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Spin-projection for quantum computation: A low-depth approach to strong correlation
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Although spin is a core property in fermionic systems, its symmetry can be easily violated in a variational
simulation, especially when strong correlation plays a vital role therein. In this study, we will demonstrate that
the broken spin symmetry can be restored exactly in a quantum computer, with little overhead in circuits, while
delivering additional strong correlation energy with the desired spin quantum number. The proposed scheme
permits drastic reduction of a potentially large number of measurements required to ensure spin symmetry by
employing a superposition of only a few rotated quantum states. Our implementation is universal, simple, and,
most importantly, straightforwardly applicable to any Ansatz proposed to date.
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I. INTRODUCTION

Recent advancements in quantum devices have created
widespread interest in the development of efficient quantum
algorithms. The variational quantum eigensolver (VQE) is one
of the most pursued approaches in the noisy intermediate-
scale quantum (NISQ) era, where a trial state |ψ (θ)〉
parameterized by θ is variationally optimized to minimize
its Hamiltonian expectation value [1,2]. Among the several
candidates for |ψ〉, the unitary coupled cluster with singles
and doubles (UCCSD)[3–5] Ansatz has been extensively used
as an entangler in the preparation of a trial state from Hartree-
Fock (HF) |�〉, as shown by the following equation:

|ψUCCSD〉 = eT̂1+T̂2 |�〉, T̂k =
∑

ab··· ,i j···
t ab···
i j··· τ̂ ab···

i j··· . (1)

Here, t ab···
i j··· and τ̂ ab···

i j··· = (a†
aa†

b · · · a jai − H.c.) are real pa-
rameters and anti-Hermitian pairs of the kth excitation and
de-excitation operators in a spin-orbital basis. In this paper,
we use convention for the orbital indices: i, j for the occupied
orbitals of |�HF〉, a, b for the virtual orbitals, and p, q, r, s
for the general orbitals. To make the unitary exponential
operator programmable on a quantum device, Trotterization
is required in practice for noncommutative exponents, i.e.,
eT̂1+T̂2 ≈ (

∏
ai eta

i τ̂ a
i /μ

∏
abi j etab

i j τ̂ ab
i j /μ)

μ
[6–8]. However, apply-

ing UCCSD to strongly correlated systems often triggers large
t amplitudes to account for higher excitations, which, in turn,
necessitates a large Trotter number μ, thereby requiring a
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high-depth quantum circuit. Since Trotterization is nothing
but an artifact needed to respect the Ansatz equation (1),
many authors have studied the efficacy of a single Trotter
step (μ = 1) [6,9,10]. More flexible Ansätze have also been
proposed, where, in the product of exponential operators, the
same anti-Hermitian excitations may be repeated albeit with
different amplitudes [11,12].

To our knowledge, these recent studies on unitary coupled
cluster (UCC) and its variants have vastly neglected the spin
properties of the obtained solutions. Thus their discussion
remains somewhat ambiguous. We argue that it is extremely
important to monitor 〈Ŝ2〉 because, even with a spin-restricted
HF (RHF) reference, UCC amplitudes can spontaneously vi-
olate spin symmetry, thereby variationally lowering its energy
as opposed to traditional coupled cluster (CC). This often hap-
pens especially in strongly correlated systems, such as bond
dissociations, as will be demonstrated below. Such broken-
symmetry (BS) solutions are not physical for nonrelativistic
Hamiltonians. Moreover, the problems caused by spin con-
tamination are well known and documented [13–15]. This
so-called “symmetry dilemma” poses a challenge in quantum
computation. As will be shown, except for singles, using spin-
free generators cannot fix this problem because each term is
not necessarily commutative. Thus such spin-adapted (SA)
methods [16,17] still incur Trotterization for large t ab

i j . Some
of the previous studies on this matter have suggested the use
of a constrained approach [14,18–20], wherein the Hamil-
tonian is augmented with a penalty term λ(Ŝ2 − s(s + 1))

2
,

where λ → ∞ allows the elimination of spin contamination.
However, whereas 〈Ŝ2〉 can be evaluated with the same effort
as the energy by measuring O(n4) terms in the operator, the
measurement of the expectation value of Ŝ4 has a steep O(n8)
scaling, where n is the number of qubits (i.e., spin-orbitals),
compared with the O(n4) scaling of the bare Hamiltonian.
Ryabinkin et al. have attempted to avoid this prohibitive scal-
ing by constraining the average spin 〈Ŝ2〉 [20]. Nevertheless,
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the constrained approach does not seem particularly suited to
spin as the Trotterized UCCSD Ansatz is not flexible enough,
provoking the symmetry dilemma. The resulting energy can
become unreliable depending on the choice of λ, if the Ansatz
is not flexible enough to deal with strong correlation.

