance−exit and
an error in estimation of REntrance−exit can result in a significant
error in calculation of RHP

CNT
, using which the slip length inside

the CNT is extracted. δCNT is the slip length inside the CNTs
(not at the entrance/exit). C is the prefactor in the Sampson
formula (C = 3 in the original Sampson formula and C =
3[

1+2(
α

1+α
)
3/2−3(

α
1+α

)

(1+α)3/2 ] for the slip-corrected Sampson formula
developed here). In Fig. 6(b), the estimated slip length inside
the CNTs (δCNT) is plotted as a function of different values of
entrance/exit resistance (varying the prefactor in the Sampson
formula) for one of the experimental data points in Secchi
et al. [9] (Rtotal = 12.96 × 1020 Pa s/m3 with a radius of 15
nm and h = 700 nm). The Sampson formula (C = 3) and the
continuum fluid mechanics simulations in Secchi et al. [9]
(where C > 3) result in large CNT slip lengths of ∼204 and
∼300 nm, respectively. However, a value of C = 1.8 is ob-
tained using the corrected Sampson formula [accessible radius
of a = 15–0.17 = 14.83 nm with a graphene (entrance/exit)
slip length of ∼1.5 nm is assumed]. Hydrodynamic resis-
tance is about 60% of that of the original Sampson theory
as a

δ
= 1

α
= 9.88, resulting in a smaller CNT slip length of

129.4 nm which is much closer to the slip lengths computed
from the MD simulations. Therefore, we show that when the
entrance/exit resistance is estimated correctly, the experimen-
tally measured total resistance values by Secchi et al. [9]
lead to CNT slip lengths consistent with that of MD simu-
lations, and the slip lengths (whether at the entrance/exit or
in the middle of the CNTs) calculated by MD simulations are
reasonable. The corrected Sampson theory, therefore, could

help explain the reported discrepancies in CNT slip lengths
between experiments and MD simulations [9].
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APPENDIX A: MD SIMULATIONS METHODS

MD simulations were performed using the LAMMPS pack-
age [38]. A typical simulation box consists of water molecules
and a graphene sheet (see Fig. 7). A nanopore is drilled in
a graphene sheet with carbon center-to-center diameters of
0.83, 1.10, 1.36, 1.90, 2.44, 3.53, and 7.42 nm. The Cartesian
coordinate (1,2,3) is defined such that the 1-2 plane lies in
the plane of the graphene and the 3 axis lies on the z axis
in the cylindrical coordinates. The system dimensions vary
from 3.75 to 16.3 nm along the 1 and 2 axes, and from 6
to 12 nm along the 3 axis depending on the diameter. The
dimensions along the 1 and 2 axes change with the radius
of the pore to account for the porosity of the nanopore (the
ratio of pore area to membrane area is <0.148). The simu-
lations contain up to ∼320 000 atoms. The extended simple
point charge (SPC/E) water model was used and the SHAKE
algorithm was employed to maintain the rigidity of the water
molecule. The carbon-water interactions were modeled by the
force-field parameters given in Wu et al. [30]. The carbon-
water Lennard-Jones (LJ) parameters were varied to generate
different slip lengths. A summary of the MD simulations
performed is provided in Table I. Since the carbon atoms are
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TABLE I. Summary of the MD simulations performed in this work. LJ parameter εC−O (between carbon atom of graphene and oxygen
atom of water) is varied for some of the simulations to generate different slip lengths. In the force field by Wu et al. [30], εC−O is 0.085
kcal/mol.

