
PHYSICAL REVIEW RESEARCH 2, 043146 (2020)

Chemotaxis in uncertain environments: Hedging bets with multiple receptor types
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Eukaryotic cells are able to sense chemical gradients in a wide range of environments. We show that, if a cell
is exposed to a highly variable environment, it may gain chemotactic accuracy by expressing multiple receptor
types with varying affinities for the same signal, as found commonly in chemotaxing cells like Dictyostelium.
As environment uncertainty is increased, there is a transition between cells preferring a single receptor type
and a mixture of types—hedging their bets against the possibility of an unfavorable environment. We predict
the optimal receptor affinities given a particular environment. In chemotaxing, cells may also integrate their
measurement over time. Surprisingly, time integration with multiple receptor types is qualitatively different
from gradient sensing by a single type—cells may extract orders of magnitude more chemotactic information
than expected by naive time integration. Our results show when cells should express multiple receptor types to
chemotax, and how cells can efficiently interpret the data from these receptors.
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I. INTRODUCTION

As a white blood cell finds a wound, or an amoeba finds
nutrition, they chemotax, sensing and following chemical
gradients. Eukaryotic cells sense gradients of chemical lig-
ands by measuring ligand binding to receptors on the cell’s
surface. In eukaryotic chemotaxis in shallow gradients, ac-
curacy is limited by unavoidable stochasticity arising from
randomness in ligand-receptor binding and diffusion [1–4].
Eukaryotic chemotaxis has been extensively modeled [1,5–8],
including extensions to collective chemotaxis [9–12] and
stochastic simulation [13,14]. Modeling and experiment show
eukaryotic chemotaxis is most accurate at ligand concentra-
tions near the receptor dissociation constant KD [2,3,5]. Cells
crawling through tissue and searching for targets at variable
concentrations are exposed to a huge variation in environ-
mental signals. Cells often express multiple receptors for the
same signal, with KD values ranging over orders of magnitude
[15,16]. For instance, during Dictyostelium’s life cycle, Dicty
expresses multiple different combinations of cAMP receptors
CAR1-CAR4 [17], with ranges of KD from 25 nM to >5000
nM. Larger-KD receptors are expressed later in development,
when the cAMP background level rises; the change in receptor
expression has been suggested to allow Dicty to deal with the
new environments [18,19]. In addition, Segota et al. recently
showed that to explain the high accuracy of Dictyostelium
chemotaxis to folic acid over a broad range of folic acid con-
centrations, multiple receptor types (with KD values ranging
from 2 to 450 nM [15]) and multiple measurements over time
must be accounted for [4].
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We argue that if a cell is sufficiently uncertain about
its chemical environment, it should express multiple recep-
tor types. We provide results for the optimal receptor KD

depending on environmental uncertainty. In addition, we
show that integrating information from multiple measure-
ments of the receptor binding state is more complicated in the
many-receptor-type case, and show that a standard approach
significantly underestimates gradient sensing accuracy.

II. MODEL AND RESULTS

We generalize the model of [5,20], considering a cell
with receptors of R types with dissociation constants Ki

D,
i = 1 · · · R, with receptors spread evenly over a circular cell.
We find the fundamental limit set by the Cramér-Rao bound
with which this cell can measure a shallow gradient g using a
snapshot of current receptor occupation. If the concentration
near the cell is locally c(r) = c0er·g/L , i.e., g is the percent-
age change across the cell diameter L, this uncertainty is
(Appendix B)

σ 2
g = σ 2

gx
+ σ 2

gy
= 16

N
∑R

i=1 fi
c0Ki

D

(c0+Ki
D )2

(snapshot), (1)

where N is the total receptor number, and fi is the fraction of
receptors that are type i.

When can a cell improve its accuracy by expressing mul-
tiple receptor types? If we try to maximize signal-to-noise
ratio SNR = g2/σ 2

g , we see from Eq. (1) that SNR is a linear
function of the fi, and will be maximized by choosing f = 1

for the type with the largest value of c0Ki
D

(c0+Ki
D )2 , and f = 0 for

the others. For the simplest case of two types A and B with
dissociation constants KA, KB (KB > KA) this means that the
best accuracy occurs with all A receptors when c0 <

√
KAKB,

and with all B receptors when c0 >
√

KAKB [Fig. 1(a)].
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FIG. 1. Cells benefit from mixed receptor expression when their
environment is uncertain. (a) The signal-to-noise ratio g2/σ 2

g from
Eq. (1) for 100% A receptors (yellow), 100% B receptors (red), or
both in a 50-50 combination (blue). (b) Fraction of A receptors that
maximizes CI for snapshot measurements [Eq. (1)] as a function of
p(c0 ) where p(ln c0 ) ∼ e−(ln c0−ln c∗ )2/2σ 2

μ , characterized by the envi-
ronment concentration c∗ and the standard deviation of the log of
the concentration σμ. The transition between all-A and all-B occurs
at

√
KAKB at low uncertainty. Dashed lines indicate receptor KD.

KA = 1 nM, KB = 1000 nM, N = 5 × 104, and g = 0.05 in both
plots.

If the background concentration is completely known, it is
never beneficial for a cell to express multiple receptor types
simultaneously. However, if a cell is uncertain about the con-
centration it is likely to encounter, it may hedge its bets by
expressing multiple receptor types, allowing it to chemotax
effectively in more environments. Does a cell in concentra-
tion c0 with probability p(c0) benefit from multiple receptor
types? What metric is appropriate? We could compute average
signal-to-noise ratio SNR = ∫

dc0 p(c0)g2/σ 2
g , but increasing

SNR at one concentration is little consolation to the cell
that finds itself completely lost at another concentration—the
utility of SNR saturates. We therefore optimize the mean
chemotactic index CI, where CI = f (SNR), with f (x) saturat-
ing at 1 as x → ∞. Here we use f (x) = √

2x/π/L1/2(−x/2),
where L1/2(x) is a generalized Laguerre polynomial, as in
[21]; alternate definitions of CI lead to similar results.

In Fig. 1 we consider two receptor types with dissociation
constants KA and KB, and numerically determine the fraction
of A receptors that maximizes CI. We choose p(c0) to be
log-normal, p(ln c0) ∼ e−(ln c0−ln c∗ )2/2σ 2

μ—a generic option for
large variability. When environmental uncertainty σμ is small,
we see the behavior predicted above—at small c∗, the cell
should express all-A receptors, while for c∗ >

√
KAKB the cell

switches to all-B. However, at larger σμ, cells optimize CI by
expressing equal amounts of A and B receptors [Fig. 1(b)].