In this paper, we propose an alternative way of preserving
the spin of an arbitrary quantum state in a numerically exact,
but much less costly, manner, while simultaneously treating
strong correlation. To this end, we will let a quantum state
break its spin symmetry, which is subsequently recovered by
means of symmetry projection. By writing a spin-adapted
state as a superposition of rotated broken-symmetry states,
the quantum circuit we develop here fully appreciates the
advantage of VQE by replacing a potentially long quantum
circuit to describe entanglements with many measurements
with short circuits.

We organize the present work as follows. In Sec. II A, we
introduce spin-adapted UCCSD for quantum computing, and
in Sec. II B, we demonstrate the practical difficulty in the
spin-constrained approach to handle the Lagrange multiplier
λ. Section II C then introduces the spin-projection technique
for VQE as well as the required quantum circuit. Section III
provides some illustrative calculations that are challenging for
standard UCC. Finally, we draw our conclusions in Sec. IV.

II. THEORY

A. Spin-adapted UCCSD

To circumvent the variational collapse via spin-symmetry
breaking in UCCSD, one can introduce spin-adapted (SA)-
UCCSD, where the T̂1 and T̂2 operators are constructed with
unitary group generators Ê a

i = a†
aai + a†

āaī, with a bar indi-
cating the β spin (α without a bar). That is, we use the same
amplitude for spin-complement operators,

t a
i

(
Ê a

i − Ê i
a

) = t a
i

(
τ̂ a

i + τ̂ ā
ī

)
, (2a)

t ab
i j

(
Ê a

i Ê b
j − Ê j

b Ê i
a

) = t ab
i j

(
τ̂ ab

i j + τ̂ ab̄
i j̄ + τ̂ āb

ī j + τ̂ āb̄
ī j̄

)
, (2b)

or, equivalently, introduce the following restrictions [17]:

t a
i = t ā

ī , (3a)

t ab
i j = t āb̄

ī j̄ = t ab̄
i j̄ − t bā

i j̄ , (3b)

t ab̄
i j̄ = t āb

ī j . (3c)

We note that SA-UCCSD uses exactly the same circuit as
BS-UCCSD but with a lower number of amplitudes. Hence
SA-UCCSD does not seem advantageous in terms of circuit
depth.

It can be immediately realized that SA-UCCSD still cannot
in principle preserve the correct spin exactly without Trot-

terization. Applying, for instance, etab
i j τ̂ ab

i j etab
i j τ̂ ab̄

i j̄ etab
i j τ̂ āb

ī j etab
i j τ̂ āb̄

ī j̄ as a
low-order approximation to etab

i j (Ê a
i Ê b

j −H.c.) necessarily destroys
spin symmetry. This inexactness also holds for generalized
doubles, which uses general orbitals. Hence we assume that,
for example, the adaptive approach of Grimsley et al. [12]
can suffer from spin contamination (incidentally, we should
also point out that the operator set employed in Ref. [12] does
not constitute spin-free operators anyway, treating {τ̂ pq

rs , τ̂
p̄q̄
r̄s̄ }

FIG. 1. Spin-constrained UCCSD energy and its spin expectation
value 〈Ŝ2〉 of the singlet nitrogen molecule at a fixed bond length of
2.8 Å for different λ. The dashed lines indicate the values computed
with λ = 0.

and {τ̂ pq̄
rs̄ , τ̂

p̄q
r̄s } differently as opposed to the above equation).

The dilemma is that the extent of spin contamination varies
by size of amplitudes; so, for strongly correlated systems
where t amplitudes can be significantly large to describe
higher-excitation effects, one should pay attention to 〈Ŝ2〉, and
Trotterization may be eventually required to correctly obtain
the desired spin state.

