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Multidimensional super- and subradiance in waveguide quantum electrodynamics
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We study the collective decay rates of multidimensional quantum networks in which one-dimensional waveg-
uides form an intersecting hyperrectangular lattice, with qubits located at the lattice points. We introduce and
motivate the dimensional reduction of poles (DRoP) conjecture, which identifies all collective decay rates of
such networks via a connection to waveguides with a one-dimensional topology (e.g., a linear chain of qubits).
Using DRoP, we consider many-body effects such as superradiance, subradiance, and bound states in continuum
in multidimensional quantum networks. We find that, unlike one-dimensional linear chains, multidimensional
quantum networks have superradiance in distinct levels, which we call multidimensional superradiance. Further-
more, we generalize the N−3 scaling of subradiance in a linear chain to d-dimensional networks.
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I. INTRODUCTION

Quantum networks composed of many nodes and chan-
nels [1] hold remarkable promise for quantum computation
[2–4], memory [5], communication [6,7], sensing [8], and,
ultimately, the quantum internet [9]. Such networks could
be realized naturally in waveguide quantum electrodynamics
(QED) systems, i.e., systems in which photons interact with
quantum emitters inside waveguides [10–18].

Given this potential for realizing quantum networks in
waveguide QED systems, it is perhaps surprising that the
theoretical study of many-body effects in waveguide QED
has been mostly confined to single [19–26] [see, for example,
Fig. 1(a)] or coupled [7,27–31] waveguides with linear topolo-
gies. Nonetheless, a multidimensional quantum network, as
idealized in Figs. 1(b) and 1(c) (or Fig. 1(a) of Ref. [9]),
provides compactness and higher connectivity within the net-
work with its many nodes and channels. Yet such a fruitful
concept has been untouched in the waveguide QED literature
so far, perhaps due to the inefficiency of current analytical
and computational techniques for generalizing to larger di-
mensions. On the other hand, a systematic theoretical study
of many-body effects in large multidimensional networks will
pave the way for developing complex quantum networks and,
ultimately, the quantum internet [9]. With quantum computing
becoming more of a reality with each passing day [4], it is now
a crucial time to address this problem.

In this paper, we introduce a strategy for investigating pre-
viously unexplored multidimensional collective phenomena
in waveguide QED. Specifically, we highlight a connection
between multidimensional lattices and linear chains and show
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that this connection can be used to compute the collective
decay rates of multidimensional networks. We study collec-
tive phenomena such as super- and subradiance [11,32–34]
and bound states in continuum (BICs) [35,36] in these multi-
dimensional systems [37]. In our investigations, we discover
the concept of multidimensional superradiance, where, unlike
the well-known phenomenon discussed by Dicke [38], su-
perradiance becomes partitioned for these multidimensional
networks. As a consequence, we show that the dimensionality
of BICs becomes smaller with increasing lattice dimension,
presenting a trade-off between compact and efficient network
design versus quantum memory capability. Moreover, we dis-
cover that the most subradiant decay rate in a d-dimensional
hypercubic lattices scales as N−3/d for large N , generalizing
the known N−3 scaling in linear chains [26,32,39,40].

II. THEORY AND RESULTS

A. System model

We consider a d-dimensional lattice of intersecting lossless
waveguides with linear topologies [41], such as the ones illus-
trated in Fig. 1. Here, while the waveguides are shown to be
intersecting, there are no geometrical restrictions in our model
that the waveguides should be intersecting. Only the graph
theoretical connections are important, and if the geometry can
be deformed by keeping the graph topology intact, the theory
does not change. For example, for d = 2, one could have two
separate layers of parallel waveguides, with the qubits being
situated in between those two layers. In this way, there are no
physical intersections between waveguides.

In this model, each waveguide along the nth direction
contains Nn identical qubits, and each qubit couples to a
waveguide in the nth dimension with the decay rate γn. The
Hamiltonian for the entire system is H = H0 + HI , where H0

includes the self-energies of the light and qubits and HI con-
tains pointlike interaction terms [42] located at the positions
of the nodes [22]. The full expression for the Hamiltonian is
presented in Appendix A. We note that, in this Hamiltonian,
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FIG. 1. Schematic of quantum networks in (a) d = 1, (b) d = 2,
and (c) d = 3. Quantum emitters, located at waveguide intersections,
function as nodes, which are two-level systems with energy gap �

that generate, store, and process quantum information. Lossless 1D
waveguides form quantum channels that transport information, in the
form of quantum light, between the nodes. In (b), blue arrows denote
coupling to horizontal waveguides, and green arrows denote coupling
to vertical waveguides.

we assume no nonradiative decay to outside of the system and
no unwanted scattering at the intersection of the waveguides
other than the one mediated by the qubits. We focus on this
idealized model to provide a basis for the physics that emerges
in this confined lattice structure. If required, nonradiative de-
cay could be considered by modeling loss modes as additional
waveguides, as discussed in the literature [43].

Of particular interest in waveguide QED systems are the
reflection and transmission parameters, r and t , respectively,
and excitation amplitudes e corresponding to a plane wave
with momentum k. Collectively, these quantities are known as
scattering parameters and can be found from the Hamiltonian
H by following the procedure outlined in Ref. [44].