Why is a 50-50 mix optimal even when c∗ ≈ KA? This
may seem like a natural response to uncertainty, but it is not
obvious why, if the typical concentration c∗ is close to KA, the
cell would not prefer A-type receptors. We argue that in the
limit of large σμ, where p(c0) becomes very broad, but CI(c0)
is locally peaked, the optimal fraction should not depend on
c∗ or σμ. The chemotactic index CI(c0) for snapshot sensing
is generally peaked when c0 is around KA or KB, because the
SNR decays when c0 � KA or c0 	 KB [Fig. 1(a)]. As σμ

increases and p(c0) becomes more weakly dependent on c0,
we can approximate the integral defining CI as

CI =
∫

dc0 p(c0)CI(c0)

≈ p(
√

KAKB )
∫

dc0CI(c0). (2)

(We have chosen
√

KAKB as a typical value in the range
KA · · · KB.) In Eq. (2), the parameters c∗ and σμ of the envi-
ronment distribution p(c0) only appear in p(

√
KAKB), and the

receptor fractions only appear in the term
∫

dc0CI(c0). In this
limit, p(

√
KAKB) becomes an irrelevant prefactor—the same

fraction will optimize CI independent of c∗ and σμ, and so we
see a 50-50 mix for a broad range of parameters. We will see
later that the 50-50 mix is no longer optimal when cells time
average and CI(c0) is no longer locally peaked.

The 50-50 mix between A and B receptors in Fig. 1 emerges
when p(c0) is so broad it is slowly varying on the scale of
CI(c0). We caution that at these large levels of environmental
variation, the difference between the optimal receptor config-
uration and simply choosing all-A or all-B receptors is small
(Appendix F)—at sufficiently high uncertainties, no configu-
ration is particularly successful.

Figure 1 shows when a cell should choose to express
a combination of receptor types. Can we also find which
receptors a cell would evolve to maximize gradient-sensing
ability in a given p(c0)? We optimize CI by varying Ki

D and
receptor fraction fi for different numbers of receptor types
R and different widths σμ, holding total receptor number N
constant. We choose the configuration that maximizes CI with
an important caveat. By adding more types with arbitrary KD,
we can always at least match the performance of a single
type. If many configurations generate roughly the same near-
optimal CI (all within �CI = 0.01), we choose from these the
configuration with the fewest receptor types R. To reduce the
number of variables we vary, we use the symmetry of p(c0),
assuming ln Ki

D and fi are mirror symmetric around ln c∗. The
resulting optimal Ki

D are shown in Fig. 2. We see that as the
environment uncertainty σμ increases, there is a transition be-
tween preferring a single receptor type and multiple receptor
types, with the KD values for the multiple types being spread
over the likely range of concentrations observed.

Figures 1 and 2 are based on Eq. (1), which gives the
fundamental uncertainty for a cell sensing a gradient from a
single snapshot of its receptors. If cells integrate measure-
ments over time [3,5,6,20,22,23], they can improve gradient
sensing. Our results in Appendix B give the estimator ĝ
for the gradient vector g given the snapshot data. Defining
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FIG. 2. Optimal receptor configuration. Best Ki
D values for re-

ceptors as a function of environmental uncertainty σμ. Marker areas
are scaled to the fraction of that receptor type. Solid lines illustrate
p(ln c0 ). c∗ = 1 nM, N = 5 × 104 and g = 0.05, �CI = 0.01, and a
maximum of R = 7 types are considered.

a time-integrated estimator ĝT = 1
T

∫ T
0 ĝ(t )dt , as in earlier

work [5,10,20], we find its variance σ 2
g,T = 〈|gT − g|2〉. To do

this, we must consider the kinetics of binding and unbinding at
each receptor, which happens with a receptor correlation time
of τi = 1/(ki

− + c0ki
+). In the limit of large averaging times

T 	 τi, we find (Appendix C)

σ 2
g,T = 32

∑R
i fiβiτi

NT
(∑R

i fiβi
)2 (naive average), (3)

where βi = c0Ki
D/(c0 + Ki

D)2 reflects the accuracy of measur-
ing by type i—maximized at c0 = Ki

D. For a single type, error
is reduced by the effective number of measurements T/2τ ,
σ 2

g,T = σ 2
g × 2τ/T [5,20]. Equation (3) can be cast in a similar

form as

σ 2
g,T = σ 2

g

R∑
i

αi
2τi

T
,

where αi = βi fi/
∑R

i βi fi is the weight given to receptor type
i. This equation shows that the variance—in a naive time
average—is reduced by a weighted sum that depends on the
receptor correlation times. In the single receptor type case,
σ 2

g,T becomes arbitrarily small as τ → 0. However, because
σ 2

g,T is proportional to a weighted sum of τi/T , when re-
ceptor correlation times τi decrease, error is limited by the
slowest correlation time. If one receptor correlation time is
significantly faster than another, Eq. (3) predicts reduced error
merely by removing the slow receptors (Fig. 3). The naive
time average, therefore, does not efficiently use the informa-
tion available—if it did, the cell would not be able to gain
accuracy by throwing away measurements. The core reason
for the failure of naive time averaging is that the snapshot es-
timator weights receptors equally, which is appropriate to the
amount of information they provide at that moment. Naively
averaging this estimator weighs information from fast recep-
tors (which gain more information as T increases) and slow
receptors (which gain less information) similarly.

The failure of naive time averaging is reminiscent of a
well-known result for concentration sensing: it is not opti-
mal for a single receptor to estimate c from a simple time
average of its occupation T −1

∫ T
0 n(t )dt . If the whole his-

tory of binding and unbinding events is used in a maximum

ERT
Naive
Naive (fast only)
ERT / 2

FIG. 3. Estimation using the entire receptor trajectory is much
more accurate than naive averaging. SNR g2/σ 2

g as a function of ρ =
kB
−/kA

−; ρ > 1 states B receptors have faster off rates. SNR is much
larger using the entire receptor trajectory (ERT) method; even in its
best case, the naive average only reaches half of the ERT SNR. We
use two receptor types, KA = 1 nM, KB = 1000 nM and N = 5×104,
g = 0.05, with fixed c0 = √

KAKB, and fA = 0.5, with kA
−T = 2.

likelihood estimate, the error σ 2
c is reduced by two [24]. We

compute the accuracy limit for gradient sensing σ 2
g,T using the

entire receptor trajectory (Appendix D), finding (again in the
limit T 	 τi)

σ 2
g,T ;ERT = 16

N
∑R

i fiβi
T
τi

(entire receptor trajectory) (4)

or more intuitively

σ 2
g,T ;ERT = σ 2

g

1∑R
i αi

T
τi

.

