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In this paper, we make a detailed study of the D → V helicity form factors (HFFs) within the framework of
the QCD light-cone sum rule (LCSR) up to twist-4 accuracy. After extrapolating the LCSR predictions of HFFs
to the whole physical q2 region, we get the longitudinal, transverse, and total |Vcq|-independent decay widths of
semileptonic decay D → V �+ν�. Meanwhile, the branching fractions of these decays are also obtained by using
the D0(D+)-meson lifetime, which agrees well with the BESIII results within the error bars. As a further step,
we also investigate the differential and mean predictions for charged lepton (vector meson) polarization in the
final state P�

L,T (F �
L,T), the forward-backward asymmetry A�

FB, and the lepton-side convexity parameters C�
F. Our

predictions are consistent with covariant confining quark model results within errors. Thus, we think the LCSR
approach for HFFs is applicable for dealing with the D-meson semileptonic decays.
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I. INTRODUCTION

Semileptonic decays of charm mesons to vector mesons
are a significant component in deeper understanding of
the standard model (SM) in the post-Higgs era. Those
decays not only are directly related to Cabibbo Kobayashi
Maskawa (CKM) matrix elements providing a window to
study the CP-violation problem [1–8] but also contain the
flavor-changing neutral current (FCNC) processes, which are
sensitive to new physics (NP) because it occurs in at least one
loop level in the SM [9–13]. For the D-meson semileptonic
decay processes, the BESIII [14–16] and CLEO [17–22]
Collaborations have reported the branching fraction and form
factors at a large recoil point. In 2019, the BESIII Collab-
oration measured the D → ρ�ν� branching fraction, i.e.,
B(D0 → ρ−e+νe) = (1.445 ± 0.058stat ± 0.039syst ) × 10−3

and B(D+ → ρ0e+νe) = (1.860 ± 0.070stat ± 0.061syst ) ×
10−3 [23]; meanwhile, they also presented an improved
measurement for the D → K∗(892)−e+νe branching fraction,
i.e., B(D0 → K∗(892)−e+νe) = (2.033 ± 0.046stat ±
0.047syst ) × 10−2 [24] in the same year. It is worth noting
that BESIII recently published their first measurements
for the D+ → ωμ+νμ branching fraction in 2020, i.e.,
B(D+ → ωμ+νμ) = (17.7 ± 1.8stat ± 1.1syst ) × 10−4, which
is realized by applying an e+e− collision data sample
corresponding to an integrated luminosity of 2.93 fb−1

collected with the BESIII detector at a center-of-mass energy
of 3.773 GeV [25].
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To further the understanding of the D → V semileptonic
decay processes, the complete angular distribution and po-
larization information should be investigated, such as the
longitudinal and transverse polarizations of the final charged
lepton P�

L,T(q2) and the final vector meson F �
L,T(q2), the

forward-backward asymmetry A�
FB(q2), and the lepton-side

convexity parameter C�
F(q2). On the one hand, there is lit-

tle theoretical research on that polarization information and
even less experimental research, but one can find numerous
experimental and theoretical studies for that of the B meson
[26–35]. On the other hand, the QCD light-cone sum rule
(LCSR) is an effective method to study the heavy meson to
light meson decay processes that are actually an FCNC pro-
cess of the heavy quark to light quark transition. The D → V
decay corresponds to the transition of a heavy quark to a light
quark c → q (u, d, s), and the mass of the charm quark is
of the order of 1 GeV, which indicate the LCSR is applica-
ble in studying the D → V decay process. Therefore, in this
paper, we will study those observations for the semileptonic
D → V �+ν� decays within the framework of the LCSR.

The LCSR is an important method in dealing with the
semileptonic decays [36–45]. Its main strategy is to con-
struct an analytic heavy-to-light correlator function in the
whole q2 region and then make an operator product expansion
(OPE) and a hadron expression for it in the spacelike and
timelike regions, respectively, finally combining the results
achieved in those two ways to get the form factors with the
help of Borel transformation. Both transition form factors
(TFFs) and helicity form factors (HFFs) contain information
on meson semileptonic decays independently because they
can describe the nonperturbative hadronic matrix elements of
meson semileptonic decays independently. One can decom-
pose the hadronic matrix elements by applying the momentum
of initial and final meson states to obtain TFFs [46–53], which
will lead to a mix of longitudinal and transverse polarizations
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TABLE I. Resonance masses of quantum number JP that are
indicated as being necessary for the parametrization of D → V HFFs
DV,σ [57,58] with σ = 0, 1, 2, t .

Fi JP mR,i (GeV)

DV,t 0− 1.864
DV,0;2 1+ 2.420
DV,1 1− 2.007

of the meson among those TFFs. Thus, TFFs cannot express
the polarization information of meson decay accurately.

The HFFs opened a new avenue to deal with those ma-
trix elements [54–56]. HFFs decompose it by applying the
off-shell W -boson polarization vectors, which leads to a
good polarization property, i.e., research on tracking polar-
ization. Specifically, the longitudinal and transverse decay
information can be completely separated, which is very use-
ful for probing the longitudinal and transverse polarizations
separately. Especially, both the decay widths of D-meson
longitudinal and transverse components contain the usual
TFF [A1(q2)], which means D-meson longitudinal and trans-
verse components are related to each other. However, in the
case of HFFs, the decay widths of the D-meson longitudinal
(transverse) component are related to the DV,0(q2) [DV,1(q2),
DV,2(q2)] HFF, which means the decay widths of the D-meson
longitudinal and transverse components are separated com-
pletely and have no influence on each other. In addition, HFF
also enjoys some other advantages, such as dispersive bounds
on the HFF parametrization and direct relations between the
HFFs and the spin-parity quantum numbers (Table I). For
a more detailed discussion, one can refer to the literature
[54–56].

The remaining parts of this paper are organized as follows.
In Sec. II, we introduce the physical observable for D →
V (ρ, ω, K∗)�+ν� semileptonic decay processes and calculate
the HFFs within the LCSR approach. In Sec. III, after fixing
the hadron input parameters for HFFs and extrapolating those
HFFs to the whole q2 region with simplified series expansion
(SSE), we then apply it to investigate the D → V semilep-
tonic decay observables, such as the decay width, branching
fraction, and polarizations, and also compare our results with
available experimental and other theoretical predictions. Fi-
nally, we briefly summarize in Sec. IV.

II. CALCULATION TECHNOLOGY

A. D → V�+ν� semileptonic decays

The D → V �+ν� semileptonic decay process is displayed
in Fig. 1. The corresponding invariant matrix element can be
expressed as follows:

M(D → V �+ν�) = GF√
2

V ∗
cqHμLμ, (1)

where the Fermi constant GF = 1.166 × 10−5 GeV−2, lep-
tonic current Lμ = ν̄�γμ(1 − γ5)�, and the hadron matric
element Hμ = 〈V |V μ − Aμ|D〉, with flavor-changing vector
current V μ = q̄γ μc and axial-vector current Aμ = q̄γ μγ5c.

