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Controlling particle currents with evaporation and resetting from an interval

Gennaro Tucci ,1 Andrea Gambassi ,1 Shamik Gupta ,2,3 and Édgar Roldán 3,*

1SISSA, International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
2Department of Physics, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah 711202, India

3ICTP, Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

(Received 22 May 2020; accepted 24 September 2020; published 27 October 2020)

We investigate the Brownian diffusion of particles in one spatial dimension and in the presence of finite
regions within which particles can either evaporate or be reset to a given location. For open boundary conditions,
we highlight the appearance of a Brownian yet non-Gaussian diffusion: At long times, the particle distribution is
non-Gaussian but its variance grows linearly in time. Moreover, we show that the effective diffusion coefficient
of the particles in such systems is bounded from below by 1 − 2/π times their bare diffusion coefficient. For
periodic boundary conditions, i.e., for diffusion on a ring with resetting, we demonstrate a “gauge invariance” of
the spatial particle distribution for different choices of the resetting probability currents, in both stationary and
nonstationary regimes. Finally, we apply our findings to a stochastic biophysical model for the motion of RNA
polymerases during transcriptional pauses, deriving analytically the distribution of the length of cleaved RNA
transcripts and the efficiency of RNA cleavage in backtrack recovery.
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I. INTRODUCTION

Stochastic processes whereby incremental changes are
interspersed with sudden and large changes occurring at un-
predictable times are common in nature [1–14]. Examples
range from epidemics (e.g., Covid-19) to financial markets
(e.g., the 2008 crisis) and biology (e.g., the catastrophic
events of sudden shrinkage during the polymerization of
a microtubule [1,3,4], the flashing ratchet mechanism of
molecular motors [2], etc.). The recent development of the
theoretical “stochastic resetting” framework aims to describe
features of such stochastic processes. A paradigmatic model
for these phenomena is provided by a Brownian particle
diffusing and also resetting instantaneously its position to
a fixed value at exponentially distributed random time in-
tervals [5]. The concept of stochastic resetting has been
invoked in many different fields such as first-passage prop-
erties [6,15], continuous-time random walks [16], foraging
[7,17–19], reaction-diffusion models [8], fluctuating inter-
faces [9,20], exclusion processes [21], phase transitions [10],
large deviations [22], RNA transcription [11,23], quantum dy-
namics [24], cellular sensing [12], population dynamics [25],
stochastic thermodynamics [26], and active matter [27]; see
Ref. [28] for a recent review.

One of the main physical consequences of resetting is its
ability to induce a stationary state in systems that otherwise
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would not allow such a state to exist. A paradigmatic example
is the Brownian motion, where the addition of spatially ho-
mogeneous resetting, in any spatial dimensionality d [5,29],
ensures a stationary state even in the absence of confining
boundary conditions and/or potentials. In the recent past, a
variety of situations have been studied within this framework,
e.g., Brownian particles resetting to a generic spatial distri-
bution, under the action of an external potential [30], and for
various choices of the resetting time probability distribution
[31]. Most of these studies consider resetting phenomena with
open boundary conditions. However, except for rare instances
such as Refs. [32,33], not much is known about systems that
experience stochastic resetting in a closed geometry, such as
periodic boundary conditions in one dimension. In particu-
lar, how do topological constraints in d = 1 (e.g., boundary
conditions) affect the stationary and dynamical properties of
diffusions with stochastic resetting?

In this work, we study minimal stochastic models of
Brownian particles evaporating or resetting from a finite
one-dimensional region with either open, periodic, and/or
absorbing boundary conditions. As the first case, we consider
the tunneling of Brownian particles across an interval with a
constant evaporation rate. The solution of the Brownian tun-
neling model allows us to tackle the solution for the problem
with resetting [30]. In the context of stochastic resetting, we
interpret evaporation as a resetting to an absorbing point. In
the case of resetting with open boundary conditions, we high-
light the appearance of Brownian yet non-Gaussian diffusion
[34–37] at large times, meaning that although the distribution
of the particle position is non-Gaussian, its mean-squared
displacement grows linearly in time at leading order.

Our key findings concern the transport properties of
diffusion processes with resetting and periodic boundary con-
ditions. For these systems, a stationary state exists and we
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can define a probability current with nonvanishing stationary
value. We reveal that the actual value of this current depends
genuinely on the local direction of resetting. For example,
particles on a ring can reset in clockwise or counterclockwise
direction and although this results in the same (stationary)
distribution, it leads to a drastic change in the behavior of
the (stationary) current. Accordingly, we show that currents
provide useful and insightful information about the underlying
nonequilibrium resetting process, in addition to that conveyed
by the probability distribution. Drawing an analogy with field
theory, we dub this result “resetting gauge invariance”: A
whole class of dynamics, all with very different behavior of
the current, results in the same distribution, both in stationary
and nonstationary regimes.

We illustrate our findings by analyzing several prototypi-
cal stochastic models, using as building blocks exact results
that we derive by extending the path-integral formalism for
resetting [30], first for models of diffusion with resetting or
evaporation occurring with a fixed rate only within a small
spatial region. We also show that our approach, besides being
of interest for physics, applies usefully to a stochastic model
of the motion of a biological system, i.e., RNA polymerases
during transcriptional pauses, shedding light on available ex-
perimental results [11,23].

The rest of the paper is organized as follows. In Sec. II,
we address the problem of the Brownian particle in d = 1
controlled homogeneously in space on a finite interval by
resetting or evaporation. In Sec. III, we study the average and
variance of the particle dynamics described in II, focusing on
their behavior at long times. In Sec. IV, we discuss particle
currents due to diffusion and resetting in one-dimensional
systems with periodic boundary conditions. In Sec. V, we ap-
ply our results to the fluctuating motion of RNA polymerases
along a DNA template during transcriptional pauses. We con-
clude the paper with a discussion in Sec. VI. We provide the
exact analytical calculations and further numerical results in
the Appendixes.

II. CONTROLLING DIFFUSION

We consider a single Brownian particle in d = 1, with dif-
fusion coefficient D and initial position x(t = 0) = x0. Within
the time interval [t, t + dt] with t � 0, the particle at position
x(t ) can either diffuse or be controlled by an external agent
with a probability rc(x(t ))dt that depends on its current loca-
tion. We consider two types of control mechanisms, labeled
by the parameter σc: (i) evaporation (σc = 0), which anni-
hilates the particle, and (ii) resetting (σc = 1), which moves
instantaneously the particle to a prescribed position xr that
may be different from x0. The conditional probability density
Pt (x) ≡ P(x, t |x0, 0) of the particle position x at time t obeys
a Fokker-Planck equation with source terms

∂t Pt (x) − D∂2
x Pt (x) = −rc(x)Pt (x) + σcRt δ(x − xr ), (1)

where Rt ≡ ∫
dy rc(y)Pt (y) is the fraction of particles that

are controlled at time t . In Eq. (1), the second term on the
left-hand side accounts for diffusion of the particle and the
source terms on the right-hand side account for the probability
loss due to control and the probability gain when resetting is
applied. In this work, we consider a control exerted on the

particle at a rate r only when it is located within the interval
[−a, a], i.e.,

rc(x) = r θ (a − |x|), (2)

where θ is the Heaviside step function. In words, the control
is exerted on the particle at a rate r only when the particle is
located within the interval [−a, a]. This choice of the resetting
profile turns out to be more realistic for experimental realiza-
tions [13,14] with respect to the ideal, spatially homogeneous
case, which can be retrieved as a → ∞. We will discuss a
collection of transport phenomena described by Eqs. (1) and
(2), together with appropriate boundary conditions introduced
below.

Deriving exact statistics for the aforementioned class of
models by solving Eq. (1) is a difficult task. Here, we extend
and employ the recently introduced path-integral approach
to resetting [30], in order to tackle analytical calculations.
First, we evaluate the probability Pnc(x, t |x0, 0)dx to find
at time t a particle in [x, x + dx) that has experienced
no control in the past; Pnc satisfies Eq. (1) with σc = 0
and, hence, coincides with the probability density of a
diffusing particle with a space-dependent evaporation
rate rc(x). Furthermore, from Pnc, one can derive the
probability density for a particle to undergo a control,
evaporation or resetting, for the first time at time t ,
as Pres(t |x0) = ∫ +∞

−∞ dy rc(y) Pnc(y, t |x0, 0). The general
solution of Eq. (1) is given by P(x, t |x0, 0) = Pnc(x, t |x0, 0) +
σc
∫ t

0 dτ
∫

dy rc(y) P(y, t − τ |x0) Pnc (x, t |xr, t − τ ) [30],
where the first term on the right-hand side represents the
contribution of particles whose trajectories reach x at time t
without undergoing any control, while the second accounts
for particles that reset for the last time at the intermediate
time t − τ and then freely diffuse starting from xr (see
Appendix A). Below, we will use these relations to obtain
exact analytical expressions for a variety of cases with
resetting and evaporation.

Brownian tunneling. We first consider a minimal model—
which we call “Brownian tunneling”—given by a Brownian
particle moving in d = 1 and subject to the evaporation
rate in Eq. (2); see Fig. 1(a). Its Fokker-Planck equa-
tion (1) corresponds to a Schrödinger equation ih̄∂τ�τ (x) =
−(h̄2/2m)∂2

x �τ (x) + V (x)�τ (x), in imaginary time τ = −it ,
with effective mass m = h̄/2D and effective quantum bar-
rier potential V (x) = h̄ rc(x) [30]. Building on the analogy
with tunneling through a quantum barrier, we compute the
probability Ptun(t |x0) ≡ ∫∞

a dxPnc(x, t |x0) for a particle start-
ing at x0 < −a to be found at any point x > a at time
t , i.e., the probability for a Brownian particle to “tun-
nel” through the evaporation window. In particular, we
derive the analytical expression for the Laplace transform
P̃tun(s|x0) ≡ ∫∞

0 dt exp(−st )Ptun(t |x0) of the Brownian tun-
neling probability:

P̃tun(s|x0) = (ν/Dμ) exp ((a + x0)μ)

2μν cosh (2aν) + (μ2 + ν2) sinh (2aν)
, (3)

with μ ≡ √
s/D, ν ≡ √

(s + r)/D. Equation (3) suggests a
natural set of dimensionless quantities:

y ≡ x/a, yr ≡ xr/a, τr ≡ rt, ρ ≡ a
√

r/D. (4)
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FIG. 1. Diffusion with evaporation within a finite region (Brow-
nian tunneling). (a) Sketch of the model: A Brownian particle (gray
sphere) moves in one dimension from an initial position x0 with
diffusion coefficient D. The particle evaporates (light green arrows)
with rate r only from an interval [−a, a], i.e., with the evaporation
rate r(x) in Eq. (2) (green line). (b) Fraction of “tunneled” parti-
cles Ptun(t |x0) (multiplied by D) at time t that survived evaporation
by reaching the region x � a: results from numerical simulations
(symbols) and analytical calculations (solid lines). Here x0 = −3.2,
r = 25, D = 200 (green circles), 150 (red squares), 100 (blue di-
amonds), and a = 0.05 × √

D respectively. Simulations were done
using the Euler integration scheme with time step �t = 5 × 10−4

and N = 104 runs. The inset shows the collapse of the three curves
in dimensionless units.

In Fig. 1(b), we show the comparison between numeri-
cal simulations for Ptun and the numerical inverse Laplace
transform of Eq. (3). Upon rescaling variables, the rescaled
tunneling probability Ptun × D/a2 depends only on one pa-
rameter ρ and the variables τr and yr [Fig. 1(b) inset].
Furthermore, Eq. (3) provides information on the long-
time limit and moments of Ptun(t |x0) by considering the
series expansion of P̃tun(s|x0) for small s, for which we ob-
tain P̃tun(s|x0) = [

√
s r sinh (2ρ)]−1 + O(s0). The presence of

half-integer powers implies that the integer moments of the
tunneling probability diverge, due to the existence of many
trajectories that never cross the resetting region. In fact, for
large times and arbitrary x0, Ptun(t |x0) ∼ t−1/2.