For a single receptor type, Eq. (4) is a factor of 2 smaller than
the naive time average Eq. (3), precisely as in concentration
sensing. However, for multiple types, ERT error can be orders
of magnitude better, as the time correlation factors τi/T add
“in parallel”—error is no longer limited by the slowest type.

We illustrate the differences between these two errors in
Fig. 3, computing SNR g2/σ 2

g for two receptor types. Which
type provides more information depends on the relative off
rates of the two types:

SNRERT = Ng2kA
−T

16

[
fA

c0

c0 + KA
+ (1 − fA)ρ

c0

c0 + KB

]
, (5)

where ρ = kB
−/kA

−.
Figure 3 shows that as ρ is varied, the naive time average

SNR is always at least a factor of 2 lower than ERT. When the
B receptor off rate is large (ρ 	 1), the naive average is worse
than if only the N/2 B receptors were used [the “Naive (fast
only)” yellow dotted line). In this limit, most information is
from the B receptors, and using only B receptors reaches half
the ERT SNR (Fig. 3).

How does time averaging affect bet hedging? For a single
environmental concentration, all-A is optimal when Eq. (5)
increases with increasing fA, i.e., c0/(c0 + KA) > ρc0/(c0 +
KB), or c0 < cbal ≡ KB−KAρ

ρ−1 . For ρ � 1, it is always best to use
the lower-KD receptor, but trade-offs are more complex when
B receptors are faster. The balancing point cbal varies from
cbal → ∞ at ρ = 1 to cbal = 0 at ρ = KB/KA. ρ = KB/KA
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FIG. 4. Trade-off between two receptor types depends on their dynamic properties. Top row: (a)–(d) SNR calculated for differing values
of ρ at different fixed concentrations c0 using Eq. (5). As in Fig. 1, yellow indicates all-A, red all-B, and blue a 50-50 mix. Bottom row: (e)–(h)
Optimal receptor fraction with time averaging, with ρ corresponding to the figure in the top row. Dashed white lines show the analytical cbal.
Parameters are as in Fig. 1 except N = 104 (chosen as cells have larger SNR with fewer receptors when time averaging) and kA

−T = 2.

corresponds to the condition where the on rates of the two

types are equal, kA
+ = kB

+, as kB
−/kA

− = KB/KA = kB
−

kA−

kA
+

kB+
, this

would be the case if the on rates were diffusion limited.
Dependence on receptor off rates is preserved when we

study optimal receptor configurations in an uncertain envi-
ronment p(ln c0) ∼ e−(ln c0−ln c∗ )2/2σ 2

μ . In Fig. 4 we show how
the optimal share of A receptors depends on ρ = kB

−/kA
−. Even

with significant uncertainty, when ρ = 1, all-A is optimal.
However, at higher values of ρ, a transition between all-A and
all-B like Fig. 1 occurs when c∗ = cbal (white dashed line).
By contrast with the snapshot results, in the time average at
large uncertainties σμ > 1, the 50-50 mixture is not optimal.
Instead, at high uncertainties, for ρ = 10, 100, optimal recep-
tor fractions are similar above and below cbal, and the fraction
of A receptors exceeds 0.5, with fA decreasing as σμ � 10.
Why? When cells time average, CI is nonzero over a broad
range of c0 (see Fig. 4, top row), and our argument from the
snapshot case fails.

Can we produce a plot such as Fig. 2 showing the opti-
mal receptor configuration if time averaging is performed?
No. When time averaging, error is minimized by making the
correlation times as small as possible—taking k− → ∞. We
cannot find a consistent set of optimal receptors unless k− is
restricted by some biochemical constraint. This is because, as
recognized for concentration sensing [24], only binding rates
are sensitive to c—bound times should be minimized.

III. DISCUSSION

Our results show that cells can hedge their bets against an
uncertain environment by expressing multiple receptor types,

but that this behavior is only reasonable if the uncertainty
in c0 spans the range of observed KD (Fig. 2), i.e., if cells
typically explore environments where concentration varies
over orders of magnitude. The idea that signal processing
should be adapted to the likely range of concentrations is
similar to classical results showing information transmission
is maximized by tuning input-output relationships to the input
probability distribution [25–28]. When cells chemotax to hunt
bacteria, as Dictyostelium uses folic acid chemotaxis, it is
intuitively plausible that observed c0 span orders of magni-
tude, as bacterial hunting must function over both sparse and
concentrated solutions, and over many distances to bacteria.
However, at any fixed concentration, expressing multiple re-
ceptor types is always suboptimal to choosing the receptor
that best fits your current concentration c0—so hedging is
plausible in circumstances when the environment is uncertain
over the timescale on which the receptor affinity is fixed. What
other timescales could appear in the problem? Dictyostelium
receptors are internalized in response to large increases in
cAMP concentration [29,30], but this process takes several
minutes—much longer than it would typically take Dicty to
chemotax to a new mean concentration level. We also show
that even if receptor numbers change in different environ-
ments, we see very similar results (Appendix E).

Our work so far has not distinguished between truly dif-
ferent receptors and receptors that are phosphorylated or
otherwise modified to change their KD [31,32], which play a
role in adaptation to different signal levels in bacteria [33]. If
receptor modification is fast compared to the environment’s
change in concentration c0, i.e., can occur before the cell
samples a new concentration from P(c0), hedging will be less
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effective. Our work thus suggests interesting future directions
for extension, based on recent studies of concentration sensing
in time-varying environments [34]. Future work could also
consider multiple ligand types, which could also limit accu-
racy by competing for receptors [35,36]. For cells to reach
the lower bound of Eq. (4), they must compute estimates with
some reaction network, possibly extending recent work show-
ing how to compute the ERT estimate in concentration sensing
[36,37]. One important difference here is that finding the
ERT ĝ requires spatially resolved measurements of bound and
unbound times separately for each receptor type. Computation
of the ERT estimate for concentration requires additional free
energy expenditure [37]—it would be interesting to determine
if the extravagant benefits of the ERT approach for gradient
sensing with multiple receptor types (Fig. 3) comes with a
commensurate cost. Although these are significant complexi-
ties, the huge gap between the fundamental bound of Eq. (4)
and the naive average of Eq. (3) shows even very rough ap-
proximations to the ERT provide significant gains over a naive
average.
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NOTATION FOR APPENDICES

This Appendix includes calculations where we have to
distinguish the type i and the index n of each receptor. The
intermediate calculations are more complex than the final
results in the main paper, and to help keep the details straight,
we will denote receptor types i with superscripts and receptor
indices n with subscripts. A superscript to a power i like Ci

n
never denotes exponentiation. To keep consistent with this, we
have included formulas with β i where in the main text we have
written βi.