+

W+

V 0(V −)D+(D0)

ν

q̄ q̄

c d(s)

FIG. 1. Typical diagram for the D → V �+ν� semileptonic decay,
where q = u, d and V = ρ, ω, K∗ mesons.

To get accurate polarization properties of the semileptonic
decay D → V �+ν�, one can decompose the hadron matric ele-
ment Hμ into the HFFs by the off-shell W -boson polarization
vectors. Specifically speaking,

DV,σ (q2)=
√

q2

λ

∑
α=0,±,t

ε∗μ
σ (q)〈V ( p̃, ε̃α )|q̄γμ(1−γ 5)c|D(p)〉,

(2)
where the standard kinematic function is λ = (t− − q2)(t+ −
q2), with t± = (mD ± mV )2 and ε∗μ

σ (q) representing trans-
verse (σ = ±), longitudinal (σ = 0), and timelike (σ = t)
polarization vectors. For the convenience of polarization
research, two HFFs, DV,(1,2)(q2), are defined by a linear
combination of the transverse helicity projection vector, i.e.,
ε(1,2)(q) = [ε−(q) ∓ ε+(q)]/

√
2, which will be discussed in

the following section.
The polar angle differential decay distribution in the mo-

mentum transfer squared, defined by the angle between �q =
�pD − �pV and the three-momentum of the charged lepton in
the rest frame, can be written as follows:

d2�

dq2d cos θ
= |pV|v

(2π )332m2
D

∑
pol

|M|2, (3)

where |pV| = λ1/2/(2m2
D), v = (1 − m2

�/q2), and the covari-
ant contraction

∑
pol |M|2 can be converted to a sum of

bilinear products of hadronic HFFs and leptonic helicity
amplitude by applying the completeness relation to the po-
larization four-vectors of the process. So the total differential
decay width of D → V �ν� can be expressed as

1

|Vcq|2
d�

dq2
= Gλ3/2v2

[
(1 + δ�)

∑
D2

V,i(q
2) + 3δ�D2

V,t (q
2)

]

= Gλ3/2v2D2
tot (q

2), (4)

with δ� = m2
�/(2q2), G = G2

F /(192π3m3
D), and variable i =

0, 1, 2. The detailed expression reads∑
D2

V,i = D2
V,0 + D2

V,1 + D2
V,2. (5)

As we know, the total decay width can be separated into
longitudinal and transverse parts, i.e., � = �L + �T. The de-
cay width for the vector meson longitudinal component �L is
defined as

�L(q2) = G|Vcq|2
∫ q2

max

0
dq2λ(q2)3/2D2

V,0(q2), (6)
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and the decay width for the vector meson transverse component �T is defined as

�T(q2) = G|Vcq|2
∫ q2

max

0
dq2λ(q2)3/2

∑
D2

V, j, (7)

where the variable j is the summation index, j = 1, 2.
For the polarization properties of the semileptonic decay D → V �+ν�, one can study the longitudinal and transverse

polarizations first. Specifically, with the help of HFFs, the longitudinal P�
L and transverse P�

T polarizations of the charged lepton
in the final state and the longitudinal F �

L and transverse F �
T polarization fractions of the vector meson in the final state are given

by

P�
L = 1 − 2

∑
D2

V,i

Dtot
, P�

T = 3π
√

δ�

2
√

2

DV,1DV,2 − DV,0DV,t

Dtot
, F �

L = 3D2
V,tδ� + (1 + δ�)D2

V,0

Dtot
, F �

T = (1 + δ�)
(
D2

V,1 + D2
V,2

)
Dtot

.

(8)

And the forward-backward asymmetry A�
FB can be written as

A�
FB = d�(F ) − d�(B)

d�(F ) + d�(B)
=

∫ 1
0 dcos θ d�/dcos θ − ∫ 0

−1 dcos θ d�/dcos θ∫ 1
0 dcos θ d�/dcos θ + ∫ 0

−1 dcos θ d�/dcos θ
= 3

2

2δ�DV,0DV,t − DV,1DV,2

(1 + δ�)
∑

D2
V,i + δ�D2

V,t

. (9)

The lepton-side C�
F convexity parameters has the form

C�
F = −3

4

(
2D2

V,0 − D2
V,1 − D2

V,2

)
(1 − 2δ�)

Dtot
. (10)

In order to make a comparison with other approaches, we take the same approach as [59] to deal with the q2 average of those
observables. Specifically, if an observable A has the form A = Dx/Dy, one can multiply both the numerator and denominator by
the phase-space factor and then integrate the two separately. The detailed expression can be written as

〈A〉 =
∫

C(q2)Dxdq2∫
C(q2)Dydq2

, (11)

with the q2 dependence phase-space factor

C(q2) = |pV|
(
q2 − m2

�

)2

q2
. (12)

B. The D → V HFFs

To derive LCSRs for the four HFFs, i.e., DV,σ (q2) with σ = 0, 1, 2, t , we first structure a two-point correlation function
according to LCSR strategy as follows:

�σ (p, q) = i

√
q2

λ
ε∗μ
σ (q)

∫
d4xeiq·x〈V ( p̃, ε̃)|T { jV,μ(x), j†

D(0)}|0〉, (13)

where the hadron vector and pseudoscalar current are jV,μ(x) = q̄(x)γμc(x) and j†
D(0) = c̄(0)iγ5u(0), respectively. Here T is the

product of the current operator.
In the timelike q2 region, after inserting the complete intermediate states that have the same quantum numbers JP = 0− with

the current operator c̄iγ5u into the hadron current of the correlation function and further isolating the pole term of the lowest
pseudoscalar D meson, the correlation function can be read off:

�H
σ (p, q) =

√
q2

λ

[
ε∗μ
σ (q)〈V |q̄γμc|D〉〈D|c̄iγ5u|0〉

m2
D − (p + q)2

+
∑

H

ε∗μ
σ (q)〈V |q̄γμc|DH〉〈DH|q̄iγ5u|0〉

m2
DH − (p + q)2

]
, (14)

where 〈D|c̄iγ5u|0〉 = mD
2 fD/mc. After replacing the sum of higher resonances and continuum states with the dispersion

integrations, the hadronic representation of the correlator �H
σ finally has the form

�H
σ (q2, (p + q)2) = m2

D fD

mc
[
m2

D − (p + q)2
]Dσ (q2) +

∫ ∞

s0

ρH
σ (s)

s − (p + q)2
ds + subtractions. (15)
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In the spacelike q2 region, i.e., (p + q)2 − m2
c 
 0 and q2 
 m2

c − O(1 GeV2), one needs to contract the c-quark operator by
applying a propagator with the gluon field correction:

〈0|ci
α (x)c̄ j

β (0)|0〉 = − i
∫

d4k

(2π )4
e−ik·x

{
δi j /k + mc

m2
c − k2

+ gs

∫ 1

0
dvGμνα (vx)

(
λ

2

)i j[
/k + mc

2
(
m2

c − k2
)2 σμν + 1

m2
c − k2

vxμγν

]}
αβ

.

