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Missing links as a source of seemingly variable constants in complex reaction networks
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A major challenge in network science is to determine parameters governing complex network dynamics from
experimental observations and theoretical models. In complex chemical reaction networks, for example, such
as those describing processes in internal combustion engines and power generators, rate constant estimates vary
significantly across studies despite substantial experimental efforts. Here, we examine the possibility that vari-
ability in measured constants can be largely attributed to the impact of missing network information on parameter
estimation. Through the numerical simulation of measurements in incomplete chemical reaction networks, we
show that unaccountability of network links presumed unimportant (with local sensitivity amounting to less
than two percent of that of a measured link) can create apparent rate constant variations as large as one order
of magnitude even if no experimental errors are present in the data. Furthermore, the correlation coefficient
between the logarithmic deviation of the rate constant estimate and the cumulative relative sensitivity of the
neglected reactions was less than 0.5 in all cases. Thus, for dynamical processes on complex networks, iteratively
expanding a model by determining new parameters from data collected under specific conditions is unlikely to
produce reliable results.
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I. INTRODUCTION

In the study of real complex network systems, information
about the system components is often incomplete, unreliable,
or unknown. Recently proposed methods to infer the likeli-
hood of links in a network take advantage of node similarities
or network structures [1–6]. Combined with statistical infer-
ence, such methods have demonstrated remarkable success
in a variety of real-world networks with heterogeneous er-
rors [7]. Other approaches include observing links present in
reconstructed networks after perturbations [8], applying the
inverse problem to generative models for networks with pre-
dicted hyperbolic structures [9], and inferring missing nodes
from community detection algorithms [10]. Statistical mea-
sures of correlation and causation have also been used to infer
links from observations [11–14].

In addition to the topology of their connections, links and
nodes often carry parameters that encode their properties. In
models of physical networks, such parameters must be de-
termined through measurements of observables, which may
be costly and limited. In some cases, while the topology of
the network is known in principle, parameters such as link
weights can only be estimated for a relatively small proportion
of the network. Nevertheless, if the network is derived from
a knowledge-based model (i.e., it is believed to include all
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relevant details and is physically well motivated), it is usually
assumed that individual parameters can be measured accu-
rately through targeted experiments.

The key problem in such cases is not to determine which
nodes and links are present, but rather, which of them are
most important to include in the model. “Weak” nodes and
links may be systematically neglected to reduce the number
of parameters and derive minimal models, but it is unclear
how these missing elements may affect the estimated param-
eters, and hence the predicted dynamics, of the parts of the
network that are retained. That is, it remains largely unknown
what impact missing and deliberately omitted structural
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FIG. 1. Impact of missing information in a simple electric net-
work. (a) Network of four resistors, where V1 = 1V is fixed and
Vadj differs in different experiments. The resistance of the blue re-
sistor (R1 = 1�) is unknown to the experimenter and is determined
through measurements of the currents I1,2 while the red resistor
(R2 = 10�) is missing in the model. (b) Estimate of resistor value vs
adjustable voltage, as given by the least-squares fit. The blue dashed
line shows the actual value, and the black dotted line shows where
the currents become insensitive to the estimate.
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information may have on the relevant dynamical processes
predicted or described by a network model.

Here, in contrast to previous studies focused on solely
network structure, we explore the impact of network incom-
pleteness on the parameters governing the system dynamics.
To motivate this work, consider the simple electric network
of resistors shown in Fig. 1(a). Suppose an experimenter at-
tempts to fit an incomplete model of the system (in which
the red resistor is absent) to current measurements in order
to determine the resistance R1 of the blue resistor. Since the
missing resistor is relatively large, little current passes through
it. From the network perspective, the links in the network
should be given a weight proportional to their admittance (in-
verse resistance) and, intuitively, a model that neglects small
weighted links would still be expected to be good at predicting
the dynamics. The absence of the red resistor results in a
systematic error due to the modeling approximation, and we
assume for simplicity that the measurements are perfect and
no additional errors are present.

The currents drawn from the voltage sources are measured,
and the resistance R1 in the model is adjusted until the model’s
predicted currents minimize the deviations from the measured
currents, resulting in a least-squares estimate (see Appendix A
for details). Figure 1(b) shows how this estimated resistance
Rest depends on the voltage value Vadj that the experiment
is conducted under. Crucially, two experimenters who op-
erate with different values of Vadj can obtain substantially
different estimates for Rest and may falsely conclude that
the resistance changes with the experimental conditions. The
apparent variability of a constant in this example is actu-
ally quite easy to understand. Essentially no current passes
through the blue resistor when Vadj ≈ V1, so the measured
currents are not sensitive to changes in the value of R1 (as
quantified by local sensitivity in Appendix A). Thus, the error
introduced by the incomplete model is amplified around the
dotted line in Fig. 1(b), and therefore the measure of link
importance based on the admittance (link weight) does not
adequately reflect the impact of link removal on parameter
estimation.