Number of Number of C atoms x, y, and z dimensions
simulations in each simulation of simulation box (nm) a (nm) εC−O (kcal/mol)

2 8563 3.75, 3.75, and 6 0.24 0.000 01 and 0.0850
2 8553 3.75, 3.75, and 6 0.37 0.000 01 and 0.0850
2 8541 3.75, 3.75, and 6 0.51 0.000 01 and 0.0850
1 30 508 5, 5, and 12 0.78 0.0850
1 30 447 5, 5, and 12 1.05 0.0850
1 64 802 7.3, 7.3, and 12 1.56 0.0850
11 323 577 16.3, 16.3, and 12 3.54 0.001, 0.0850, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, and 0.9

fixed in space, the interactions between carbon atoms were
turned off. The LJ cutoff distance was set to 1.2 nm. The
long range electrostatic interactions were calculated by the
particle-particle-particle-mesh (PPPM) method [39]. Periodic
boundary conditions were applied in all three directions. For
each simulation, first the energy of the system was minimized
for 10 000 steps. Next, the system was equilibrated using a
NPT ensemble for 1 ns at a pressure of 1 atm (both at the start
and the end of the simulations with a damping time of 100
fs) and a temperature of 300 K with a time step of 1 fs. With
the graphene atoms held fixed in space, the NPT simulations
(the three dimensions are controlled independently using the
components of the stress tensor) allow the water to reach its
equilibrium density (1 g/cm3). Then, an additional NVT simu-
lation was performed for 2 ns to further equilibrate the system.
Temperature was maintained at 300 K by using the Nosé-
Hoover thermostat [40,41] with a time constant of 0.1 ps.
Finally, the nonequilibrium pressure-driven simulations were
carried out in a NVT ensemble for 10 ns to calculate the vol-
umetric flow rates and subsequently obtain the hydrodynamic
resistance for the applied pressures. The external pressures
were applied using the method described in Refs. [23,42].
External forces are applied on individual oxygen atoms of
water within 1 nm of the end of the simulation box. The
applied pressure drop is then obtained from �P = f N

A where
f is the individual force on the oxygen atom, N is the number
of oxygen atoms within the 1-nm slab region, and A is the area
of the cross section (or the graphene membrane). Different
pressure drops of 10, 50, and 100 MPa are applied and normal-
ized by their corresponding volumetric flow rates to get the
average hydrodynamic resistance (presented as the data points
in Fig. 3). Slip lengths [as shown in Fig. 1(a)] are computed
from MD simulations [23] using δ = μUslip

τinterface
, where Uslip is

the slip velocity (which is directly obtained from the velocity
profiles), and τinterface is the friction force (parallel to the axis
of the pore) per unit pore area. The friction force is calculated
between the water molecules and the wall atoms.

APPENDIX B: FICTITIOUS HYDROPHILIC MATERIAL
WITH A NO-SLIP CONDITION

As mentioned in the paper, the interaction parameter be-
tween the oxygen atom of water and the carbon atom of
graphene (εC−O, LJ parameter) is increased from the value

(εC−O = 0.085 kcal/mol) given in the force field developed
by Wu et al. [30] until the graphene surface becomes highly
hydrophobic and results in a no-slip condition as shown in
Fig. 1(b). The different values of εC−O considered for the
3.54-nm-radius pore (this is a large enough pore where the
viscosity in the pore converges to that of the bulk water)
are provided in Table I. The velocity profiles for an applied
pressure of 50 MPa are shown in Fig. 8. Note that a further
increase in the interaction energy leads to negative slip lengths
which are not considered in this study. Figure 8(c) shows the
density profile of water molecules as a function of the radial
distance from the center of the pore. The density profiles
are very similar except for their peak (which increases with
εC−O) for the different values of εC−O. The volume bins in
the simulations are circular shells inside the pore with a thick-
ness of 0.34 nm (the thickness of the graphene membrane)
in the 3 axis (the axis of the pore), and a thickness of 0.2
nm in the radial direction. The velocity and density profiles
are used to calculate the mass flow rates. Volumetric flow
rates, Q, are then obtained by normalizing the mass flow rates
by the bulk water density. Using the volumetric flow rates
and the applied pressures, the hydrodynamic resistance values
are obtained (R = �P

Q ). The hydrodynamic resistance is cal-

culated to be 5.78 ± 0.03 × 1022 Pa s/m3 and 4.21 ± 0.04 ×
1022 Pa s/m3, for the hydrophilic pore (with no slippage) and
the real graphene pore, respectively (the errors are computed
based on three different applied pressures of 10, 50, and
100 MPa).