(16)

For further OPE treatment, one needs the nonlocal matrix elements which are convoluted with the meson light-cone distribution
amplitudes (LCDAs) of a growing twist:

〈V ( p̃, ε̃)|q̄1(x)σμνq2(0)|0〉 = − i f ⊥
V

∫ 1

0
dueiu( p̃·x)

{
(ε̃∗

μ p̃ν − ε̃∗
ν p̃μ)

[
φ⊥

2;V (u) + m2
V x2

4
φ⊥

4;V (u)

]

+ ( p̃μxν − p̃νxμ)
ε̃∗ · x

( p̃ · x)2
m2

V

[
φ

‖
3;V (u) − 1

2
φ⊥

2;V (u) − 1

2
ψ⊥

4;V (u)

]

+ 1

2
(ε̃∗

μxν − ε̃∗
ν xμ)

m2
V

p̃ · x
[ψ⊥

4;V (u) − φ⊥
2;V (u)]

}
, (17)

〈V ( p̃, ε̃)|q̄1(x)q2(0)|0〉 = − i

2
f ⊥
V (ε̃∗ · x)m2

V

∫ 1

0
dueiu( p̃·x)ψ

‖
3;V (u) , (18)

〈V ( p̃, ε̃)|q̄1(x)γμq2(0)|0〉 = m2
V f ‖

V

∫ 1

0
du eiu( p̃·x)

{
ε̃∗ · x

p̃ · x
p̃μ

[
φ

‖
2;V (u) + m2

V x2

4
φ

‖
4;V (u)

]

+
(

ε̃∗
μ − p̃μ

ε̃∗ · x

p · x

)
φ⊥

3;V (u) − 1

2
m2

V xμ

ε̃∗ · x

( p̃ · x)2
[ψ‖

4;V (u) + φ
‖
2;V (u) − 2φ⊥

3;V (u)]

}
, (19)

〈V ( p̃, ε̃)|q̄1(x)γμγ5q2(0)|0〉 = − 1

4
mV f ‖

V εμναβ ε̃∗
μ p̃αxβ

∫ 1

0
dueiu( p̃·x)ψ⊥

3;V (u) , (20)

where V = ρ, ω, K∗ mesons and q1 = d (s) for the ρ, ω, K∗ mesons.
After replacing those hadronic matric elements and subtracting the contribution of the continuum spectrum using dispersion

integration, one can finish the QCD representation calculation. In this paper, we will not consider the three-particle part due to
its negligible contribution. Specifically, it is no more than 0.3% of the total TFFs, and a more detailed analysis can be obtained
from our previous study [60].

Moreover, one needs to equate the two types of representations of the correlator and subtract the contributions from higher
resonances and continuum states. With the help of the Borel transformation, the LCSR for D → V HFFs can finally be read off:

DV,0(q2) =
∫ 1

0
due(m2

D−s)/M2 mc f ⊥
V F

2
√

λmV m2
D fD

{
2S�(c(u, s0))φ⊥

2;V (u)

− λmcmV f̃V
u2M2

�̃(c(u, s0))�‖
2;V (u) − (

m̃qmV f̃V − m2
V

)[
F�(c(u, s0)) − λ

1

uM2
�̃(c(u, s0))

]
ψ

‖
3;V (u)

+ mcmV f̃V

[
λ

u2M2
�̃(c(u, s0))�⊥

3;V (u) + F�(c(u, s0))φ⊥
3;V (u)

]
+ m2

VS
[ N

2u3M4
˜̃�(c(u, s0))

− 3

2u2M2
�̃(c(u, s0))

]
φ⊥

4;V (u) −
[

λS
2u3M4

˜̃�(c(u, s0)) − m2
V

S − 4λ

u2M2

]
�̃(c(u, s0))IL(u)

− λm3
cm3

V f̃V
u4M6

˜̃�(c(u, s0))�⊥
4;V (u) + mcm3

V f̃V

[
λ

u2M4
˜̃�(c(u, s0)) + F

u2M2
�̃(c(u, s0))

]
CV (u)

− m2
V

[
3

2
�(c(u, s0)) +

( N
u2M2

− λ

2uM2F

)
�̃(c(u, s0))

]
H3(u)

}
, (21)

DV,1(q2) =
∫ 1

0
due(m2

D−s)/M2 mc f ⊥
V

√
2q2

2m2
D fD

{
�(c(u, s0))φ⊥

2;V (u) + m2
V

[ N
u3M4

˜̃�(c(u, s0))

+ 3

u2M2
�̃(c(u, s0))

]
φ⊥

4;V (u) − mV mc f̃V
2u2M2

�̃(c(u, s0))ψ⊥
3;V (u)

}
, (22)
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DV,2(q2) =
∫ 1

0
due(m2

D−s)/M2

√
2q2mc f ⊥

V

2
√

λm2
D fD

{
E �(c(u, s0))φ⊥

2;V (u) − 2 �(c(u, s0))
(

f̃V mV m̃q − m2
V

)
ψ

‖
3;V (u)

+ m2
V E

[ N
u3M4

˜̃�(c(u, s0)) + 3

u2M2
�̃(c(u, s0))

]
φ⊥

4;V (u) + 2m2
V

u2M2
E�̃(c(u, s0))IL(u)

− m2
V

[
3�(c(u, s0)) + 2N

u2M2
�̃(c(u, s0))

]
H3(u) − 2mc f̃V mV �(c(u, s0))φ⊥

3;V (u)

− 2mcm3
V f̃V

u2M2
�̃(c(u, s0))CV (u)

}
, (23)

DV,t (q
2) =

∫ 1

0
du e(m2

D−s)/M2 mcmV f ⊥
V

2mV m2
D fD

{
umV �(c(u, s0)) φ⊥

2;V (u) − mc f̃VF
u2M2

�̃(c(u, s0))�‖
2;V (u)

− (m̃q f̃V − mV )

[
�(c(u, s0)) + uF + 2q2

u2M2
�̃(c(u, s0))

]
ψ

‖
3;V (u) − mc f̃V �(c(u, s0)) φ⊥

3;V (u)

