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Cracking urban mobility
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Assessing the resilience of a road network is instrumental to improve existing infrastructures and design new
ones. Here, we apply the optimal path crack model (OPC) to investigate the mobility of road networks and
propose a new proxy for resilience of urban mobility. In contrast to static approaches, the OPC accounts for the
dynamics of rerouting as a response to traffic jams. Precisely, one simulates a sequence of failures (cracks) at
the most vulnerable segments of the optimal origin-destination paths that are capable to collapse the system.
Our results with synthetic and real road networks reveal that their levels of disorder, fractions of unidirectional
segments and spatial correlations can drastically affect the vulnerability to traffic congestion. By applying the
OPC to downtown Boston and Manhattan, we found that Boston is significantly more vulnerable than Manhattan.
This is compatible with the fact that Boston heads the list of American metropolitan areas with the highest
average time waste in traffic. Moreover, our analysis discloses that the origin of this difference comes from the
intrinsic spatial correlations of each road network. Finally, we argue that, due to their global influence, the most
important cracks identified with OPC can be used to pinpoint potential small rerouting and structural changes in
road networks that are capable to substantially improve urban mobility.
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I. INTRODUCTION

Traffic congestion is part of the daily life in a metropolitan
region. In the top 20 cities in the United States, it is estimated
that the average daily commuter wastes more than 85 h/yr
in traffic congestion [1]. Boston heads this list with a 160+
h/yr average delay. The numbers are even worse in cities,
such as Moscow, London, Bogota, or Mexico City where the
average time wasted per year exceeds 200 h. This inefficiency
not only impacts on life quality and the environment, but also
compromises economic growth. A recent study using data
from 88 U.S. metropolitan areas suggests that a seemingly
harmless average delay of 4.5 min for each one-way auto
commute in a city is enough to slow down job growth [2].

To proper assess urban mobility, one needs to account
for the impact of road congestion in global traffic [3–7]. Li
et al. [8] proposed to apply percolation theory to evaluate
how global connectivity is lost when vulnerable roads are
congested. Their static analysis for different hours of the day
gives insight into normal and rush-hour traffic and helped
identifying vulnerable roads [4,9–11]. However, in reality,
users are actively evaluating their routes and taking alternative
paths to avoid traffic jams [12–14]. Thus, the probability that
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a road gets congested depends not only on its average level
of traffic, but also on the likelihood that users take it in their
route [15,16].

Without central planning, travelers usually choose the route
that minimizes their traveling time. However, when a road
segment gets congested, a new optimal route needs to be
found. The optimal path crack model (OPC) was introduced
as a general framework to study the resilience of a network
infrastructure to a sequence of optimal path failures [17,18].
The OPC is described as follows. Let us consider a square
lattice of size L with periodic boundary conditions in the
horizontal direction and fixed boundary conditions at the top
and bottom. To each link, a traveling time t is randomly
assigned according to a given probability distribution P(t )
with t > 0. Using Dijkstra’s algorithm [19], the first optimal
path is identified which minimizes the total traveling time
between the bottom and the top of the lattice. We then search
and remove the most vulnerable link along this path, defined
as the one with the highest traveling time. The next optimal
path is identified, which cannot contain the removed link, and
its vulnerable link is also removed. We proceed iteratively
until the lattice is disrupted and no more paths can be found.
The OPC is then the set of all removed links. In the limit of
strong disorder, all cracks are located on a single self-similar
connected line of fractal dimension equal to 1.22 [17]. As a
matter of fact, this exponent value is statistically identical to
the fractal dimension previously found for the optimal path
line under strong disorder [20–23], “strands” in invasion per-
colation [20,21], paths on minimum spanning trees [24], and
watersheds on uncorrelated landscapes [18,25]. In the case of
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FIG. 1. Sequence of removed links during the OPC process for
6 × 6 square lattices under weak disorder in traveling times (β =
0.002) and different values of the fraction p of unidirectional links,
namely, (a) p = 0, (b) p = 0.4, and (c) p = 1. Before the collapse of
the system, all links in red were part of an optimal path, at least, once,
from the bottom (origin) to the top (destination) of the lattice. Those
removed are indicated with white circles in the middle, numbered
according to the OPC removal sequence as explained in the main text.
The number of removed links clearly decreases with p. The dashed

weak disorder, the cracks spread all over the entire network
before global connectivity is lost so that the total number of
removed links scales as Nr ∼ Ld , where d is the topological
dimension of the lattice [17].