APPENDIX C: CONTINUUM SIMULATIONS METHODS

We performed continuum simulations by numerically solv-
ing the steady-state Navier-Stokes (NS) continuity and mo-
mentum equations (∇ · u = 0 and u · ∇u = −∇p

ρ
+ ν∇2u). p

is the pressure, and ρ and ν are the density and the kinematic
viscosity of the fluid, respectively. We solved the NS equa-
tions using OPENFOAM V4.1 [43] based on the finite volume
method. The values of ρ and ν are set to be the bulk values
of water (1000 kg/m3 and 0.85 × 10−6 m2/s, respectively).
We used a 2D domain as shown in Fig. 9 with an unstruc-
tured nonuniform mesh with a high resolution around the
pore and the membrane walls. The meshing is carried out
using GMSH software [44]. The mesh convergence is tested by
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(a) (b)

(c)

[30] [30]

[30]

FIG. 8. (a) Axial velocity profile in the single-layer graphene nanopore (a = 3.54 nm) as a function of the radial distance from the center
of the pore is plotted for an applied pressure of 50 MPa using the Wu et al. [30] force field (real graphene) and other fictitious force fields (by
varying εC−O) until a no-slip condition is achieved (εC−O = 0.9 kcal/mol) (b) A zoomed-in part of velocity profile in (a) is presented to clearly
show the slippage (in the form of slip velocity) for the real graphene and fictitious hydrophilic pores. (c) Density profile in the single-layer
graphene nanopore [for the same systems in (a,b)] as a function of the radial distance from the center of the pore is plotted using different force
fields [for the same systems in (a,b)]. The unit is in molar concentration (M).

decreasing the mesh size until the change in the maximum
velocity between two successive mesh resolutions is 2%. The
steady-state solution is reached when the residual error be-
tween two successive solutions for velocity and pressure is
less than 10−6. The imposed boundary conditions are summa-
rized in Fig. 9. The thickness of the pore is fixed to 2 nm in all
simulations, except for the velocity profile in Fig. 10 in which
we also used 0.34 nm. We used a higher thickness than that of
graphene to ensure the velocity is developed inside the pore.

We further obtained the hydrodynamic resistance from the
NS continuum simulations for pores with h = 2 nm, a = 1–5
nm, and �Po = 20–100 MPa (see Table II for NS simulation
details). The slip length, δ, is determined by extrapolating
the velocity profiles. The resistance values from NS sim-
ulations agree reasonably with those of the slip-corrected
Sampson theory (see Fig. 3). Note that since the NS simu-
lations have a uniform viscosity, an appropriate comparison
should be made with the slip-corrected Sampson theory (not

the viscosity-corrected theory with a two-viscosity model).
The small deviation between the resistance values of the
NS continuum and the slip-corrected Sampson theory can
be related to the following sources of error: (1) continuum
simulations at scales of less than 10 nm require cell size mesh
of utmost less than 0.1 nm which produces larger numerical
errors in the spatial discretization; (2) we assumed a perfect
slip condition at the side walls of the graphene membrane
for all cases for simplicity, whereas it is zero in the Sampson
theory; and (3) the thickness of the membrane is 2 nm in the
NS simulations, whereas it is zero in the Sampson theory.

APPENDIX D: COMPARISON OF VELOCITY FIELD
FROM MD AND NS CONTINUUM SIMULATIONS WITH

THE VELOCITY PROFILES OBTAINED FROM THE
CORRECTED SAMPSON THEORY

A schematic of the velocity profiles inside and outside the
orifice based on the corrected Sampson theory is shown in
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FIG. 9. The 2D computational domain, mesh, and boundary conditions which are used in the NS continuum simulations. The pressure
difference, �Po, and the pore radius, a, are varied in the simulations. The boundary conditions are indicated in different colors. Inside the pore,
we considered three different slip conditions at the wall: no slip, partial slip, and perfect slip. For the partial slip, we imposed a partial velocity,
Uslip. The slip length, δ, is then obtained by extrapolating the velocity profile. For simplicity (avoiding singularities in the simulations), we
consider a perfect slip condition at the graphene membrane walls (blue boundaries) for all cases.