III. MINIMAL DIFFUSIVITY FOR A RESETTING
INTERVAL

We now consider an extension of the preceding problem,
where a particle undergoing evaporation is instantaneously

FIG. 2. Diffusion with stochastic resetting from an interval.
(a) Sketch of the model: Diffusion of a Brownian particle (gray
sphere) with initial position x0, diffusion coefficient D, and resetting
at rate r from an interval to a resetting destination xr . (b) Effective
diffusion coefficient Deff = limt→∞ σ 2(t )/2t , with σ 2(t ) the variance
of the position, in units of the “bare” diffusion coefficient D, as a
function of normalized resetting point yr = xr/a. The simulations
(symbols) and the analytical expression in Eq. (7) (solid lines) cor-
respond to ρ � 1.12 realized with r = 2.5, a = 5, D = 50 (blue
diamonds and solid line) and ρ � 1.89 realized with r = 5, a = 5,
D = 35 (red squares and dashed line). The horizontal dotted line
indicates the theoretical lower bound predicted by Eq. (8). The sim-
ulations were done using Euler’s numerical integration scheme with
time step �t = 5 × 10−2, time duration t = 103, and N = 105 runs.
The error bars are given by the standard deviation.

reset to a given position xr ; see Fig. 2(a) for an illustration.
The dynamics of the probability density Pt (x) of the particle
position is described by Eqs. (1) and (2) with σc = 1, for
which we derive an analytical solution in the Laplace domain
(see Appendix B). We point out two main features of the
resulting distribution: the existence of a cusp at xr [5,29] at all
times and the absence of a stationary state due to the long-time
prevalence of diffusion over resetting. Motivated by this ob-
servation, we investigate the long-time behavior of the particle
distribution moments. In particular, we quantify the drift and
the amplitude of fluctuations via the mean position 〈x(t )〉 and
the variance σ 2(t ) ≡ 〈x2(t )〉 − 〈x(t )〉2. At short times, until
resetting kicks in, 〈x(t )〉 is constant as in Brownian diffusion.
At longer times, 〈x(t )〉 grows ∝ √

t as

〈x(t )〉 = sgn(yr )
√

4Dt/πφ(yr, ρ) + O(t0), (5)
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FIG. 3. Brownian yet non-Gaussian diffusion induced by reset-
ting. Probability density P(x, t |x0) for a Brownian particle to be at
position x at time t = 10 with D = 1, r = 1.0, a = 2.5, x0 = xr =
−5, for the model in Fig. 2(a): numerical simulations (symbols),
numerical inverse Laplace transform of Eq. (B7) (solid line), and
exact (Gaussian) distribution in the absence of resetting, i.e., r = 0
(dashed line). The gray shaded area highlights the interval where
resetting occurs. The numerical simulations were done using the
Euler numerical integration scheme with time step �t = 0.05 and
N = 105 runs.

where

φ(yr, ρ) ≡
{

tanh (ρ) tanh (ρ)+ρ(|yr |−1)
ρ tanh (ρ)(|yr |−1)+1 for |yr | > 1,

tanh (ρ) tanh (|yr |ρ) for |yr | < 1,
(6)

with yr and ρ given by Eq. (4). Notably, a similar drift emerges
also without resetting by introducing a reflecting boundary
(RB) at x = 0. In this case, the average particle position at
long times is 〈x(t )〉RB = sgn(x0)

√
4Dt/π + O(t0), where the

initial position x0 of the particle plays formally the role of xr

in Eq. (5). Because |φ(yr, ρ)| < 1, resetting acts as a weaker
reflecting boundary, whose efficiency depends on ρ and yr .
Because of the recurrence property of one-dimensional Brow-
nian motion, even for |yr | � 1, a fraction of particles reach the
resetting region and is pushed back to xr : the larger xr is, the
longer the time the particles spend in the half plane containing
xr is. Accordingly, the maximum value φ(yr, ρ) = 1, corre-
sponding to a reflecting boundary, is attained for |yr | → ∞.

The analytical expression for the variance turns out to
have a long-time behavior σ 2(t ) ∝ t . Accordingly, these par-
ticles diffuse without displaying a Gaussian distribution, a
phenomenon that has recently attracted considerable attention
in statistical physics known as Brownian yet non-Gaussian
diffusion [34–37]; see Fig. 3. At long times, we may define an
effective diffusion coefficient Deff ≡ limt→∞ σ 2(t )/2t , which
generically differs from the diffusion coefficient D [38,39].
For this model, we have

Deff

D
= 1 − 2

π
φ2(yr, ρ), (7)

which depends only on the dimensionless variables yr and ρ =
a
√

r/D in Eq. (4), which encode the actual dependence on the
width a and the ratio r/D. An interesting feature of Deff is that
it is bounded from above by its maximum value Dmax

eff = D,
which is obtained under symmetric resetting yr = 0, while its

minimum value is attained for large |yr |. Accordingly, we have

1 − 2

π
<

Deff

D
� 1. (8)

Resetting prevents the particles diffusing freely, implying
Deff � D. On the other hand, Eq. (8) reveals the existence of a
lower bound Dmin

eff = D(1 − 2/π ) for the effective diffusion
coefficient, which corresponds to the value for a Brownian
particle diffusing near a reflecting wall. Figure 2(b) confirms
the lower bound in Eq. (8) with numerical simulations of the
present model, for various values of the model parameters. In
addition, we have checked numerically that the same quali-
tative behavior, i.e., a Brownian yet non-Gaussian diffusion,
occurs even when the resetting profile is made by the union of
disjoint intervals of various lengths (data not shown). More-
over, one can recover the correct analytical predictions for
the δ-like resetting rate rc(x) = r0δ(x) by setting r = r0/2a
in Eqs. (1) and (2) and by taking the limit a → 0.

IV. RESETTING GAUGE INVARIANCE ON A RING

Let us now consider the Brownian particle diffusing on
the segment (−L, L) with periodic boundary conditions (e.g.,
on a ring of perimeter 2L) which, with a constant rate r,
experiences resetting to a point xr when it is within the interval
(−a, a) with a < L; see Fig. 4(a) for an illustration. Periodic
boundary conditions of this model ensure the existence of
a stationary probability distribution for the particle position
with a cusp (global maximum) at xr [5,29], as shown in
Fig. 4(b), where we compare analytical (see Appendix C) and
numerical results for Pt (x) for various values of the relevant
parameters. Importantly, in order to characterize resetting on
the ring, one needs to specify the physical direction of the
particle flux arising from it. In this framework, it is often
assumed that particles, once reset, reach xr instantaneously,
i.e., in a teleporting fashion, without specifying how this
actually occurs. For example, on a ring, particles may reset
by moving always clockwise, always counterclockwise, or in
both directions. The one-time statistics of the particle position
is a physical observable quantity whose distribution P(x, t |x0)
is actually independent of how resetting occurs, as long as
it is instantaneous. On the other hand, local and conserved
particle currents arise in ringlike geometries and their values
depend on the specific resetting rule. In this spirit, it is natural
to define a resetting current Jres(x, t ) by integrating the right-
hand side of Eq. (1):

Jres(x, t ) − Jres(−L, t ) =
∫ x

−L
dyrc(y)P(y, t |x0) − θ (x − xr )Rt ,

(9)
where the spatial constant Jres(−L, t ), up to which the space
dependence of Jres(x, t ) is defined, stems from the gauge
freedom in the choice of the specific protocol according
to which resetting actually occurs. Thus, the total proba-
bility current J (x, t ) ≡ Jres(x, t ) + Jdiff (x, t ) with Jdiff (x, t ) =
−D∂xP(x, t |x0) obeys the continuity (Fokker-Planck) equa-
tion (1), which can be written as ∂t P(x, t |x0) = −∂xJ (x, t ).
Note that as long as resetting is instantaneous, the particle
diffusive dynamics is insensitive to how resetting occurs. Con-
sistently, P(x, t |x0)—and hence Jdiff (x, t )—does not depend
on the details of the resetting protocol, while Jres—and hence
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FIG. 4. Diffusion with stochastic resetting on a ring according to different protocols (resetting “gauge invariance”). (a) Sketch of two
resetting protocols: The particles are reset to a fixed destination xr > 0 at a rate r only when located in the window [−a, a]. Top (model I):
Resetting moves the particle along the path that does not cross the endpoints ±L. Bottom (model II): Resetting occurs via the path of minimal
distance between the positions before and after resetting. (b) Numerical results for the stationary spatial distribution for yr = xr/a = −2 (blue
diamonds) and yr = 0.8 (red circles), compared with the corresponding analytical predictions (solid lines; see Appendix C) with D = 50,
r = 1, a = 25, L = 70. (c) Stationary total particle current J given by the right-hand side of Eq. (9) for models I (dotted lines) and II (solid
lines) as a function of the normalized resetting destination yr , for different resetting rates: r = 0.01 (red), 0.1 (blue), and 10 (green) with
D = 5, a = 7.5, L = 30. (d) Space-dependent decomposition of the total stationary current J (x) = Jdiff (x) + Jres(x) (dotted line) as a function
of the normalized position y = x/a for the model II: diffusive current Jdiff (x) (blue line) and resetting current Jres(x) (red line). With ρ = 15.0,
yr = −2.5, and l = L/a = 5. A discontinuous jump of both Jdiff (x) and Jres(x) occurs at x = xr . In all the panels, numerical results are obtained
from N = 105 simulations with time step �t = 0.1 while the gray area corresponds to the resetting region.

J—does depend by an overall possibly time-dependent spatial
constant. In the stationary state, the total current J (x, t ) either
vanishes, as it happens in infinite systems, or becomes space
independent, while Jres and Jdiff are generically space depen-
dent, as shown below (see Appendix C). Thus, we have gauge
invariance in both stationary and nonstationary regimes: Many
different currents, corresponding to the different reset proto-
cols, refer to the same spatial probability distribution.

We illustrate the resetting gauge invariance for two systems
with the same geometry but with different resetting protocol:
model I [Fig. 4(a), top] resetting along the path that never
crosses the endpoints ±L, i.e., Jres(−L) = 0, and model II
[Fig. 4(a), bottom] resetting according to the minimal path
protocol, i.e., the particle, resetting at xres, travels the path of
minimum distance �xmin = min(|xr − xres|, 2L − |xr − xres|).
For these two resetting mechanisms, we report in Fig. 4(b)
the stationary density Pst as a function of the position x along
the ring and in Fig. 4(c) the total stationary current J as a
function of the coordinate xr of the resetting point. While
the stationary spatial distribution is insensitive to the resetting
protocol [see Fig. 4(b)], the stationary total current depends
strongly on the resetting protocol [see Fig. 4(c)]. The latter
displays robust qualitative features in its dependence on the
resetting destination xr [see Fig. 4(c)]: With xr outside (inside)
the resetting region compared to the typical values outside
it, i.e., |xr | > a (|xr | < a), J increases (decreases) upon in-
creasing (decreasing) the resetting rate r, because resetting
induces particles to be concentrated in a region with low
(high) local resetting rate. As a result, the current is expo-
nentially suppressed upon increasing r inside the resetting
region, inducing a discontinuity at x = ±a for r → ∞. No-
tably, our finding rationalizes the emergence of a cusp in
the stationary distribution at xr , as the resetting current is
discontinuous also in xr due to the imbalance of resetting
fluxes [Fig. 4(d)].

V. APPLICATION TO RNA POLYMERASE

We now apply our theory (see Appendix E) to a biophysical
model describing the fluctuating motion of RNA polymerases
along a DNA template during transcriptional pauses, in-
troduced in Ref. [11]. Figure 5(a) sketches two recovery
mechanisms that can be employed by an RNA polymerase
enzyme to recover from the inactive state (“backtracking”):
(i) Brownian diffusion due to thermal fluctuations and (ii)
active cleavage of the backtracked RNA induced by chem-
ical reactions. This dynamics can be modeled as shown in
Fig. 5(b), as confirmed by in vitro single-molecule experi-
mental data obtained for yeast S. Cerevisiae [11]. The model
describes the evolution of the backtrack depth x � 0, i.e., the
spatial distance between the active site of the polymerase and
the 3′ end of the backtracked RNA. The dynamics consists
of diffusion in d = 1 starting from the initial value x0 > 0
with an absorbing boundary in the origin corresponding to
the return to the RNA polymerization state. Cleavage of back-
tracked RNA is modeled by a sudden jump (i.e., resetting) of
the backtrack depth x → xr = 0 at a rate r from the region
(0, a); note that resetting is equivalent here to evaporation.
The choice of a finite interval for resetting is motivated
by previous experimental observations which suggested that
polymerases can only cleave RNA transcripts of a finite length
[40,41] and has been tested in recent single-molecule experi-
ments [11].