So far, all studies on OPC considered nondirected net-
works. However, road networks always have a non-negligible
fraction of one-way roads, which is expected to substantially
affect the traffic dynamics [26–28]. In addition, by contrast to
previous static approaches, the fact that OPC accounts for the
dynamics of rerouting as a response to traffic jams suggests
that this model may be a better proxy for resilience of urban
mobility. It is under this framework that here we investigate
the behavior of OPC when applied to synthetic and real road
networks. This paper is organized as follows. In Sec. II, we
study the role of disorder and unidirectionality on the OPC
model applied to synthetic road networks. In Sec. III, the
OPC is applied to the real road networks of Manhattan and
downtown Boston. In Sec. IV, we present the conclusions of
our paper.

II. ROLE OF DISORDER AND UNIDIRECTIONALITY
ON THE OPC

In order to better understand the combined role of disorder
and unidirectionality on the OPC, we applied the model to
synthetic road networks in which the links are assigned to
be unidirectional with probability p and bidirectional with
probability (1 − p). For p = 0 we recover the OPC of a fully
bidirectional lattice, whereas for p = 1 all links are unidi-
rectional. Disorder is introduced by assigning the traveling
times of unidirectional links according to a hyperbolic distri-
bution p(τi ) ∝ 1/τi, truncated between τmax = 1 and τmin =
exp(−β ), where β � 0 is the parameter that controls the
disorder. Typical realizations of the OPC model for small
networks generated with weak disorder are shown in Fig. 1.
Note that each bidirectional link in the network has distinct
traveling times associated with its two directions. As previ-
ously observed [17], the set of the OPC cracks generated in
fully bidirectional networks (p = 0) always contains a con-
tiguous subset that spans the entire system from left to right,
regardless of the level of disorder. In the presence of any
amount of unidirectional links (p > 0), however, the cracks
do not necessarily form a contiguous fracture that divides the
network into two pieces. Moreover, the larger the value of p,
rarer is the occurrence of this spanning fracture. When the uni-
directional links are assigned independently at random, there
is always global connectivity (percolation), but sink nodes and
closed loops are formed [29]. The links belonging to such a
closed loop will never be part of a shortest path and, thus, the
fracture does not need to be contiguous as they also contribute
to separate the lattice into two pieces.

Figure 2 shows the logarithmic dependence of the number
of removed links Nr on the linear size of the lattice L for lat-
tices with sizes varying in the range 16 � L � 512 and weak

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
line in (a) corresponds to the fracture backbone that is always present
as a result of the OPC process applied to fully bidirectional networks
(p = 0) [17].
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FIG. 2. Logarithmic dependence of the total number of removed
links Nr on the linear size of the lattice L for different values of
the fraction p of unidirectional links. The symbols correspond to
averages over 100 thousand network realizations and weak disorder
in their traveling times (β = 0.002). The results for p = 0.4 and 0.8
are consistent with the scaling Nr ∼ L2, obtained for p = 0, namely,
fully bidirectional lattices [17]. For a completely unidirectional lat-
tice p = 1, we find that Nr ∼ LD f with Df = 0.382 ± 0.002. The
error bars are smaller than the symbols. The inset shows the tricritical
crossover scaling and data collapse for the OPC model on regular
lattices. The scaling function is given by Eq. (1) with Df = 0.38 and
θ = 0.753. The solid line in the inset represents a power law with
exponent 2.15.