Fig. 10. Similar to the original Sampson theory, the velocity is
set to zero right at the boundaries of the orifice wall inside and
outside the pore. Inside the pore, the velocity is only nonzero
a distance d away from the orifice boundary based on our
proposed stream function in Eq. (6) in the main part of the
paper. Outside the pore, d corresponds to x = b (in the oblate
spheroidal coordinates) where the velocity is set to zero for

TABLE II. Summary of the NS continuum simulations for a pore
with thickness of 2 nm to obtain the hydrodynamic resistance. Radii,
slip lengths, pressure drops, volumetric flow rates, and normalized
hydrodynamic resistance are tabulated.

a (nm) δ (nm) �Po (MPa) Q (10−15 m3/s) R/RSampson

1 0.21 50 1.23 0.707
1.1 0.001 70 1.16 1.050
1.15 0.01 70 1.84 0.948
1.25 0.32 50 2.01 0.433
1.25 0.25 100 2.45 0.498
1.5 1.13 50 5.02 0.173
1.5 0.90 50 4.36 0.199
1.5 0.69 50 3.70 0.690
1.5 0.50 50 3.05 0.286
2 0.28 50 1.14 0.765
2 0.20 50 1.07 0.814
2 0.33 50 1.21 0.721
2 0.41 50 1.28 0.682
2 0.50 50 1.34 0.647
5 4.50 20 17.14 0.021
5 10 20 9.16 0.038

0 < x � b based on the proposed stream function [Eq. (6)].
As shown, this treatment of the velocity field results in a
smooth change in the velocity direction along a streamline. As
explained in Eqs. (7)–(9), the velocity jump (slip velocity) at
a distance d away from the orifice boundary (or when r = a,
water accessible radius) is used to obtain its corresponding
slip length as a function of d and a [Eq. (9)]. As shown in
Fig. 10, the treatment used in the corrected Sampson theory
results in consistent velocity fields between the corrected the-
ory and the MD-NS simulations. In graphene nanopores, the
diameter is larger than its finite thickness (∼0.34 nm) and
therefore the flow will not be fully developed to produce a
pluglike flow even in the case of perfect slip condition for the
NS simulations. To show the velocity profile of different pore
thicknesses and the velocity field of different boundary con-
ditions (no slip, partial slip, and perfect slip), we performed
steady-state NS simulations. Our continuum simulations show
that for the perfect slip condition, the velocity profile in the
nanopore with a thickness of 0.34 nm does not converge to an
ideal pluglike profile; however, as we increase the thickness to
2 nm the velocity profile flattens and approaches the pluglike
profile for the same boundary condition [see Fig. 10(c)]. The
velocity field profiles for the no-slip, partial slip, and perfect
slip conditions for the 2-nm thickness pore are shown in
Figs. 10(d)–10(f). In both MD simulations and NS simulations
(with a partial slip length), near the graphene surface (inside
and outside the pore), the velocity almost vanishes similar to
the velocity field in the corrected Sampson theory. The veloc-
ity jump [also shown in Fig. 1(b)] inside the pore resembles
the velocity jump (r = a, water accessible radius) modeled in
the corrected Sampson theory.
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FIG. 10. (a) Schematic of the velocity profiles (red) inside and outside the orifice pore in the corrected Sampson formulation. Inside
the orifice, based on the stream function in Eq. (6), the velocity is only nonzero a distance d away from boundary of the orifice (blue).
d corresponds to x = b outside the orifice. (b) The velocity vector field (red arrows) is obtained in the MD simulation for a pressure drop of 50
MPa. Near the graphene surface (inside and outside the pore), the velocity almost vanishes similar to the velocity field in the corrected Sampson
theory (a). The velocity jump [also shown in Fig. 1(b)] inside the pore resembles the velocity jump (r = a, water accessible radius) modeled
in the corrected Sampson theory. Velocity profile and velocity fields: (c)–(f) obtained by NS model for pores with a = 1.2 nm, and pressure
difference of 50 MPa, (c) Velocity profile, u, normalized by the maximum velocity, umax, as a function of the radial distance normalized by the
pore diameter for thicknesses of 2 and 0.34 nm. (d)–(f) Velocity field vectors of the pore with thickness of 2 nm for (d) no-slip, (e) partial slip
(slip velocity of 5 m/s), and (f) perfect-slip conditions.