Let us label each qubit using a d-dimensional lattice
coordinate �σ = (σ1, . . . , σd ). If we concentrate on a partic-
ular direction n � d with corresponding unit vector n̂, we
can define an adjacent qubit by the coordinate �σ + an̂ =
(σ1, . . . , σn + a, . . . , σd ), where a is the lattice constant. The
scattering parameters then satisfy the equations of motion
(EOMs)

t (n)
�σ+an̂e−ika − t (n)

�σ + i
√

γn/2e�σ = 0, (1a)

r (n)
�σ+an̂eika − r (n)

�σ − i
√

γn/2e�σ = 0, (1b)

d∑
n=1

√
γn/2

(
t (n)
�σ + r (n)

�σ
) − �ke�σ = 0, (1c)

which we derive in Appendix A. Within these equations,
�k = Ek − � is the photon detuning energy, Ek is the energy
of the system, k is the momentum of the photonic degree of
freedom, and a is the lattice constant. Here, we linearize the
phase picked up by light propagating between two adjacent
qubits such that ka � �a = θ , which is accurate as long as
time retardation effects inside the network are negligible.
This assumption is valid in the Markovian regime, where
the qubits are separated microscopically [44,45]. We note
that, with our definition of scattering parameters, Eq. (1) is a
high-dimensional generalization of the linear chain of qubits
discussed in Eq. (6) in Ref [26].

B. Finding collective decay rates

Now, we turn our attention to the collective decay rates
�, which contain information about the system’s many-body
structure. The collective decay rates are complex valued, with
their real components dictating the exponential decay of ob-
servables in time and their imaginary components capturing
both the oscillatory behavior of the system and a characteristic
frequency shift in energy levels [26]. For each collective decay
rate, there is a basis state in the single-excitation space that
consists of some superposition of single-excited qubit states
[44]. For the scope of this paper, we do not focus on finding
these states, only the decay rates.

The collective decay rates can, in principle, be found by
solving the EOMs and examining the poles of the scattering
parameters, which yields a polynomial characteristic equation
for � [44]. In a network of N = ∏d

n=1 Nn qubits, the behavior
of the entire system is thus governed by a total of (2d + 1)N
linear equations. For the special case of d = 1, the boundary
of the quantum network does not scale with N as the linear
chain has only one input and one output port. Hence, the
equations of motion can be solved by eliminating all but
the two boundary scattering parameters that are defined by the
initial conditions. The rest of the scattering parameters can be
found via back propagation using transfer matrices. For this
very special case, the scattering problem can be solved ana-
lytically and fairly efficiently for up to N = 500 qubits using
the transfer matrix method [44]. For d � 2, however, find-
ing the scattering parameters by solving the EOMs becomes
intractable for large N . In this case, even if the system’s in-
ternal degrees of freedom (corresponding to scattering within
the system) can be eliminated, as is usually done in d = 1
through transfer matrix methods [44], the number of external
parameters (and, correspondingly, the number of equations
to solve) scales with the size of the quantum network’s
boundary.

To overcome some of these limitations, we introduce an
idea that we call the dimensional reduction of poles (DRoP),
whereby we conjecture that there exists an effective mapping
between the collective decay rates (which are obtained from
the poles of the scattering parameters [44]) for the multidi-
mensional network and waveguides with linear topologies.
The DRoP conjecture makes it possible to find the decay
rates of previously intractable higher-dimensional quantum
networks: first, one applies the DRoP conjecture to divide
the multidimensional network into a subset of linear chains,
and then one finds the collective decay rates of these linear
chains using efficient transfer matrix methods [44], obtain-
ing the decay rates of the quantum network in the process.
Through this method, one avoids performing calculations for
d-dimensional, N-qubit networks directly and instead works
with a chain of size ∼O(N1/d ), for which it is possible to
eliminate internal degrees of freedom.

C. DRoP conjecture

To motivate the conjecture, we begin with a simple ex-
ample using decay rates obtained analytically by solving
the EOMs directly. Consider a d = 2 network with Nn = 2
nodes and single-emitter decay rates γn along each direction
n = 1, 2. In this case, there are four collective decay rates,
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given by

�1 = γ1(1 − eiθ ) + γ2(1 − eiθ ),

�2 = γ1(1 − eiθ ) + γ2(1 + eiθ ),

�3 = γ1(1 + eiθ ) + γ2(1 − eiθ ),

�4 = γ1(1 + eiθ ) + γ2(1 + eiθ ).

(2)

One can express these decay rates in terms of those corre-
sponding to a d = 1 waveguide along direction n with N = 2
nodes, each with single-emitter decay rate γn. For such a
one-dimensional setup, the decay rates are

�
(n)
1 = γn(1 − eiθ ), �

(n)
2 = γn(1 + eiθ ). (3)

Here, the superscript in � corresponds to the direction n,
whereas the subscript distinguishes between distinct decay
rates. Comparing Eqs. (2) and (3) reveals that the decay rates
for the d = 2 system can be written in terms of the dimen-
sionless decay rates z(n)

i ≡ �
(n)
i /γn (with i = 1, 2 denoting the

decay rates along the n = 1, 2 direction) for the linear system
as

�1 = γ1z(1)
1 + γ2z(2)

1 , �2 = γ1z(1)
1 + γ2z(2)

2 ,

�3 = γ1z(1)
2 + γ2z(2)

1 , �4 = γ1z(1)
2 + γ2z(2)

2 .

Remarkably, as we show throughout this paper, an analo-
gous construction appears to hold for arbitrary d and set of
Nn’s. Based on this observation, we propose the following
conjecture.