+ mc f̃V
F

u2M2
�̃(c(u, s0)) �⊥

3;V (u) + m3
V

[ N
u2M4

˜̃�(c(u, s0)) + 3

uM2
�̃(c(u, s0))

]
φ⊥

4;V (u)

+ m3
cm2

V f̃V
F

u4M6

˜̃̃
�(c(u, s0)) �

‖
4;V (u) − mV

[ E
2uM2

�̃(c(u, s0)) + 3

2
�(c(u, s0))

]
H3(u)

− mV

[
9F − 2um2

V + 15q2

u2M2
�̃(c(u, s0)) + W

u3M4
˜̃�(c(u, s0))

]
IL(u)

+ mc f̃V
2

[
2m2

V

u2M2
�̃(c(u, s0)) + S

u3M4
˜̃�(c(u, s0))

]
CV (u)

}
, (24)

where E = m2
D + ξm2

V − q2, F = m2
D − m2

V − q2, N = um2
D − uūm2

V + ūq2, S = 2m2
V [um2

D − um2
V + (1 − ū)q2], W =

2m2
D[−uξm2

V + q2(1 + u + uū)] + uξ (m4
D + m4

V ) − 2q2(1 + u)ūm2
V − q4(2 + u), and s = [m2

b − ū(q2 − um2
V )]/u, with ū = 1 −

u, ξ = 2u − 1. The effective decay constant f̃V = f ‖
V / f ⊥

V , and simplified distribution functions �
‖
2;V (u), �⊥

3;V (u), �⊥
4;V (u), IL(u),

and H3(u) are defined as

�
‖
2;V (u) =

∫ u

0
dvφ

‖
2;V (u), �⊥

3;V (u) =
∫ u

0
dvφ⊥

3;V (u), �⊥
4;V (u) =

∫ u

0
dvφ⊥

4;V (u), H3(u) =
∫ u

0
dv[ψ⊥

4;V (v) − φ⊥
2;V (v)],

IL(u) =
∫ u

0
dv

∫ v

0
dw

[
φ

‖
3;V (w) − 1

2
φ⊥

2;V (w) − 1

2
ψ⊥

4;V (w)

]
, CV (u) =

∫ u

0
dv

∫ v

0
dw[ψ‖

4;V (w) + φ
‖
2;V (w) − 2φ⊥

3;V (w)].

(25)

�(c(u, s0)) is the conventional step function, and �̃[c(u, s0)] and ˜̃�(c(u, s0)] are defined as∫ 1

0

du

u2M2
e−s/M2

�̃(c(u, s0)) f (u) =
∫ 1

u0

du

u2M2
e−s)/M2

f (u) + δ(c(u0, s0)), (26)∫ 1

0

du

2u3M4
e−s/M2 ˜̃�(c(u, s0)) f (u) =

∫ 1

u0

du

2u3M4
e−s/M2

f (u) + �(c(u0, s0)), (27)

where

δ(c(u, s0)) = e−s0/M2 f (u0)

C0
, �(c(u, s0)) = e−s0/M2

[
1

2u0M2

f (u0)

C0
− u2

0

2C0

d

du

(
f (u)

uC

)∣∣∣∣
u=u0

]
,

C0 = m2
b + u2

0m2
V − q2, and u0 is the solution of c(u0, s0) = 0, with 0 � u0 � 1. Numerically, we observe that the leading-twist

terms are dominant for the LCSRs of the HFFs, which agrees well with the usual δ-power counting rule. Thus, those HFFs
will provide us with a useful platform for testing the properties of the leading-twist LCDAs via comparisons with the data or
predictions in other theoretical approaches.

III. NUMERICAL ANALYSIS

For the numerical analysis, the input parameters are taken
as follows. The masses of mesons are mD = 1.865 GeV,
mρ = 0.775 GeV, mω = 0.782 GeV, and mK∗ = 0.892 GeV.
The c-quark pole mass mc = 1.28(3) GeV is taken from

the particle data group [58]. For the decay constants, we
take fD = 0.204(5) for the D meson, f ‖

ρ = 0.198(7) and
f ⊥
ρ = 0.160(10) for the ρ meson, f ‖

ω = 0.195(3) and f ⊥
ω =

0.145(10) for the ω meson, and f ‖
K∗ = 0.226(28) and f ⊥

K∗ =
0.185(10) for the K∗ meson [50]. The Cabibbo-Kobayashi-
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Maskawa matrix elements are |Vcd | = 0.216 and |Vcs| =
0.997.

A. LCDAs and D → V HFFs

Within the QCD LCSR framework, HFFs will be expressed
by different twist LCDAs due to the same method for handling
the correlation function to get the TFFs. The resultant HFFs
contain twist-2, -3, -4 LCDAs. Next, we will discuss the
associated LCDAs and parameters.

For the leading twist LCDAs, their conformal expansion
can be expressed in terms of Gegenbauer polynomials,

φ
‖,⊥
2;V (u, μ2) = φasy(u)

[
1 +

∑
an(μ2)C3/2

n (ξ )

]
. (28)

Here φasy(u) = 6uū stands for the asymptotic DA. φ‖,⊥
2;V (u, μ2)

will equal to φasy(u) in the limit μ2 →∝. To make a compar-
ison with other theoretical and experimental predictions, the
twist-2, -3, -4 LCDAs’ moments and coupling constants are
referred to Ball [61] and are calculated within the Shifman-
Vainshtein-Zakharov (SVZ) QCD sum rule taken by many
theoretical groups. The analytical expression and values are
listed in the Appendix.

Then, there are two internal parameters, i.e., continuum
threshold s0 and Borel windows M2. The former is a de-
marcation for the D-meson ground state and higher mass
contributions. Specifically, we take the continuum thresh-
olds s0 for D → V HFFs DV,0(q2), DV,1(q2), DV,2(q2), and
DV,t (q2) as sρ,0 = 4.0(3), sρ,1 = 4.0(3), sρ,2 = 4.0(3), sρ,t =
4.5(3), sω,0 = 3.6(3), sω,1 = 6.5(3), sω,2 = 4.0(3), sω,t =
4.0(3), sK∗,0 = 4.0(3), sK∗,1 = 6.0(3), sK∗,2 = 4.0(3), and
sK∗,t = 3.7(3).

To determine the Borel parameters for the D → V HFFs,
we adopt the following three criteria:

(i) We require the continuum contribution to be less than
35% of the total LCSR.

(ii) We require all the high-twist LCDA contributions to be
less than 15% of the total LCSR.