APPENDIX E: OBLATE SPHEROIDAL COORDINATES

The differential operator in Eq. (4) is given by

D2 = hφ

ht hx

[
∂

∂t

(
hx

hφht

∂

∂t

)
+ ∂

∂x

(
ht

hφhx

∂

∂x

)]
.

hx, ht , and hφ are the scale factors in the oblate spheroidal
coordinates given by

hx = [t2 + (a + d )2x2]
1/2

(1 − x2)1/2
, ht = [t2 + (a + d )2x2]

1/2

[t2 + (a + d )2]
1/2

,

hφ = [t2 + (a + d )2]
1
2

(1 − x2)
1
2

.
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(a) (b)

FIG. 11. (a) The schematic of the velocity profile (red curve) and the lengths considered are shown for our trial stream function. The dotted
line is the tangent line to the velocity profile at r = a whose intersection with z = 0 defines the slip length δ. d is a virtual length within which
the velocity decreases rapidly to zero. (b) g(b) is shown for all possible values for b (0 � b < 1). Practically, g(b) is very small for small values
of b.

APPENDIX F: TRIAL STREAM FUNCTION WITH
CONTINUOUS VELOCITY

As mentioned in the main part of the paper, the proposed
stream function has a discontinuity at x = b. To overcome
the problem of velocity discontinuity, another trial stream
function is introduced below:

ψ =
{

1
2π

Qx3 for b < x � 1,

1
2π

Qx3
(

2x
b − x2

b2

)
for 0 < x � b.

Using the above stream function, the velocity (which is ob-
tained from Ut = 1

rhx

∂ψ

∂x ) remains continuous at b. Velocity
for 0 < x � b, which is originally set to zero in the previ-
ous stream function in Eq. (6), now decreases rapidly in the
depletion and dead zones as shown in Fig. 11. Reperforming
the integration in Eq. (5), the hydrodynamic resistance can be
obtained from

�P

Q
= 3μ

a3

[
1 + 2

(
α

1+α

)3/2 − 3
(

α
1+α

)
(1 + α)3/2

]

+ 3μ

a3

[
8

3(1 + α)3/2 g(b)

]
,

where g(b) = ( 7
6 b2 − 27

35 b3). The second term (which is due to
the modified stream function) in the resistance equation can
be neglected as it is small compared to the first term. g(b) is
plotted in Fig. 11 as a function of b, where g is practically
very small for small values of b. Therefore, for simplicity, one
can assume the previous stream function in Eq. (6) and arrive
at almost the same hydrodynamic resistance values as ob-
tained from the velocity-continuous stream function proposed
above.

APPENDIX G: ESTIMATION OF ACCESSIBLE RADIUS

As mentioned in the main part of the paper, the water
accessible radius (a) is the length within which the water
density is nonzero. In Table I, a is calculated based on the
water density profiles (the nonzero region excluding the de-
pletion region) from MD simulations. The accessible radius is
especially important for small-radius pores. Ideally, however,
one should be able to calculate the accessible radius without
performing MD simulations. The accessible radius can be
systematically obtained by subtracting half of the LJ parame-
ter ( σc−c

2 = 0.17 nm) from the carbon center-to-center radius.
For the small-radius pores in Table I, the accessible radii are
almost identical to the calculated radii using the LJ parameter
(e.g., the calculated radii in the first four rows are 0.2365,
0.3725, 0.508, and 0.775, respectively). As shown in Fig. 12,

c-c
center-to-center 2

a a

[27]