Drop conjecture. Consider a hyperdimensional lattice with
N = ∏d

n=1 Nn qubits, where Nn is the number of qubits along
direction n. Let z(n)

i = �
(n)
i /γn denote the dimensionless col-

lective decay rates along the direction n, where γn is the
single-emitter decay rate corresponding to the same direction,
such that 1 � n � d and 1 � i � Nn. Then the complete set
of collective decay rates belonging to the d-dimensional quan-
tum network is

� =
{

d∑
n=1

z(n)
sn

γn

∣∣∣sn ∈ {1, 2, . . . , Nn}
}

, (4)

with �s = �σ/a denoting the set of indices of the decay rates
(with |�s| = d) and |�| = N equal to the total number of qubits
inside the network. Note that there are N unique sets �s, each
corresponding to a single collective decay rate ��s.

We demonstrate in Appendix B that decay rates obtained
using DRoP match those found directly using the EOMs [46].
We also find that DRoP is quite robust to random noise in-
troduced to the single-qubit decay rates (see Appendix C). In
the remainder of this paper, we use DRoP to discover mul-
tidimensional extensions of superradiance and subradiance
by probing regions inaccessible via EOM-motivated methods.
We restrict our analysis to the physically relevant dimensions
d = 2 and d = 3.

D. Multidimensional superradiance, subradiance, and BIC

Guided by an intuition developed through studying the
linear case [44], we notice in our explorations that for θ ≈ mπ

(with m = 0, 1, . . .), the decay rates tend to cluster around
certain regions of the complex plane. To understand the nature

of this behavior, we focus on physical phenomena such as
superradiance and subradiance (BIC for when θ = mπ ) for
waveguide QED systems.

Superradiance (subradiance) occurs when constructive (de-
structive) interference enhances (suppresses) spontaneous
emission. Both physical phenomena are known to occur in a
linear chain of qubits when θ = mπ [24,26,44]. When sub-
radiance occurs, N − 1 decay rates converge to the origin,
whereas superradiance is when one of the decay rates con-
verges to Nγ , where γ is the single-qubit decay rate. Out
of N possible first excited states, N − 1 are dark states, i.e.,
states that have zero decay rate, owing to subradiance. Thus,
one can construct the subspace containing the first excited
states in terms of N − 1 dark states, which do not couple
to electromagnetic radiation, and one superradiant state that
does. The collective system behaves as a two-level system
between the one superradiant state and the ground state, which
explains the Lorentzian shape of the transmission and reflec-
tion amplitudes, as discussed in [24].

We find that in a d-dimensional quantum network, the
dimension of the superradiant subspace is larger than 1. As
a result, the collective system no longer behaves as a qubit
and is hence no longer described by Lorentzian transmis-
sion and reflection amplitudes. Consequently, the superradiant
and subradiant states emerge differently than for the lin-
ear case. In a d-dimensional system, the DRoP conjecture
predicts

∏
n(Nn − 1) subradiant states, with the rest show-

ing superradiant features. We additionally find that, unlike
in d = 1, for d > 1 superradiance is also partitioned. We
define n-dimensional superradiance as the case where the
decay rates of qubits along n different directions are summed
constructively. Then, there exist states with one-, two-, . . .,
and d-dimensional superradiance, a previously unobserved
phenomenon which we call multidimensional superradiance.
This partition of the superradiant behavior is illustrated for a
small network in Fig. 2 with θ = 0.9999π . We pick θ �= π

but close to π to show the dimensionality of each cluster.
We use this small network to validate our DRoP results with
EOM-motivated methods. While the partitioned nature of
superradiance may be observable without the application of
DRoP, the multidimensionality aspect is not [47]. The group-
ing into one-dimensional (1D), 2D, and 3D superradiance is
possible only through the DRoP conjecture and is consistent
among large structures that cannot be accessed through the
numerical algorithm discussed in Appendix D. With DRoP,
we find the origin of multidimensional superradiance, the
dimension of each superradiant subspace, and the strength of
the corresponding d-dimensional superradiance.

Additionally, DRoP allows us to determine how a sys-
tem’s most subradiant decay rate scales with its dimension.
As pointed out in Refs. [26,32,39], for a linear chain
of qubits near superradiance condition (θ ≈ mπ ) the most
subradiant decay rate scales as N−3. Here, we find that
for a d-dimensional quantum network, the corresponding
scaling is N−3

min, with Nmin ≡ minn[Nn]. To find this scaling, we
start by summing over the subradiant decay rates �

(n)
sub along

each direction n such that, overall, �sub = ∑
n �

(n)
sub. From

the literature, we know that for a linear chain of qubits, the
scaling is N−3, and thus, �

(n)
sub ∼ O(N−3

n ). The term with the
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FIG. 2. Collective decay rates (in units of γ1) for a d = 3 system.
Notice the difference in scale between the x and y axes. We see
that the decay rates cluster around the superradiant and subradiant
values with a vanishing imaginary part. Here, we use the parame-
ters N1 × N2 × N3 = 2 × 3 × 4, γ1 = γ2 = γ3, and θ = 0.9999π . As
in Figs. 3 and 4, the black crosses correspond to results obtained
from the numerical condition number method (CNM) discussed in
Appendix D.

smallest Nn dominates the summation, hence giving the N−3
min

expression. For a hypercubic lattice, Nmin = N1/d , leading to a
subradiant decay rate that scales as N−3/d . As expected, with
increased dimensionality, subradiant behavior is washed out
more gradually, and the network couples to the continuum
more strongly. Since subradiance has been considered crucial
for quantum memory applications [25,44], stronger design
restrictions are expected to apply for higher-dimensional
quantum networks in comparison to linear chains.