While the errors induced by the estimation procedure in
Fig. 1 are easy to understand in terms of local sensitivities,
subtler challenges arise in more complex networks, espe-
cially when the network dynamics are nonstationary. In the
remainder of the paper, we show that for complex chemical
reaction networks in particular, missing information about the
underlying network can lead to significant variations in rate
constants estimated under different conditions even when the
local sensitivities for the neglected links are small compared
to those for the links being measured. Given that network
models of chemical reactions will necessarily be incomplete
(since additional short-lived radical species and rare reactions
could always be added to a given model), this variability poses
a serious challenge to the efforts to reliably determine rate
constant through experiments.

To illustrate this challenge, we focus on important chem-
ical reaction networks involved in natural gas combustion
in Sec. II and ethylene pyrolysis in Sec. III, which have
been carefully developed for decades, primarily through ex-
periments employing shock tubes and laminar flame speed
measurements [15–19]. We compare the results for these pro-

cesses in Sec. IV, and find in particular that local sensitivity
analysis, which is a commonly used method for determining
reaction importance [20–22], correlates weakly with the re-
actions’ impact on rate constant measurements in all cases.
We conclude in Sec. V with a discussion of implications and
directions for future research.

II. NATURAL GAS COMBUSTION

We first consider the impact of unknown network reactions
in the case of natural gas combustion. We model the chem-
ical process with a coupled set of kinetic equations, which
corresponds to a network of chemical species, elementary re-
actions, and physical parameters, including the rate constants
that relate species concentrations to the rate of reactions (see
Appendix B). To emulate the effects of missing information in
models of real processes, we take a specific network (which
we regard as the complete network) as our “ground truth”
from which measurement values (regarded to be exact) are
generated using simulations. We employ the GRI 3.0 network
[23] as our “complete”natural gas network, which is then sim-
ulated using the open source software CANTERA to integrate
a continuously stirred reactor with an accurate time-stepping
method for stiff ordinary differential equations [24,25]. The
GRI 3.0 network is a specification of 53 chemical species
and 325 elementary reactions and rate constants, which have
been curated carefully from the body of experiments in the
literature. Despite extensive curation, this network is not re-
liable for general purposes across different conditions when
the parameters are fixed, which our analysis will suggest to be
due to incompleteness of the network model itself. But for the
purpose of this analysis, we regard this network as complete
and evaluate our hypothesis by quantifying the impact of
further removing information from the network. Specifically,
starting with this network, we produce plausible models for
the process by removing some reactions from the complete
network and use the resulting “incomplete” networks to de-
termine parameter values from measurements.

Figure 2(a) shows the evolution of the chemical composi-
tions in a mixture of natural gas and oxygen. The reactants
combine explosively as the reaction proceeds and ultimately
produce water and a variety of other products. During this
process, the temperature and pressure of the gas increase
sharply as the fuel ignites, as shown in Fig. 2(b). This ignition
is the result of a chain-reaction process taking part in the com-
plex network of species which are connected by elementary
reactions. The network structure of this process can be repre-
sented as a hypergraph, where nodes are chemical species and
directed hyperedges are reactions, with weights proportional
to the reaction flux. This hypergraph can be visualized by its
bipartite incidence graph, where the hyperedges are replaced
with reaction nodes, as shown in Fig. 2(c).

A traditionally employed measure of reaction importance
in chemical reaction networks is the local sensitivity, which
quantifies changes in the concentration with changes in the
rate constant (see Appendix B). To assess the reliability of
this metric, we generate new incomplete networks from the
complete network by randomly removing reactions that are
deemed unimportant while retaining reactions presumed to
be important, where reaction importance is assessed on the
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FIG. 2. Natural gas ignition in simulations. (a) Mole fractions vs time, with water, methane, and oxygen shown in green, blue, and orange,
respectively, and all other species shown in gray. (b) Temperature (red line) and pressure (blue line) vs time, where the sharp rises at 1.5 ms
corresponds to ignition. (c) Network of chemical species in the natural gas network, where colored nodes show species, black nodes show
prominent reactions, and links show reaction flux, with the weight showing the time-integrated reaction rate and the node size showing the
time-integrated concentration, both on a logarithmic scale. The node and link color indicate the time that the species and reactions are most
prominent, as measured by the time of the maximum reaction flux and the time at which the integrated species concentration reaches half its
ultimate value. Nodes with identical chemical formulas are isomers, and species with no links weighted above a threshold (C3H8, CH3CHO,
C3H7, HCCOH, HCNN, H2CN, AR, HCNO, HOCN, HCN, CN, HNCO, NCO, NH3, NH2, NH, N2O, N, HNO, NO2, NNH, NO) are shown
together in the node labeled “Others” with their mean size (and color). An animation of the temporal evolution of this network is available in
the Supplemental Material [26].

basis of local sensitivities. Rate constants in these incomplete
networks are then fit to simulated measurements from the
complete network to assess the impact of network incomplete-
ness on parameter estimation.