APPENDIX A: NUMERICAL DETAILS

To evaluate the integral CI = ∫
dc0 p(c0)CI(c0) numeri-

cally, we found some difficulties that arise because of how
broad p(c0) is. In particular, because the SNR most naturally
varies on the log scale [see Fig. 1(a)], it is easiest for us to
evaluate this expectation in terms of ln c0,

CI =
∫

d ln c0 p(ln c0)CI(eln c0 ). (A1)

For our log-normal distribution, p(ln c0) has the simple Gaus-
sian form

p(ln c0) = 1

σμ

√
2π

exp

[
− (ln c0 − ln c∗)2

2σ 2
μ

]
. (A2)

However, we note that even Eq. (A1) can be tricky to evaluate
when CI is nonzero only for a range of ln c0 compared with
the scale σμ. We evaluate this integral using Matlab’s Gauss-
Kronrod quadrature (quadgk), setting waypoints to ensure
that all nonzero ranges of both functions should be included.

FIG. 5. Illustration of data used for gradient estimate using a
snapshot of receptor state; only two receptor types are illustrated.

To find the receptor type fractions that optimize CI we use
Matlab’s fminbnd (golden section search) and fminsearch
(Nelder-Mead), depending on the number of variables to be
optimized over.

Code to reproduce the results in the paper can be found at
[45].

APPENDIX B: SNAPSHOT SENSING

How precisely can a cell make a measurement of a chem-
ical gradient using only its current information about which
receptors on its surface are occupied? We extend results from
[5,20] on this accuracy to include multiple receptor types.
We assume that the cell is in a shallow exponential gradient
with direction φ and steepness g = L|∇C|

C0
, where L is the

diameter of the cell and C0 is the concentration at the cell
center. The gradient g can also be written as g = (gx, gy) =
[gcos(φ), gsin(φ)]. The concentration at a cell receptor with
angular coordinate ϕ can then be written as

C(ϕ) = C0exp
[g

2
cos(ϕ − φ)

]
. (B1)

Let there be R receptor types, where there are Ni recep-
tors of type i and N = ∑R

i Ni total receptors. We describe
the receptors as being uniformly spread across the cell, with
angular positions ϕi

n (Fig. 5). Then each receptor of type i can
be represented as a Bernoulli trial, i.e., we define a variable
xi

n that is one if a receptor n of type i is occupied, and zero
otherwise. The probability of xi

n = 1 is the probability of that
receptor being occupied,

Pi
n = Ci

n/
(
Ci

n + Ki
D

)
, (B2)

where Ci
n is the concentration at the nth receptor of type i

and Ki
D is the dissociation constant of receptor type i. The

dissociation constant Ki
D is the ratio of unbinding and binding

rates of the receptors of type i, i.e., Ki
D = ki

−
ki+

. Assuming that
all the receptors are independent of one another, we have the
following likelihood function giving the probability of seeing
receptor occupations xi

n given gradient g,

L
(
g
∣∣x0

1, . . . , xR
NR

) =
R∏
i

Ni∏
n

[(
Pi

n

)xi
n
(
1 − Pi

n

)1−xi
n
]
.
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The log-likelihood function is

lnL =
R∑
i

Ni∑
n

[
xi

nln

(
Ci

n

Ci
n + Ki

D

)
+ (1 − xi

n)ln

(
Ki

D

Ci
n + Ki

D

)]

=
R∑
i

Ni∑
n

[
xi

nln

(
Ci

n

Ki
D

)
+ ln

(
Ki

D

Ci
n + Ki

D

)]
. (B3)

In the second term in this equation, we then assume that the re-
ceptors are numerous enough that we can replace the sum over
receptor position by a continuous integral

∑Ni

n → Ni

2π

∫ 2π

0 dϕ:

lnL =
R∑
i

{
Ni∑
n

[
1

2
xi

ngcos
(
ϕi

n − φ
) + ln

(
C0

KD

)
xi

n

]

+
∫ 2π

0

Ni

2π
ln

(
Ki

D

C0exp
[ g

2 cos(ϕ − φ)
] + Ki

D

)
dϕ

}
.

(B4)

We define zi
1 = ∑Ni

n xi
ncosϕi

n and zi
2 = ∑Ni

n xi
nsinϕi

n, which
measure the spatial asymmetry in the occupancy of receptors
of type i. Z1 = ∑

i zi
1 and Z2 = ∑

i zi
2 measure the total spatial

asymmetry in receptor occupancy of the cell. In a shallow
exponential gradient, we can neglect terms O(g4) and higher
for an estimation of the gradient �g = (gx, gy). Then, the log-
likelihood function becomes

lnL =
R∑
i

[
gxzi

1 + gyzi
2

2
+ ln

C0

Ki
D

Ni∑
n

xi
n

− NC0 f iKi
D

(
g2

x + g2
y

)
16(C0 + Ki

D)2
+ ln

C0

C0 + Ki
D

]
. (B5)

(We note that past papers with similar derivations [12,20] have
not always written the last term in this log-likelihood, which
is an irrelevant constant). Taking the derivative with respect to
gx,y gives

∂

∂gx,y
lnL =

R∑
i

[
zi

1,2

2
− NC0 f iKi

Dgx,y

8(C0 + Ki
D)2

]
. (B6)

Because the log function is monotonic, we can set Eq. (B6)
equal to zero to find ĝx and ĝy, the parameters which for gx

and gy which maximize the likelihood function. Carrying out
this procedure we find

R∑
i

[
zi

1,2

2
− NC0 f iKi

D

8
(
C0 + Ki

D

)2 ĝx,y

]
= 0, (B7)