B. Spin-constrained UCCSD

A constraint on the spin s can be applied to (Trotterized)
UCCSD by augmenting the energy functional with a penalty
term,

L[θ] = 〈ψUCCSD(θ)|Ĥ |ψUCCSD(θ)〉
+ λ〈ψUCCSD(θ)|(Ŝ2 − s(s + 1))2|ψUCCSD(θ)〉. (4)

By increasing λ, EUCCSD[θ] ≡ 〈ψUCCSD(θ)|Ĥ |ψUCCSD(θ)〉 be-
comes less spin contaminated. However, when |ψUCCSD〉 is
Trotterized, this becomes a very challenging task. Figure 1
shows the total energy of Trotterized UCCSD (μ = 1) and its
spin expectation value 〈Ŝ2〉 of the singlet nitrogen molecule at
a bond length of 2.8 Å by varying λ. We have used the STO-
6G basis set (approximating each Slater-type orbital with six
Gaussian-type orbitals) with 1s and 2s orbitals frozen. While λ

is small, the energy is almost unchanged, but so is 〈Ŝ2〉, suffer-
ing from spin contamination. However, requiring the latter to
be sufficiently precise with a large λ introduces an enormous
increase in the evaluated energy, which can be on the order of
tens of millihartrees. With such a significant energy change,
it is extremely difficult to determine the appropriate λ. This
test case clearly demonstrates that the Trotterized UCCSD
Ansatz is not flexible enough to capture both the correct spin
and strong correlation. To eliminate the strong dependency of
energy on λ, one is required to employ large μ, with which
we presume Eq. (4) would at least give the result of a similar
quality to SA-UCCSD.
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C. Spin-projection

1. VQE algorithm

The spin-projection operator P̂ (s) has proven itself useful
not only in removing spin contamination but also in capturing
strong correlations with its inherent high-excitation effects
when used with BS Ansätze [21–23]. This is manifested from
the well-known form due to Löwdin, which is written as
a product of Ŝ2 operators [24]. From this perspective, one
can expect that the role of exponential doubles etab

i j τ̂ ab
i j in the

spin-projected UCCSD, |ψ̃UCCSD〉 = P̂|ψUCCSD〉, should be to
mainly describe weak dynamical correlation, with moderately
small amplitudes t ab

i j . Hence the introduction of P̂ can lead
to tremendous error reduction in the Trotter approximation in
UCCSD. However, despite its formal simplicity and appealing
properties, the many-body nature of Löwdin’s P̂ makes it
intractable, even with a quantum computer, due to the need
to evaluate Ĥ Ŝ2, Ĥ Ŝ4, . . ., which results in an exponential
increase in the number of Pauli operators [19], hindering its
practical usage.

Hence we seek the possibility of a different representation
of P̂ that is particularly suitable for quantum computation. It
is known that a projector onto the Hilbert space of spin s and
spin magnetization m is written in the following integral form
[25–27]:

P̂ (s, m) = |s; m〉〈s; m| =
∫

�

d� Ds∗
mm(�) Û (�), (5)

where � = (α, β, γ ) are the Euler angles, Ds
mm(�) =

〈s; m|R̂(�)|s; m〉 is the Wigner D matrix, and Û (�) is known
as the spin-rotation operators

Û (�) = e−iαŜz e−iβŜy e−iγ Ŝz , (6)

whose resemblance to the Pauli-rotation operations is striking.
Since each of the exponents of Û (�) is an anti-Hermitian
one-body operator, the many-body effect of the Löwdin op-
erator has been translated to an (infinite) linear combination
of orbital rotations. Stated differently, a spin-projected state
|ψ̃ (θ)〉 = P̂|ψ (θ)〉, with |ψ (θ)〉 being a broken-symmetry
state, is understood as a superposition of broken-symmetry
nonorthogonal states Û (�)|ψ (θ)〉. For a spin-free observable
Ô, its expectation value is simplified as 〈P̂†ÔP̂〉 ≡ 〈ÔP̂〉. Be-
cause of the nonunitary operation of P̂ , |ψ〉 does not preserve
its norm upon projection. Therefore the energy expectation
value for projected VQE becomes