For our measurement simulations, we consider two reac-
tions whose rate constants are to be determined,

H + O2 � O + OH, (1)

CH4 + H � CH3 + H2, (2)

taking all other rate constants at the fixed values given in
the natural gas network. Equation (1) is a chain branching
reaction, which helps to populate the radical pool that leads to
ignition. Equation (2) is a propagation reaction, which helps
to diversify this pool of radicals.

We perform a numerical optimization to minimize an error
ε in order to fit the incomplete network to the measurements.
The error we use quantifies the discrepancy in the peak oxy-
gen radical concentration and ignition time, as described in
Appendix C. This particular quantity is employed in order
to emulate the data available in real experiments, such as
shock tube experiments based on oxygen radical concentra-
tion peaks [15]. Furthermore, the reactions in Eqs. (1) and (2)
are known to be important for combustion modeling, and their
local sensitivities SOI and SOII are among the largest of all the
reactions in the network during the ignition events, as shown
in Fig. 3(a).

Incomplete networks are generated randomly by removing
reactions with small oxygen sensitivity from the network. In
order to quantify how the sensitivity of the removed reactions
impacts the variability of the rate constant estimate, we retain
from the Ntot total reactions a tunable number of reactions

Nret with the largest O sensitivities, which are not candidates
for removal in the generation of the incomplete networks.
Incomplete networks are then generated by randomly select-
ing a tunable number of reactions Nrem from the remaining
Ntot − Nret reactions and removing them from the network.
For each value of Nret and Nrem, multiple incomplete networks
are generated with differing random seeds, which allows us
to statistically study the effects of missing information. Rate
constant estimates are obtained from fits minimizing ε. The fit
of one sample realization is shown in Fig. 3(b), but the quality
of this fit varies significantly with each randomly realized
incomplete network for fixed Nrem and Nret.

Eq. (I) Eq. (II)
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FIG. 3. Simulated rate constant measurement for Eqs. (1) and
(2). (a) Local sensitivity SO� vs time during ignition for Eq. (1) (green
line), Eq. (2) (red line), and the other eight most sensitive reactions
(dashed lines). (b) Oxygen radical mole fraction XO vs time during
the ignition event corresponding to experiment 14 (see Table II
in Appendix C) for the complete network and a fitted incomplete
network with Nret = Nrem = 40. The value of the rate constant for the
fitted network provides an estimate for the rate constants kest .
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ter row), and log10 (ε) (bottom row) as a function of Nrem and Nret for
Eq. (1) (left column) and Eq. (2) (right column). The averages follow
similar trends, with magnitudes increasing for increasing Nrem and
decreasing Nret .

Under any particular thermodynamic condition, minimiz-
ing the error results in a rate constant estimate kest for Eq. (1)
or Eq. (2), but these estimates will vary with the thermody-
namic conditions. For example, for one incomplete network
generated with Nret = 40 and Nrem = 40, the estimate for
Eq. (1) varied considerably among the 27 thermodynamic
conditions described in Appendix C, with values ranging from
0.06 to 4.71 times as large as the actual rate constant k0. Each
estimate made in this fashion uses only a single observational
data point, and so we may hope to eliminate the variation in
the estimate by combining many observations in a single fit to
produce an estimate.

To test if measurements of multiple data points will im-
prove the estimate, we performed 1000 rate constant estimates
for Eqs. (1) and (2) for incomplete networks generated
with Nrem and Nret varying from 10 to 160 by increments
of 15 (in total, 2.42 × 105 estimates), where each estimate
was obtained by minimizing the aggregated error over all
27 thermodynamic conditions. Figure 4 shows how the av-
erage results from these simulations vary with Nrem and
Nret. For each estimate, we consider the ratio of the sen-
sitivities of the removed and measured reactions, Sr/Sm,
the magnitude of logarithmic deviation of the rate constant
estimate (representing the orders-of-magnitude difference be-
tween the rate constant estimate and the actual rate constant),
| log10 (kest/k0)|, and the logarithm of the error, log10 (ε). It
is clear from these results that after increasing the amount
of observational data in the rate constant estimates, there
can still be significant variation in the estimates even when
relatively few of the least sensitive reactions are missing from
the network and the fit appears adequate.