R∑
i

zi
1,2

2
=

R∑
i

[
NC0 f iKi

D

8
(
C0 + Ki

D

)2 ĝx,y

]
, (B8)

Z1,2

2
= NC0

8

R∑
i

[
f iKi

D(
C0 + Ki

D

)2 ĝx,y

]
, (B9)

which be solved for ĝx,y to determine estimators ĝx,y as

ĝx = 4Z1

NC0
∑R

i

[ f iKi
D

(C0+Ki
D )2

] and ĝy = 4Z2

NC0
∑R

i

[ f iKi
D

(C0+Ki
D )2

] .
(B10)

To determine the asymptotic variance on these estimators,
we will need to compute the second derivative of the log-
likelihood function. Applying an additional derivative to
Eq. (B6) gives

∂2

∂g2
x,y

lnL = −NC0

8

R∑
i

[
f iKi

D(
C0 + Ki

D

)2

]
,

∂2

∂gx∂gy
lnL = 0. (B11)

From the log-likelihood function, we can also determine the
Fisher information matrix, which controls the best possible
measurement that the cell can make of the uncertain g [5,38].
In this case it is diagonal, and its inverse gives the variances
of ĝx and ĝy in the limit of many samples. As a result, we have
expressions for the asymptotic variances for ĝx and ĝy,

1

σ 2
gx,y

=
〈(

∂lnL
∂gx,y

)2〉
= −

〈
∂2lnL
∂g2

x,y

〉

= NC0

8

R∑
i

[
f iKi

D(
C0 + Ki

D

)2

]
,

and so

σ 2
gx,y

= 8

NC0
∑R

i
f iKi

D

(C0+Ki
D )2

. (B12)

The important parameter is σ 2
g , which is just the sum of the

component variances

σ 2
g = σ 2

gx
+ σ 2

gx
= 16

NC0
∑R

i
f iKi

D

(C0+Ki
D )2

. (B13)

As the sample size becomes large, the distribution of ĝ1,2 con-
verges to a normal distribution with means gx,y and variance
σ 2

gx,gy
. This also implies that the mean values of Z1 and Z2 are

〈Z1,2〉 = 1

4
NC0

R∑
i

[
f iKi

D(
C0 + Ki

D

)2

]
gx,y. (B14)

APPENDIX C: NAIVE TIME AVERAGING

A cell may improve its estimation of the gradient by time
averaging. In the previous Appendix we determined an esti-
mator ĝ that is the best estimate of a cell’s gradient, given
a snapshot of its receptor information. Naively, a cell could
improve its accuracy by making a measurement over a time T
and determining the average of these estimates

ĝT = 1

T

∫ T

0
dt ĝ(t ). (C1)
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Then the variance of this new estimator will be reduced,

σ 2
g,T = 〈|ĝT |2〉 − 〈ĝT 〉2

= 1

T 2

∫ T

0
dt

∫ T

0
ds[〈ĝ(s) · ĝ(t )〉 − 〈ĝ〉2]. (C2)

To understand how time averaging improves the cell’s
sensing accuracy, we need to compute 〈ĝ(s) · ĝ(t )〉, the cor-
relation function of ĝ. This correlation function is related to
the correlation functions in the estimates of each component

of the gradient as

〈ĝ(s) · ĝ(t )〉 = 〈ĝx(s)ĝx(t )〉 + 〈ĝy(s)ĝy(t )〉. (C3)

And, by Eq. (B10), the correlation functions for gx,y can be
related to the correlation functions for Z1,2 as

〈ĝx,y(s)ĝx,y(t )〉 = 16〈Z1,2(s)Z1,2(t )〉
N2C2

0

(∑R
i

[ f iKi
D

(C0+Ki
D )2

])2 . (C4)

The correlation functions for Z1 can be written in terms of
the single receptor correlation function:

〈Z1(s)Z1(t )〉 =
〈(

R∑
i

[
Ni∑
n

xi
n(s)cos

(
ϕi

n

)])( R∑
i

[
Ni∑
n

xi
n(t )cos

(
ϕi

n

)])〉
(C5)

=
〈

R∑
i

R∑
j

Ni∑
n

N j∑
m

xi
n(s)cos

(
ϕi

n

)
x j

m(t )cos
(
ϕ j

m

)〉
(C6)

=
R∑
i

R∑
j

Ni∑
n

N j∑
m

〈
xi

n(s)x j
m(t )

〉
cos

(
ϕi

n

)
cos

(
ϕ j

m

)
. (C7)

The kinetics of receptor binding and unbinding with multiple
receptor types can be quite complicated [39,40], with ligands
potentially diffusing from one receptor to another. However, if
the binding and unbinding process is slow with respect to this
diffusion, i.e., binding is reaction limited, as is believed to be
the case in eukaryotic chemotaxis [20,39], it is appropriate to
think of the ligand-receptor binding having two states—one
bound and one with ligand in the bulk. Then, there are two
relevant rates, that of ligand binding to a receptor of type i ex-
posed to concentration C is ki

+C and the off rate is ki
−—which

results in an exponential single receptor correlation function

〈
xi

n(s)xi
n(t )

〉 = σ 2
xi

n
e−|t−s|/τ i

n + 〈
xi

n

〉2
(C8)

for receptor n of type i. This limit is also appropriate if all
ligand is internalized, as discussed by [24]. The parameter σ 2

xi
n

characterizes the fluctuations in the occupancy of the receptor,

and is given by

σ 2
xi

n
= Ci

nKi
D(

Ci
n + Ki

D

)2 , (C9)

the variance of a Bernoulli trial. τ i
n is the single receptor

correlation time

τ i
n = 1

/(
ki
− + Ci

nki
+
)

(C10)

in the reaction-limited case. (Generalization to other limits is
possible but not straightforward [40–42]). Because different
receptors are independent, the mean of their product is just
the product of their means〈

xi
n(s)x j

m(t )
〉 = 〈

xi
n(s)

〉〈
x j

m(t )
〉

if i �= j or n �= m. (C11)

Using Eq. (C8) for terms where i = j and n = m and
Eq. (C11) otherwise, we can expand the correlation function
of Z1 in Eq. (C7) as

〈Z1(s)Z1(t )〉 =
R∑
i

R∑
j

Ni∑
n

N j∑
m

〈
xi

n(s)x j
m(t )