FIG. 12. Figure 3 is replotted with MD simulation data (orange
hollow triangles) where the accessible radius (a) is calculated by
subtracting half of the LJ parameter ( σc−c

2 = 0.17 nm) from the
center-to-center radius (a = acenter−to−center − σc−c

2 ).
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FIG. 13. An overlaid circle is drawn on top of the pores in the largest (a) and smallest (b) pores considered in this work (with a radius of
3.54 and 0.24 nm, respectively). The circles reasonably fit the discrete boundaries of the pores dictated by the carbon atoms at the edge of the
pores.

the recalculated data points (orange triangle symbols), based
on the calculated accessible radius a = acenter−to−center −
σc−c

2 , are on top of the data points (black symbols) where
the accessible radius is obtained along the distance within
which the water density is zero. Therefore, subtracting
σc−c

2 = 0.17 nm from the center-to-center radius is a good
measure of calculating the accessible radius in graphitic
pores.

APPENDIX H: PORE GEOMETRY

As mentioned in the main part of the paper, our theory
assumes circular pores. This assumption was also employed

in previous studies [20,21] where the original Sampson theory
was used to predict the flow rates in graphene pores. We
plotted the largest and smallest pores (with a radius of 3.54
and 0.24 nm, respectively) considered in this work with an
overlaid circle as shown in Fig. 13. The van der Waals repre-
sentation of carbon atoms is used to show the size of carbon
clearly. As shown, the assumption that the pore is circular is
reasonable even for the smallest pore considered here.

Even for noncircular pores (possibly observed in experi-
ments), one can generally use the hydraulic radius which is
the ratio of the cross-sectional area of the pore to the perimeter
of the pore. The hydraulic radius allows treating the problems
in the same manner as for a circular pore.

[1] K. Liu, J. D. Feng, A. Kis, and A Radenovic, Atomically thin
molybdenum disulfide nanopores with high sensitivity for DNA
translocation, ACS Nano 8, 2504, (2014).

[2] F. Fornasiero et al., Ion exclusion by sub-2-nm carbon
nanotube pores, Proc. Natl. Acad. Sci. USA 105, 17250
(2008).

[3] M. G. Stanford, P. D. Rack, and D. Jariwala, Emerging nanofab-
rication and quantum confinement techniques for 2D materials
beyond graphene, npj 2D Mater. Appl. 2, 20 (2018).

[4] S. Faucher et al., Critical knowledge gaps in mass trans-
port through single-digit nanopores: A review and perspective,
J. Phys. Chem. C 123, 21309 (2019).

[5] J. K Holt et al., Fast mass transport through sub-2-nanometer
carbon nanotubes, Science 312, 1034 (2006).

[6] G. Hummer, J. C. Rasaiah, and J. P Noworyta, Water conduc-
tion through the hydrophobic channel of a carbon nanotube,
Nature 414, 188 (2001).

[7] M. Majumder, N. Chopra, R. Andrews, and B. J Hinds,
Nanoscale hydrodynamics—Enhanced flow in carbon nan-
otubes, Nature 438, 44 (2005).

[8] S. Joseph and N. R. Aluru, Why are carbon nanotubes fast
transporters of water? Nano Lett. 8, 452 (2008).

[9] E. Secchi et al., Massive radius-dependent flow slippage in
carbon nanotubes, Nature 537, 210 (2016).

[10] M. E. Suk, and N. R. Aluru, Water transport through ultrathin
graphene, J. Phys. Chem. Lett. 1, 1590 (2010).

[11] A. B. Farimani, M. Heiranian, and N. R. Aluru, Nano-electro-
mechanical pump: Giant pumping of water in carbon nanotubes,
Sci. Rep. 6, 26211 (2016).

[12] K. Kurotobi and Y. Murata, A Single molecule of water encap-
sulated in fullerene C-60, Science 333, 613 (2011).

[13] A. B. Farimani, Y. B. Wu, and N. R. Aluru, Rotational motion
of a single water molecule in a buckyball, Phys. Chem. Chem.
Phys. 15, 17993 (2013).