Having incorporated multiple thermodynamic conditions
in each estimate, it is interesting to study how the estimates
change under yet different conditions. We performed a sec-
ond set of rate constant measurements using the same set of
incomplete networks described above under slightly differ-
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FIG. 5. Rate constant estimate with argon dilution vs rate con-
stant estimate without argon dilution for (a) Eq. (1) and (b) Eq. (2).
The same incomplete network is used in each pair of measurements,
and the color code indicates the ratio of the sensitivities between the
removed reactions and the measured reaction.

ent experimental conditions by diluting the gas with about
10% argon. Argon, a neutral buffer which does not react
chemically, is sometimes used in shock-tube experiments to
adjust conditions, such as pressure, under the assumption that
its presence will not alter the results. However, aside from
deviating again from the true rate constants, the same incom-
plete networks also exhibit substantial differences between
rate constant measurements performed in air with and without
argon dilution, as shown in Fig. 5. Among all the paired
measurements, the Pearson correlation coefficient between
rate constant estimates with no argon and with argon dilution
was 0.93 for Eq. (1) and 0.78 for Eq. (2), while the fraction
of variance unexplained by a linear regression between the
two conditions was, respectively, 14% and 39%. Furthermore,
while networks with small removal sensitivities tend to pro-
duce rate constant estimates closer to the real value, the scatter
in Fig. 5 is not substantially smaller when the estimates are
good or when the removal sensitivity is small. Thus, network
incompleteness can clearly result in variable rate constant
estimates under differing conditions even when the reactions
being measured have large sensitivities compared to the ne-
glected reactions and the change in conditions is seemingly
innocuous.

III. ETHYLENE PYROLYSIS

To illustrate that these results generalize beyond combus-
tion, we next consider a different complex reaction network
describing ethylene pyrolysis. Pyrolysis is a common in-
dustrial chemical process involving the burning of organic
compounds in the absence of oxygen. In this process, larger
organic molecules like C2H4 (ethylene) break down into
smaller molecules such as H2 and CH4. We employ a recent
model of light hydrocarbon pyrolysis consisting of 84 species
and 1698 reactions as our complete pyrolysis network [19].
Figure 6 shows the evolution of the process and network
structure in the pyrolysis case, as in Fig. 2.

For ethylene pyrolysis, we consider rate constant measure-
ments based on net yields of H2 and CH4 rather than the peak
O concentration and ignition time used previously. We allow
the reaction to evolve until the H2 concentration reaches its
steady state with 27 different thermodynamic conditions rele-
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FIG. 6. Counterpart of Fig. 2 for ethylene pyrolysis. The ethylene fuel breaks down in the absence of oxygen in a slower and more
temporally distributed process than in the case of combustion, where oxygen is present. An animation showing this process is available in the
Supplemental Material [26].

vant to low-pressure chemical vapor deposition. We consider
two reactions,

H + C2H4 → H2 + C2H3, (3)

C2H5 + C2H4 → C2H6 + C2H3, (4)

each of which has large sensitivity with respect to the H2 and
CH4 net yields. The error ε was minimized as before to obtain
the rate constant estimates. Appendix D describes details for
these pyrolysis simulations. Figures 7 and 8 show counterparts
to Figs. 3 and 4 in the case of pyrolysis. It is clear from
these results that, as was the case for methane combustion,
rate constant estimates may vary considerably for ethylene
pyrolysis when relatively few reactions are missing even if
the missing reactions have small sensitivities and the fit errors
are small.

IV. COMBUSTION/PYROLYSIS COMPARISONS

The distributions of rate constant estimates for the com-
bustion and pyrolysis networks are broadly similar, as
summarized by the histograms in Figs. 9(a)–9(d). The rate
constant estimates typically deviate much more than the error
or the removal sensitivities in all cases, despite the differing

Eq. (III) Eq. (IV)
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FIG. 7. Counterpart of Fig. 3 for pyrolysis reactions in Eqs. (3)
and (4), with Nrem = Nret = 200. Incomplete network models are fit-
ted to the observed yields of X o

H2
and X o

CH4
to simulate measurements

of the rate constants.