〉
cos

(
ϕi

n

)
cos

(
ϕ j

m

)
(C12)

=
R∑
i

Ni∑
n

σ 2
xi

n
e−|t−s|/τ i

n cos2(ϕi
n

) +
R∑
i

R∑
j

Ni∑
n

N j∑
m

〈
xi

n(s)
〉〈

x j
m(t )

〉
cos

(
ϕi

n

)
cos

(
ϕ j

m

)
. (C13)

The second term in Eq. (C13) is 〈Z1〉2, which can be solved as

〈Z1〉2 = 1

16
N2C2

0

(
R∑
i

[
f iKi

D(
C0 + Ki

D

)2

])2

g2
x (C14)

by Eq. (B14). For the first term in Eq. (C13), taking the sum to an integral, gives

R∑
i

Ni∑
n

σ 2
xi

n
e−|t−s|/τ i

n cos2
(
ϕi

n

) = NC0

2

R∑
i

f i Ki
D(

C0 + Ki
D

)2 e−|t−s|/τ i + O(g2), (C15)
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where τ i = 1/(ki
− + C0ki

+), i.e., Eq. (C10) for a receptor in
the ambient concentration C0. Therefore, for shallow gradi-
ents, the correlation function for Z1 is

〈Z1(s)Z1(t )〉 = NC0
2

∑R
i f i Ki

D(
C0+Ki

D

)2 e−|t−s|/τ i

+ 1
16 N2C2

0

(∑R
i

[
f iKi

D(
C0+Ki

D

)2

])2

g2
x. (C16)

Using the relation in Eq. (C4), the correlation function of the
estimator ĝ1 can be found from Eq. (C16):

〈ĝ1(s)ĝ1(t )〉 =
8
∑R

i

[ f iKi
D

(C0+Ki
D )2 e−|t−s|/τ i]

NC0
(∑R

i
f iKi

D

(C0+Ki
D )2

)2
+ g2

x. (C17)

Similar expressions for the correlation functions of Z2 and ĝ2

can be derived as

〈Z2(s)Z2(t )〉 = NC0

2

R∑
i

f i Ki
D(

C0 + Ki
D

)2 e−|t−s|/τ i

+ 1

16
N2C2

0

(
R∑
i

[
f iKi

D(
C0 + Ki

D

)2

])2

g2
y (C18)

and

〈ĝ2(s)ĝ2(t )〉 =
8
∑R

i

[ f iKi
D

(C0+Ki
D )2 e−|t−s|/τ i]

NC0
(∑R

i
f iKi

D

(C0+Ki
D )2

)2 + g2
y. (C19)

Thus, the correlation in ĝ for shallow gradients is

〈ĝ(s) · ĝ(t )〉 =
16

∑R
i

[ f iKi
D

(C0+Ki
D )2 e−|t−s|/τ i]

NC0
(∑R

i
f iKi

D

(C0+Ki
D )2

)2 + g2. (C20)

This now gives us enough information to compute the time-
averaged variance,

σ 2
g,T = 1

T 2

∫ T

0
dt

∫ T

0
ds[〈ĝ(s) · ĝ(t )〉 − 〈ĝ〉2]. (C21)

Then, using the result in Eq. (C20), we have

σ 2
g,T =

16
∑R

i

[ f iKi
D

(C0+Ki
D )2

∫ T
0 dt

∫ T
0 dse−|t−s|/τ i]

T 2NC0
(∑R

i
f iKi

D

(C0+Ki
D )2

)2
(C22)

= 2σ 2
g

∑R
i

f iKi
D

(C0+Ki
D )2 τ

i[T − τ i(1 − e−T/τ i
)]

T 2
∑R

i
f iKi

D

(C0+Ki
D )2

. (C23)

In the limit where T 	 τ i for all τ i, Eq. (C23) becomes

σ 2
g,T = 2σ 2

g

∑R
i

f iKi
D

(C0+Ki
D )2 τ

i

T
∑R

i
f iKi

D

(C0+Ki
D )2

= 32
∑R

i f iβ iτ i

NT
(∑R

i f iβ i
)2 , (C24)

FIG. 6. Illustration of data used for maximum likelihood esti-
mate from entire receptor trajectories (ERT).

where the parameter β i = C0Ki
D/(C0 + Ki

D)2 reflects the ac-
curacy of measuring only using receptor i, as in the main text.

APPENDIX D: MAXIMUM LIKELIHOOD USING ENTIRE
RECEPTOR BINDING TRAJECTORY (ERT)

Instead of simply performing a naive average, a cell could
also improve its sensing of the gradient by determining an
estimate of the gradient from the history of its receptors over
the measurement time—when they are bound and unbound
(Fig. 6). We describe a time interval for receptor n of type i
as time series {t i

+;n, t i
−;n}, where particles bind at times t i

+;n,�

and unbind at times t i
−;n,�, where � indexes the binding and

unbinding events. Following [24], we compute the probability
for a time series of binding and unbinding events. Define a
function

f ∗;i
−;n

(
t i
−,�;n

) = pi
−,�;n

(
t i
−,�;n|t i

+,1;n, t i
−,1;n, . . . , t i

−,�−1;n, t i
+,�;n

)
,

which is the probability density for the event that receptor
n of type i experiences an unbinding at time t i

−,�;n given
the previous time series data {t i

+,1;n, t i
−,1;n, . . . , t i

−,�−1;n, t i
+,�;n}.

Here the time series has been written for a receptor that is
initially unbound, and the indexing of the time series in the
following equations will follow that notation. The procedure
is the same for a receptor that starts in the bound state. Define
the analogous function

f ∗;i
+;n

(
t i
+,�;n

) = pi
+,�;n

(
t i
+,�;n|t i

+,1;n, t i
−,1;n, . . . , t i

+,�−1;n, t i
−,�−1;n

)
for binding events. Then the probability of observing a time
series {t i

+;n, t i
−;n} is given by

p
({

t i
+;n, t i

−;n

}) =
ηi

b;n∏
�

f ∗;i
−;n

(
t i
−,�;n

) ηi
u;n∏
�′

f ∗;i
+;n

(
t i
+,�′;n

)
, (D1)

where ηi
b;n, η

i
u;n are the numbers of binding events and un-

binding events, respectively. If a cell measures for a time
interval T that is long compared to the relevant timescales
(i.e., T 	 1/ki

−, T 	 1/C0ki
+ for all receptor types), then

ηi
b;n ≈ ηi

u;n because the number of binding events can differ
by at most one from the number of unbinding events. In this
limit, the information about the gradient is dominated by the
observed time series, and not the initial snapshot state of the
receptors.