For θ = mπ and in the absence of nonradiative decay
(which is the case considered in this paper), the subradi-
ant states become BICs (or dark states). Consequently, the
dimensionality of BICs is equal to the dimensionality of sub-
radiant states, i.e.,

∏
n(Nn − 1). The condition of BICs for a

linear chain was considered in Refs. [36,44]. As shown in
Appendix E, the overall condition for BICs can be generalized
to higher dimensions as∑

c

pc e(n)
�σ = 0 (5)

for all linear chains c. Here, pc = 1 for an even number of
qubits along the chain and ±1 (alternating along the chain)
for an odd number of qubits along the chain. Since

∏
n(Nn −

1) � N − 1, the dimensionality of the BIC subspace in a
(d > 1)-dimensional quantum network is smaller than the one
belonging to N qubits in a linear chain. Therefore, it may
be beneficial to use a lower-dimensional quantum network
for memory applications. Here, again, design restrictions are
expected to dictate the dimensionality of the quantum circuit
being designed.

Finally, we note that our symmetry assumption is funda-
mental to the DRoP conjecture. There are three straightfor-
ward ways to violate the symmetry assumption: (i) by adding

noise to the decay rates γn for each qubit, (ii) by allowing
qubits to have nonidentical energy level separation �, and
(iii) by varying the distance between qubits. In Appendix C,
we consider case (i) and show that, as long as the noise
added to the system is relatively small, DRoP can still be
used to approximate the collective decay rates of the system,
and such approximate values can later be used as seeds for
the EOM-motivated search algorithms to find the exact decay
rates.

III. CONCLUSION

Within this work, we have introduced the DRoP conjec-
ture and illustrated its accuracy for a variety of examples via
analytical and numerical methods (Appendix B). We have
used DRoP to probe superradiance, subradiance, and BICs
in multidimensional quantum networks. We emphasize that,
while EOM-motivated methods such as those discussed in
Appendix D can provide some numerical information on the
collective decay rates of small networks, our main results are
derived from the analyticity that accompanies the DRoP con-
jecture and apply to multidimensional networks of arbitrarily
large sizes. Previous research in waveguide QED mainly fo-
cused on linear structures and scattering parameters. While
finding the scattering parameters efficiently in a large quantum
network is still an open and important question, the DRoP
conjecture opens the door for investigating multidimensional
networks via their collective decay rates.

We have focused our studies on cases where time retarda-
tion effects resulting from the intersystem photon propagation
are neglected. In future work, it will be interesting to con-
sider whether the DRoP conjecture holds in regimes where
non-Markovian and time-delayed quantum coherent feedback
effects become dominant [25,48,49] and, in particular, to
check whether recently discovered supersuperradiance effects
for linear chains [50,51] persist for higher-dimensional net-
works. We believe that the proof of the DRoP conjecture lies
in deriving the matrix equation for the spontaneous emission
dynamics (discussed in Ref. [44] for a linear chain), which
would allow for studies of time evolution in multidimensional
quantum networks. As collective decay rates are linked to
time evolution in waveguide QED [44], it is possible that the
dimensional reduction produced by DRoP could be present
for the time evolution as well. Due to their potential to aid
in the investigation of multidimensional networks, we expect
DRoP to be useful for designing complex quantum networks
for future quantum technologies.
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APPENDIX A: HAMILTONIAN AND ENERGY
EIGENSTATES

In this Appendix, we describe the Hamiltonian and the
corresponding stationary states for a d-dimensional quantum
network. The free and interaction Hamiltonians are given by

H0 = i
d∑

n=1

∏
j �=n Nj∑

m=1

∫ ∞

−∞
dx

(
ψ

†
n,m,L (x)

∂

∂x
ψn,m,L (x)

−ψ
†
n,m,R(x)

∂

∂x
ψn,m,R(x)

)
+ �

∑
∀�σ

|e�σ 〉 〈e�σ | , (A1a)

HI =
d∑

n=1

∑
∀�σ

√
γn/2[a†

�σ [ψn,m,R(σn) + ψn,m,L (σn)] + H.c.].

(A1b)

Here, a†
�σ is the excitation operator for the qubit whose position

is given by the set �σ = {σ1, . . . , σd}. γn is the single-qubit
decay rate along the nth direction, ψ

†
n,m,L/R(x) is the bosonic

creation operator for the left-/right-moving photons at po-
sition x in the mth waveguide along the nth direction, and
m = m(n, �σ ). � is the energy separation of the qubit, Nn is
the number of atoms along direction n, and |e�σ 〉 = a†

�σ |0〉 is the
excited state for the �σ th qubit, with |0〉 being the superposition
of the vacuum state and the ground state of all qubits. γn

is a constant and not a function of frequency, which is in
line with the assumption that we are interested in energies
Ek ∼ � ± O(γn), where γn 
 � [22]. Throughout the paper,
we use natural units such that h̄ = vg = 1, where vg is the
group velocity of photons inside the waveguides.