measurement targets and reaction networks. Table I shows the
correlation coefficients between measurement quantities for
each reaction in each process; there are moderate to weak
correlations between all quantities. Thus, in both these pro-
cesses, the local sensitivity metric correlates weakly with the
rate constant estimates and is not a very reliable measure of
link importance. Even when the removed reactions have local
sensitivity totaling to much less than the sensitivity of the
measured links, the rate constant estimates can vary consid-
erably, as shown in Figs. 9(e) and 9(f). In the networks we
generated, for example, the smallest values of Sr/Sm leading
to order-of-magnitude changes with | log10(kest/k0)| > 1 are
just 0.005 for Eq. (1), 0.0046 for Eq. (2), 0.019 for Eq. (3),
and 0.0024 for Eq. (4). While computational costs prohibit us
from testing all reactions in these networks, less systematic
simulations suggest that other reactions typically exhibit even
greater variations in rate constant estimates, as expected given
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FIG. 8. Counterpart of Fig. 4 for ethylene pyrolysis. The rate
constant estimate kest , removal sensitivity Sr , and error ε follow the
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FIG. 9. Distributions of rate constant estimates for Eqs. (1)–(4). (a)–(d) Histograms of the rate constant estimates for Eqs. (1)–(4), with the
red-green color blend indicating the proportion of removed and retained reactions for each set of histograms. (e), (f) Relative sensitivity of the
removed reactions vs rate constant estimates for Eqs. (1)–(4), with all data divided into 25 evenly occupied bins in each axis and with error
bars showing the 90% quantiles for each bin.

that the reactions (1)–(4) are among the most sensitive ones in
the networks.

To compare the two processes in more detail, we consider
the effect of varying the number of removed and retained
reactions in the simulated measurements. We divide the plane
spanned by Nret and Nrem into an acceptable region (in which
more than 95% of the rate constant estimates from fits of
incomplete networks deviate from the actual value by less than
a factor of 2) and an unacceptable region (in which this is
not the case). Figure 10 compares the acceptable regions in
the combustion and pyrolysis cases by normalizing the axes
by Ntot, the total number of reactions in each network. In
order to achieve acceptable measurements with just 10% of
reactions missing for all cases, the retained reactions must

TABLE I. Pearson correlation coefficients between quantities x
and y for the distribution of simulated rate constant measurements
in the combustion reactions in Eqs. (1) and (2) and the pyrolysis
reactions in Eqs. (3) and (4).

x y (1) (2) (3) (4)

Sr/Sm log10 (ε) 0.48 0.49 0.59 0.47
Sr/Sm | log10 (kest/k0 )| 0.43 0.46 0.47 0.45
| log10 (kest/k0 )| log10 (ε) 0.30 0.38 0.32 0.64

amount to more than 15% of the network. While somewhat
smaller Nret/Ntot is adequate for acceptable measurements for
Eqs. (1)–(3) in this case, the proportion of retained reactions
required for acceptable measurements rises to about 15% in
all cases when 50% of the reactions are missing.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

Nrem /Ntot

N
re
t/
N
to
t

Combustion

Acceptable

Unacceptable

Eq. (I)
Eq. (II)

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Nrem /Ntot

Pyrolysis

Acceptable

Unacceptable

Eq. (III)

Eq. (IV)

(b)

FIG. 10. Acceptable and unacceptable regions of network com-
pleteness for (a) the combustion network and (b) the pyrolysis
network. The rate constant estimates are deemed acceptable only
if more than 95% of incomplete network fits result in rate constant
estimates which differ from the actual rate constant by less than a fac-
tor of 2. Thin lines show how the boundary varies as the acceptable
threshold is reduced to 90%, 85%, 75%, and 70%.
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Interestingly, the natural gas network shows a stronger
dependence on the proportion of removed reactions than the
pyrolysis network, indicating that the pyrolysis network has
a greater proportion of reactions that are unimportant to the
dynamics of the measurement. This may result from the more
complex chain reaction involved in ignition compared to the
slower and more temporally distributed pyrolysis process.

V. DISCUSSION

Our results show that observed variations in rate con-
stants of combustion and pyrolysis networks can be largely
attributed to the use of incomplete network models that are
missing reactions that were presumed to be negligible. We
demonstrated that even when the neglected reactions have
small cumulative sensitivity compared to the sensitivity of
the measured reaction, rate constant estimates in incomplete
networks can vary by one order of magnitude. Furthermore,
rate constant estimate deviations and local sensitivity analy-
sis showed weak statistical correlations. While these results
highlight significant challenges in constructing a reliable and
transferable kinetic model for these important chemical pro-
cesses, they also reveal that current observations of variability
in rate constant estimates are not necessarily an indication
that a complete network model applicable across all condi-
tions is unattainable. Yet, since measurements of individual
rate constants using the current incomplete network models
cannot produce reliable results, iteratively refining individual
parameters through targeted experiments is unlikely to ever
produce accurate estimates. It would therefore be desirable
to accumulate large data sets from measurements across all
relevant conditions in order to simultaneously estimate all rate
constants in the model.