disorder in their distribution of traveling times (β = 0.002).
For p �= 1, the numerical results are consistent with Nr ∼ Ld ,
where d = 2. Thus, provided that a nonzero fraction of links
is bidirectional, the set of all removed links is compact as
reported for networks with only bidirectional links (p = 0)
[17]. Nevertheless, the fraction of removed links is a mono-
tonic decreasing function of p, meaning that the prefactor of
the power-law relation decreases too (see Fig. 2). Surprisingly,
in the limit case of a completely unidirectional lattice p = 1,
we find that Nr ∼ LD f with D f = 0.382 ± 0.002. Our result,
therefore, indicates that the OPC set at this point belongs to a
different universality class. Moreover, since D f < d , the frac-
tion of removed links for an infinite lattice (thermodynamic
limit) is zero for p = 1.

The statistics of the OPC set generated under weak disorder
suggests that its dimension does crossover from d for p < 1
to D f at p = pc = 1. This crossover is analogous to what
is observed at the θ point of polymer systems [30–32]. At
high temperatures, the configurations of a polymer chain are
well described by a self-avoiding random walk as the only
relevant interactions are excluded volume. However, at the
θ temperature, the attractive forces are no longer negligible,
and the statistics are then different. Also, in ranked surfaces,
when occupying links sequentially but suppressing global

p = 0.0
p = 0.2
p = 0.6
p = 1.0

FIG. 3. Logarithmic dependence of the total number of removed
links Nr on the linear size of the lattice L for different values of
the fraction p of unidirectional links. The symbols correspond to
averages over 100 000 network realizations with sizes L = 16, 32,
64, 512, and 1024 and strong disorder in their traveling times (β =
400). The results for p = 0.4 and 0.8 are consistent with the scaling
Nr ∼ LD

f with Df = 1.22 ± 0.01 obtained for p = 0, namely, fully
bidirectional lattices [17]. For a completely unidirectional lattice
p = 1, we find that Nr ∼ LD f with Df = 0.002 ± 0.004. The error
bars are smaller than the symbols.

connectivity, the fractal dimension of the set of links that are
not occupied due to this constraint changes from 3/4 at the
percolation threshold to 1.22 above it [25]. For the case of the
OPC, we consider the following crossover ansatz:

Nr = LD f F[(pc − p)Lθ ], (1)

where θ is the crossover exponent, F[x] ∼ xη for x �= 0 and
equal to a nonzero constant at x = 0. The inset in Fig. 2
shows the data collapse obtained with this tricritical scaling

FIG. 4. Schematic representation of the OPC process for a real-
ization of a origin (O) destination (D) in downtown Boston. Before
the collapse of the network, all links in black or red were part of an
optimal path, at least, once. Those removed are in red and indicated
with white circles in the middle, numbered according to the OPC
removal sequence as explained in the main text.
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FIG. 5. Dependence of the total number of removed roads Nr on
the origin-destination distance L (in meters) for downtown Boston
and Manhattan (open symbols). Numerical results are averages over
2000 OD samples for each city. Also shown are the results of the
OPC simulations preserving the geometry of the road networks, but
shuffling the values of t/� among randomly chosen pairs of road
segments (filled symbols). The inset shows the linear dependence
� = aNr with a = 98.9 ± 0.03 and 129.8 ± 0.04 for Boston and
Manhattan, respectively. In all cases, the error bars are smaller than
the symbols.

for different lattice sizes and values of p with θ = 0.753. By
fitting the power-law regime of the scaling function F , we
estimate η = 2.15 ± 0.03. From the ansatz, we expect that,

D f + ηθ = d, (2)

which is verified, within error bars. This behavior confirms
that the universality class of the OPC is robust and only breaks
down for a fully unidirectional lattice (p = 1).