Intuitively, if we were to consider the time evolution
of this Hamiltonian, the first derivative in the free-field
Hamiltonian turns out to be a simple translation operator

when we consider the interaction-free time evolution. In that
sense, the propagation is included in the spatial dependence
of the free Hamiltonian. On the other hand, the interaction
Hamiltonian derives the qubit excitations. In this paper, we
are interested in stationary states, e.g., states that are energy
eigenstates of the Hamiltonian. To find those states, we can
construct a Bethe ansatz as

|Ek〉 =
d∑

n=1

∑
∀�σ

∫ ∞

−∞
dx[φn,�σ ,R(x)ψ†

n,m,R(x)

+ φn,�σ ,L(x)ψ†
n,m,L (x)] |0〉 +

∑
∀�σ

e�σ |e�σ 〉 + B.C. (A2)

Here, φn,�σ ,R(x) = t (n)
�σ eik(x−σn )[�(x − σn + a) − �(x − σn)]

and φn,�σ ,L(x) = r (n)
�σ e−ik(x−σn )[�(x − σn + a) − �(x − σn)]

are the piecewise field amplitudes, and a is the lattice
constant. At the boundary of the network, the field amplitudes
include only one Heaviside function rather than two, meaning
that the photon can radiate out of the system. This expression
is a generalization of Eqs. (3) and (4) in Ref. [26]. t (n)

�σ and r (n)
�σ

are, respectively, the transmission and reflection coefficients
along the nth dimension belonging to the qubit �σ , whereas
e�σ is the corresponding excitation coefficient. B.C. refers
to the boundary terms of the photonic field, which can be
handpicked depending on the type of solution sought, due
to the degeneracy of scattering eigenstates. Here, we omit
discussion of the set of boundary conditions, as they do not
have any effect on the collective decay rates. Applying the
condition H |Ek〉 = Ek |Ek〉, we show below that we obtain
the equations of motion (EOMs) given in Eq. (1) following
the usual position space approach [19,26].

Applying the free Hamiltonian to the energy eigenstate, we
find that

H0 |Ek〉 = Ek |Ek〉 − �k

∑
∀�σ

e�σ |e�σ 〉 − i
d∑

n=1

∑
∀�σ

∫ ∞

−∞
dx t (n)

�σ eik(x−σn )[δ(x − σn + a) − δ(x − σn)]ψ†
n,m,R(x) |0〉

+ i
d∑

n=1

∑
∀�σ

∫ ∞

−∞
dx r (n)

�σ e−ik(x−σn )[δ(x − σn + a) − δ(x − σn)]ψ†
n,m,L (x) |0〉 + B.C., (A3)

where �k = Ek − � and Ek = |k|. For now, we do not put much emphasis on the boundary terms, although their shape will
emerge at the end of our calculations. Applying the interaction Hamiltonian gives

HI |Ek〉 =
d∑

n=1

∑
∀�σ

√
γn/2

∑
σ ′

n

[φn,�σ ,R(σ ′
n) + φn,�σ ,L(σ ′

n)] |e�σ 〉 +
d∑

n=1

∑
∀�σ

√
γn/2e�σ [ψ†

n,m,R(σn) + ψ
†
n,m,L (σn)] |0〉 + B.C. (A4)

Now, shifting the indices, rearranging some terms, and using field continuity at the atomic positions, we find that

H |Ek〉 = Ek |Ek〉 +
∑
∀�σ

(
d∑

n=1

√
γn/2

[
t (n)
�σ + r (n)

�σ
] − �ke�σ

)
|e�σ 〉

− i
d∑

n=1

∑
∀�σ

[
t (n)
�σ+an̂e−ika − t (n)

�σ + i
√

γn/2e�σ
]
ψ

†
n,m,R(σn) |0〉

+ i
d∑

n=1

∑
∀�σ

[
r (n)
�σ+an̂eika − r (n)

�σ − i
√

γn/2e�σ
]
ψ

†
n,m,R(σn) |0〉 . (A5)
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Here, �σ + an̂ is defined as (σ1, . . . , σn + a, . . . , σd ), and we
note that such terms originate from the index shifting in sum-
mations. Within this equation, the shape of the boundary terms
arises analogous to the 1D case [26,44], and the boundary
terms include incoming and out-radiating photonic compo-
nents. For |Ek〉 to be an energy eigenstate, all the other terms
in Eq. (A5) should be zero, which leads to the EOMs given in
Eq. (1) of the main text.

There is another more straightforward and elegant proof
for deriving local EOMs in waveguide QED systems with δ-
function point interactions, for which we describe the strategy
here. For a given system with many waveguides and qubits,
one can divide the Hamiltonian into smaller pieces, with each
piece containing a qubit and portion of all the waveguides that
interact with it. These portions can be picked such that each
is halved between the two adjacent qubits that are coupled
to the same waveguide. Then, the Hamiltonian divides into
subpieces such that

H =
∑

Q

HQ, (A6)

where Q sums over all the qubits inside the system. Without
loss of generality, HQ can be defined as

HQ = i
∑
W

∫
dxW

(
ψ

†
L,W (xW )

∂

∂xW
ψL,W −ψ

†
R,W (xW )

∂

∂xW
ψR,W

)

+ �Q |eQ〉 〈eQ| +
∑
W

√
γW /2

× [a+
Q[ψR,W (QW ) + ψL,W (QW )] + H.c.]. (A7)

Here, W stands for waveguides that interact with the qubit
Q, and the upper and lower bounds of the integrals are not
relevant, as they depend on the subdivision of waveguides into
HQ. As long as different subpieces are patched such that the
photonic components are continuous at the patch points, no
further equations of motion arise from the boundaries. Now,
one can use the Bethe ansatz approach to find the equation of
motion around this single qubit as done in [19,26]; there are
2N (Q)

w + 1 many equations resembling Eq. (1) in the main text,
with N (Q)

w being the number of waveguides interacting with
the qubit Q. Bringing all the equations together after patching,
there are

∑
Q(2N (Q)

w + 1) EOMs for the whole system.
What makes this alternative proof more elegant is the fact

that it does not use the specific geometry of the problem at
hand. In fact, the local equations of motion are all the same for
any type of waveguide QED system. The geometric properties
of the system become important at the patching stage, where
the inputs and outputs of patches should be properly defined
to be continuous at the patch points (hence the irrelevance of
space integral bounds). In a way, it is not the fundamental
physics behind the EOMs that results in different emerging
properties, such as the ones we discover in this paper, but
rather the different phase relations that arise from patching
in different geometries that lead to the different emergent
phenomena.