E (θ) = 〈ψ̃ (θ)|Ĥ |ψ̃ (θ)〉
〈ψ̃ (θ)|ψ̃ (θ)〉 =

∫
�

d� Ds∗
mm(�) 〈Ĥ Û (�)〉θ∫

�
d� Ds∗

mm(�) 〈Û (�)〉θ
, (7)

where 〈ÔÛ (�)〉θ ≡ 〈ψ (θ)|ÔÛ (�)|ψ (θ)〉.
It is noteworthy that |ψ〉 can be any quantum state. If |ψ〉 is

an eigenfunction of Ŝz with an eigenvalue of m such as UCC,
one may a priori integrate out α and γ and use the operator P̂
instead of P̂ ,

P̂ ≈
Ng∑
g

wgÛg, (8)

where we have introduced the Gauss-Legendre quadrature us-
ing the Ng sampling points {0 � βg � π : g = 1, . . . , Ng} for

rotations Ûg = e−iβgŜy along with accordingly defined weights
wg. With this form, one typically requires only a few grid
points to achieve 〈Ŝ2〉 = s(s + 1) that is accurate to several
decimal points, and the convergence is exponentially fast
[26,28]. To be precise, in this paper, we propose to eval-
uate 〈ÔÛg〉θ for UCC with a quantum computer and then
use a classical adder to evaluate E , instead of constructing a
symmetry-projected Ansatz.

With a classical computer, the cost of evaluating 〈ÔÛg〉θ
scales exponentially if |ψ (θ)〉 is an exponential Ansatz, such
as coupled cluster [29–32], since the orbital rotations Ûg are
still many-body operators that include de-excitations. On the
other hand, with a quantum computer, it is reduced to a poly-
nomial cost by the Hadamard test with a Ûg gate controlled by
an ancilla qubit |qanc〉 (see Appendix A) [33–36].

2. Quantum circui

Now, we consider an efficient circuit that is optimal for
the controlled-Ug gate. We start by writing Ŝy in the second
quantization as a linear combination of imaginary spin-flip
excitations,

Ŝy = 1

2i

∑
pq

Spq̄τ̂
p
q̄ , (9)

where Spq̄ = 〈φp|φq̄〉 is the overlap between the spatial or-
bitals of α and β spins. It is important to note that although
almost all spin-projection methods are based on a broken-
symmetry basis of spin-unrestricted HF (UHF), their orbital
set is spatially nonorthogonal, i.e., −1 � Spq̄ � 1 [15,21].
While the Trotterization can be circumvented for singles [37],
the implementation with UHF can add a nonnegligible amount
of CNOT gates, which result in an overhead to a quantum
circuit. We wish to minimize this.

In contrast, a quantum circuit for the controlled-Ug gate can
be made substantially simpler in an RHF orbital basis, since
Spq̄ ≡ δpq. This gives rise to no Trotter error since the compo-
nents are each commutative with one another. Therefore

Ûg =
n/2∏

p

e
βg
2 τ̂

p̄
p . (10)

It can be shown that not only is the number of gates reduced
but also the controlled-Ug gate with Eq. (10) can be effi-
ciently implemented with the Jordan-Wigner transformation.
Suppose spin-orbitals are mapped onto qubits with spins al-
ternating as · · ·φp−1φ p̄−1φpφ p̄ · · · . Then, we have, in an RHF
orbital basis,

βg

2
τ̂ p̄

p = iβg

4

(
σ x

p̄σ y
p − σ

y
p̄σ

x
p

)
, (11)

which does not entail a sequence of nearest-neighbor CNOT

gates that would be needed for a product of σ z between
p and q̄ to ensure the anticommutation relation of Fermion
operators [6,8]. Thus the controlled-Ug gate has a nice block

structure with local (controlled) spin flips e
βg
2 τ̂

p̄
p (Fig. 2). A

quantum circuit that performs a local spin flip is given in
Fig. 3, along with a controlled-Rz gate decomposed to two Rz

and CNOT gates to facilitate actual implementations. With this
circuit, the overall overhead introduced by the controlled-Ug
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FIG. 2. The block structure of the controlled-Ug circuit in spin-
restricted orbital basis.

gate is negligible, with the number of additional CNOT gates
being only 4n. Therefore the large number of measurements
required for the purposes of preserving spin symmetry in
both the constrained approach and Löwdin’s spin-projection
scheme can be completely avoided with our scheme, which
needs only O(Ngn4) measurements.