(iii) The derivatives of LCSRs for HFFs with respect to
(−1/M2) give four LCSRs for the D-meson mass mD. We
require the predicted D-meson mass to be fulfilled compared
with the experiment one, i.e., |mth

D − mexp
D |/mexp

D � 0.1%.
Thus, the obtained Borel windows M2(GeV2) are

M2
ρ,0 = 2.5(3), M2

ρ,1 = 4.0(3), M2
ρ,2 = 3.5(3), M2

ρ,t = 3.0(3),
M2

ω,0 = 2.5(3), M2
ω,1 = 4.8(3), M2

ω,2 = 3.0(3), M2
ω,t =

3.0(3), M2
K∗,0 = 2.5(3), M2

K∗,1 = 6.0(3), M2
K∗,2 = 4.0(3),

and M2
K∗,t = 2.7(3).

The reliable regions for the D-meson semileptonic decays
within the LCSR approach can be set at 0 � q2 � q2

LCSR,max ≈
0.8 GeV2. Meanwhile, the allowable physical range of the
momentum transfer is 0 � q2 � q2

V,max, with

q2
ρ,max = (mD − mρ )2 � 1.18 GeV2,

q2
ω,max = (mD − mω )2 � 1.17 GeV2,

q2
K∗,max = (mD − mK∗ )2 � 0.98 GeV2

for ρ, ω, and K∗ mesons, respectively. Then, we use the SSE
to do the extrapolation for the HFFs based on the analyticity

TABLE II. The fitted parameters aV
0;1;2 for the HFFs DV,σ , where

all input parameters are set to their central values.

DV,0 DV,1 DV,2 DV,t

aρ

0 1.841 1.187 4.257 0.913
aρ

1 −68.95 −5.177 −137.2 −18.49
aρ

2 −879.8 −88.14 1774 160.2
�ρ 0.000 0.008 0.042 0.000
aω

0 1.786 0.763 4.666 0.868
aω

1 −68.41 −1.125 −162.6 −18.46
aω

2 883.8 −22.53 2163 170.1
�ω 0.000 0.001 0.050 0.000
aK∗

0 1.937 0.941 5.074 0.975
aK∗

1 −91.04 2.976 −209.4 −21.97
aK∗

2 1438 −70.30 3545 181.0
�K∗ 0.000 0.001 0.031 0.000

and unitarity consideration. The extrapolation of the HFFs
satisfies the following parameterized formulas:

DV,0(t ) = 1

B(t )
√

z(t, t−)φV −A
T (t )

∑
k=0,1,2

aV,0
k zk, (29)

DV,1(t ) =
√−z(t, 0)

B(t )φV −A
T (t )

∑
k=0,1,2

aV,1
k zk, (30)

DV,2(t ) =
√−z(t, 0)

B(t )
√

z(t, t−)φV −A
T (t )

∑
k=0,1,2

aV,2
k zk, (31)

DV,t (t ) = 1

B(t )φV −A
L (t )

∑
k=0,1,2

aV,t
k zk, (32)

where φX
I (t ) = 1,

√−z(t, 0) =
√

q2/mD, B(t ) = 1 − q2/m2
σ ,√

z(t, t−) = √
λ/m2

D, and

z(t ) =
√

t+ − t − √
t+ − t0√

t+ − t + √
t+ − t0

,

with t± = (mD ± mV )2 and t0 = t+(1 − √
1 − t−/t+).

The parameters aσ
k can be determined by requiring the

“quality” of fit �V to be less than 1, which is defined as

�V =
∑

t

∣∣DV,σ (t ) − Dfit
V,σ (t )

∣∣∑
t |DV,σ (t )| × 100, (33)

where t ∈ [0, 0.02, . . . , 0.58, 0.8] GeV2. We put the deter-
mined parameters aV,σ

k in Table II, in which all the input
parameters are set to their central values.

The extrapolated HFFs in the whole q2 region are presented
in Fig. 2, where the shaded bands are uncertainties from var-
ious input parameters. The shapes of the HFFs for the three
vector mesons are similar due to the same analytic expression
and little-varied input parameters. We can see DV,(1;2) = 0
at q2 = 0 GeV2, which is caused by the coefficient q2 of
DV,(1;2)(q2). The q2 coefficient also depresses the error of
HFFs DV,(1;2)(q2) for the smaller q2, which can be directly
seen from Fig. 2. Meanwhile, this depressed effect can be
directly transmitted to the differential transversal decay width
in Fig. 3, as seen in the next section.
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(a) (b) (c)

FIG. 2. The extrapolated LCSR prediction HFFs DV,σ (q2) for D → V with V = ρ, ω, K∗ mesons. The solid lines represent the center
values, and the shaded bands corresponds to their uncertainties. The maximum extrapolated physically allowable points q2 are q2

ρ,max = (mD −
mρ )2 � 1.18 GeV2, q2

ω,max = (mD − mω )2 � 1.17 GeV2, and q2
K∗,max = (mD − m∗

K )2 � 0.98 GeV2 for ρ, ω, and K∗ mesons, respectively.

B. D-meson semileptonic decays

The HFFs extracted from the LCSRs are employed to
study the D-meson semileptonic decay, i.e., the decay width,
branching fractions, longitudinal and transverse polarizations,
forward-backward asymmetry, and lepton-side convexity pa-
rameter, which are frequently used for the precision test of the
SM and the search for new physics beyond SM.

1. Decay width

In this part, we probe the decay width of D → V semilep-
ton decay by applying Eqs. (4), (6), and (7). First, we present
the LCSR predictions for the polarization differential decay
widths 1/|Vcq|2 × d�L/dq2 and 1/|Vcq|2 × d�T/dq2 and the
total differential decay widths 1/|Vcq|2 × d�/dq2 in Fig. 3,
in which the dashed, dotted, and solid lines represent the
corresponding central values; the uncertainties are a result of
the square average of all input parameters.

For the central lines of the differential decay width in
Fig. 3, we find that there is a similar behavior for all of
the differential decay widths with |Vcq| independent of D →
V �+ν� semileptonic decays. Both the total differential width
and transversal differential width increase first and then de-
crease with q2. The longitudinal differential width is almost
unchanged from the small- to intermediate-q2 region, while
it drops sharply in the large q2 region. In addition, the lon-
gitudinal differential width dominates the small-q2 region,
while the transversal differential width dominates the large-q2

region. The position of the alternating point of the dominant
q2 region is near the midpoint of the whole physical feasible
region, which is represented by the red stars in Fig. 3, i.e.,
q2

mix,(ρ,ω,K∗ ) = (0.51, 0.54, 0.49) GeV2.
The three figures (Fig. 3) imply that the total width de-

creases as the final meson mass increases, which is intuitive
from Table III. There are three main reasons to justify this:

(i) The physical feasible regions q2 decrease from the left
to right in Fig. 3, which is caused by the increasing mass of
the final meson.

(ii) The peak of the longitudinal and transversal differential
width decreases from the left to right panel in Fig. 3.

(iii) The trend of the curves for longitudinal and transverse
differential widths is almost the same for the three channels in
Fig. 3.