APPENDIX B: EVIDENCE FOR THE DRoP CONJECTURE

In the first comparison, we considered systems where
N1, N2, N3 � 2 for d = 3 or N1, N2 � 3 for d = 2. In these
cases, analytical results for collective decay rates can be found
by directly solving Eq. (1). We compare these results to those
obtained using DRoP and find that they agree exactly. We now
illustrate the case for N1 = N2 = 3 explicitly.

For a linear chain of three qubits, the dimensionless collec-
tive decay rates are [44]

z1 = �
(1)
1

γ
= 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ ), (B1a)

z2 = �
(1)
2

γ
= 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ ), (B1b)

z3 = �
(1)
3

γ
= (1 − e2iθ ), (B1c)

with γ corresponding to the single-qubit decay rate. An an-
alytical study of a 3 × 3 system with individual decay rates
γ1/2 shows that the collective decay rates of this higher-
dimensional system are given by

�
(2)
1 = 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ )γ1

+ 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ )γ2, (B2a)

�
(2)
2 = 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ )γ1

+ 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ )γ2, (B2b)

�
(2)
3 = (1 − e2iθ )γ1 + 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ )γ2,

(B2c)

�
(2)
4 = 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ )γ1

+ 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ )γ2, (B2d)

�
(2)
5 = 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ )γ1

+ 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ )γ2, (B2e)

�
(2)
6 = (1 − e2iθ )γ1 + 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ )γ2,

(B2f)

�
(2)
7 = 1

2
(2 + e2iθ + eiθ

√
8 + e2iθ )γ1 + (1 − e2iθ )γ2,

(B2g)

�
(2)
8 = 1

2
(2 + e2iθ − eiθ

√
8 + e2iθ )γ1 + (1 − e2iθ )γ2,

(B2h)

�
(2)
9 = (1 − e2iθ )γ1 + (1 − e2iθ )γ2. (B2i)
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FIG. 3. Collective decay rates (in units of γ1) for a d = 2, 4 × 4 waveguide lattice (d = 2 and N1 = N2 = 4, with γ2/γ1 = 0.4). Each
panel shows how particular decay rates behave in the complex plane for θ ∈ [0, 2π ]. The colored solid lines correspond to results obtained
analytically using DRoP, while the black crosses correspond to direct results obtained from the EOMs using the numerical method discussed
in Appendix D).

Rewriting these decay rates in terms of z(1), we obtain the
effective mapping predicted by the DRoP conjecture such that

�
(2)
1 = z1γ1 + z1γ2, (B3a)

�
(2)
2 = z2γ1 + z1γ2, (B3b)

�
(2)
3 = z3γ1 + z1γ2, (B3c)

�
(2)
4 = z1γ1 + z2γ2, (B3d)

�
(2)
5 = z2γ1 + z2γ2, (B3e)

�
(2)
6 = z3γ1 + z2γ2, (B3f)

�
(2)
7 = z1γ1 + z3γ2, (B3g)

�
(2)
8 = z2γ1 + z3γ2, (B3h)

�
(2)
9 = z3γ1 + z3γ2. (B3i)

Comparing the efficiency of both algorithms for finding the
collective decay rates in this case, DRoP is ∼103 times faster
on a personal computer. Similar analytical correspondence
can be shown for 3 × 2 × 2 and 4 × 3 systems, both of which
seem to be the boundary cases where Mathematica gives
analytical results within less than a few hours on a standard
personal computer.

Next, for N ∼ 10, finding the decay rates analytically by
solving the EOMs is intractable. DRoP, on the other hand,
yields analytical results. As an example, we consider a 4 × 4

two-dimensional waveguide lattice. In Fig. 3, we show an-
alytical results using DRoP compared with results obtained
numerically from the EOMs (Appendix D contains details on
the numerical approach used). We check all possible cases
with Nn � 3 in d = 3 and Nn � 4 in d = 2 and find that
the direct numerical results agree with our analytical DRoP
results within machine precision.

Analytical results using DRoP are possible even for large
N , but analysis becomes cumbersome due to the fact that
the analytical expressions for the decay rates end up having
many branch cuts in the complex plane. We therefore turn
to using DRoP numerically and make comparisons for par-
ticular values of θ . We check for various cases and again
find that the decay rates found by numerically solving the
EOMs directly and those found with DRoP (in combination
with transfer matrix methods; see Appendix D) agree within
machine precision. An example case for a three-dimensional
5 × 3 × 4 waveguide lattice is shown in Fig. 4.

In all cases that we have checked, we find that the
collective decay rates from DRoP match those found via
EOM-motivated methods either exactly analytically or, when
analytical comparison is not possible, to within machine pre-
cision.