The probability density Pa(x, t |x0) for the backtrack depth
x, reported in Appendix E, is computed by applying the so-
called image method [42] to the probability density P(x, t |x0)
for the Brownian particle resetting in the inteval [−a, a].
To account for the absorbing boundary at xa = 0, we place
a “negatively charged” source of particles in −x0 reset-
ting at rate r in the complementary interval (−a, 0) to the
same xr = 0, leading to Pa(x, t |x0) = P(x, t |x0) − P(x, t | −
x0). Accordingly, the presence of the absorbing boundary
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FIG. 5. Modeling backtrack recovery of RNA polymerase. (a) Il-
lustration of an RNA polymerase (gray circle) diffusing along a
DNA template (black ladder). During a transcriptional pause, the
polymerase cannot resume RNA polymerization because its active
site (yellow box)—where new nucleotides are added—is blocked by
backtracked RNA (red line). Polymerases “recover” from the back-
tracking state when the distance x � 0 (“backtrack depth,” yellow
arrows) between the active site and the 3′ end of the RNA vanishes.
Recovery from backtracking is due to Brownian diffusion of the
polymerase with diffusion coefficient D (black arrows) or to the
action of active processes that allow cleavage (orange scissors) of
backtracked RNA of length up to a finite length a � 0 and at random
times with constant rate r [11]. (b) Model for the evolution of the
backtrack depth x from an initial value x0. Polymerases recover by
reaching the absorbing state x = 0 either by diffusion or by resetting,
representing RNA cleavage [11,23]. (c) Distribution of the length of
cleaved RNA for Pol I, Pol II, and Pol II TFIIS with initial backtrack
depth x0 = 5 (nucleotides). (d) Cleavage (resetting) efficiency as a
function of the initial backtrack depth. The numerical prediction for
ηres(y0 ) ≡ η(x0 = a y0 ) has been already reported in Ref. [11]. In
both panels (b) and (c), the symbols are obtained from numerical
simulations and the solid lines are theoretical predictions given by
Eqs. (10) in panel (c) and (11) in panel (d). Values of the parameters
D, r and a can be found in Appendix E. Simulations were done with
time step �t = 0.1 for panel (c) and �t = 0.025 for panel (d) with
number of simulations N = 105.

prevents the system from reaching a nontrivial stationary state
and therefore the existence of nonvanishing currents at long
times.

We study two statistical properties of the RNA polymerase
backtracking for which no analytical results have been re-
ported so far. First, we focus on the distribution of the length
of cleaved RNAs. In the model, this quantity corresponds
to the probability density Qres(x|x0) of particles, with initial
point x0, that are absorbed at any time from the position x
through resetting only. In terms of the dimensionless quanti-
ties in Eq. (4), it is given by

Qres(x = a y|x0 = a y0)

= ρ sinh(y<ρ)

a cosh ρ
{1 − θ (1 − y0)[1 − cosh ((1 − y>)ρ)]},

(10)

with y> ≡ max(y, y0), and y< ≡ min(y, y0); note that in the
region x > a (y > 1), Qres vanishes due to the absence of re-
setting. Second, we quantify the overall efficiency of cleavage
in recovery by defining the “resetting efficiency” ηres(y0) � 1
as the fraction of polymerases that recover from any x � a
and at any time t > 0 due to RNA cleavage (resetting). Its
analytical expression can be found by using Eq. (10) (see
Appendix E):

ηres(y0) =
1 − cosh ((1 − y0)ρ) + θ (y0 − 1)[1 + cosh ((1 − y0)ρ)]

cosh ρ
.

(11)

Notably, the distribution (10) of cleaved RNA length and the
efficiency (11) of RNA cleavage obey universal scaling laws
in terms of the parameter ρ and y0 in Eq. (4). We demonstrate
these results in Fig. 5 with numerical simulations using values
of the parameters which were measured for the enzymes Pol
I, Pol II, and Pol II complemented with TFIIS from yeast S.
Cerevisiae [11]. Interestingly, the distributions of the length of
the cleaved RNA in Fig. 5(c) display a cusp at the initial po-
sition and exponential tails. Qres(x|x0) is positive on a broader
range of positions for Pol I and Pol II-TFIIS, because these en-
zymes can cleave RNA of lengths a larger than Pol II. On the
other hand, the cleavage efficiency, ηres(y0) ≡ η(x0 = a y0) in
Fig. 5(d) increases monotonously with the initial backtrack
depth x0 for all the enzymes. Notably, Pol II maximum cleav-
age efficiency attained for deep backtracks is ≈50% for Pol
II and twice larger and almost ≈100% for both Pol I and
Pol II-TFIIS. The similarities in the cleavage efficiency of
Pol I and Pol II-TFIIS may stimulate further research on
evolutionary-conserved performance between different types
of transcription enzymes.

VI. DISCUSSION

Our work provides analytical and numerical insights into
the particle currents emerging in the presence of control
mechanisms (evaporation and resetting) on an otherwise un-
biased Brownian diffusion, for various boundary conditions.
For open boundary conditions, we have shown that resetting
the particle position at stochastic times to a prescribed loca-
tion leads to Brownian yet non-Gaussian diffusion. On the
other hand, periodic boundary conditions induce stationary
particle current that can be decomposed as the sum of dif-
fusive and resetting fluxes. Such a current could be used,
e.g., to exert a force on an external load, as in the case of
Brownian motors. For ringlike geometries, we have proved
a resetting gauge invariance of the distribution with respect
to the resetting protocol (direction), resulting into different
particle currents. Finally, we have applied our findings to a
biophysical model, deriving analytical predictions that involve
the efficiency of RNA polymerase backtracking. Our work
indicates new avenues for understanding the nonequilibrium
features of resetting, e.g., in the study of optimization of
resetting pathways for efficient particle transport. Further-
more, we expect that our formalism could be extended to
shed light on various biophysical problems described by one-
dimensional diffusion with suitable boundary and/or resetting
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conditions, such as microtubule dynamics [43,44], molecu-
lar motors [2,45,46], single-file diffusion of water in carbon
nanorings [47], or polymer translocation through nanopores
[48,49].
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APPENDIX A: GENERAL EXPRESSIONS FOR P̃nc AND P̃

In this Appendix, we report the solution for the Laplace
transform of Eq. (1) for P(x, t |x0, xr ), the probability distri-
bution of the Brownian particle position in one dimension,
initially at x0, resetting to xr according the space-dependent
resetting rate rc(x). Although the framework that we will
present applies to any space-dependent resetting rate, we
will focus on the case rc(x) = r θ (a − |x|), i.e., nonvanishing
within a segment of width 2a and constant rate r. More gener-
ally, we exert an external control on the system, parametrized
by σc, corresponding to the identification of rc(x) as a resetting
rate (σc = 1) or as an evaporation rate (σc = 0). In this picture,
we denote by Pnc(x, t |x0) the probability density of no control,
i.e., the probability that no reset or evaporation has occurred
up to time t in the space interval [x, x + dx] is given by
Pnc(x, t |x0)dx. In general, P(x, t |x0, xr ) depends both on the
initial position x0 and the resetting point xr ; in what follows,
we denote this quantity by P(x, t |x0) whenever x0 ≡ xr . Note
that in the case of evaporation, σc = 0, the probability distri-
bution P(x, t |x0, xr ) coincides with Pnc(x, t |x0), because the
only existing particles are those that have not experienced
evaporation.

Analogously, following Ref. [30], Pnc(x, t |x0) corresponds,
in the case, σc = 1, of resetting to the probability density
Pno res(x, t |x0) for particles with initial and final positions x0

and x, respectively, not to reset in the time interval (0, t ). We
now assume Pnc(x, t |x0) given and we fix σc = 1, focusing on
the model with resetting. In terms of Pnc(x, t |x0) the probabil-
ity Pres(t |x0) of first reset at time t can be evaluated as follows:

Pres(t |x0) =
∫ +∞

−∞
dy rc(y) Pnc(y, t |x0, 0). (A1)

Once Pnc(x, t |x0) and Pres(t |x0) are known, we can construct
P(x, t |x0, xr ) by means of renewal theory [30]:

P(x, t |x0, xr ) = Pnc(x, t |x0) +
∫ t

0
dτ

∫ +∞

−∞
dy rc(y)

× P(y, t − τ |x0)Pnc(x, t |xr, t − τ )

= Pnc(x, t |x0) +
∫ t

0
dτR(t − τ |x0)Pnc(x, τ |xr ),

(A2)

where the flux R(t |x0) of particles resetting at time t is defined
as

R(t |x0) ≡
∫ +∞

−∞
dy rc(y)P(y, t |x0), (A3)

henceforth indicated by Rt . The first term on the right-hand
side of Eq. (A2) corresponds to particles that never reset
while the second corresponds to trajectories where particles
reset for the last time in any position y at any intermediate
time t − τ and then restart from xr , subsequently diffusing
to x without undergoing resetting within the time interval
(t − τ, t ). Operatively, the appearance of P(x, t |x0, xr ) on both
sides of Eq. (A2) makes its solution natural in terms of the
Laplace transform; in what follows, we use a tilde to denote
the Laplace transform of a function f̃ (s) ≡ ∫∞

0 dt e−st f (t ). In
particular, Eq. (A2) reduces to

P̃(x, s|x0, xr ) = P̃nc(x, s|x0) + R̃(s|x0)P̃nc(x, s|xr ), (A4)

where P̃nc appears both with initial point x0 and xr . By multi-
plying Eq. (A2) by rc(x) and integrating over x, one gets

R(t |x0) = Pres(t |x0) +
∫ t

0
dτ R(t − τ |x0)Pres(τ |xr ),

whose Laplace transform is given by

R̃(s|x0) = P̃res(s|x0) + R̃(s|x0)P̃res(s|xr ). (A5)

By combining Eqs. (A4) and (A5), we derive a closed expres-
sion for P̃(x, s|x0, xr ):

P̃(x, s|x0, xr ) = P̃nc(x, s|x0) + P̃res(s|x0)

1 − P̃res(s|xr )
P̃nc(x, s|xr );

(A6)
if x0 = xr Eq. (A6) reduces to P̃(x, s|x0) = P̃nc(x,s|x0 )

1−P̃res (s|x0 )
, allow-

ing us to recast the same Eq. (A6) as

P̃(x, s|x0, xr )

= [1 − P̃res(s|x0)]P̃(x, s|x0) + P̃res(s|x0)P̃(x, s|xr ). (A7)

We now outline the procedure used throughout the paper to
compute P̃(x, s|x0, xr ):

(1) First, compute P̃nc(x, s|x0) from the Laplace transform
of Eq. (1) with σc = 0, i.e.,

D
∂2P̃nc(x, s|x0)

∂x2
− [s + rc(x)]P̃nc(x, s|x0) = −δ(x − x0)

(A8)
with the proper boundary conditions.

(2) Evaluate P̃res(s|x0) using Eq. (A1).
(3) Use Eq. (A6) in order to compute P̃(x, s|x0, xr ).
As anticipated, we will compute explicitly P̃(x, s|x0, xr ) for

rc(x) = r θ (a − |x|), which requires the separate analysis of
the two cases |x0| < a and |x0| > a.