Implementing e−iαŜz is straightforward independent of the
basis, thanks to the diagonal nature of Ŝz. A full quantum
circuit for Û (�) is also available in Appendix B.

3. Broken-symmetry Ansatz

While the foregoing discussion holds true with regard
to the use of an RHF orbital basis, spin-projection can
be even more beneficial if combined with physically mo-
tivated broken-symmetry Ansätze [38,39]. One could use
BS-UCCSD for this purpose, but here we describe a general
procedure to deliberately break spin symmetry by applying
spin-dependent orbital rotations to a quantum state |ψ〉 in a
way similar to Ûg. To complete this task, we conveniently
write the orbital rotation operator K̂ defined as a product
of spin-dependent Givens rotations {eκ

p
q τ̂

p
q , eκ

p̄
q̄ τ̂

p̄
q̄ }. This proce-

dure has been used to generate arbitrary Slater determinants
[37,40]. Applying K̂ to RHF generates any UHF state repre-
sented by the RHF orbitals. This means that the projected HF
(PHF) can be simply given by

|ψ̃PHF〉 = P̂K̂|�RHF〉. (12)

It is worth noting that the orbital basis is still that of RHF,
whereas UHF is expressed by a linear combination of excited
determinants from |�RHF〉—the Thouless theorem [41]. We
can extend this scheme to any other VQE Ansatz including
UCC without loss of generality [42–45]. For UCCSD, how-
ever, T̂1 and K̂ play similar roles and are considered largely
redundant. Therefore, in our study, we omit T̂1 and consider
UCC with double excitations (UCCD) combined with K̂ and
spin-projection:

|ψ̃PUCCD〉 = P̂K̂eT̂2 |�RHF〉, (13)

where both the κ and t amplitudes are fully optimized. We call
this scheme projected UCCD (PUCCD). Note that the orbital-
optimization effect is encoded in K̂ . This way, the amplitudes
in T̂2 are expected to be small, and higher-excitation effects
needed for strong correlation are now shifted to the orbital
rotation followed by spin-projection. Accordingly, in many
cases, eT̂2 in Eq. (13) is well approximated by μ = 1, which is
referred to as the disentangled PUCCD (dPUCCD), following
the work of Evangelista et al. [9].

HF and UCC are both invariant with respect to orbital
rotations within occupied and virtual spaces [46]. Applying
spin-projection does not change this property [31]. Therefore
it is enough to take into account only the occupied-virtual or-
bital rotations with {κa

i , κ ā
ī }. However, introducing the Trotter

approximation in eT̂2 of Eq. (13) no longer guarantees the
said invariance. Nevertheless, our experiences indicate that
occupied-occupied and virtual-virtual rotations are very much
redundant even for dPUCCD, considering that their energy
derivatives were found to be numerically zero. Thus they will
not be taken into consideration below.

III. ILLUSTRATIVE CALCULATIONS

We have used PYSCF [47] to generate molecular integrals,
OPENFERMION [48] to perform Jordan-Wigner transforma-
tion of Ĥ and Ŝ2, and QULACS [49] to construct quantum
circuits for simulation on a classical computer. For optimiza-
tion, the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method was used [50]. Ng required for the nu-

FIG. 3. Quantum circuits for (a) the spin-flip operation by angle βg and (b) controlled Rz. H and Y = Rx (−π/2) transform a qubit to the
σ x and σ y basis, respectively.
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FIG. 4. Energy error from FCI in the dissociation of N2. The
lower panel shows 〈Ŝ2〉 of UHF and BS-UCCSD.

merically exact projection varies depending on the degree of
spin contamination; we have used Ng = 2 for N2 and H2O
and Ng = 3 for O, which are found to be sufficient for the
〈Ŝ2〉 values to be accurate to at least 10−10. The exponential
operators in Trotterization are applied in the following order:
abi j → ābī j → āb̄ī j̄ → ai → āī, where, in each spin block,
the leftmost virtual label is the outermost loop while the
rightmost occupied label is the innermost loop. The Trotter
approximation is considered as having been converged with
μ = 10.