For comparison, the central values of the total differential
width of BESIII [16,23,24] are also shown in Fig. 3. We
observe that the curves of BESIII are in agreement with our
predictions, within the error bars. But there is a significantly
different shape for the center curves, especially for the large-
q2 region. The main reason is that BESIII uses the unipolar
point continuation extrapolation method, while HFFs need to
use the SSE extrapolation method.

Then we show the total decay widths �/|Vcq|2, �L/|Vcq|2,
and �T/|Vcq|2 in Table III. The three kinds of total decay
widths decrease as the final meson mass increases, which
is consistent with Fig. 3. There is also an interesting phe-
nomenon: it is almost identical for both total decay width
�L/|Vcq|2 and �T/|Vcq|2 gaps between different decay chan-
nels. We list the ratio �L/�T for the D → V �+ν� semileptonic
decays in Table IV. As a comparison, we also present other
theoretical predictions, i.e., heavy meson and chiral La-
grangians (HMχT) [51], the covariant confining quark model
(CCQM) [59], the covariant quark model (CQM) [62], LCSR
[63], the QCD sum rule (QCDSR) [64], and the lattice QCD
(LQCD) [65]. All of our predictions for the ratio �L/�T agree
with that of the CCQM within the error bars. Although the
rest of the theoretical predictions are incomplete for the ratio
�L/�T, again, our results are in good agreement with them
within the error bars, except for QCDSR results.

As a further step, we calculate the branching frac-
tions of D → V �+ν� by employing τ (D0) = 0.410(2) ps and
τ (D+) = 1.040(7) ps; the results are collected in Table V.
Compared with other theoretical and LQCD [65] predictions,
our results are small, which is more consistent with the BE-
SIII [16,23,24] experiment within the error bars. The reasons
are that we adopt HFFs to deal with the D → V hadronic
matrix elements, where HFFs are calculated using the QCD
LCSR approach and the corresponding physical observations

TABLE III. The total decay widths �/|Vcq|2, �L/|Vcq|2, and
�T/|Vcq|2 (in units of 10−15 GeV) for the central values.

�/|Vcq|2 �L/|Vcq|2 �T/|Vcq|2

D → ρ�+ν� 49.564 26.299 23.265
D → ω�+ν� 44.108 23.320 20.788
D → K∗�+ν� 33.631 18.539 15.092
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(a) (b) (c)

FIG. 3. The LCSR predictions for the polarized differential decay widths 1/|Vcq|2 × d�L,T/dq2 and the total differential decay widths
1/|Vcq|2 × d�/dq2 for ρ, ω, K∗ mesons, in which the dashed, dash-dotted, and solid lines represent the corresponding central values and the
shaded bands are the squared average of all the input parameters. For comparison, we also present the BESIII predictions [16,23,24].

are further investigated. Compared with the traditional TFF
parameterized method for the hadronic matrix elements, the
HFF parameterized method has some advantages:

(i) As mentioned in the Introduction of our paper, the
HFFs parameterized method facilitates the study of tracking
polarization.

(ii) According to the diagonalizable unitarity relations, one
can get the dispersive bound for the HFF parametrization.

In addition, there are many theoretical approaches for deal-
ing with the form factors for the D → V decays processes,
such as LCSR used in this paper, the LQCD, the perturbative
QCD (pQCD), and so on. The pQCD, LCSR, and LQCD
approaches are valid in the small-q2 region, in the small- and
intermediate-q2 region, and in the large-q2 region, respec-
tively. The LCSR approach has the advantage that it can be
extrapolated to the whole q2 region and provides an important
bridge for connecting various approaches.

2. Polarization observations

Due to the current experimental conditions, it is difficult to
measure the q2 dependence of the polarization observation.
However, it is very important to study the q2 dependence
on these observables. On the one hand, it can facilitate the
comparison among different theories; on the other hand, it
also provides references for experimental research on q2 de-
pendence and more details for exploring new physics.

We first show the final state polarizations P�
L,T and F �

L,T in
Fig. 4.

(i) For the top parts, the final lepton polarization for D →
V (ρ, ω, K∗)�+ν� is shown and calculated by applying Eq. (8).
All lepton polarizations P�

L,T exhibit similar behavior. In the

large-q2 region, all P�
L,T are almost unchanged, except that Pμ

T

rises slowly with the increase of q2, i.e., P�
L ≈ 1, Pe

T ≈ 0, and
Pe

T � 0. In the small-q2 region, all P�
L,T polarities are singular

due to the δ� factor, which is clearly shown in the correspond-
ing inset with the logarithmic axis. We observe that Pe(μ)

L are
approximately equal to −0.4 at q2

min = m2
e(μ). As q2 increases,

Pe(μ)
L then rapidly increases to close to 1 and finally remains

stable. For the transverse component, Pe,μ
T (q2

min = m2
e(μ) ) ≈

−0.8. As q2 increases, Pμ
T rapidly increases to close to zero

and then remains stable, while Pe
T increase rapidly and then

moderately.
(ii) For the bottom parts, the longitudinal F �

L (q2) and trans-
verse F �

T (q2) polarization fractions of the vector meson are
shown and calculated by using Eq. (8), which indicates the
three kinds of vector ρ, ω, K∗ mesons have a similar behav-
ior for both F �

L (q2) and F �
T (q2). In all the allowed physical

regions, we have F �
L (q2) + F �

T (q2) = 1. For the large recoil
point q2 = 0 GeV2, we observe F �

L (0) = 1 and F �
T (0) = 0.

As q2 increases, F �
L (q2) monotonically decreases, and F �

T (q2)
reverses. In addition, F �

L (q2) is dominant in the small-q2 re-
gions, while FT(q2) is dominant in the large-q2 regions. The
position of the alternating point of the dominant q2 region is
near the midpoint of the whole physically feasible region. At
the alternating point q2

mix, we observe F �
L = F �

T = 0.5 accord-
ing to the relation F �

L (q2) + F �
T (q2) = 1.

We then plot the forward-backward asymmetry A�
FB and

the lepton-side C�
F(q2) convexity parameter in Fig. 5.

(i) The top parts of Fig. 5 show the change in forward-
backward asymmetry A�

FB from q2
min = m2

� to q2
max = (mD −

mV )2. All A�
FB first decrease from a positive value to zero

TABLE IV. Ratio �L/�T for the D → V (ρ, ω, K∗)�+ν� semileptonic decays, where the uncertainties are the square average of all the input
parameters. The theoretical and lattice results are listed for comparison. Note that the lepton mass is ignored in HMχT [51]. For convenience,
we list it in the D → Xe+νe case because the electron mass is too small to ignore.