[14] S. Joseph and N. R Aluru, Pumping of Confined Water in Car-
bon Nanotubes by Rotation-Translation Coupling, Phys. Rev.
Lett. 101, 064502 (2008).

[15] M. Heiranian, A. B. Farimani, and N. R. Aluru, Water desalina-
tion with a single-layer MoS2 nanopore, Nat. Commun. 6, 8616
(2015).

043153-13

https://doi.org/10.1021/nn406102h
https://doi.org/10.1073/pnas.0710437105
https://doi.org/10.1038/s41699-018-0065-3
https://doi.org/10.1021/acs.jpcc.9b02178
https://doi.org/10.1126/science.1126298
https://doi.org/10.1038/35102535
https://doi.org/10.1038/438044a
https://doi.org/10.1021/nl072385q
https://doi.org/10.1038/nature19315
https://doi.org/10.1021/jz100240r
https://doi.org/10.1038/srep26211
https://doi.org/10.1126/science.1206376
https://doi.org/10.1039/c3cp53277a
https://doi.org/10.1103/PhysRevLett.101.064502
https://doi.org/10.1038/ncomms9616


HEIRANIAN, TAQIEDDIN, AND ALURU PHYSICAL REVIEW RESEARCH 2, 043153 (2020)

[16] H. Li et al., Experimental realization of few layer two-
dimensional MoS2 membranes of near atomic thickness for
high efficiency water desalination, Nano Lett. 19, 5194
(2019).

[17] J. D. Feng et al., Single-layer MoS2 nanopores as nanopower
generators, Nature 536, 197 (2016).

[18] S. Gravelle et al., Optimizing water permeability through the
hourglass shape of aquaporins, Proc. Natl. Acad. Sci. USA 110,
16367 (2013).

[19] A. B. Farimani, N. R. Aluru, and E Tajkhorshid, Thermo-
dynamic insight into spontaneous hydration and rapid water
permeation in aquaporins, Appl. Phys. Lett. 105, 083702
(2014).

[20] J. Buchheim, K. P. Schlichting, R. M. Wyss, and H. G Park,
Assessing the thickness-permeation paradigm in nanoporous
membranes, ACS Nano 13, 134 (2019).

[21] S. Gravelle, L. Joly, C. Ybert, and L Bocquet, Large permeabil-
ities of hourglass nanopores: From hydrodynamics to single file
transport, J. Chem. Phys. 141, 18C526 (2014).

[22] M. E. Suk and N. R. Aluru, Modeling water flow through car-
bon nanotube membranes with entrance/exit effects, Nanoscale
Microscale Thermophys. Eng. 21, 247 (2017).

[23] M. Heiranian and N. R. Aluru, Nanofluidic transport theory
with enhancement factors approaching one, ACS Nano 14, 272
(2020).

[24] M. Couette, Studies relating to the motion of liquids, Ann.
Chim. Phys. 21, 433 (1890).

[25] G. H. L Hagen, Uber die Bewegung des Wassers in engen
cylindrischen Rohren, Poggendorf’s Ann. Phys. Chem. 46, 423
(1839).

[26] J. L. M. Poiseuille, Recherches experimentales sur Ie mouve-
ment des liquides dans les tubes de tres petits diametres; 1.
Influence de la pression sur la quantite de Iiquide qui traverse les
tubes de tres petits diametres, C. R. Acad. Sci. 11, 961 (1840).

[27] R. A. Sampson, On Stokes’s current function, Philos. Trans. R.
Soc., A 182, 449 (1891).

[28] H. L. Weissberg, End correction for slow viscous flow through
long tubes, Phys. Fluids 5, 1033 (1962).

[29] Z. Dagan, S. Weinbaum, and R. Pfeffer, An infinite-series solu-
tion for the creeping motion through an orifice of finite length,
J. Fluid Mech. 115, 505 (1982).

[30] Y. B. Wu and N. R. Aluru, Graphitic carbon-water nonbonded
interaction parameters, J. Phys. Chem. B 117, 8802 (2013).

[31] L. M. Milne-Thomson, Theoretical Hydrodynamics (Dover
Publications, New York, 2013).