APPENDIX B: BROWNIAN TUNNELLING WITH
RESETTING

1. Case with x0 < −a

Because of the presence of a piecewise resetting rate
in Eq. (A8), we have to consider separate contributions to
P̃nc(x, s|x0) for any of the regions delimited by the boundary
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(a) (b)  (c)

FIG. 6. Statistics of the Brownian tunneling: (a) Probability density Pnc(x, t |x0 ) at time t = 15 with D = 1, r = 0.5, a = 2.5, x0 = −5. The
solid line represents the inverse numerical Laplace transform of Eq. (B4) while the symbols correspond to the result of numerical simulations.
The gray shaded area highlights the interval within which resetting occurs. (b) Probability of first reset time Pres(t |x0) up to time t = 15 with the
same parameters as panel (a): comparison between inverse Laplace transform of Eq. (B5) and numerical simulations. (c) Probability density
P(x, t |x0) with xr = x0, indicated by the vertical dashed line. The solid line represents the inverse Laplace transform of Eq. (B7) while symbols
indicate the results of numerical simulations. All numerical simulations were done using the Euler numerical integration scheme with time
step �t = 0.05, and they were repeated N = 105 times.

points {±a, x0}:
P̃nc(x, s|x0)

=

⎧⎪⎨
⎪⎩

A(s, x0) exμ for x < x0,

B1(s, x0) exμ + B2(s, x0) e−xμ for x ∈ (x0,−a),
C1(s, x0) exν + C2(s, x0) e−xν for x ∈ (−a, a),
E (s, x0) e−xμ for x > a,

(B1)

where we define

μ(s) ≡
√

s

D
ν(s) ≡

√
r + s

D
(B2)

and the coefficients A, B1,2, C1,2, and E are fixed as speci-
fied below. The nondivergence of the solution is ensured by
requiring that the real part of μ is positive, Re(μ) > 0; this
is equivalent to requiring that P̃nc be defined on the entire

complex s plane except the negative real axis. We fix all the
coefficients in Eq. (B1) by requiring the continuity of P̃nc at the
boundary points and the generic continuity of the first deriva-
tive in all points, except for x0. In fact, given the presence of
a Dirac δ in Eq. (A8), P̃nc will present a discontinuity in the
derivative according to

∂xP̃nc(x+
0 , s|x0) − ∂xP̃nc(x−

0 , s|x0) = − 1

D
. (B3)

This derives from integrating Eq. (A8) around a small
neighborhood of x0 of radius ε > 0 and then taking the limit
ε → 0. Accordingly, the three conditions for the continuity
of P̃nc at the boundary points, the two conditions for the
continuity of the first space derivative at ±a and Eq. (B3) fix
the constants in the solution (A2). The final expressions for
P̃nc read

P̃nc(x, s|x0) = 1

D

[
(μ2 + ν2) sinh (2aν) + 2μν cosh (2aν)

]−1

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
eμ(x−x0 )[μ2 sinh (2aν) + νμ cosh (2aν)] − r

D eμ(x+a) sinh (2aν) sinh(μ(a + x0))
}
/μ for x � x0,{

e−μ(x−x0 )[μ2 sinh (2aν) + νμ cosh (2aν)] − r
D eμ(x0+a) sinh (2aν) sinh(μ(a + x))

}
/μ for x ∈ (x0,−a),

eμ(x0+a)[ν cosh(ν(x − a)) − μ sinh(ν(x − a))] for x ∈ [−a, a],

eμ(2a+x0−x)ν for x > a;
(B4)

Figure 6(a) shows a representative instance of Pnc(x, t |x0).
This probability distribution has no stationary distribution
and “evaporation” prevents the conservation of probability. In
the case of resetting, one may directly compute the Laplace
transform of the probability distribution for the first reset time
through Eqs. (A1) and (B4), finding

P̃res(s|x0) = r eμ(a+x0 )

Dν

sinh(aν)

ν sinh(aν) + μ cosh(aν)
, (B5)

the inverse transform of which is represented in Fig. 6(b). The
long-time behavior of Pres (see Ref. [42]) can be extracted
from the behavior for small s of its Laplace transform,

P̃res(s|x0) = 1 + √
s

(
a + x0√

D
− coth(a

√ r
D )√

r

)
+ O(s), (B6)

which, plugged in Eq. (A6), implies the absence of a station-
ary distribution for the process, being Pnc(x, s|x0) = O(1) as
s → 0, Pst (x|x0) = lims→0 s Pnc(x,s|x0 )

1−Pres (s|x0 ) = 0.
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Moreover, apart for the zeroth-order term in Eq. (B6)
which corresponds to the normalization of the probability, the
small s expansion shows the presence of half-integer powers
which reflects the fact that the integer moments of P̃res(s|x0)
are infinite: For example, the average time that a particle takes
to reset is infinite because of the existence of infinite diffusive

paths extending toward increasingly negative positions. The
long-time behavior Pres ∼ t− 3

2 for t → ∞ also follows from
this expansion.

Finally, according to Eq. (A6), using Eqs. (B4) and
(B5), the Laplace transform of the probability distribution
P(x, t |x0, xr ) for xr = x0 reads

P̃(x, s|x0) = ν

2D

{
[μ sinh (aν) + ν cosh (aν)]

[(
ν2 − r

D
eμ(x0+a)

)
sinh (aν) + μν cosh (aν)

]}−1

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
eμ(x−x0 )[μ2 sinh (2aν) + νμ cosh (2aν)] − r

D eμ(x+a) sinh (2aν) sinh(μ(a + x0))
}
/μ for x � x0,{

e−μ(x−x0 )[μ2 sinh (2aν) + νμ cosh (2aν)] − r
D eμ(x0+a) sinh (2aν) sinh(μ(a + x))

}
/μ for x ∈ (x0,−a),

eμ(x0+a)[ν cosh(ν(x − a)) − μ sinh(ν(x − a))] for x ∈ [−a, a],

eμ(2a+x0−x)ν for x > a.

(B7)

Note that, as expected, for r = 0 this equation renders the Laplace transform of a Gaussian distribution with average x0 and
variance 2Dt , i.e., P̃(x, s|x0) = e(−|x−x0|

√
s/D)/(2

√
s D). The cusp for xr = x0 is the distinctive feature of resetting being present

at all times. Moreover, for short and long times, it can be easily checked that the tails of the distribution at large values of x are
Gaussian, signaling that diffusion is the main mechanism driving the system. These properties are clearly displayed in Fig. 6(c),
which reports a snapshot of the probability density P(x, t |x0) showing the cusp in correspondence of xr (vertical dashed line) and
the exponential suppression of the probability upon advancing within the resetting area (gray region) due to particles that reset.
As a final remark, we point out that the solution for x0 > a can be retrieved by that corresponding to x0 < −a upon exchanging
x0 → −x0 and x → −x.

2. Case with |x0| < a

Following the same procedure as in Appendix B 1, for |x0| < a the Laplace transform of Pnc(x, t |x0) can be computed, yielding

P̃nc(x, s|x0) = 1

2D
{[μ sinh (aν) + ν cosh (aν)][ν sinh (aν) + μ cosh (aν)]}−1

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eμ(x+a)[ν cosh(ν(a − x0)) + μ sinh(ν(a − x0))] for x � −a,

1
2ν

[
2μν sinh(ν(2a + x − x0)) + (μ2 + ν2) cosh(ν(2a + x − x0)) + r

D cosh(ν(x0 + x))
]

for x ∈ (−a, x0),
1

2ν

[
2μν sinh(ν(2a + x0 − x)) + (μ2 + ν2) cosh(ν(2a + x0 − x)) + r

D cosh(ν(x0 + x))
]

for x ∈ [x0, a],

eμ(a−x)[ν cosh(ν(a + x0)) + μ sinh(ν(a + x0))] for x > a;
(B8)

Once again, as shown in Fig. 7(a), the resulting Pnc as a function of x is exponentially suppressed within the resetting-evaporation
area, inducing an unbalance of the distribution and the presence of two peaks, whose relative intensity depends on the value of
x0.

The Laplace transform of the probability distribution of the first resetting time, combining Eqs. (A1) and (B8), turns out to be

P̃res(s|x0) = r

Dν2

[
1 − μ cosh(x0ν)

μ cosh(aν) + ν sinh(aν)

]
. (B9)

Figure 7(b) displays the probability Pres(t |x0): Being the initial position inside the resetting region, particles are more probable
to reset for the first time at short times.

Finally, plugging Eqs. (B8) and (B9) in Eq. (A6), P̃(x, s|x0) reads

P̃(x, s|x0) = ν2

2Dμ

{
[μ sinh (aν) + ν cosh (aν)]

[
μν sinh (aν) + μ2 cosh (aν) + r

D
cosh (x0ν)

]}−1

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eμ(x+a)[ν cosh(ν(a − x0)) + μ sinh(ν(a − x0))] for x < −a,

1
2ν

[
2μν sinh(ν(2a + x − x0)) + (μ2 + ν2) cosh(ν(2a + x − x0)) + r

D cosh(ν(x0 + x))
]

for x ∈ (−a, x0),
1

2ν

[
2μν sinh(ν(2a + x0 − x)) + (μ2 + ν2) cosh(ν(2a + x0 − x)) + r

D cosh(ν(x0 + x))
]

for x ∈ (x0, a),

eμ(a−x)[ν cosh(ν(a + x0)) + μ sinh(ν(a + x0))] for x > a,

(B10)
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(a) (b)  (c)

FIG. 7. Statistics of the Brownian tunneling: (a) Probability density Pnc(x, t |x0 ) at time t = 15 with D = 1, r = 0.5, a = 2.5, x0 = 1. The
solid line represents the inverse numerical Laplace transform of Eq. (B8) while the symbols correspond to the result of numerical simulations.
The gray shaded area highlights the interval within which resetting occurs. (b) Probability of first reset time Pres(t |x0) up to time t = 15
with the same parameters as panel (a): comparison between inverse Laplace transform of Eq. (B9) and numerical simulations. (c) Probability
density P(x, t |x0 ) with xr = x0, indicated by the vertical dashed line. The solid line represents the inverse Laplace transform of Eq. (B10) while
symbols indicate the results of numerical simulations. All numerical simulations were done using the Euler numerical integration scheme with
time step �t = 0.05, and they were repeated N = 105 times.

and its inverse Laplace transform is reported in Fig. 7(c).
Since the resetting point (vertical dashed line) is inside the
resetting region (gray area), particles tend to be more confined
with respect to the case with |x0| > a; however, this fact is not
sufficient to ensure the existence of a stationary distribution
for finite a.

3. Moments

In this section, we discuss in more detail the time
evolution of the average position 〈x(t )〉 and variance
σ 2(t ) ≡ 〈x2(t )〉 − 〈x(t )〉2. For simplicity, we focus on the case
x0 = xr , the results of which can be easily generalized for
x0 �= xr . As a matter of fact, for xr �= x0 the long-time behavior
of the moments can be obtained from that of the x0 = xr case
upon substituting x0 → xr : For long times, the dynamics de-
pend only on xr . To prove this statement, we refer to Eq. (A7)
and we insert the expansion of P̃res(s|x0) = 1 + O(

√
s) [see

Eq. (B6)] to obtain

P̃(x, s|x0, xr ) = P̃(x, s|xr ) + O(
√

s), (B11)

where we have used the fact that P̃nc(x, s|x0) = O(1) as s →
0. From Eq. (B11), we can read explicitly that, at long times,
the leading contribution to P(x, t |x0, xr ) coincides with the
same probability distribution with x0 = xr . It follows that this
property holds also for all moments of P(x, t |x0, xr ).

We do not report here the lengthy expressions of 〈x(t )〉 and
σ 2(t ) but we focus on their long- and short-time behaviors,
which we determine by inverting the leading contribution in
the expansion of the Laplace transform for s → 0 and s → ∞,
respectively.

First, we analyze 〈x(t )〉 and σ 2(t ) resulting from the prob-
ability distribution in Eq. (B7), corresponding to |x0| > a.
We identify two regimes for 〈x(t )〉: At short times, until
the particle reaches the resetting region, the average posi-
tion is constant 〈x(t )〉 = x0 + o(1) because of free diffusion;
for larger times, instead, the average position grows as

√
t

according to

〈x(t )〉 = sgn(y0) 2

√
Dt

π
φ(y0, ρ) + O(t0), (B12)

where φ(y0, ρ) is reported in Eq. (6). Resetting, as suggested
by Eq. (B12), tends to confine at long times the particle to the
half-plane containing the resetting point x0. Notice that, for
|y0| > 1, 0 < φ(y0, ρ) < 1, and, in fact, φ increases mono-
tonically upon increasing |y0|, attaining its maximum φ = 1
at |y0| → ∞ and its minimum φ = tanh2 ρ at |y0| = 1. All
these features are displayed in Fig. 8, which shows the aver-
age position for a particle whose initial position is x0 < −a:
The solid line stands for simulations while the diamonds for
theoretical prediction.

As in the case of the average position, the variance ex-
hibits, at small times, the Gaussian behavior σ 2(t ) = 2Dt +
o(

√
t ). However, for long times, free diffusion dominates:

FIG. 8. Brownian tunneling with resetting: Comparison between
numerical simulation (solid line) and theory (symbols) of the time
evolution of the average position 〈x(t )〉 of the particle with parame-
ters D = 50, a = 5, r = 2.5, and x0 = xr = −7.5. Simulations are
performed with a time step �t = 0.05 and are repeated N = 105

times.
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FIG. 9. Brownian tunneling with resetting: Comparison between
numerical simulation (solid line) and theory (symbols) of the time
evolution of the variance 〈σ 2(t )〉 of the particle with parameters
D = 50, a = 5, r = 2.5, and x0 = xr = −7.5. Simulations are per-
formed with a time step �t = 0.05 and are repeated N = 105

times.