This work HMχT [51] CCQM [59] CQM [62] LCSR [63] QCDSR [64] LQCD [65]

D → ρe+νe 1.130+0.095
−0.133 1.10 1.13 1.16 1.17(9) 0.86(6)

D → ρμ+νμ 1.119+0.095
−0.132 1.04

D → ωe+νe 1.122+0.042
−0.075 1.10 1.10

D → ωμ+νμ 1.110+0.042
−0.074 1.02

D → K∗e+νe 1.228+0.061
−0.074 1.13 1.18 1.28 1.15(10) 1.2(3)

D → K∗μ+νμ 1.212+0.060
−0.073 1.07
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TABLE V. Branching fractions for semileptonic D decays, i.e., D → V (ρ, ω, K∗)�+ν� (values are times 10−3 for ρ and ω mesons and
times 10−2 for K∗ mesons), where the uncertainties are the square averages of all the input parameters. The current theoretical and experimental
results in the literature are also listed as a comparison. Note that the lepton mass is ignored in HMχT. [51]. For convenience, we list it in the
D → Xe+νe case because the electron mass is too small to ignore.

D0 → ρ−e+νe D0 → ρ−μ+νμ D+ → ρ0e+νe D+ → ρ0μ+νμ D+ → ωe+νe

This work 1.440+0.277
−0.250 1.432+0.274

−0.248 1.827+0.351
−0.317 1.816+0.348

−0.314 1.740+0.482
−0.399

HMχT [51] 2.0 2.5 2.5
CCQM [59] 1.62 1.55 2.09 2.01 1.85
LFQM [66] 2.1(2)
χUA [67] 1.97 1.84 2.54 2.37 2.46
LCSR [68] 1.81+0.18

−0.13 1.73+0.17
−0.13 2.29+0.23

−0.16 2.20+0.21
−0.16 1.93+0.20

−0.14

LQCD [65] 2.23(70) 2.13(64)
BESIII [16,23,24] 1.445(70) 1.860(93) 1.63(14)
CLEO [20–22] 1.77(16) 2.17(12)(+0.12

−0.22 ) 1.82(19)
PDG [58] 2.4(4)

D+ → ωμ+νμ D0 → K∗−e+νe D0 → K∗−μ+νμ D+ → K̄∗0e+νe D+ → K̄∗0μ+νμ

This work 1.728+0.479
−0.397 2.082+0.334

−0.314 2.066+0.330
−0.310 5.282+0.847

−0.796 5.242+0.838
−0.787

HMχT [51] 2.2 5.6
CCQM [59] 1.78 2.96 2.80 7.61 7.21
LFQM [66] 2.0(2) 7.5(7) 7.0(7)
χUA [67] 2.29 2.15 1.98 5.56 5.12
LCSR [68] 1.85+0.19

−0.13 2.12(9) 2.01+0.09
−0.08 5.37+0.24

−0.23 5.10+0.23
−0.21

LQCD [65] 6.26(184) 5.95(167)
BESIII [16,23,24] 1.77(29) 2.033(66)
CLEO [20–22] 2.16(17) 5.27 ± 0.16
PDG [58] 5.4(1)

(a) (b) (c)

(d) (e) (f)

FIG. 4. The final state polarization P�
L,T and F �

L,T as a function of q2 for D → V �+ν�. Here P and F represent a charged lepton and vector
meson in the final state, which correspond to the upper and bottom parts, respectively. The symbols T and L stand for longitudinal and
transverse fractions; V stands for the ρ, ω, K∗ mesons, corresponding to the left, medial, and right parts, respectively. The dashed, dotted,
dot-dashed, and solid lines represent the corresponding central values, and the shaded bands are the corresponding errors from HFFs.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Forward-backward asymmetry A�
FB(q2) and the lepton-side C�

F(q2) convexity parameter as a function of q2 for D →
V (ρ, ω, K∗)�+ν�. The lines are their central values, and the shaded bands are their errors. The meaning of the corresponding representations
are the same as in Fig. 4.

rapidly, then decrease to the minimum value slowly, and,
finally, almost level off. Ae(μ)

FB = 0 is around q2 = 0.1 GeV2

(q2 = 10−4 GeV2), and all A�
FB,max ≈ 0.5 are shown in the

small inset at q2 = m2
e (q2 = m2

μ). All of these phenomena can
be derived from the forward-backward asymmetry analytic
expression (9). Therefore, one should be especially careful
when dealing with A�

FB in the small-q2 region, while the
forward-backward asymmetry will be easier to study in the
large-q2 region due to the relatively stable value of the A�

FB.
(ii) For the bottom parts of Fig. 5, we observe that C�

F(q2) �
0, C�

F(q2
min = m2

e,μ) = 0. All C�
F(q2) decrease sharply and then

increase, and there is a singularity around low q2, which is
shown in the inset with the logarithmic axis.

The mean values of those polarization observations of the
three D → V semileptonic decay channels are calculated by
applying Eq. (11) and are listed in Table VI. Our predictions
are the same as the CCQM results within the error bars.

IV. SUMMARY

In this paper, D → V (ω, ρ, K∗) HFFs DV,σ , with σ =
0, 1, 2, t , were studied by applying the LCSR and taking into

TABLE VI. The mean values for the longitudinal and transverse polarization fraction of the final lepton and vector mesons, forward-
backward asymmetry, and the lepton-side convexity parameter for positron and muon modes, where the uncertainties are the square average of
all the input parameters.

D → ρ�+ν� D → ω�+ν� D → K∗�+ν�

This work CCQM [59] This work CCQM [59] This work CCQM [59]

〈Pe
L〉 +1.000+0.168

−0.209 +1.00 +1.000+0.188
−0.244 +1.00 +1.000+0.136

−0.170 +1.00

〈Pμ

L 〉 +0.968+0.170
−0.211 +0.92 +0.969+0.190

−0.245 0.92 +0.958+0.138
−0.171 +0.91

〈Pe
T〉 × 102 −0.093+0.026

−0.114 −0.09 −0.092+0.024
−0.018 −0.09 −0.106+0.023

−0.019 −0.11

〈Pμ

T 〉 −0.189+0.042
−0.053 −0.13 −0.186+0.048

−0.037 −0.12 −0.213+0.046
−0.038 −0.15

〈F e
L 〉 +0.457+0.055

−0.067 +0.53 +0.441+0.045
−0.057 +0.52 +0.472+0.036

−0.042 +0.54

〈Fμ

L 〉 +0.461+0.053
−0.065 +0.51 +0.445+0.044

−0.055 +0.50 +0.478+0.035
−0.041 +0.52

〈Ae
FB〉 −0.293+0.094

−0.117 −0.21 −0.203+0.071
−0.094 −0.21 −0.208+0.052

−0.066 −0.18

〈Aμ

FB〉 −0.279+0.091
−0.113 −0.24 −0.191+0.068

−0.090 −0.24 −0.192+0.049
−0.062 −0.21

〈Ce
F〉 −0.278+0.165

−0.205 −0.44 −0.242+0.173
−0.222 −0.43 −0.312+0.123

−0.151 −0.47

〈Cμ

F 〉 −0.268+0.162
−0.199 −0.36 −0.233+0.169

−0.216 −0.35 −0.297+0.119
−0.146 −0.37
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account the LCDAs up to twist 4. The resultant LCSRs for the
HFFs are arranged according to the twist structure of the final
vector meson LCDAs. Those HFFs are extrapolated to the
whole physics q2 region m2

� � q2 � (mD − mV )2, and then we
use extrapolated HFF’s to investigate the physical observable
for the D → V (ρ, ω, K∗)�+ν� semileptonic decays.