[32] S. Goldstein and A. R Council, Modern Developments in Fluid
Dynamics: An Account of Theory and Experiment Relating to
Boundary Layers, Turbulent Motion and Wakes (The Clarendon
Press, Oxford, 1938).

[33] J. A. Thomas and A. J. H McGaughey, Reassessing fast water
transport through carbon nanotubes, Nano Lett. 8, 2788 (2008).

[34] M. E. Suk and N. R. Aluru, Molecular and continuum hydrody-
namics in graphene nanopores, RSC Adv. 3, 9365 (2013).

[35] D. Cohen-Tanugi and J. C. Grossman, Water desalination across
nanoporous graphene, Nano Lett. 12, 3602 (2012).

[36] J. D. Feng et al., Identification of single nucleotides in MoS2

nanopores, Nat. Nanotechnol. 10, 1070 (2015).
[37] A. B. Farimani, K. Min, and N. R. Aluru, DNA base detection

using a single-layer MoS2, ACS Nano 8, 7914 (2014).
[38] S. Plimpton, Fast parallel algorithms for short-range molecular-

dynamics, J. Comput. Phys. 117, 1, (1995).
[39] O. Buneman, Computer-simulation using particles (R. W.

Hockney and J. W. Eastwood), SIAM Rev. 25, 425 (1983).
[40] S. Nose, A unified formulation of the constant temperature

molecular-dynamics methods, J. Chem. Phys. 81, 511 (1984).
[41] W. G. Hoover, Canonical dynamics—equilibrium phase-space

distributions, Phys. Rev. A 31, 1695 (1985).
[42] F. Q. Zhu, E. Tajkhorshid, and K. Schulten, Pressure-induced

water transport in membrane channels studied by molecular
dynamics, Biophys. J. 83, 154 (2002).

[43] http://www.openfoam.com/.
[44] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element

mesh generator with built-in pre- and post-processing facilities,
Int. J. Numer. Methods Eng. 79, 1309, (2009).

[45] K. Celebi et al., Ultimate permeation across atomically thin
porous graphene, Science 344, 289 (2014).

[46] S. C. O’Hern et al., Selective molecular transport through in-
trinsic defects in a single layer of CVD graphene, ACS Nano 6,
10130 (2012).

[47] S. P. Surwade et al., Water desalination using nanoporous
single-layer graphene, Nat. Nanotechnol. 10, 459 (2015).

[48] L. Madauss et al., Fabrication of nanoporous graphene/polymer
composite membranes, Nanoscale 9, 10487 (2017).

[49] D. Cohen-Tanugi and J. C. Grossman, Water permeability of
nanoporous graphene at realistic pressures for reverse osmosis
desalination, J. Chem. Phys. 141, 074704 (2014).

043153-14

https://doi.org/10.1021/acs.nanolett.9b01577
https://doi.org/10.1038/nature18593
https://doi.org/10.1073/pnas.1306447110
https://doi.org/10.1063/1.4893782
https://doi.org/10.1021/acsnano.8b04875
https://doi.org/10.1063/1.4897253
https://doi.org/10.1080/15567265.2017.1355949
https://doi.org/10.1021/acsnano.9b04328
https://doi.org/10.1002/andp.18391220304
https://doi.org/10.1063/1.1724469
https://doi.org/10.1017/S0022112082000883
https://doi.org/10.1021/jp402051t
https://doi.org/10.1021/nl8013617
https://doi.org/10.1039/c3ra40661j
https://doi.org/10.1021/nl3012853
https://doi.org/10.1038/nnano.2015.219
https://doi.org/10.1021/nn5029295
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1137/1025102
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1016/S0006-3495(02)75157-6
https://www.openfoam.com/
https://doi.org/10.1002/nme.2579
https://doi.org/10.1126/science.1249097
https://doi.org/10.1021/nn303869m
https://doi.org/10.1038/nnano.2015.37
https://doi.org/10.1039/C7NR02755A
https://doi.org/10.1063/1.4892638