We assume that we are in the reaction-limited case, where
we can treat the rate of binding to a receptor of type i exposed
to concentration C as ki

+C and the off rate as ki
−—neglecting

rebinding. (Neglecting rebinding, as discussed in more detail
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by [24], is also the appropriate limit to find the fundamen-
tal bound to accuracy, as cells may prohibit rebinding by
degrading or internalizing ligand.) The functions f ∗;i

+;n(t i
−,�;n)

and f ∗;i
−;n(t i

−,�;n), with this simple Markovian kinetics, do not
depend on the whole time series, they only depend on the time
of previous unbinding/binding event:

f ∗;i
−;n

(
t i
−,�;n

) = ki
−e−ki

−(t i
−,�;n−t i

+,�−1;n ), (D2)

f ∗;i
+;n

(
t i
+,�;n

) = ki
+Ci

ne−ki
+Ci

n(t i
+,�;n−t i

−,�;n ). (D3)

These are probability density functions for exponential dis-
tributions with rates ki

− and ki
+Ci

n for unbinding and binding,
respectively. From these equations, we can determine the like-
lihood function for the gradient parameters gx and gy given
the observed time series {t i

+;n, t i
−;n} at receptors n of types i.

Because each receptor is independent, the likelihood function
is the product of the probability function in Eq. (D1):

L =
R∏
i

Ni∏
n

⎛
⎝ηi

b;n∏
�

ki
−e−ki

−(t i
−,�;n−t i

+,�−1;n )

ηi
u;n∏
�′

ki
+Ci

ne−ki
+Ci

n(t i
+,�;n−t i

−,�′ ;n )

⎞
⎠.

(D4)

Then, define the total time bound T i
b;n and the total time

unbound T i
u;n for receptor n of type i (the indexing in these

definitions assume the receptor starts unbound, but analogous

definitions can be written for a receptor that is bound at t = 0,
and in the limit of long times treated here, this assumption
does not matter):

T i
b;n =

ηi
b;n∑
�

t i
−,�;n − t i

+,�;n, (D5)

T i
u;n =

ηi
u;n∑
�

t i
+,�;n − t i

−,�−1;n. (D6)

With these definitions, the likelihood function in Eq. (D4)
becomes

L =
R∏
i

Ni∏
n

(ki
−)η

i
b;n
(
ki
+Ci

n

)ηi
u;n e−ki

−T i
b;n e−ki

+Ci
nT i

u;n .

The log-likelihood function is then

lnL =
R∑
i

Ni∑
n

[
ηi

b;nln(ki
−) + ηi

u;nln
(
ki
+Ci

n

)
− ki

−T i
b;n − ki

+Ci
nT i

u;n

]
. (D7)

Substituting the expression Ci
n = C0exp{ 1

2 [gxcos(φi
n) + gy

sin(φi
n)]} in Eq. (D7) gives

lnL =
R∑
i

Ni∑
n

{
ηi

b;nln(ki
−) + ηi

u;nln
(
ki
+C0

) + ηi
u;n

[1

2

[
gxcos

(
φi

n

) + gysin
(
φi

n

)]]

− ki
−T i

b;n − ki
+C0exp

[
1

2

[
gxcos

(
φi

n

) + gysin
(
φi

n

)]]
T i

u;n

}
. (D8)

For shallow gradients, we can approximate the log-likelihood function by expanding to second order in the magnitude of the
gradient. This results in

lnL ≈
R∑
i

Ni∑
n

{
ηi

b;nln(ki
−) + ηi

u;nln
(
ki
+C0

) + ηi
u;n

[
1

2

[
gxcos

(
φi

n

) + gysin
(
φi

n

)]] − ki
−T i

b;n

− ki
+C0

[
1 + 1

2

[
gxcos

(
φi

n

) + gysin
(
φi

n

)] + 1

8

[
gxcos

(
φi

n

) + gysin
(
φi

n

)]2
]
T i

u;n

}
. (D9)

Differentiating Eq. (D9) with respect to gx and gy, we get

∂

∂gx
lnL =

R∑
i

Ni∑
n

{
ηi

u;n

2
cos

(
φi

n

) − ki
+C0

[
1

2
cos

(
φi

n

) + 1

4

[
gxcos

(
φi

n

) + gysin
(
φi

n

)]
cos

(
φi

n

)]
T i

u;n

}
, (D10)

∂

∂gy
lnL =

R∑
i

Ni∑
n

{
ηi

u;n

2
sin

(
φi

n

) − ki
+C0

[
1

2
sin

(
φi

n

) + 1

4

[
gxcos

(
φi

n

) + gysin
(
φi

n

)]
sin

(
φi

n

)]
T i

u;n

}
. (D11)

Because gx and gy here do not depend on i and n, Eq. (D11) can be equated to zero and solved to find the maximum likelihood
estimator in terms of sums over functions of T i

u;n and φi
n. However, we have not found the precise form very useful. From the

derivatives of the log-likelihood function, we can compute the Fisher information matrix:

Ia,b = −
〈

∂2

∂a∂b
lnL

〉
. (D12)
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FIG. 7. Transition between all-A and all-B is preserved in a model variant where the number of receptors is allowed to vary. Parameters
are the same as Fig. 1 in the main paper, except for the penalty for increasing the number of receptors, which is Npenalty = 50Nbasal (see text).