We first assess the improvement that spin-projection has to
offer by computing the potential-energy curves of the triple-
bond dissociation of the singlet N2 (m = 0). We have used
the STO-6G basis set and frozen 1s and 2s core electrons
of atoms, resulting in an active space of (6e, 6o). Plotted in
Fig. 4 are the energy errors from full configuration interaction
(FCI) (kcal/mol) for N2 in a logarithmic scale. The shaded
area corresponds to the “chemical accuracy,” i.e., errors less
than 1 kcal/mol. In the lower panel, 〈Ŝ2〉 of UHF and BS-
UCCSD are likewise depicted. All other methods numerically
preserve the correct singlet value 〈Ŝ2〉 = 0 and are, therefore,
not shown. The energy of BS-UCCSD starts deviating from
that of SA-UCCSD by breaking the symmetry restriction in
amplitudes. It is found that this so-called Coulson-Fischer
point happens at a much longer distance for UCCSD (2.0 Å)
compared with that of HF (1.2 Å). This is because strong
correlation can be partially captured via exponential exci-
tations in UCCSD, thereby mitigating spin contamination.
However, the Ansatz only accounts for disconnected higher
excitations, e.g., T̂ 2

2 , resulting in larger errors. On the other
hand, it is worth noting that dPUCCD delivers essentially
exact results for these systems while guaranteeing the singlet
spin; the largest deviation is 0.007 kcal/mol at 1.5 Å. The
error is at least one order of magnitude smaller than those of
SA-UCCSD and BS-UCCSD.

Both in PHF and PUCCD, higher excitations are treated
via spin-projection and orbital rotations K̂ , which do not need

FIG. 5. Trotter error in energy � of disentangled UCC from μ =
10 results for N2.

Trotterization. Hence it is expected that the doubles ampli-
tudes of PUCCD are small, thereby allowing for a small
Trotter error in dPUCCD compared with those of the disen-
tangled UCCSD (dUCCSD). This is demonstrated in Fig. 5,
where we have plotted the Trotter error � of each disentangled
scheme in the dissociation of N2. In Table I, we tabulated the
norms of singles (either |t| or |κ|) and doubles amplitudes
obtained at RN−N = 2.2 Å with μ = 10 as well as the dis-
tances from those of μ = 1, as another indicator of the Trotter
error. As can be clearly seen, PUCCD gives the minimal
T2 amplitudes, thereby allowing for an efficient treatment of
strong correlation. In contrast, the converged T1 amplitudes of
BS-UCCSD are considerable and require a reoptimization of
amplitudes for different μ. This indicates that BS-dUCCSD
is a whole different Ansatz from BS-UCCSD, even for a large
bond length, RN−N = 2.8 Å, where both yield almost identical
energies, as is evident from the totally different 〈Ŝ2〉, i.e., 1.37
for μ = 1 and 2.55 for μ = 10.

The above test system employs the minimal basis and
admittedly neglects most of the dynamical correlation effect.
To show that the accuracy of PUCCD is not a fortuitous
artifact resulting from the chosen basis, we have also carried
out the calculations for the symmetric bond dissociation of
H2O with a fixed angle of 104.5◦ using 6-31G and STO-6G
for oxygen and hydrogen, respectively. Table II summarizes
the energy errors of each disentangled method from FCI,
where the numbers in parentheses imply those obtained with
the STO-6G basis for all the atoms for comparison. The
presence of nonnegligible dynamical correlation leads to sub-
stantial errors if strong correlation is not treated appropriately.
This is the case for SA- and BS-UCCSD, while PUCCD still
continues to achieve chemical accuracy.

Lastly, we computed the singlet-triplet energy gap of the
oxygen atom to show that neglecting spin symmetry can often

TABLE I. Norms of singles and doubles amplitudes for N2 at
2.2 Å. The numbers in parentheses indicate the distance from the
converged amplitudes of disentangled UCC (μ = 1).

SA-UCCSD BS-UCCSD PUCCD

Singles 9 × 10−6 (1 × 10−5) 1.50 (0.14) 1.75 (3 × 10−5)
Doubles 1.13 (0.072) 0.44 (0.11) 0.10 (6 × 10−5)
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TABLE II. Energy errors from FCI (kcal/mol) for disentangled
methods using the mixed basis (6-31G and STO-6G for the oxygen
and hydrogen atoms, respectively). Numbers in parentheses are the
errors obtained with the minimal STO-6G basis.