There are infinite free-diffusive paths corresponding to par-
ticles that, because of the recurrence of the one-dimensional
Brownian motion, comes back to the resetting region and
experience resetting; on long timescales this process happens
many times. Accordingly, resetting will tend to localize the
motion of the particle, renormalizing the diffusion constant
D to a smaller effective value Deff < D. Indeed, at long
times

σ 2(t ) = 2Defft + O(
√

t ), (B13)

where the effective diffusion constant, defined as Deff ≡
limt→∞ σ 2(t )/2D, is given by Eq. (7); it is remarkable that
Deff < D even for |y0| → ∞ still, because recurrence makes
the particle feel the presence of the resetting potential, leading
to

lim
|y0|→∞

Deff

D
= 1 − 2

π
< 1. (B14)

This equation provides a lower bound for Deff which is
independent of the resetting parameters. Figure 9 shows
the comparison between simulations of the mean square
displacement (solid line) and the theoretical prediction
(symbols).

We observe a similar behavior for the motion of a Brown-
ian particle in the presence of a reflecting barrier in the origin
at x = 0, starting from the initial position x0. The probability
distribution of its position x reads [50]

PRB(x, t |x0, 0) = e− (x−x0 )2

4Dt√
Dtπ

[
1 + erf

( |x0|
2
√

Dt

)] . (B15)

The mean and the variance of PRB(x, t |x0, 0) are given by

〈xRB(t )〉 = x0 + sign(x0) 2

√
Dt

π

e− x2
0

4Dt

1 + erf
( |x0|

2
√

Dt

) (B16)

and

σ 2
RB(t ) = 2Dt

⎧⎨
⎩1 − 2

π

e− x2
0

2Dt[
1 + erf

( |x0|
2
√

Dt

)]2

⎫⎬
⎭

− 2|x0|
√

Dt

π

e− x2
0

4Dt

1 + erf
( |x0|

2
√

Dt

) . (B17)

Their expressions in the long-time limit are

〈xRB(t )〉 = 2sgn(x0)

√
Dt

π
+ O(t0) (B18)

and

σ 2
RB(t ) = 2Dt

(
1 − 2

π

)
+ O(

√
t ), (B19)

which depend only on the sign of x0 and not on its actual value.
This similarity between Eqs. (B12) and (B13) on the one side
and Eqs. (B18) and (B19) on the other is not accidental and is
explained by the fact that, at long times, the resetting barrier
has on average the effect of pushing back particles: This can
be visualized as if particles feel a weaker reflecting barrier
with an efficiency given by φ(y0, ρ) < 1. As anticipated, φ is
maximum in the limit |y0| → ∞, for which the evolution of
the average position (B12) is the same as that of a Brownian
particle with reflecting barrier. This suggests the fact the par-
ticle behaves as if it gets perfectly reflected and its motion is
restricted to an half-plane.

We now consider the case with |x0| < a (e.g., |y0| < 1),
corresponding to the probability distribution (B10). The be-
havior of the average position and the variance is qualitatively
the same as before: At short times, it is the same as diffusion
until the first resetting event; at long times, instead, it satisfies
the same asymptotic expressions as Eqs. (B12) and (B13) but
with different efficiency, as reported in Eq. (6). Even in this
case, one has that 0 < φ < 1 and φ is monotonically increas-
ing upon increasing |y0|: It attains its maximum φ = tanh2 ρ

at |y0| = 1 and its minimum φ = 0 at y0 = 0. In particular, for
y0 = 0, 〈x〉 = 0 at all times by symmetry.

The variance is always smaller than 2Dt , because even at
short times the particle moves in the resetting region. The
long-time effective diffusion constant is given once again by
Eq. (7). The behavior of Deff is shown in Fig. 2(b): Note that
the maximum is attained at y0 = 0, for which Deff = D, as a
consequence of the fact that at long time, the closer y0 is to
the origin, the less the particle will be localized.

APPENDIX C: RESETTING WITH PERIODIC BOUNDARY
CONDITIONS

Here we address the problem of a diffusing particle which
possibly resets when located within a interval with the addi-
tional condition that its position is restricted to the segment
x ∈ (−L, L) with periodic boundary condition; i.e., the parti-
cle moves along a ring of length 2L. As in the case of simple
diffusion with periodic boundary conditions and no resetting,
the system will show the appearance of a stationary probabil-
ity distribution [50]. The solution of this problem, as in the
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case with open boundary, generically depends on the position
of the resetting point and of the initial point; for simplicity, in
what follows, we set x0 = xr .

1. Case with −L < x0 < −a

The type of solution that we seek for Eq. (A8) is of the
form

P̃nc(x, s|x0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1(s, x0) exμ + A2(s, x0) e−xμ for x ∈ (−L, x0),

B1(s, x0) exμ + B2(s, x0) e−xμ for x ∈ (x0, a),

C1(s, x0) exν + C2(s, x0) e−xν for x ∈ (−a, a),

D1(s, x0) exμ + D2(s, x0) e−xμ for x ∈ (a, L),

(C1)

with periodic boundary conditions, i.e., P̃nc(−L, s|x0) = P̃nc(L, s|x0) and ∂xP̃nc(−L, s|x0) = ∂xP̃nc(L, s|x0). These conditions
ensure the continuity of the distribution and particle currents. We fix the eight constants in Eq. (C1) by requiring the continuity
of P̃nc(−L, s|x0) in {±a, x0,±L} (four conditions), the continuity of the first spatial derivative in ±a,±L (three conditions), and
the condition (B3) in x0. The solution is given by

P̃nc(x, s|x0) = 1

D
{(μ2 + ν2) sinh (2aν) sinh(2μ(L − a)) + 2μν[cosh (2aν) cosh(2μ(L − a)) − 1]}−1

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{sinh (2aν)[μ2 cosh(μ(a + x0)) cosh(μ(2L − a + x)) − ν2 sinh(μ(a + x0)) sinh(μ(2L − a + x))]

+μν[cosh (2aν) sinh(μ(2L + x − x0 − 2a)) − sinh(μ(x − x0))]}/μ for x ∈ [−L, x0],

{sinh (2aν)[μ2 cosh(μ(a + x)) cosh(μ(2L − a + x0)) − ν2 sinh(μ(a + x)) sinh(μ(2L − a + x0))]

+μν[cosh (2aν) sinh(μ(2L + x0 − x − 2a)) + sinh(μ(x − x0))]}/μ for x ∈ (x0,−a),

μ[cosh(μ(a + x0)) sinh(ν(a + x)) + cosh(μ(2L + x0 − a)) sinh(ν(a − x))]

−ν[sinh(μ(a + x0)) cosh(ν(a + x)) − sinh(μ(2L + x0 − a)) cosh(ν(a − x))] for x ∈ [−a, a],

{sinh (2aν)[μ2 cosh(μ(a + x0)) cosh(μ(x − a)) − ν2 sinh(μ(a + x0)) sinh(μ(x − a))]

+μν[sinh(μ(2L + x0 − x)) − cosh (2aν) sinh(μ(2a − x + x0))]}/μ for x ∈ (a, L),
(C2)

and it can be checked that in the limiting case, r = 0, of no
resetting, it reproduces the Laplace transform of the probabil-
ity density of particles diffusing on the segment (−L, L) with
periodic boundary conditions, i.e.,

P̃(x, s|x0) = cosh(μ(L − |x − x0|))
2Dμ sinh(μL)

, (C3)

whose inverse Laplace transform can be exactly computed as

P(x, t |x0, 0) = 1

2L

[
1 + 2

∞∑
n=1

(−1)ne−( nπ
L )2

D t cos (nπχ )

]
,

(C4)

with χ ≡ 1 − |x − x0|/L (see Ref. [51]); it is immediate to
check that Eq. (C4) has a uniform stationary distribution Pst

given by Pst (x) = 1/(2L). Figure 10(a) shows a snapshot of
Pnc(x, t |x0) as a function of x: The solid line represents the
inverse Laplace transform of Eq. (C2) while the symbols cor-
respond to the result of numerical simulations; in the resetting
area (gray) P(x, t |x0) is exponentially suppressed compared to
the values it has outside it as times goes by, due to resetting
particles.

From P̃nc(x, s|x0) in Eq. (C2), it is possible to obtain the
Laplace transform P̃res(s|x0) of the probability Pres(t |x0) that
the particle resets for the first time at time t :

P̃res(s|x0) = (r/νD) sinh(aν) cosh(μ(L + x0))
ν sinh(aν) cosh(μ(L − a)) + μ cosh(aν) sinh(μ(L − a))

, (C5)

which is represented in Fig. 10(b).
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(a) (b)  (c)

FIG. 10. Statistics of resetting with periodic boundary conditions: (a) Probability density Pnc(x, t |x0 ) at time t = 15 with D = 5, r = 1,
a = 5, x0 = −7.5. The solid line represents the inverse numerical Laplace transform of Eq. (C2) while symbols correspond to simulations.
The gray shaded area indicates the region within which resetting may occur. (b) Probability of first reset time Pres(t |x0) as a function of t with
same parameters: comparison between inverse Laplace transform of Eq. (C5) and simulations. (c) Probability density Pnc(x, t |x0 ) as a function
of position x with xr = x0, indicated by the vertical dashed line. The solid line represents the inverse Laplace transform of Eq. (C6) while
diamonds represent simulations. Simulations were done using the Euler numerical integration scheme with time step �t = 0.05, and they
were repeated N = 105 times.

Plugging Eqs. (C2) and (C5) into Eq. (A6), we derive the Laplace transform for the probability distribution of P(x, t |x0):

P̃(x, s|x0) = ν

4
{[μ sinh(aν) cosh(μ(L − a)) + ν cosh(aν) sinh(μ(L − a))]

× [νD(ν sinh(aν) cosh(μ(L − a)) + μ cosh(aν) sinh(μ(L − a))) − r sinh(aν) cosh(μ(L + x0))]}−1

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{sinh (2aν)[μ2 cosh(μ(a + x0)) cosh(μ(2L − a + x)) − ν2 sinh(μ(a + x0)) sinh(μ(2L − a + x))]

+μν[cosh (2aν) sinh(μ(2L + x − x0 − 2a)) − sinh(μ(x − x0))]}/μ for x ∈ [−L, x0],

{sinh (2aν)[μ2 cosh(μ(a + x)) cosh(μ(2L − a + x0)) − ν2 sinh(μ(a + x)) sinh(μ(2L − a + x0))]

+μν[cosh (2aν) sinh(μ(2L + x0 − x − 2a)) + sinh(μ(x − x0))]}/μ for x ∈ (x0,−a),

μ[cosh(μ(a + x0)) sinh(ν(a + x)) + cosh(μ(2L + x0 − a)) sinh(ν(a − x))]

−ν[sinh(μ(a + x0)) cosh(ν(a + x)) − sinh(μ(2L + x0 − a)) cosh(ν(a − x))] for x ∈ [−a, a],

{sinh (2aν)[μ2 cosh(μ(a + x0)) cosh(μ(x − a)) − ν2 sinh(μ(a + x0)) sinh(μ(x − a))]

+μν[sinh(μ(2L + x0 − x)) − cosh (2aν) sinh(μ(2a − x + x0))]}/μ. for x ∈ (a, L).
(C6)

The probability density P(x, t |x0) is represented in Fig. 10(c): As a function of x it features a cusp in correspondence of the
resetting point x = xr = x0 (indicated by dashed vertical line) and a significant reduction of the probability within the resetting
(gray) region.

Periodic boundary conditions, i.e., the geometry of a ring, allow the existence of a stationary distribution of Eq. (C6), which
is given by Pst (x|x0) = lims→0 sP̃(x, s|x0) and therefore by

Pst (a y|a y0) = ρ

a
([(� − 1)ρ cosh(ρ) + sinh(ρ)]{2(� − 1)ρ cosh(ρ) + [2 + ρ2(1 − 2� − y0)(1 + y0)] sinh(ρ)})−1

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yρ sinh(ρ)[sinh(ρ) − (1 + y0)ρ cosh(ρ)] + ρ

2 [y0 + (2� − 2 − y0) cosh(2ρ)]

+ 1
2 [1 + ρ2(1 − 2�)(1 + y0)] sinh(2ρ) for y ∈ [−�, y0],

−yρ sinh(ρ)[sinh(ρ) + (2� − 1 + y0)ρ cosh(ρ)] + ρ

2 [(2� − 2 + y0) cosh(2ρ) − y0]

+ 1
2 [1 − ρ2(2� + y0 − 1) sinh(2ρ)] for y ∈ (y0,−1),

cosh(ρ)[sinh(ρ) + (� − 1)ρ cosh(ρ)] − ρ(� + y0) sinh(ρ) sinh(yρ) for y ∈ [−1, 1],

yρ sinh(ρ)[sinh(ρ) − (1 + y0)ρ cosh(ρ)] + ρ

2 [y0 + 2� − (2 + y0) cosh(2ρ)]

+ 1
2 [1 + ρ2(1 + y0)] sinh(2ρ) for y ∈ (1, �),

(C7)

where we have introduced the dimensionless variables � ≡ L/a, ρ ≡ a
√

r/D, y ≡ x/a, and y0 ≡ x0/a.
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(a) (b)  (c)

FIG. 11. Statistics of resetting with periodic boundary conditions: (a) Probability density Pnc(x, t |x0 ) at time t = 15 with D = 5, r = 1,
a = 5, x0 = 1.5. The solid line represents the inverse numerical Laplace transform of Eq. (C8) while symbols correspond to simulations. The
grey shaded area indicates the region within which resetting may occur. (b) Probability of first reset time Pres(t |x0) as a function of t with
same parameters: Comparison between inverse Laplace transform of Eq. (C9) and simulations. (c) Probability density P(x, t |x0 ) as a function
of position x with xr = x0, indicated by the vertical dashed line. The solid line represents the inverse Laplace transform of Eq. (C10) while
diamonds simulations. Simulations were done using the Euler numerical integration scheme with time step �t = 0.05, and they were repeated
N = 105 times.