Differentiating Eqs. (D10) and (D11) with respect to combinations of gx and gy gives the following matrix:

I =
[ ∑R

i

∑Ni

n
ki
+C0〈T i

u;n〉
4 cos2

(
φi

n

) ∑R
i

∑Ni

n
ki
+C0〈T i

u;n〉
4 cos

(
φi

n

)
sin

(
φi

n

)
∑R

i

∑Ni

n
ki
+C0〈T i

u;n〉
4 cos

(
φi

n

)
sin

(
φi

n

) ∑R
i

∑Ni

n
ki
+C0〈T i

u;n〉
4 sin2

(
φi

n

)
]
. (D13)

The expectation value 〈T i
u;n〉 can be found in terms of the measurement time T and the probability Pi

n that a receptor is occupied
[Eq. (B2)],

〈
T i

u;n

〉 = T
(
1 − Pi

n

) = T
Ki

d

Ci
n + Ki

d

. (D14)

By substituting Eq. (D14) into Eq. (D13) and taking the inner sums to an integral, we have the following expressions for each
matrix element:

R∑
i

Ni∑
n

ki
+C0

〈
T i

u;n

〉
4

cos2(φi
n

) = 1

4

R∑
i

Ni

2π

∫ 2π

0

ki
+C0T Ki

d{
C0exp

[ g
2 cos(ϕ − φ)

] + Ki
d

}cos2(φ)dφ

= N
R∑
i

f iki
−C0T

8
(
C0 + Ki

d

) + O(g2), (D15)

R∑
i

Ni∑
n

ki
+C0

〈
T i

u;n

〉
4

sin2
(
φi

n

) = 1

4

R∑
i

Ni

2π

∫ 2π

0

ki
+C0T Ki

d{
C0exp

[ g
2 cos(ϕ − φ)

] + Ki
d

} sin2(φ)dφ

= N
R∑
i

f iki
−C0T

8
(
C0 + Ki

d

) + O(g2), (D16)

R∑
i

Ni∑
n

ki
+C0

〈
T i

u;n

〉
4

cos
(
φi

n

)
sin

(
φi

n

) = 1

4

R∑
i

Ni

2π

∫ 2π

0

ki
+C0T Ki

d{
C0exp

[ g
2 cos(ϕ − φ)

] + Ki
d

}cos
(
φi

n

)
sin

(
φi

n

)
dφ = 0. (D17)

Therefore, the Fisher information matrix is diagonal, and in shallow gradients it is

I =
[

NC0T
∑R

i
f iki

−
8(C0+Ki

d ) 0

0 NC0T
∑R

i
f iki

−
8(C0+Ki

d )

]
. (D18)

We note that Eq. (D18) has only been calculated in the large-
T limit; in the limit of T → 0, we would expect the Fisher
information to limit to the estimate from a single snapshot.

For cells with a single receptor type, Eq. (D18) implies
that the asymptotic variances on gx and gy are 1/2 of their
value determined from time averaging—the same factor as in
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FIG. 8. Trade-offs in snapshot sensing. This figure complements Fig. 1 in the main text, showing how, with the same parameters, the
maximum CI depends on the uncertainty (second panel). The third and fourth panel show the increase in the mean CI due to hedging, i.e., the
change vs all-A or all-B (whichever of these is better). The largest absolute improvements in CI due to hedging are at intermediate uncertainties;
in the limit of truly high uncertainties, no configuration creates a large CI.

FIG. 9. Trade-offs in time-averaged sensing. This figure shows the maximum CI and increase in CI due to hedging for the time-average
case. This corresponds to Fig. 4 in the main paper, with the left panels redrawing that data. We show these values for (a) ρ = 1, (b), ρ = 10,
(c) ρ = 100, and (d) ρ = 1000. Note that for (a) and (d), the change in mean CI due to hedging is slightly negative—the optimal configuration
is all-A or all-B, but our optimization does not recover fA = 0, 1 with numerical precision.
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concentration sensing [24]. However, in the multiple receptor
type case, there is a more significant difference. The variance
in ĝ determined from Eq. (D18) is the sum of the inverses of
the diagonal elements

σ 2
g,T ;ERT = 16

NC0T
∑R

i
f iki−

(C0+Ki
d )

= 16

NC0
∑R

i
f iKi

d

(C0+Ki
d )2

T
τ i

. (D19)

As discussed in the main text, this shows that a slow receptor
correlation does not act as a limiting factor when the entire
receptor trajectory is considered.

APPENDIX E: HEDGING ALLOWING THE NUMBER
OF RECEPTORS TO CHANGE

Within the main text we have followed earlier work
in keeping the number of receptors on the cell fixed
[2–5,14,20,43]. However, it is possible that when cells explore
more complex environments, they should express different
numbers of receptors depending on the typical concentration
c∗ and the level of uncertainty σμ. We address this possibility
in Fig. 7.

Within the framework we have applied in this paper, ac-
curacy always increases with increasing N—there are more
measurements of the gradient, leading to increased accuracy
[see Eqs. (1), (3), and (4) in the main text]. If we allow the
number of receptors to freely vary, and choose the number
of receptors N and receptor fractions f , we would find that
the receptor number would increase without bound. This is
obviously unphysical. Cells are under many restraints in con-
trolling how many receptors they have, both in terms of the
energetic cost of synthesizing them, and in the opportunity
cost in taking up space on the cell surface.

In modeling cells with varying receptor number, we
chose to find the receptor configuration that maximized
CI × e−Nadded/Npenalty

, where Nadded is the number of receptors

expressed beyond the typical value Nbasal = 5 × 104, and
Npenalty = 50Nbasal. This choice ensured that cells could easily
express more than the basal level of receptors, but that ex-
pressing multiple orders of magnitude more receptors would
be implausible—consistent with the observed variation in re-
ceptor number on the membrane. We found that, though the
optimal receptor numbers varied depending on the environ-
ment (Fig. 7), the optimal receptor fractions closely agreed
with those found assuming a constant number of receptors
(Fig. 1).

Other choices for the penalty (e.g., optimizing CI +
αNadded) gave different optimal receptor numbers but pre-
served the optimal receptor fractions and the transition
between all-A, all-B, and the 50-50 mix. This suggests that
the receptor fractions and the transition are highly robust to
allowing the number of receptors to change. This may reflect
that the optimal fractions are only very weakly dependent on
the total number of receptors.

Experimental measurements on Dictyostelium do see that
receptors are internalized in response to saturating levels of
chemoattractant; however, this happens on a long timescale
(∼5–10 min) and results in a change of about 50% of the
receptors being internalized [29,30]. For Dictyostelium cells,
which travel about a body length in a minute, we would expect
that crawling cells would likely explore another concentra-
tion level c0 before the receptor numbers adapt. Adaptation
in eukaryotic chemotaxis is generally thought to occur on a
post-receptor level [33,44].

APPENDIX F: EXTENDED DATA ON HEDGING

Within the main paper we have presented the optimal
configuration of receptors as a function of the environment.
However, at large environmental uncertainties, the benefit
from hedging bets may not be as large. We show extended
data corresponding to Figs. 1 and 4 in the main paper in Figs. 8
and 9.
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