The transversal HFFs and their errors increase as q2 de-
creases due to the depression effect from the q2 coefficient,
especially for DV,1,2(0) = 0(±0) with V = ρ, ω, K∗ mesons.
This depression effect from the q2 coefficient will also be
reflected in the different transverse decay widths through
transversal HFFs, which can be clearly seen from Fig. 3; we
also found 1/|Vcq|2 × d�T

V (0) = 0(±0) with V = ρ, ω, K∗
mesons. However, this depression effect for the longitudinal
part will disappear due to the missing q2 coefficient. Thus,
the transverse differential decay width dominates the small-q2

region, while the longitudinal differential decay width domi-
nates the large-q2 region, and the position of the alternating
point of the dominant q2 region is near the midpoint of the
whole physically feasible region. In addition, the decay width
(transverse, longitudinal, and total decay widths) decreases
with the increase of meson mass in the final state, and the dif-
ferences between the transverse decay width and longitudinal
decay width are almost the same for the three decay channels,
which can be seen from Table III. With the help of lifetimes
τ (D0) and τ (D+), we calculate the branching ratio and list it
in Table V. Our predictions are lower than other theories, but
they fit well with BESIII.

We also investigated in detail the polarization observa-
tion dependence on the square momentum transfer for D →
V (ρ, ω, K∗)�+ν� semileptonic decays with � = e, μ, which
have a similar shape for different final mesons and the same
final lepton. In the small-q2 region, all those polarization
observations have a singularity due to the δ� factor, which is
shown in the small graph with the logarithmic axis, except for
F �

L,T. With the increase of q2, all polarization values tend to be
more stable; thus, the polarization dependence on q2 declines.
Note that F �

L and F �
T dominate the small-q2 region and the

large-q2 region, respectively, and the position of the alternat-
ing point of the dominant q2 region is near the center of the
whole physically feasible region, which roughly equates to the
positions of the dominant alternating points of the transverse

TABLE VII. The moments and couplings of vector meson twist-
2, -3, -4 LCDAs; the corresponding scale is μ2 = m2

D − m2
c ≈

1 GeV2.

ρ ω K∗

a‖
1 0 0 0.19(5)

a‖
2 0.18(10) 0.18(10) 0.06(6)

a⊥
1 0 0 0.20(5)

a⊥
2 0.20(10) 0.18(10) 0.04(4)

δ+ 0 0 0.24

δ− 0 0 −0.24

δ̃+ 0 0 0.16

δ̃− 0 0 −0.16

and longitudinal differential decay widths. We also calculated
the corresponding average values and listed them in Table VI;
they coincide with CCQM within the error bars.
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APPENDIX

In order to get accurate HFFs results within the
LCSR approach for the semileptonic decay processes D →
V (ρ, ω, K∗)�+ν� and to make a comparison with other the-
oretical and experimental results, we take the twist-2, -3, -4
LCDAs given by Ball and Braun [61] used by many theoret-
ical predictions. The two-particle LCDAs for twist 3 has the
following form:

ψ⊥
3;V (u) = 6uū

[
1 + a‖

1ξ +
{

1

4
a‖

2 + 5

3
ζ3

(
1 − 3

16
ωA

3 + 9

16
ωV

3

)}
(5ξ 2 − 1)

]
+ 6δ̃+(3uū + ū ln ū + u ln u)

+ 6δ̃−(ū ln ū − u ln u), (A1)

φ⊥
3;V (u) = 3

4
(1 + ξ 2) + a‖

1

3

2
ξ 3 +

(
3

7
a‖

2 + 5ζ3

)
(3ξ 2 − 1) +

[
9

112
a‖

2 + 15

64
ζ3

(
3ωV

3 − ωA
3

)]
(3 − 30ξ 2 + 35ξ 4)

+ 3

2
δ̃+(2 + ln u + ln ū) + 3

2
δ̃− (2ξ + ln ū − ln u), (A2)

ψ
‖
3;V (u) = 6uū

[
1 + a⊥

1 ξ +
(

1

4
a⊥

2 + 5

8
ζ3ω

T
3

)
(5ξ 2 − 1)

]
+ 3δ+(3uū + ū ln ū + u ln u) + 3δ−(ū ln ū − u ln u), (A3)

φ
‖
3;V (u) = 3ξ 2 + 3

2
a⊥

1 ξ (3ξ 2 − 1) + 3

2
a⊥

2 ξ 2(5ξ 2 − 3) + 15

16
ζ3ω

T
3 (3 − 30ξ 2 + 35ξ 4) + 3

2
δ+

(
1 + ξ ln

ū

u

)

+ 3

2
δ−ξ (2 + ln u + ln ū). (A4)
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The two-particle LCDAs for twist-4 can be written as

ψ⊥
4;V (u) = 6u(1 − u) + 5

[
ζ T

4 + ζ̃ T
4

]
(1 − 3ξ 2), (A5)

φ⊥
4;V (u) = 30u2(1 − u)2

[
2
5 + 4

3ζ T
4 − 8

3 ζ̃ T
4

]
, (A6)

φ
‖
4;V (u) = [

4
5 + 20

9 ζ4 + 8
9ζ3

]
30u2ū2, (A7)

ψ
‖
4;V (u) = 6uū + [

10
3 ζ4 − 20

3 ζ3
]
(1 − 3ξ 2), (A8)

CV (u) = [
3
2 + 10

3 ζ4 + 10
3 ζ3

]
u2ū2. (A9)

The values of the moments and coupling constants of the vector meson twist-2, -3, -4 LCDAs are listed in Table VII. At the scale
μ2 = m2

D − m2
c ≈ 1 GeV2, the couplings for twist-3 and twist-4 LCDAs are

ζ3 = 0.032, ωA
3 = −2.1, ωV

3 = 3.8, ωT
3 = 7.0,

ζ4 = 0.15, ζ T
4 = 0.10, ζ̃ T

4 = −0.10. (A10)
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