For the case of local traveling times with strong disor-
der β = 400 (see Fig. 3), the OPC results for p �= 1 are
also consistent with the behavior previously observed for
fully bidirectional networks (p = 0), namely, D f = 1.22 ±
0.01 [17]. As in the weak disorder case, it is only for p = 1
that the finite-size scaling of the system becomes noticeably
different with D f = 0.002 ± 0.004. A rather small number of
removed links is, therefore, sufficient to block a fully directed
lattice subjected to strong disorder. Summing up, our analysis
with synthetic road networks shows that the higher the frac-
tion of unidirectional segments and the level of disorder are,
the lower is the resilience for urban mobility.

III. THE OPC FOR REAL ROAD NETWORKS

Next, we show that the OPC can be effectively used as
a proxy for urban mobility. In general, the fraction of one-
way roads changes from city to city. Here we apply the
OPC method to two metropolitan areas in the United States,

(a)

(b)

FIG. 6. Comparison between distributions of the lengths � of all
road segments, and the lengths λ of those among all road segments
that have been removed during the OPC process applied to Boston
(top) and Manhattan (bottom).

namely, Manhattan and downtown Boston, the latter being
the top one in the rank of North America for average time
waste in traffic [1]. For this purpose, we obtained the road net-
work structures of both urban areas from OpenStreetMap [33].
Their corresponding average traveling times per road were
downloaded from Directions API Google [34], specifically for
November 21th of 2018 at 4:00 a.m. This off-peak data set
has been chosen because, by construction, the traveling times
should somehow reflect the freeway state of the streets and
avenues constituting a given urban mobility system. In order
to assess the efficiency of these road networks to urban traffic,
the OPC is numerically calculated for different pairs of origin-
destination (OD) sites. Precisely, for each OPC realization,
one site of the network is selected at random to be the center
of a circle of radius L. A point on this circle is, then, randomly
chosen, and the closest road sites to the center and to this point
are taken as the origin and destination, respectively, only if the
distance between them is equal to L within a tolerance of 5%.
Here, due to the fact that road segments composing the urban
networks have different traveling times t as well as lengths �,
an optimal path is identified among all possible paths during
the OPC process as the one with the minimum sum of t/� over
all its road segments.

The OPC simulations have then been performed with 2000
OD realizations for Boston and Manhattan. A typical realiza-
tion of the OPC for downtown Boston is shown in Fig. 4.
One should note that the bidirectional links (two-way streets
and avenues) are, in fact, composed of two unidirectional
ones of contrary directions that can be removed indepen-
dently during the OPC process. In Fig. 5, we show how

043132-4



CRACKING URBAN MOBILITY PHYSICAL REVIEW RESEARCH 2, 043132 (2020)

FIG. 7. Distribution P(τ ) of the traveling time per length τ = t/�
of the road segment for Boston (a) and Manhattan (b). The solid lines
are best fits to a lognormal distribution with mean 0.18 and variance
0.1 for Boston and 0.21 and 0.09 for Manhattan.

the average number of removed sites Nr varies with the dis-
tance L for both urban areas. The smaller Nr is, less resilient

is the road network. These results indicate that Boston is
systematically much more vulnerable than Manhattan, regard-
less of the origin-destination distance L, which is consistent
with their relative positions in the national rank of urban mo-
bility. Moreover, the same behavior can be observed if, instead
of Nr , we quantify the result of each OPC process in terms of
the sum � = ∑Nr

i=1 λi, where λi is equal to the length � of the
removed road segment at iteration i. Interestingly, as shown in
the inset of Fig. 5, these two measures are, in fact, linearly
related 〈�〉 = aNr with a = 98.9 and 129.8 m for Boston
and Manhattan, respectively. For all practical purposes, this
indicates the absence of spatial statistical correlations in the
OPC process of selecting λ from the distribution of segment
lengths P(�) of both road networks. As shown in Fig. 6, the
distributions P(�) and P(λ) for a given road network display
similar qualitative features in shape. More important, these
results for Boston and Manhattan indicate that the variable
λ is selected by the OPC process over the entire range of �

values. One should note that, although the OPC process tends
to pick larger values of λ from P(�) more frequently, this does
not imply the presence of statistical correlations among links
in the road networks. Such a behavior clearly reflects a local
feature of the network that is captured by the OPC but cannot
explain the substantial differences in the resilience of Boston
and Manhattan since the OPC results for both road networks
follow the same tendency.