RO−H (Å) SA-UCCSD BS-UCCSD PUCCD

1.0 0.4 (0.0) 0.4 (0.0) 0.1 (0.0)
1.5 2.2 (0.2) 2.2 (0.1) 0.3 (0.0)
2.0 4.9 (0.7) 4.9 (0.7) 0.3 (0.0)
2.5 8.4 (3.4) 1.9 (0.4) 0.1 (0.0)

result in a catastrophic error. The basis set used is 6-31G with
1s frozen core, constituting another example with a balanced
mixture of dynamical and strong correlation effects. Table III
lists the singlet and triplet energies in hartrees, computed with
m = 0 and 2, respectively, along with their difference �ST in
kcal/mol. It is readily clear that both SA- and BS-UCCSD
schemes failed to describe strong correlations of the open-
shell singlet oxygen. BS-UCCSD with m = 0 spontaneously
breaks spin and ends up in mainly the low-spin triplet state
(〈Ŝ2〉 = 1.96). Spin-projection in dPUCCD enables one to
capture strong correlation in the singlet oxygen. As a result,
its �ST is found to be in excellent agreement with FCI.

IV. CONCLUSIONS

In this paper, we have shown that numerically exact spin-
projection can be made feasible within the framework of
VQE. It should be emphasized that spin-projection attains re-
markable accuracy in exchange for 1 ancilla qubit, albeit with
little overhead in circuit depth (additional 4n CNOT gates). We
note that one disadvantage of our scheme is the increase in
the number of measurements, but it grows only linearly with
Ng as opposed to standard nonorthogonal methods that show a
quadratic scaling [51]. Also, the scheme can potentially suffer
from errors when a projected state is not suitable for dealing
with strong correlation in the system [52,53]. Nonetheless,
we should once again stress that the spin-projection operator
lends itself straightforwardly to any Ansatz in order to guar-
antee the desired spin symmetry and therefore is a promising,
versatile tool.
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TABLE III. Singlet and triplet energies (hartrees) and the spin
gap (kcal/mol) of the oxygen atom.

FCI SA-UCCSD BS-UCCSD dPUCCD

Singlet −74.756 28 −74.748 53 −74.826 40 −74.756 07
Triplet −74.838 56 −74.838 14 −74.838 14 −74.838 17
�ST 51.6 56.2 7.37 51.5

FIG. 6. Hadamard test to obtain the real (b = 0) and imaginary
(b = 1) parts of expectation value 〈ψ |Ûg|ψ〉.

APPENDIX A: MATRIX ELEMENTS

It is now well known that the expectation value of a unitary
operator can be evaluated by the Hadamard test. Here, we
review the basic idea and derive the Hamiltonian and overlap
matrix elements between |ψ〉 and Ûg|ψ〉. Figure 6 presents a
quantum circuit to generate an entangled state

|+g〉 = 1√
2

(|0〉 ⊗ |ψ〉 + |1〉 ⊗ Ûg|ψ〉), (A1)

where the first qubit is an ancilla qubit |qanc〉 initially set to
|0〉 and the remaining n qubits constitute the system register
to represent a broken-symmetry wave function Ansatz |ψ〉.
Applying a Hadamard gate to the ancilla qubit further gives

Hanc|+g〉 = 1
2 [|0〉 ⊗ (|ψ〉 + Ûg|ψ〉) + |1〉 ⊗ (|ψ〉 − Ûg|ψ〉)].

(A2)

Now one may perform a Z measurement for the ancilla qubit,
whose expectation value is easily shown to be Re〈ψ |Ûg|ψ〉:
the probabilities of the ancilla qubit found to be |0〉 and
|1〉 are p0 = ‖ 1

2 (|ψ〉 + Ûg|ψ〉)‖2 = 1
2 (1 + Re〈ψ |Ûg|ψ〉) and

(similarly) p1 = 1
2 (1 − Re〈ψ |Ûg|ψ〉), respectively, and there-

fore 〈
σ̂ z

anc

〉 = (+1)p0 + (−1)p1

= Re〈ψ |Ûg|ψ〉. (A3)