We are using the EOM-motivated method to validate DRoP
rather than using it to discover new physics because the
EOM-motivated method cannot access the regimes that we
are discussing with DRoP. An immediate example of such
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FIG. 4. Collective decay rates �i (in units of γ1) for a d = 3,
5 × 3 × 4 waveguide lattice (d = 3, N1 = 5, N2 = 3, and N3 = 4 for
θ = π/2 with γ2/γ1 = 4, γ3/γ1 = 2). The system has 60 collective
decay rates, all shown here. The circles correspond to results ob-
tained numerically using DOP, while the black crosses correspond
to direct results obtained numerically from the equations of motion
using a numerical method known as the condition number method
(CNM), as discussed in Appendix D.

an inaccessible regime is the multidimensional superradiance
concept discussed in the main text. We know that for a linear
chain, when θ = mπ , there are N − 1 vanishing (0) and one
non-vanishing (Nγ ) decay rates [44]. From this, we arrive at
the definition of multidimensional superradiance for any N
in the main text. Such a computation is not possible for the
EOM-motivated method, as there will always be some N ′ after
which this method will be too computationally expensive.

APPENDIX C: DRoP’S ROBUSTNESS TO NOISE

Here, we probe DRoP’s robustness to random errors that
might occur during the fabrication of a quantum network. To
account for situations where the individual decay rates γn may
not be exactly the same for all qubits along direction n, we
append an additional numerical optimization step to DRoP. To
begin with, let the individual decay rates in Eq. (1) be replaced
with

γn → γ
(n)
�σ = γn

[
1 + N

(
0, ε2

max

)]
. (C1)

Here, N (μ, ε2
max) is the normal random distribution with

mean μ and standard deviation εmax such that random noise is
inserted into the decay rates at all atomic positions. Figure 5
compares results predicted by DRoP, which approximates the
noisy case as εmax = 0, to noisy parameters obtained via nu-
merical methods. We can see that decay rates predicted by
DRoP are good estimates for the exact decay rates of the sys-
tem based on the averages along one dimension γn = 〈γ (n)

�σ 〉
σ

.
The estimates provided by DRoP can then seed a minimum
search algorithm (e.g., MATLAB’s FMINSEARCH) to reach the
exact solutions more efficiently.

FIG. 5. Comparison of results predicted by the DRoP conjecture
and noisy parameters obtained via numerical methods (all in units
of γ1) with εmax = 0.05. These results correspond to a 3 × 2 × 6
quantum network with γ2/γ1 = 3, γ3/γ1 = 2, and θ = 0.65π .

APPENDIX D: METHODS USED IN THE MAIN TEXT FOR
FINDING THE COLLECTIVE DECAY RATES

Finding the scattering parameters by solving Eq. (1) for
d = 1 and a general N is straightforward via the trans-
fer matrix method [26]. Once the scattering parameters are
known, the collective decay rates can be read off from the
poles �(0) = {�(0)

k } of the scattering parameters. However,
for d � 2, solving for the scattering parameters becomes
computationally intractable for even N ∼ 10. As an example,
for {d, N1, N2, N3} = {3, 2, 3, 4}, one needs to solve a set of
168 coupled equations, which is not solvable on a standard
personal computer within a time span of a few hours. As a
result, in contrast to the 1D case, solving for the scattering
parameters is not a viable method to investigate the collective
decay rates of a large multidimensional quantum network.
For a 2D quantum network, solving Eq. (1) becomes analyt-
ically intractable for N ∼ O(10) and numerically intractable
for N ∼ O(100) on a standard personal computer.

Fortunately, if one is interested only in collective decay
rates, instead of solving the linear system of equations mul-
tiple times, one can simply consider the matrix A, which
contains the left-hand side of Eq. (1), and find the set of poles
�(0), for which A is singular. The decay rates can be found by
rotating the poles in the complex plane via � = 2i�(0) [44].

Claim 1. The complete set of the poles of the scattering
parameters is given by the values of �k for which the matrix
A is singular.

Proof. First, let us denote �(0) as the �k values for which
A is singular. Moreover, let us introduce the notation A =
A(�k ). For this sketch, we use proof by contrapositive, mean-
ing we shall show that if A is nonsingular, then �k /∈ �(0).

If A is nonsingular, then it is invertible. Let us denote
the inverse matrix by A−1. Then, the solution to the matrix
equation can be given as

x = A−1b. (D1)

If A is invertible, then all entries of A−1 are finite. Simi-
larly, all entries of b are finite by construction. Therefore,
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FIG. 6. The numerical values of ln{| det[A(� = 2i�k )]|} (in units of γ1) for two distinct cases: (a) 5 × 3 × 4, γ2/γ1 = 4, γ3/γ1 = 2, and
θ = 0.5π with εmax = 0 and (b) 3 × 2 × 6, γ2/γ1 = 3, γ3/γ1 = 2, and θ = 0.65π with εmax = 0.05 (see Appendix C for the definition of εmax).
Note that these numerical plots correspond to configurations given in Figs. 4 and 5, respectively.

the scattering parameters are finite since multiplication of
two finite-dimensional matrices with finite entries results in
a matrix with finite entries. By definition, if �k ∈ �(0), then
the scattering parameters should diverge by the existence of a
pole, leading to a contradiction. Hence, �k /∈ �(0).

This result simplifies our search for the poles, as we no
longer need to solve the system of equations. Moreover, this
method gives us important information regarding the maxi-
mum number of poles. Specifically, if the matrix A is singular,
then its determinant is zero. Now, the determinant of matrix
A is a polynomial with a degree of N , and hence, there are at
most N poles. This result is in line with the findings of the
literature so far [26,44] since the number of poles is expected
to be bounded by the number of atoms inside the system.