Our results also have implications for other processes
described by complex chemical reaction networks, includ-
ing atmospheric processes [27–29] as well as biochemical
processes, such as those mediated by metabolic networks
[30–32]. Compared to the combustion and pyrolysis net-
works considered here, parameter estimation in metabolic
networks in particular is still in its infancy and could benefit
significantly from more informed formulations at the out-
set. One promising direction for improvement is suggested
by information-geometric and sloppy modeling approaches
[33–35]. Using such methods, it may be possible to identify
measurement targets as algebraic combinations of rate con-
stants that are more robust to the variations caused by missing
network links. Another promising information-theoretic ap-
proach for predicting network parameters from data would
be to employ maximum entropy models, whose degeneracy
issues have been recently addressed [36]. Alternatively, it
may be possible to directly estimate reaction fluxes rather
than species concentrations in order to disentangle reactions.
In principle, molecular dynamics simulations can be used to
estimate fluxes even if they are experimentally inaccessible,
provided that the molecular force fields can be modeled real-
istically [37,38].

Beyond chemical reaction networks, social networks
[39–41] and infrastructure networks may also benefit from
our findings. In power grids [42,43], for example, the net-
work components are assumed to be known but can involve

uncertainties and the network itself may also vary, as not
all components are necessarily operational at all times. Our
results suggest that power-grid models may become unreliable
even if the component parameters are accurate unless they
are updated in real time to account for missing components.
In other applications, our results also emphasize an impor-
tant tradeoff between model accuracy and parameter accuracy
when dimension reduction is implemented by network trim-
ming. That is, trimmed networks may lead to accurate results
under specific conditions at the cost of requiring parameter
values that differ significantly from their actual values and that
may change substantially as conditions change. We anticipate
that the impact of missing information on parameter estima-
tion will ultimately depend on the class of networks under
consideration, much in the same way as optimal link detection
varies across scientific domains [44].
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APPENDIX A: ELECTRIC CIRCUIT ANALYSIS

We first derive the measured currents for the circuit Fig. 1
using Kirchhoff’s laws. The voltage across the blue resistor is
known, so the current moving from left to right across the blue
resistor is I3 = (Vadj − V1)/R1. Since the black nodes are nei-
ther sources nor sinks of current, the current from top to bot-
tom across the red resistor must be I2 + I3 = (Vadj − V3)/R2.
This same current must pass through the horizontal 1� resis-
tor, so that I2 + I3 = V3/(1�). It follows that V3 = Vadj/(R2 +
1�) and I2 = Vadj/(R2 + 1�) − (Vadj − V1)/R1. Similarly, the
current across the vertical 1� resistor must be I1 − I3 =
V1/(1�), and thus I1=V1/(1�)+(Vadj−V1)/R1.

Next, we consider the model of the experimenter who
neglects the red resistor. According to this model, all the
current drawn through the adjustable voltage source trav-
els across the blue resistor, so that the estimated current
is I ′

2 = −(Vadj − V1)/Rest, where Rest is the estimate of the
resistance of the blue resistor. Similarly, the experimenter
estimates the current drawn from the left voltage source to
be I ′

1 = V1/(1�) + (Vadj − V1)/Rest. The square error for the
incomplete model, ε2 ≡ (I ′

1 − I1)2 + (I ′
2 − I2)2, is thus

ε2 = �2 +
(

Vadj

R2 + 1�
+ �

)2

, (A1)

where � = (Vadj − V1)(1/Rest − 1/R1). The least-squares es-
timate for the resistance in Fig. 1(b) follows by minimiz-
ing ε2 with respect to Rest. The local sensitivity Si j ≡
(Rj/Ii )(∂Ii/∂Rj ) quantifies how the ith current varies with the
jth resistor. It seems intuitive that the least-squares estimate
derived from the model that omits R2 can become unreliable
when Si2 becomes large compared to Si1. Indeed, for this
circuit, the ratio S22/S21 = (R2 + 1�)2(Vadj − V1)/R1R2Vadj

approaches zero as Vadj approaches V1, where the estimate in
Fig. 1(b) becomes unreliable.
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TABLE II. Simulated experimental observations for natural gas combustion. The temperature T , pressure P, and the fuel to air ratio φ are
varied, resulting in different observed ignition times to

ig and peak O radical mole fraction X o
Opeak

. An example of the estimated rate constant
kest/k0 for fits of the corresponding observation for a network with 40 reactions removed is shown in the last column.