2. Case with x0 ∈ (−a, a)

In this case, the expression of P̃nc(x, s|x0) is given by

P̃nc(x, s|x0) = 1

D
{(μ2 + ν2) sinh (2aν) sinh(2μ(L − a)) + 2μν[cosh (2aν) cosh(2μ(L − a)) − 1]}−1

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ[cosh(μ(a + x)) sinh(ν(a + x0)) + cosh(μ(2L + x − a)) sinh(ν(a − x0))]

−ν[sinh(μ(a + x)) cosh(ν(a + x0)) − sinh(μ(2L + x − a)) cosh(ν(a − x0))] for x ∈ [−L,−a],

{sinh(2μ(L − a))[μ2 sinh(ν(a + x)) sinh(ν(a − x0)) + ν2 cosh(ν(a + x)) cosh(ν(a − x0))]

+μν[cosh(2μ(L − a)) sinh(ν(x + 2a − x0)) − sinh(ν(x − x0))]}/ν for x ∈ (−a, x0),

{sinh(2μ(L − a))[μ2 sinh(ν(a + x0)) sinh(ν(a − x)) + ν2 cosh(ν(a + x0)) cosh(ν(a − x))]

+μν[cosh(2μ(L − a)) sinh(ν(2a + x0 − x)) + sinh(ν(x − x0))]}/ν for x ∈ [x0, a],

μ[cosh(μ(x − a)) sinh(ν(a − x0)) + cosh(μ(2L − x − a)) sinh(ν(a + x0))]

+ν[sinh(μ(x − a)) cosh(ν(a − x0)) + sinh(μ(2L − x − a)) cosh(ν(a + x0))] for x ∈ (a, L),

(C8)

the inverse transform of which is reported in Fig. 10(a) as a function of the time t .
The Laplace transform of the probability Pres(t |x0) that the particle resets for the first time at t , computed by plugging Eq. (B8)

in Eq. (A1), is

P̃res(s|x0) = r

ν2D

[
1 − μ sinh(aν) cosh(μ(L + x0))

ν sinh(aν) cosh(μ(L − a)) + μ cosh(aν) sinh(μ(L − a))

]
, (C9)

and that probability, obtained from the inverse transform, is reported in Fig. 11(b) as a function of time. From Eqs. (C8) and
(C9), one can determine the Laplace transform P̃(x, s|x0) of the probability distribution P̃(x, t |x0) according to Eq. (A6),
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P̃(x, s|x0) = ν2

4
{[μ sinh(aν) cosh(μ(L − a)) + ν cosh(aν) sinh(μ(L − a))]

[μ2D(ν sinh(aν) cosh(μ(L − a)) + μ cosh(aν) sinh(μ(L − a))) − rμ cosh(x0ν) sinh(μ(L − a))]}−1·

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ[cosh(μ(a + x)) sinh(ν(a + x0)) + cosh(μ(2L + x − a)) sinh(ν(a − x0))]

−ν[sinh(μ(a + x)) cosh(ν(a + x0)) − sinh(μ(2L + x − a)) cosh(ν(a − x0))] for x ∈ [−L,−a],

{sinh(2μ(L − a))[μ2 sinh(ν(a + x)) sinh(ν(a − x0)) + ν2 cosh(ν(a + x)) cosh(ν(a − x0))]

+μν[cosh(2μ(L − a)) sinh(ν(x + 2a − x0)) − sinh(ν(x − x0))]}/ν for x ∈ (−a, x0),

{sinh(2μ(L − a))[μ2 sinh(ν(a + x0)) sinh(ν(a − x)) + ν2 cosh(ν(a + x0)) cosh(ν(a − x))]

+μν[cosh(2μ(L − a)) sinh(ν(2a + x0 − x)) + sinh(ν(x − x0))]}/ν for x ∈ [x0, a],

μ[cosh(μ(x − a)) sinh(ν(a − x0)) + cosh(μ(2L − x − a)) sinh(ν(a + x0))]

+ν[sinh(μ(x − a)) cosh(ν(a − x0)) + sinh(μ(2L − x − a)) cosh(ν(a + x0))] for x ∈ (a, L),
(C10)

whose stationary distribution is given by Pst (x|x0) = lims→0 sP̃(x, s|x0), which yields

Pst (a y|a x0) = ρ

2a
{[(� − 1)ρ cosh(y0ρ) + sinh(ρ)][(� − 1)ρ cosh(ρ) + sinh(ρ)]}−1

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{ρ(� − 1) cosh(ρ) cosh(y0ρ) + sinh(ρ)[cosh(y0ρ) − ρ(� + y) sinh(y0ρ)]} for y ∈ [−�,−1],

[ρ(� − 1) cosh((1 + y)ρ) cosh((1 − y0)ρ) + sinh(ρ) cosh((1 + y − y0)ρ)] for y ∈ (−1, y0),

[ρ(� − 1) cosh((1 + y0)ρ) cosh((1 − y)ρ) + sinh(ρ) cosh((1 − y + y0)ρ)] for y ∈ [y0, 1],

{ρ(� − 1) cosh(ρ) cosh(y0ρ) + sinh(ρ)[cosh(y0ρ) + ρ(� − y) sinh(y0ρ)]} for y ∈ (1, �).

(C11)

At last, we mention the particular case a = L of the previous expression, corresponding to resetting in any position of the ring
and leading to

P̃(x, s|x0) = ν

2Dμ2

cosh(ν(L − |x − x0|))
sinh(Lν)

, (C12)

which can be analytically inverted to obtain the expression in the time domain:

P(x, t |x0, 0) = 1

2

√
r

D

cosh
(√ r

D (L − |x − x0|)
)

sinh
(
L
√ r

D

) +
∞∑

n=1

(−1)n n2π2

L3

e−Drn t

rn
cos (nπχ ), (C13)

where rn ≡ n2π2

L2 + r
D , χ ≡ 1 − |x − x0|/L, and the first term corresponds to the stationary distribution.

APPENDIX D: RESETTING CURRENT

The existence of a stationary distribution for the particle
position x suggests the emergence of a stationary particle
current. So far, we have considered the Brownian particle on
a segment with periodic boundary conditions which resets
within an interval of length 2a to the point x = xr . As antic-
ipated in the main text, one may consider giving resetting a
physical interpretation as making the reset particle traveling
across a finite region of space (i.e., from its original position to
the point of resetting xr) with infinite velocity in an infinitesi-
mal time interval. In a ring, particles can only reset clockwise,
counterclockwise or both ways, and therefore fixing the re-
setting protocol amounts at specifying which particles reset
in one or the other way. Importantly, note that the only ob-
servable in our problem is the particle position/dynamics
and its distribution: As long as resetting is instantaneous,
it is independent of how resetting occurs. Formally, one
can integrate the right-hand side of Eq. (1) in order to de-
fine an effective conserved probability current J (x, t ), which

obeys the continuity equation ∂t P(x, t |x0) = −∂xJ (x, t ),
where

J ≡ Jdiff + Jres (D1)

has a diffusive contribution Jdiff = −D∂xP(x, t |x0) and a re-
setting contribution given by

Jres(x, t ) = Jres(−L, t ) +
∫ x

−L
dy rc(y)P(y, t |x0) − θ (x − xr )

×
∫ L

−L
dy r(y)P(y, t |x0). (D2)

Here, the freedom in the choosing the value of Jres(−L, t )
corresponds to the ambiguity in the resetting protocol; as
we show below, the resetting contribution to this probability
current coincides with the physical resetting current according
to the picture of resetting presented above.

The resetting current Jres depends on the region of space
where particles are reset. Accordingly, it is useful to express
the contribution to the current Jres due to particles that reset in
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FIG. 12. Pictorial representation of the contribution for the resetting current Jres(x) in the case of xr < −a. The shaded area corresponds to
the resetting region in which the resetting current Jres originates. Horizontal arrows depict the particles moving towards the resetting point xr

in the two possible directions (left-moving and right-moving): Thick arrows represent particle currents that contribute to Jres while thin ones to
the particles that reach xr without crossing (“stop” sign) the region in which we compute the current.

a generic interval x1 < x < x2 at time t , i.e.,

Ra(x1, x2) ≡
∫ x2

x1

dy rc(y)P(y, t |x0)

= r
∫ x2

x1

dy θ (a − |y|)P(y, t |x0),

(D3)

which can be naturally split in the contribution Rl
a of

the particles resetting clockwise (leftward) and contribu-
tion Rr

a of those resetting counterclockwise (rightward) such
that

Ra(x1, x2) = Rl
a(x1, x2) + Rr

a(x1, x2); (D4)

the time dependence in Ra is understood to streamline the
notation. Note that the second and third contributions to Jres

in the right-hand side of Eq. (D2) can be expressed in terms
of Ra(−L, x) ad Ra(−L, L). Also, note that Ra(x1, x2) is inde-
pendent of the choice of the resetting rule while Rr, l

a (x1, x2)
is. Indeed, fixing the resetting protocol is equivalent to pre-
scribe the amount of particles that contribute to rightward and
leftward R r,l

a to Jres. Therefore, for a specific protocol, we can
express the general expression for Jres in terms of R r, l

a ; we
now address this problem.

Here we first investigate the case in which xr ∈ (−L,−a).
In order to determine the expression of the current Jres

one has to consider contributions from the different regions
of space:

(i) The current of reset particles through a generic point
x within the region (−L, xr ) is only due to right-moving
particles which cross the boundary point L and come back
from −L to xr because of periodic boundary conditions, while
left-moving ones will stop at xr without crossing the region
under consideration. It may be helpful to refer to Fig. 12(a)
for a pictorial representation of the current contributions. It
follows that the current Jres will be positive (right-moving) and

equal to

Jres(x, t ) = Rr
a(−a, a). (D5)

(ii) Analogously, the current through the region (xr,−a)
is only due to left-moving particles, while right-moving ones
will cross the boundary L and come back from −L to xr

without crossing the region (xr,−a), as sketched in Fig. 12(b).
This time the current is negative (left-moving) and given by

Jres(x, t ) = −Rl
a(−a, a). (D6)

(iii) In the region (−a, a), refer to Fig. 12(c), the flux has
contributions coming both from left-moving and right-moving
particles whose magnitude depends on the position at which
the current is gauged: The left contribution to Jres come from
the fraction particles Rl

a resetting in (x, a) while the right one
Rr

a from the region (−a, x), so that

Jres(x, t ) = Rr
a(−a, x) − Rl

a(x, a). (D7)

(iv) In the region (a, L) the current is the same as in
(−L, xr ) because of periodic boundary conditions.