To find the poles of A, one can solve the condition det(A) =
0. While the determinant algorithm provides useful insight,
its implementation is cumbersome as the determinant of the A
matrix is a highly oscillating function of �k. Fortunately, one
can probe the singularity of a matrix by its eigenvalues since a
matrix A is singular if it has a zero eigenvalue. Thus, any pole
�

(0)
k satisfies the property

�
(0)
k = arg min

�k
|eig(A)|. (D2)

We shall denote the algorithm using this approach as the
“eigenvalue method.” While this method provides accurate
results, it is slow. One can speed up the process by simply
considering the condition number of the matrix A instead of
its whole eigenvalue spectrum. Then, the pole can be given by
the so-called condition number method (CNM) as

�
(0)
k = arg max

�k
cond(A). (D3)

This equation gives a pole depending on the seeding of the
algorithm. By seeding the algorithm many times, one can find
all N poles. For the examples we consider in this paper, the
poles are distinct, which is convenient for us when we show
that DRoP works. On the other hand, there is no need for the
poles to be distinct in the formulation of DRoP. The eigen-
value and condition number methods give the same results
within numerical precision. Throughout this paper, we use the

CNM to find the collective decay rates of a high-dimensional
quantum network since it is fastest.

In this work, we use the predictions made by the DRoP
method to seed the condition number method, which is then
used to find the poles of the quantum network. One might be
concerned that the search algorithm finds a local minimum
rather than a minimum corresponding to a zero. However,
this concern can be addressed using the minimum modulus
principle of complex analysis: Since f (�k ) = det(A) is an
analytical function of �k (specifically here, a polynomial), | f |
can have local minima only at the position of its zeros.

To check whether the results from the CNM are valid,
we compare three different methods. In the first method, we
consider the log-absolute determinant value of the matrix A
and show that there are, indeed, N distinct minima, each
corresponding to a pole, as plotted in Fig. 6. Second, we
use the eigenvalue method to verify the results found by the
CNM. Finally, we use Mathematica’s NROOTS function when
possible to provide another check for our results. In all cases,
the values found agree with the ones predicted by the DRoP
conjecture.

Having shown how the numerical approaches mentioned
in the text work, let us now focus our attention on finding the
collective decay rates of N qubits in a linear chain efficiently.
First, we present a compact two-equation system that includes
all information about such decay rates. We then propose
another method to find a polynomial characteristic equation
of degree N .

When d = 1, the scattering problem was solved via the
transfer matrix method in Ref. [26]. According to calculations
performed in that reference, the set of equations describing the
poles is given by

cos(λ) = cos(θ ) − γ

2�
(0)
k

sin(θ ), (D4a)

(
�

(0)
k + iγ /2

)
sin(Nλ) = sin[(N − 1)λ]�(0)

k exp(iθ ).

(D4b)

Here, 0 � Re[λ] � π is a complex parameter, γ is the single-
qubit decay rate, and �

(0)
k are the poles of the scattering

parameters. This result shows that one can define dimension-
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less poles such that zp = �
(0)
k /γ is the same for any γ , which

means that the collective decay rates of a linear chain of
atoms depend on γ only linearly. Thus, we can define the
dimensionless decay rates that describe the N th qubit in a
chain, regardless of the specific value of γ .

In order to obtain analytical expressions for the decay rates,
below we find a polynomial characteristic equation. To do
so, we use the transfer matrix method but employ a different
approach than in Ref. [26] for higher computational efficiency.
The transfer matrix for a single unit cell, which includes a
qubit and a propagation phase θ = �a, is(t j−1

r j−1

)
= S

(t j

r j

)
⇒

(t j−1

r j−1

)

=
(

(1 + iχk )e−iθ iχkeiθ

−iχke−iθ (1 − iχk )eiθ

)(t j

r j

)
, (D5)

where χk = γ /(2�k ). Here, t j and r j are the transmission
and reflection coefficients for the jth atom. By construction,
t0 = 1, and rN = 0. Then, one can relate the output field
amplitudes as ( 1

r0

)
= SN

(tN
0

)
. (D6)

From this relation, one can find the final transmission coeffi-
cient as

tN = 1

(SN )11
. (D7)

The characteristic polynomial describing the poles of the sys-
tem is

(SN )11
(
χ

(0)
k

) = 0, (D8)

where (SN )11(χ (0)
k ) is a polynomial with degree N in terms of

χ
(0)
k . Note that once χ

(0)
k are known, �

(0)
k can be easily found.

APPENDIX E: BICS IN MULTIDIMENSIONAL
QUANTUM NETWORKS

In this Appendix, we prove Eq. (5) in the main text. Let us
start by adding the first two expressions in Eq. (1) such that

t (n)
�σ+an̂e−iθ + r (n)

�σ+an̂eiθ = t (n)
�σ + r (n)

�σ . (E1)

This expression represents the emergence of wave-function
continuity of the photonic field at the atomic positions. Now
since, by the definition of BICs, the photonic field is zero
outside the system, the sum of field amplitudes is always
zero at the atomic positions by this continuity. Hence, from
Eq. (1c), we find the first condition of BICs, namely,

�k = 0 ⇒ Ek = �. (E2)

All bound states have the energy Ek = �. Applying the sec-
ond condition �L = mπ , where m is a non-negative integer,
we obtain the set of equations

(−1)mt (n)
�σ+an̂ − t (n)

�σ + i
√

γn/2e�σ = 0, (E3a)

(−1)mr (n)
�σ+an̂ − r (n)

�σ − i
√

γn/2e�σ = 0. (E3b)

These equations are decoupled in each direction, and along
a single dimension they mirror the 1D equations of motion.
Therefore, following Ref. [44], we find that the condition
of BICs is simply the 1D conditions applied along each
line inside the network, which leads to Eq. (5) of the main
text.
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