We now investigate the origin of the substantial dif-
ference between the resilience of Boston and Manhattan.
Figure 7 shows the distributions of traveling time per segment
length P(t/�) obtained for their corresponding road networks.
Clearly, the disorder is weak in both cases, and the modest
difference between them is not compatible with the large
discrepancy observed in their resilience. Furthermore, the

(b)(a)

FIG. 8. Road maps for downtown Boston (left) and Manhattan (right). The thick red lines are the road segments that have been removed
first. All other road segments are shown in blue. Only the OPC samples performed with OD distances L = 2000 m have been considered.
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% of the most frequent removals

FIG. 9. Cumulative dependence of the percentage of all first re-
movals during the OPC process on the fraction of the most frequent
ones. The vertical solid lines indicate that the first removals corre-
spond to 5.4% of all road segments in the case of Boston, whereas
10.0% is the percentage required for Manhattan.

fraction of unidirectional links p found for downtown Boston
is 0.65, whereas the value for Manhattan is 0.78. However, our
results from synthetic road networks indicate that, for similar
levels of disorder, the resilience of the system should decrease
with the value of p. As a consequence, the observed difference
in the resilience of Boston and Manhattan also cannot stem
from their distinct p values. One, therefore, can only rely
on the particular features of the intrinsic spatial correlations
that should be present in these urban systems to justify their
very distinct responses. In order to test for this hypothe-
sis, we performed additional OPC simulations preserving the
geometry of both networks, but shuffling the values of t/�
among randomly chosen pairs of road segments. The results
presented in Fig. 5 are rather surprising and twofold. First,
they show that the effect of suppressing the spatial corre-
lations is to practically collapse the curves Nr against L of
both cities to a single curve, therefore, demonstrating the
generality and comparative power of the OPC method for
urban mobility. Second, the fact that the values of Nr sys-
tematically increase for Boston and decrease for Manhattan
as compared to the results using the real (nonshuffled) data
sets corroborate the ability of our approach to properly capture
negative and positive effects of spatial correlations on urban
mobility.

One question that naturally arises is how the OPC method
can be used to enhance urban mobility. A possible answer is to
prioritize rerouting and structural improvements based on the
identification of those road segments that are more frequently
appearing among the first removals in all OPC sequences. In
Fig. 8, are the road maps for the two urban areas where the
highlighted road segments (thick and red) correspond to all
those removed first, considering all OPC samples performed
with OD distances L = 2000 m. For downtown Boston [see
Fig. 8(a)], we find that only a percentage of 5.4% of all
road segments is removed, whereas 10.0% is the value for
Manhattan [see Fig. 8(b)]. The cumulative dependence of the
percentage of all first removals on the percentage of the most
frequent ones is shown in Fig. 9. These results suggest that, as
compared to Manhattan, a relatively small number of potential
local changes in Boston might be very efficient in improving
urban mobility. The fact that Manhattan is much more resilient
should, therefore, increase the costs of improvements.

IV. CONCLUSIONS

To summarize, we proposed a proxy for resilience of ur-
ban mobility based on OPC. Our results with synthetic and
real road networks suggest that their vulnerability to traffic
congestion are strongly dependent on the level of disorder,
fraction of unidirectional segments, and intrinsic spatial corre-
lations. These observations have practical implications in the
design and restructuring for improved urban mobility. With
the OPC, we obtain the list of most vulnerable links, defined
as the ones with the highest traveling time along the sequence
of shortest origin-destination paths. The vulnerability of such
a link might stem from many design factors, such as the
capacity of the road, speed limit, number of crossroads, or
traffic-light dynamics. We conclude that the OPC is a gen-
eral and powerful method to access urban mobility and gives
practical insight that can effectively help identifying and mit-
igating vulnerabilities of real road networks.
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