Finally, collecting Eqs. (D5), (D6), and (D7), if the reset-
ting point xr belongs to the interval xr ∈ (−L,−a), the current
Jres(x, t ) across the point x at time t is given by

Jres(x, t ) =
⎧⎨
⎩

Rr
a(−a, a) for x ∈ [−L, xr ) ∪ [a, L],

−Rl
a(−a, a) for x ∈ (xr, −a],

Rr
a(−a, x) − Rl

a(x, a) for x ∈ (−a, a).
(D8)

Note that the resetting current Jres(x) as a function of x is
discontinuous in xr at all times. This is due to the fact that
once resetting particles reach xr they stop. This discontinuity
explains the presence of a cusp in the probability density at xr

[5,29]. Moreover, one can easily check that Eq. (D8) is equiv-
alent to Eq. (D2) by identifying J p

res(−L, t ) = Rr
a(−a, a). This

fact allows us to conclude that choosing a resetting protocol
is the same as fixing the value of the current at a given point
in space. Accordingly, in practice, one may compute once for
all Jres(x) − Jres(−L) which depends only on P(x, t |x0) and
then determine explicitly the value Jres(−L) for the resetting
protocol adopted in that specific case. In the same spirit, we
express the current for xr ∈ (−a, a) as

Jres(x, t ) =

⎧⎪⎨
⎪⎩

Rr
a(xr, a) − Rl

a(−a, xr ) for |x| ∈ [a, L],

Rr
a(xr, x) + Rr

a(xr, a) − Rl
a(x, xr ) for x ∈ (−a, xr ),

Rr
a(xr, x) − Rl

a(x, a) − Rl
a(−a, xr ) for x ∈ (xr, a),

(D9)
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while for a < xr < L

Jres(x, t ) =

⎧⎪⎨
⎪⎩

−Rl
a(−a, a) for x ∈ [−L,−a] ∪ (xr, L],

Rr
a(−a, x) − Rl

a(x, a) for x ∈ (−a, a),

Rr
a(−a, a) for x ∈ [a, xr ),

(D10)

that both satisfy Eq. (D2). As a last remark, Jres for xr < −a
can be obtained from the value of Jres for xr > a by making the
following change of variables: x ↔ −x, xr ↔ −xr and l ↔ r.

In the stationary state, the total current J in Eq. (D1) is
independent of time and space: accordingly, the expression

J − Jres(−L) = Jdiff (x) + [Jres(x) − Jres(−L)] (D11)

in the stationary state is constant and independent of the
resetting protocol. Therefore, we can reconstruct the value of
the total current J by computing J − Jres(−L) according to
Eqs. (D1) and (D2) and then add Jres(−L) for the specific pro-
tocol. Note that in the stationary state Jdiff (x) + Jres(x) is also
independent of x. The expression of J − Jres(−L), computed
by plugging Eqs. (C7) and (C11) in Eqs. (D1) and (D2), as a
function of the resetting point is

J − Jres(−L)

r
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− sinh ρ[sinh ρ − ρ(1 + yr ) cosh ρ]

{(� − 1)ρ cosh ρ + sinh ρ][2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� − yr )(1 + yr )] sinh ρ} for yr ∈ [−�, −1),

sinh ρ sinh(yrρ)

2[(� − 1)ρ cosh(yrρ) + sinh ρ][(� − 1)ρ cosh ρ + sinh ρ]
for yr ∈ [−1, 1],

sinh ρ[sinh ρ − ρ(1 − yr ) cosh ρ]

[(� − 1)ρ cosh ρ + sinh ρ]{2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� + yr )(1 − yr )] sinh ρ} for yr ∈ (1, �],

(D12)

where yr = xr/a and � ≡ L/a. Equation (D12) can also be
seen as the stationary current corresponding to Jres(±L) = 0,
i.e., the resetting protocol which assumes particles to reset
without crossing the points x = ±L. In Fig. 13, we plot the
stationary current [J − Jres(−L)]/r in Eq. (D12) as a function
of xr for various values of r. Upon increasing r, if xr is inside
the resetting region, the current decreases in magnitude while
the opposite happens if xr is sufficiently outside the resetting
region.

In the following sections, we make two examples of spe-
cific protocol choice for which we explicitly compute Jres(−L)
in order to compute the total stationary current J through
Eqs. (D11) and (D12).

FIG. 13. Stationary current J − Jres in Eq. (D12) as a function of
the normalized position of the resetting point xr/a and for various
values of r = 0.1 (red), 1.0 (blue), and 20 (green), with D = 5, a =
7.5, and L = 20. The gray area corresponds to the resetting region.

1. Minimal path protocol

As first example, we consider the minimal path protocol:
Once the particle resets, it reaches xr along the trajectory that
minimizes the distance between its current location x and xr ,

FIG. 14. Schematic representation of the contribution to the cur-
rent Jres(−L) from particles resetting in the region (xr, L) according
to the minimal path protocol, the forbidden complementary region
(−L, xr ) is denoted by oblique lines. In both cases, xr ∈ (−L,−a),
panel (a), and xr ∈ (−a, a), panel (b), the protocol identifies two
distinct regions: The yellow shaded region (xr + L, a) refers to the
particles resetting following l2 (right moving) and the white region
(−a, xr + L) following l1 (left moving). The resetting particles, hor-
izontal arrows, that contribute to the current Jres(−L) are only those
following l2.
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i.e., that of length min (|x − xr |, 2L − |x − xr |). Let us indi-
cate by l1 the path of length |xr − x| and l2 the path of length
2L − |x − xr |. Our aim is to evaluate the value of the current
Jres(−L). This resetting protocol naturally distinguishes two
regions that can contribute to the current:

(i) First, we consider contribution to Jres(−L) which come
from the particles resetting in the region (xr, L). Under this
hypothesis, l1 satisfies the minimal path condition if the reset-
ting particles come from the region (xr, L + xr ) while l2 does
from (L + xr, L) (xr can be negative). In order to understand
how particles reset to the left or the right it is necessary to
study the problem by distinguishing the possible choices of
xr .

If xr ∈ (−L,−a) [see Fig. 14(a)], the contribution to the
current in ±L is given by the particles that reset to the right
since all those that reset to the left stop at xr before. For this
specific case, particles that follow l1 are left-moving while
those following l2 are right-moving, and therefore the cur-
rent Jres(−L) we are considering here receives a contribution
only from the latter. Accordingly, the value of the current

Jres(−L) = Ra(xr + L, a) will be associated to l2; note that
from Eq. (D3) Jres(−L) vanishes if xr + L � a.

Also for xr ∈ (−a, a) [see Fig. 14(b)], particles that move
to the left are those that reset along l1 and do not contribute to
the current. The right-moving resetting particles, associated to
l2, contribute by a term Ra(xr, L).

If xr > a there is no contribution to the current.
(ii) If we consider the contribution to Jres(−L) due to the

particles resetting in (−L, xr ) the path l1 satisfies the minimal
path condition within the interval (xr − L, xr ) while l2 within
(−L, xr − L).

If xr ∈ (−L,−a) there is no contribution to the current
since xr < xr − L.

If xr ∈ (−a, a) [see Fig. 15(a)], we are interested in left-
moving particles through l2 resetting in the region (−a, xr −
L), contributing to the current with −Ra(−a, xr − L).

If xr ∈ (a, L) [see Fig. 15(b)], the same scenario applies
and the contribution to current is −Ra(−a, xr − L).

Finally, taking into account all the contributions discussed
above, the value of the resetting current at −L is eventually

Jres(−L, t ) =

⎧⎪⎨
⎪⎩

Ra(xr + L, a) for xr ∈ (−L,−a),

Ra(xr + L, a) − Ra(−a, xr − L) for xr ∈ [−a, a],

−Ra(−a, xr − L) for xr ∈ (a, L).

(D13)

As already discussed above, the expression of probability distribution depends on the choice of the parameter xr and so will be
the case for Ra. In the stationary state, by considering Eq. (C7), for xr < −a one has Ra(xr + L, a)

Ra(a(yr + �), a)
r

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for yr + � > 1,

[sinh ρ − sinh(ρ(yr + �))][sinh ρ + ρ(�− 1) cosh ρ] − ρ sinh ρ(�+ yr )[cosh ρ − cosh(ρ(�+ yr ))]
[(� − 1)ρ cosh ρ + sinh ρ]{2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� − yr )(1 + yr )] sinh ρ} for |yr + �| � 1,

2 sinh ρ

2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� − yr )(1 + yr )] sinh ρ
for yr + � < −1,

(D14)

while if xr ∈ (−a, a), from Eq. (C11) one has

Ra(a(yr + �), a)
r

=
{0 for yr + � > 1,

ρ(� − 1) cosh(ρ(1 + yr )) sinh(ρ(1 − � − yr )) − sinh ρ[sinh(yrρ) + sinh(ρ(� − 1))]
2[(� − 1)ρ cosh(yrρ) + sinh ρ][(� − 1)ρ cosh ρ + sinh ρ]

for yr + � � 1;

(D15)

similarly for Ra(−a, xr − L) one has, for xr ∈ (−a, a)

Ra(−a, a(yr − �))
r

=
⎧⎨
⎩

0 for yr − � < −1,

ρ(� − 1) cosh(ρ(1 − yr )) sinh(ρ(1 − � + yr )) + sinh ρ[sinh(yrρ) − sinh(ρ(� − 1))]
2[(� − 1)ρ cosh(yrρ) + sinh ρ][(� − 1)ρ cosh ρ + sinh ρ]

for yr − � � −1;
(D16)
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while, for xr > a,

Ra(−a, a(yr − �))
r

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for yr − � < −1,

− [sinh ρ − sinh(ρ(−yr + �))][sinh ρ + ρ(� − 1) cosh ρ] − ρ(� − yr )[cosh ρ − cosh(ρ(� − yr ))]
[(� − 1)ρ cosh ρ + sinh ρ]{2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� + yr )(1 − yr )] sinh ρ} for |yr − �| � 1,

− 2 sinh ρ

2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� + yr )(1 − yr )] sinh ρ
for yr − � > 1.

(D17)

Figure 16 shows the comparison between analytical calcula-
tions and numerical simulations for the total stationary current
J as a function of the resetting point xr for a fixed resetting
interval and various values of the parameters. The cusp in
|xr | = L − a is due to the vanishing of Jres(−L) in Eq. (D13)
for a < |xr | < L − a, i.e., no particles resets along l2 and the
total stationary current J is only given by Eq. (D12); for
L − a < |xr | < L Eq. (D13) contributes inducing the cusp. We
conclude that, given that J − Jres(−L) in Eq. (D12) increases
monotonously with xr and that adding Jres(−L) reduces the
magnitude of J in |xr | = L − a, these cusp points are also
maxima for J .

2. Constant rate protocol

As a second example, not reported in the main text, we con-
sider the case in which a particle that resets has a probability
0 < λ � 1 to follow a rightward resetting direction or prob-
ability 1 − λ to reset leftward. This translates immediately
into

Rr
a(x1, x2) = λRa(x1, x2),

Rl
a(x1, x2) = (1 − λ)Ra(x1, x2).

(D18)

The current will be fixed by the value of Jres(−L), whose
expression is given by

Jres(−L, t ) =
{

λRa(−a, a) for xr ∈ (−L,−a),
λRa(xr, a) − (1 − λ)Ra(−a, xr ) for xr ∈ (−a, a),
−(1 − λ)Ra(−a, a) for xr ∈ (a, L),

(D19)

where, in the stationary limit, from Eq. (C7) one has for |xr | > a (|yr | > 1)

Ra(−a, a)/r = 2 sinh ρ

2(� − 1)ρ cosh ρ + [2 + ρ2(1 − 2� + |yr |)(1 − |yr |)] sinh ρ
, (D20)

while for |xr | < a (|yr | < 1) from (C11) one has

Ra(−a, a yr )/r = ρ(� − 1) cosh(ρ(1 − yr )) sinh(ρ(1 + yr )) + sinh ρ[sinh(ρ) + sinh(yrρ)]

2[(� − 1)ρ cosh(yrρ) + sinh ρ][(� − 1)ρ cosh ρ + sinh ρ]
,

Ra(a yr, a)/r = ρ(� − 1) cosh(ρ(1 + yr )) sinh(ρ(1 − yr )) − sinh ρ[sinh(yrρ) − sinh(ρ)]

2[(� − 1)ρ cosh(yrρ) + sinh ρ][(� − 1)ρ cosh ρ + sinh ρ]
.

(D21)

In Fig. 17, the total stationary current J is plotted as func-
tion of the resetting point xr . For the specific choice, being λ >

1/2 particles reset mostly to the right, making the current pos-
itive for almost all values of xr . The current J within the region
|xr | > a increases monotonously as a function of xr because
it is the sum of the two monotonously increasing functions
Jres(−L) in Eq. (D19) and J − Jres(−L) in Eq. (D12). Inside
the resetting region (gray area), the current J grows with r and,
for r sufficiently large, it attains its maximum at xr = 0. This
feature follows from the competition of two mechanisms. The
first consists in the fact that, as xr becomes larger, more parti-
cles reset and contribute negatively to Jres(−L) in Eq. (D19),
leading, for small r, to the decrease of the total current. On
the other hand, this mechanism becomes less effective as r
grows, because the particles reset more and tend to concen-
trate around xr . Therefore, even for λ − 1/2 slightly positive
(negative), the positive (negative) contribution to the current

Jres(−L) prevails on the negative (positive) one. In the particu-
lar case of xr = 0, the fraction of resetting particles Ra(−a, a)
increases with r and the two regions (−a, 0) and (0, a) con-
tribute equally, i.e., Ra(−a, 0) = Ra(0, a) in Eq. (D21); hence
J = Jres(−L) = (λ − 1/2)Ra(−a, a): Its magnitude is maxi-
mal when |λ − 1/2| = 1/2 (completely asymmetric resetting)
and minimal at λ = 1/2 (completely symmetric).