Expt. No. T (K ) P (atm) φ to
ig (s) X o

Opeak
kest/k0

1 1300 0.1 0.5 6.3 × 10−2 1.5 × 10−2 1.02
2 1300 0.1 1.0 9.0 × 10−2 2.7 × 10−4 1.01
3 1300 0.1 2.0 1.4 × 10−1 1.8 × 10−5 4.71
4 1300 1.0 0.5 1.2 × 10−2 1.3 × 10−2 1.03
5 1300 1.0 1.0 1.7 × 10−2 7.8 × 10−5 1.09
6 1300 1.0 2.0 2.5 × 10−2 1.0 × 10−5 2.27
7 1300 5.0 0.5 2.9 × 10−3 7.4 × 10−3 1.11
8 1300 5.0 1.0 4.1 × 10−3 7.6 × 10−5 1.30
9 1300 5.0 2.0 6.3 × 10−3 6.8 × 10−6 0.30
10 1500 0.1 0.5 7.6 × 10−3 1.7 × 10−2 1.03
11 1500 0.1 1.0 9.0 × 10−3 4.2 × 10−4 1.02
12 1500 0.1 2.0 1.2 × 10−2 3.3 × 10−5 2.00
13 1500 1.0 0.5 1.1 × 10−3 1.5 × 10−2 1.04
14 1500 1.0 1.0 1.5 × 10−3 3.2 × 10−4 1.03
15 1500 1.0 2.0 2.2 × 10−3 2.1 × 10−5 0.06
16 1500 5.0 0.5 3.3 × 10−4 1.1 × 10−2 1.07
17 1500 5.0 1.0 4.5 × 10−4 2.0 × 10−4 1.09
18 1500 5.0 2.0 6.6 × 10−4 1.5 × 10−5 0.14
19 1700 0.1 0.5 1.9 × 10−3 1.8 × 10−2 1.03
20 1700 0.1 1.0 1.9 × 10−3 5.9 × 10−4 1.05
21 1700 0.1 2.0 2.2 × 10−3 5.4 × 10−5 2.17
22 1700 1.0 0.5 2.2 × 10−4 1.6 × 10−2 1.05
23 1700 1.0 1.0 2.5 × 10−4 5.0 × 10−4 1.05
24 1700 1.0 2.0 3.2 × 10−4 4.0 × 10−5 1.87
25 1700 5.0 0.5 5.7 × 10−5 1.3 × 10−2 1.08
26 1700 5.0 1.0 6.9 × 10−5 3.5 × 10−4 1.10
27 1700 5.0 2.0 9.4 × 10−5 2.9 × 10−5 0.11

APPENDIX B: KINETIC MODELS AND REACTION
SENSITIVITY

The chemical reaction networks we consider are described
by state variables corresponding to the molar fraction XAi of
the ith species with name Ai in an ideal gas and thermo-
dynamic variables including the temperature T and pressure
P, with volume held fixed and under adiabatic conditions.
For simplicity, we consider well-mixed systems, so that there
is no spatial dependence on variables. Molar fractions vary
because of elementary chemical reactions between species,
such as the �th reaction

∑
i νi�Ai → ∑

j η j�Aj , which is
assumed to occur at a rate governed by mass-action kinetics
(i.e., proportional to a rate constant κ� times the product of
the reactants molar concentrations raised to their stoichio-
metric coefficients). Each molar fraction increases at a rate
given by the reactions that produce it and decreases at a
rate given by the reactions that consume it, as dXAi/dt =∑

� κ�(ηi� − νi�)
∏

j X
ν j�

Aj
. The energy released or consumed

from each reaction (determined from thermodynamic data
about the species) is converted to heat, which enters an energy
conservation equation governing the evolution of the temper-
ature, and the pressure and temperature are related through a
constitutive relation, which we take as the ideal gas law. Each
rate constant has temperature dependence which is based on a
modified Arrhenius equation κ = kT b exp(−E/RT ) where k,
b, and E are model parameters. Some three-body reactions

also depend on pressure with a Troe falloff, and reversible
reactions have rate constants derived from detailed balance.
The local sensitivity Si� ≡ κ�/Xi × ∂Xi/∂κ� quantifies how
the state variable Xi changes as the parameter κ� varies [21].
Small changes in the rate constants for reactions with large
sensitivities produce large changes in the species molar frac-
tions, indicating that sensitivity may be a useful metric for
reaction importance.

APPENDIX C: SIMULATED COMBUSTION
MEASUREMENTS

We consider 27 thermodynamic conditions for our mea-
surement simulations that evenly span the range of thermo-
dynamic values over which the GRI network was designed to
model ignition, as listed in Table II. The initial concentrations
in the simulation are a mixture of air and methane, with 8 parts
N2, 2 parts O2, and φ parts fuel CH4. For the measurements
in air diluted with argon, an additional 1 part Ar was added to
the initial conditions.

Experiments cannot generally observe the concentration of
all species or reaction fluxes during the course of ignition.
Instead, specific targets are identified to measure and fit. For
this study, we consider the ignition time tig and the peak in
the oxygen radical mole fraction XOpeak that occurs at ignition,
where tig is taken as the time of the oxygen peak. For sim-
plicity, we fix the values of b and E in the rate constants to
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TABLE III. Simulated experimental observations for ethylene pyrolysis. The temperature T , pressure P, and fuel purity φ are varied,
resulting in different net yields X o

H2
and X o

CH4
. An example of the estimated rate constant kest/k0 for fits of the corresponding observation for a

network with 200 reactions removed is shown in the last column.