The postmeasurement state on the system register |ψpost〉
becomes, depending on the result of the ancilla qubit mea-
surement,

∣∣ψ (0)
post

〉 = |ψ〉+Ûg|ψ〉√
2(1+Re〈ψ |Ûg|ψ〉)

(|qanc〉 = |0〉),

∣∣ψ (1)
post

〉 = |ψ〉−Ûg|ψ〉√
2(1−Re〈ψ |Ûg|ψ〉)

(|qanc〉 = |1〉).
(A4)

If one simply measures the expectation value of Ĥ with the
postmeasurement state, one finds

〈
ψ

(0)
post

∣∣Ĥ ∣∣ψ (0)
post

〉

= 〈ψ |Ĥ |ψ〉 + 〈ψ |Û †
g ĤÛg|ψ〉 + 2Re〈ψ |ĤÛg|ψ〉

2(1 + Re〈ψ |Ûg|ψ〉)
, (A5)

〈
ψ

(1)
post

∣∣Ĥ ∣∣ψ (1)
post

〉

= 〈ψ |Ĥ |ψ〉 + 〈ψ |Û †
g ĤÛg|ψ〉 − 2Re〈ψ |ĤÛg|ψ〉

2(1 − Re〈ψ |Ûg|ψ〉)
. (A6)
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FIG. 7. Quantum circuit for Û (α, β, γ ).

Hence 〈ĤÛg〉 can be neatly evaluated by appropriately taking
into account the measurement of σ̂ z

anc (+1 with probability p0

or −1 with probability p1),〈
σ̂ z

anc ⊗ Ĥ
〉 = (+1)p0

〈
ψ

(0)
post

∣∣Ĥ ∣∣ψ (0)
post

〉 + (−1)p1
〈
ψ

(1)
post

∣∣Ĥ ∣∣ψ (1)
post

〉
= Re〈ψ |ĤÛg|ψ〉. (A7)

The above scheme only permits for the evaluation of
the real parts of expectation values. The imaginary parts
Im〈ψ |ĤÛg|ψ〉 and Im〈ψ |Ûg|ψ〉 can be obtained by acting

the phase operator S = (1 0
0 i ) to the ancilla qubit after the

controlled-Ug gate in the Hadamard test (see Fig. 6). Having
said that, for the simplified spin-projection scheme as given in
the main text, all the quantities come out real as long as the
molecular orbitals are real.

APPENDIX B: QUANTUM CIRCUIT FOR THE FULL SPIN
ROTATION

For the full spin-projection for a spin-generalized quantum
state (both Ŝ2 and Ŝz symmetries are broken), one has to
implement Û (�) [Eq. (6)] instead of the simplified rotator Ûg.
This necessitates a quantum circuit that performs e−iθ Ŝz for
θ = α, γ , where

Ŝz = 1

2

∑
p

(a†
pap − a†

p̄ap̄). (B1)

The diagonal nature of Ŝz makes it particularly easy to
implement its exponential form on a quantum computer.
Namely,

e−iθ Ŝz = e−i θ
2

∑
p (a†

pap−a†
p̄ap̄)

≡
∏

p

e−i θ
2 a†

papei θ
2 a†

p̄ap̄

=
∏

p

e−i θ
4 (Ip−σ z

p )ei θ
4 (Ip̄−σ z

p̄ )

=
∏

p

ei θ
4 σ z

p e−i θ
4 σ z

p̄ . (B2)

This means that e−iθ Ŝz only requires single-qubit op-
erations, where all qubits that represent up-spin- and
down-spin-orbitals are rotated by Rz(− θ

2 ) and Rz( θ
2 ), re-

spectively. Therefore a quantum circuit that performs the
full spin-projection with Û (α, β, γ ) simply becomes as
follows:

(1) Perform single-qubit operations Rz(− γ

2 ) and Rz( γ

2 ) for
up-spin and down-spin qubits.

(2) Perform local spin flips ei β

4 (σ y
pσ x

p̄ −σ x
p σ

y
p̄ ).

(3) Again, perform single-qubit operations Rz(−α
2 ) and

Rz( α
2 ) for up-spin and down-spin qubits.

We show our quantum circuit for Û (α, β, γ ) in Fig. 7.
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