APPENDIX E: APPLICATION TO RNA POLYMERASE

In this section, we report the analytical study of model
describing the RNA polymerase backtracking. We address the
problem of the motion of the Brownian particle starting in
x0 ∈ (0, a) at a rate r which may reset to the origin when
moving within the region (0, a) with the addition of an ab-
sorbing boundary in xa = xr = 0. We remark that previous to
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FIG. 15. Schematic representation of the contribution to the cur-
rent Jres(−L) from particles resetting in the region (−L, xr ) according
to the minimal path protocol, the forbidden complementary region
(xr, L) is denoted by oblique lines. In both cases xr ∈ (−a, a), panel
(a), and xr ∈ (a, L), panel (b), the protocol identifies two distinct
regions: The yellow shaded region (−a, xr − L) refers to the particles
resetting following l2 (left moving) and the white region (xr − L, a)
following l1 (right moving). The resetting particles, horizontal ar-
rows, that contribute to the current Jres(−L) are only those following
l2.

our work, only analytical solutions for the case a = ∞ have
been derived in Ref. [23].

In this model, the absorbing boundary condition in the
origin translates in the vanishing of Pa(x, t |x0), the probability

density of the particle position x at time t starting at x0, in the
absorption point xa = 0. Thanks to the linearity of Eq. (1), one
can obtain Pa(x, t |x0) from P(x, t |x0) by means of the method
of image charges; e.g., see Ref. [42]. This is accomplished
by positioning negatively “charged” source of particles orig-
inating from −x0 which reset in (−a, 0) to the same xr = 0,
whose distribution is P(x, t | − x0), yielding

Pa(x, t |x0) = P(x, t |x0) − P(x, t | − x0). (E1)

The Laplace transform of this expression is readily com-
puted by considering the expression of P̃ in Eq. (A6)
in terms of the Laplace transform probability density
Pnc(x, t |x0), the probability density for the particles not to
reset in the time interval (0, t ) moving from x0 to x, and
Pres(t |x0), the probability distribution of the first resetting time
(Appendix A):

P̃a(x, s|x0) = P̃(x, s|x0) − P̃(x, s| − x0)

= P̃nc(x, s|x0) + P̃res(s|x0)

1 − P̃res(s|xr )
P̃nc(x, s|xr )

− P̃nc(x, s| − x0) − P̃res(s| − x0)

1 − P̃res(s|xr )
P̃nc(x, s|xr )

= P̃nc(x, s|x0) − P̃nc(x, s| − x0), (E2)

where we exploit the fact that Pres(s|x0) = Pres(s| − x0); this
can be checked from Eqs. (B5) and (B9). As expected,
Pa(x, t |x0) depends only on the probability Pnc(x, t |x0) of no
resetting or, equivalently, the probability density for particles
to be evaporated with constant rate r in the region (0, a).
Its Laplace transform is computed by plugging Eq. (B8) in
Eq. (E2) and it reads

P̃a(x, s|x0) = [D(μ sinh (aν) + ν cosh (aν))]−1

⎧⎪⎨
⎪⎩

sinh(xν)[ν cosh(ν(a − x0)) + μ sinh(ν(a − x0))]/ν for x ∈ [0, x0),

sinh(x0ν)[ν cosh(ν(a − x)) + μ sinh(ν(a − x))]/ν for x ∈ [x0, a),

eμ(a−x) sinh(x0ν) for x � a.

(E3)

Because of absorption at the origin, the density of particles is not conserved. The fraction of nonabsorbed particles is described
by the survival probability S(t |x0) = ∫∞

0 dx Pa(x, t |x0) whose Laplace transform, computed integrating Eq. (E2), is given by

S̃(s|x0) = 1

Dν2

[
1 − ν cosh(ν(a − x0)) + μ sinh(ν(a − x0)) − r sinh(x0ν)/Dμ

μ sinh (aν) + ν cosh (aν)

]
. (E4)

Figure 18 shows the comparison between simulations for
S(t |x0) (solid line) and numerical inverse Laplace transform
of Eq. (E4) (symbols). It can be easily checked that, in the case
r = 0 corresponding to the presence of the sole absorption
at the boundary xa = 0, S̃(s|x0) = [1 − exp(−x0μ)]/(Dμ2),
whose inverse Laplace transform S(t |x0) = erfc(x0/

√
4Dt )

reproduces a well-known result; see, e.g., Ref. [42].
Another quantity of physical interest is the first-passage

probability to the origin at time t , indicated here by
F (t |x0). By definition, this quantity is actually related to

S via

S(t |x0) = 1 −
∫ t

0
dτ F (τ |x0), (E5)

from which, in terms of the Laplace transform, becomes
F̃ (s|x0) = 1 − s S̃(s|x0). Equivalently, F may be computed
also exploiting the fact that the first passage of a particle
to the origin corresponds to its absorption. Therefore, the
first-passage probability can be expressed as the sum of two
contributions: the flux of particles to the absorbing wall and
the flux of particles that get reset, see Ref. [42], namely
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(a) (b)

FIG. 16. (a) Total stationary current J = Jdiff + Jres as a function of xr/a and for various of r = 0.5 (red), 2.5 (blue), and 75 (green), with
D = 5, a = 5, and L = 20 according the minimal path protocol. (b) Comparison between the analytic prediction for J [red curve in (a)] and
the numerical simulations (red symbols with error bars). The gray shaded area corresponds to the resetting region. Simulations were done
using the Euler numerical integration scheme with time step �t = 0.5, and they were repeated N = 105 times. The error bars are given by the
standard deviation.

F̃ (s|x0) = D
∂P̃a(x, s|x0)

∂x

∣∣∣∣∣
x=0

+
∫ ∞

0
dx rc(x) P̃a(x, s|x0)

= μ sinh((a − x0)ν) + ν cosh((a − x0)ν)
μ sinh (aν) + ν cosh (aν)

+ r

D

sinh (x0ν)

μν2

νμ sinh((a − x0)ν) + μ2 cosh((a − x0)ν) + r/D

μ sinh (aν) + ν cosh (aν)
.

(E6)

Because of absorption, the aforementioned currents are only
transient and vanish at long times. In the absence of re-
setting r = 0, Eq. (E6) yields F̃ (s|x0) = e−x0

√
s/D which is

the Laplace transform of the inverse Gaussian F (t |x0) =
x0(4πDt3)−

1
2 e−x2

0/4Dt ; see Ref. [42].
Using the above exact results, we compute the fraction

Qres(x, t |x0) of particles starting from x0 that gets absorbed
because of resetting from a certain position x (with 0 < x � a)
within the time interval (0, t ), i.e.,

Qres(x, t |x0) = rc(x)
∫ t

0
dτ Pa(x, τ |x0)

= r θ (a − x)
∫ t

0
dτ Pa(x, τ |x0);

(E7)

the Laplace transform Q̃res(x, s|x0) of this quantity with re-
spect to time t , using the expression of P̃a(x, s|x0) in Eq. (E3),
reads

Q̃res(x, s|x0) = rc(x)
P̃a(x, s|x0)

s

= r sinh (x<ν)

s Dν

× ν cosh((a − x>)ν) + μ sinh((a − x>)ν)
μ sinh (aν) + ν cosh (aν)

(E8)

with x ∈ (0, a), x> = max(x, x0) and x< = min(x, x0). Unlike
the quantities Pa(x, t |x0), S(t |x0), and F (t |x0), Qres(x, t |x0)
does have a well-defined stationary limit, which is

given by

Qres(x|x0) = lim
t→∞ Qres(x, t |x0)

= lim
s→0

s Q̃res(x, s|x0)

=
√

r

D

cosh
(
(a − x>)

√ r
D

)
sinh

(
x<

√ r
D

)
cosh

(
a
√ r

D

) ,

(E9)

where we denote the stationary distribution with Qres(x|x0),
by dropping the t dependence in Qres(x, t |x0). The existence
of a stationary limit of Qres(x, t |x0) derives from the fact that
we consider only trajectories of resetting particles. Finally, the
fraction of particles that get absorbed by resetting is expressed
according to

ηres(y0 = x0/a) ≡
∫ a

0
dx Qres(x|x0). (E10)

Hence, by integrating Eq. (E9), we obtain

ηres(y0) = 1 − cosh((1 − y0)ρ)
cosh ρ

(E11)

with y0 = x0/a. In the context of RNA polymerase, ηres

measures the efficiency of the polymerase during RNA
backtracking through cleavage. As expected, ηres(y0)
is a monotonically increasing function of y0; this is
due to the fact that as y0 is larger, particles will spend
more time in the absorbing region: The maximum
is attained at ηres(y0 = 1) = 1 − (cosh ρ)−1 < 1 and
its infimum is ηres(y0 = 0) = 0 corresponding to the
physically irrelevant case of total absorption at t = 0.
In the limit of large absorption, ηres ≈ 1 − e−y0ρ , so that
ηres ≈ 1 for values y0 � ρ−1, meaning that absorption
is mostly due to resetting (evaporation). In particular, if
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(a) (b)

FIG. 17. (a) Total stationary current J = Jdiff + Jres as a function of xr/a and different values of r = 0.5 (red), 1.5 (blue), and 2.5 (green),
with D = 5, a = 5, L = 20, and λ = 0.75 fixed. (b) Comparison between the analytic prediction for J [red curve in (a)] and the numerical
simulations (red symbols with error bars). The gray shaded area corresponds to the resetting region. Simulations were done using the Euler
numerical integration scheme with time step �t = 0.2, and they were repeated N = 105 times. The error bars are given by the standard
deviation.

one considers the limiting case a → ∞, the distribution
reduces to P̃a(x, s|x0) = sinh(x<ν)e−x>ν/Dν, whose
inverse Laplace transform is the expected Pa(x, t |x0) =
e−rt (4Dtπ )−

1
2 {exp [−(x−x0)2/4Dt] − exp [−(x+x0)2/4Dt]}.

It then follows that S(t |x0) = e−rt erf ( x0√
4Dt

) and

ηres(y0) = 1 − e−y0ρ ; as we report below, this case
corresponds to the polymerase Pol II TFIIS.

The analysis presented above focused on the case x0 ∈
(0, a), but it can be readily generalized for x0 > a, with
the following results: The survival probability [instead of
Eq. (E4)] reads

S̃(s|x0) = 1

s

[
1 − eμ(a−x0 )[r cosh(aν) + s]

Dν(μ sinh (aν) + ν cosh (aν))

]
. (E12)

FIG. 18. Survival probability S(t ) with parameters r = 1, D =
10, a = 10, and x0 = 5. Solid line indicates the result of numerical
simulations and indicates the result of numerical inverse Laplace
transform of Eq. (E4). Simulations were done using the Euler nu-
merical integration scheme with time step �t = 0.01, and they were
repeated N = 105 times.

Hence, we compute Qres(x, s|x0) as

Q̃res(x, s|x0) = r eμ(x0−x)

D s

sinh(xν)

μ sinh (aν) + ν cosh (aν)
(E13)

with x ∈ (0, a) and its stationary limit reads

Q(x|x0) =
√

r

D

sinh
(
x
√ r

D

)
cosh

(
a
√ r

D

) . (E14)

As above, by integrating Qres(x|x0) over x ∈ (0, a), we get the
fraction of particles that gets absorbed because of resetting at
all times; i.e.,

ηres(y0) = 1 − 1

cosh(ρ)
(E15)

does not depend on y0. Because of recurrence, the Brownian
motion will eventually hit the resetting region, independently
of its initial position. Collecting the above result in Eqs. (E11)
and (E15), we derive a general expression for ηres(y0) in
Eq. (11) for any y0 > 0.

Finally, we report in Table I the parameter values used
in Fig. 5 in the main text for the analytical predictions and
numerical simulations of RNA polymerases Pol I, Pol II, and
Pol II TFIIS.

TABLE I. Parameters associated to the different species of poly-
merase, see Ref. [11], corresponding to Figs. 5(c)–5(d). The length
unit is a nucleotide, 1 nt = 0.3 nm.

Type a (nt) r (1/s) D (nt2/s)

Pol I 20 0.02 0.21
Pol II 10 0.01 0.54

Pol II TFIIS ∞ 0.076 1.6
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