Expt. No. T (K ) P (atm) φ X o
H2

X o
CH4

kest/k0

1 1000 0.01 0.5 2.8 × 10−1 1.2 × 10−2 0.93
2 1000 0.10 0.5 2.6 × 10−1 3.2 × 10−2 0.96
3 1000 1.00 0.5 2.1 × 10−1 6.5 × 10−2 0.95
4 1000 0.01 1.0 4.0 × 10−1 1.9 × 10−2 0.93
5 1000 0.10 1.0 3.7 × 10−1 4.7 × 10−2 0.95
6 1000 1.00 1.0 3.1 × 10−1 9.5 × 10−2 0.93
7 1000 0.01 2.0 5.1 × 10−1 2.6 × 10−2 0.93
8 1000 0.10 2.0 4.7 × 10−1 6.2 × 10−2 0.94
9 1000 1.00 2.0 4.0 × 10−1 1.2 × 10−1 0.91
10 1100 0.01 0.5 2.8 × 10−1 1.0 × 10−2 0.95
11 1100 0.10 0.5 2.7 × 10−1 2.4 × 10−2 0.94
12 1100 1.00 0.5 2.3 × 10−1 5.4 × 10−2 0.93
13 1100 0.01 1.0 4.0 × 10−1 1.7 × 10−2 1.04
14 1100 0.10 1.0 3.8 × 10−1 3.7 × 10−2 0.93
15 1100 1.00 1.0 3.3 × 10−1 8.0 × 10−2 0.92
16 1100 0.01 2.0 5.1 × 10−1 2.3 × 10−2 1.05
17 1100 0.10 2.0 4.8 × 10−1 5.1 × 10−2 0.93
18 1100 1.00 2.0 4.2 × 10−1 1.1 × 10−1 0.91
19 1200 0.01 0.5 2.8 × 10−1 8.9 × 10−3 0.92
20 1200 0.10 0.5 2.7 × 10−1 2.0 × 10−2 0.98
21 1200 1.00 0.5 2.4 × 10−1 4.4 × 10−2 0.93
22 1200 0.01 1.0 4.0 × 10−1 1.5 × 10−2 1.30
23 1200 0.10 1.0 3.8 × 10−1 3.1 × 10−2 0.97
24 1200 1.00 1.0 3.4 × 10−1 6.7 × 10−2 0.92
25 1200 0.01 2.0 5.0 × 10−1 2.1 × 10−2 1.43
26 1200 0.10 2.0 4.8 × 10−1 4.3 × 10−2 0.97
27 1200 1.00 2.0 4.3 × 10−1 8.9 × 10−2 0.91

their values in the original network and optimize only over the
preexponential factor k. We optimize over the error quantity

ε2 ≡
(

to
ig − t f

ig

to
ig

)2

+
(

X o
Opeak

− X f
Opeak

X o
Opeak

)2

, (C1)

where the superscripts o and f indicate the observed and fitted
values, respectively. When the observations from multiple
thermodynamic conditions are combined to produce a rate
constant estimate, the square errors are totaled to give the ag-
gregated error. The particular optimization target in Eq. (C1)
is intended to emulate choices made in real combustion exper-
iments [15].

We use a Brent optimization algorithm, with a bracket
found from an initial interval of [k0/2, 2k0], where k0 is the
original network’s rate constant value. To simulate dynamics,
we used the open-source software CANTERA to numerically
integrate the coupled ordinary differential equations in the
combustion and pyrolysis networks. The 2-norm (over the
time indices) of the local sensitivity SO� (and SH2� in the
case of pyrolysis below) was calculated for all reactions and
averaged over all experimental conditions to rank reactions

by their sensitivity. The removal sensitivity Sr is the total
sensitivity of all reactions removed to generate the incomplete
network, and the measurement sensitivity Sm is the sensitivity
of the reaction whose rate constant is being estimated.

APPENDIX D: SIMULATED PYROLYSIS
MEASUREMENTS

Table III shows the experimental conditions for the pyroly-
sis rate constant measurements. The fuel purity φ in this case
indicates the ratio of ethylene to N2 in the initial condition.
These conditions were chosen for their applicability to low-
pressure chemical vapor deposition. For ethylene pyrolysis,
we optimize over the error

ε2 ≡
(

X o
CH4

− X f
CH4

X o
CH4

)2

+
(

X o
H2

− X f
H2

X o
H2

)2

, (D1)

where the yield concentrations are evaluated at a time that
the H2 concentration has attained its equilibrium value. The
particular optimization target in Eq. (D1) based on methane
and hydrogen yields is intended to represent the kinds of
limited data that are available in chemical vapor deposition
experiments.
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