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Collective oscillations of globally coupled bistable, nonresonant components
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Bistable microelectrodes with an S-shaped current-voltage characteristic have recently been shown to oscillate
under current control, when connected in parallel. In other systems with equivalently coupled bistable compo-
nents, such oscillatory instabilities have not been reported. In this paper, we derive a general criterion for when
an ensemble of coupled bistable components may become oscillatorily unstable. Using a general model, we
perform a stability analysis of the ensemble equilibria, in which the components always group in three or fewer
clusters. Based thereon, we give a necessary condition for the occurrence of collective oscillations. Moreover,
we demonstrate that stable oscillations may persist for an arbitrarily large number of components, even though,
as we show, any equilibrium with two or more components on the middle, autocatalytic branch is unstable.
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I. INTRODUCTION

In contrast to ensembles of coupled oscillators, which have
been extensively studied for decades, we have just started to
recognize the variety of responses coupled bistable compo-
nents can exhibit. Kouvaris and colleagues investigated tree
networks of bistable nodes where the individual nodes, or
bistable components, were diffusively coupled [1–3]. They
demonstrated that such a network can form a self-organized
stationary pattern, similar to a Turing pattern. Another pecu-
liar behavior, reported for an array of bistable electrodes [4,5]
as well as for nanoparticulate Li-ion batteries [6–10], is that a
slow parameter ramp leads to a sequential one-by-one passage
of an individual element from one state—or phase—to the
other one. Surprisingly, oscillations were also observed in
such all-to-all connected ensembles of a few bistable com-
ponents at fixed parameter values [11]. This finding was the
motivation of the present study, where we derive a necessary
condition for the occurrence of a Hopf bifurcaton in systems
composed of all-to-all connected generic bistable components
and demonstrate that oscillatory dynamics may also persist in
the macroscopic limit.

Before introducing our general mathematical formulation,
it is helpful to elucidate the physical setting with a particular
system. We consider CO electro-oxidation on an array of Pt
electrodes (or many Pt nanoparticles on a conducting support)
which are all controlled through a common external circuit.
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First consider the dynamics of an individual electrode (or
nanoparticle) [12]. The reaction kinetics of CO oxidation on
Pt is autocatalytic, promoting the coexistence of a state with
a high CO coverage and a state with a low CO coverage at
a given set of parameters. The overall reaction rate, and thus
the current, is high if the CO coverage is low, and vice versa.
Hence each individual electrode, or nanoparticle, also exhibits
bistable steady-state current-voltage characteristics, as indi-
cated in Fig. 1(a). When slowly increasing the external voltage
from an initially low value, the system eventually jumps from
the low-current state to the high-current state. Upon reversing
the scan direction, the transition back to the low-current state
occurs at a lower value of the external voltage. As a result, the
steady-state current-potential curve exhibits a hysteresis, but
the system always approaches a spatially uniform stationary
state. The situation becomes fundamentally different when
instead of the external voltage, the total current is controlled
[13]. When the set current value corresponds to an intermedi-
ate value between the two stable branches, the CO coverage
splits into two regions, one where the electrode attains a
high-CO-coverage–low-current state and the other where it
attains a low-CO-coverage–high-current state, and the voltage
adjusts to a value within the bistable regime at which both
states are equally stable. A change of the set current changes
the ratio of high-coverage to low-coverage domains, while the
voltage stays at the same value, until one of the two domains
extends over the entire electrode. This behavior can be seen
as a nonequilibrium analog to first-order phase transitions.
However, for the domain formation to occur, the electrode
area has to exceed a critical size. Individual, sufficiently small
electrodes trace out the S-shaped current-voltage equilibrium
under current control [14]. This is the behavior we consider
for an individual, bistable component in our general model.

Now consider many such electrodes connected in paral-
lel to the same external electric circuit under galvanostatic
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FIG. 1. Circuit representation and yk-u curve of an individual
bistable component (a) under u control and (b) under yk control.
(c) Circuit representation of many bistable components under ytot

control.

control; that is, the total current through all electrodes is
controlled, but the partial currents through the individual
electrodes may differ from each other. This is the situation
we refer to as an all-to-all coupled bistable multicomponent
ensemble. Starting at a low value of the total current where
all the partial currents attain the same low value, a slow
current ramp induces one electrode after the other to undergo
a transition from the low- to the high-current state. These
sequential transitions might now occur in two different ways:
In the simpler scenario, each individual electrode resumes one
of the three steady states of the S-shaped current-potential
curve, the voltage adopting correspondingly to a fixed value
within the hysteretic region [5]. In the other scenario, the
individual electrodes also split into two or three clusters, but
the voltage as well as the partial currents undergo stable
oscillations [11]. The oscillations were observed for a small
number of electrodes and could be reproduced with a spe-
cific model. The main result of our paper is new insight into
how oscillations in bistable systems occur. Specifically, we
outline the necessary properties of the kinetics of a bistable
system in order to support oscillations and demonstrate that
oscillations may persist in systems composed of a macro-
scopically large number of components. Our results elucidate
whether important technologically relevant systems, e.g., in
catalysis or electrocatalysis where the catalytically active ma-

terial consists of nanoparticles that might have a bistable
reaction kinetics [15], can exhibit oscillations.

The remainder of this paper is organized as follows. In
the next three sections, we consider a generic bistable model.
After defining our mathematical system in general terms in the
next section, we present a stability analysis of its stationary
states, and, in particular, we present a proof that in a stable
hyperbolic stationary state there is at most one element on
the autocatalytic branch. Then, we derive a general, necessary
condition for the occurrence of a Hopf bifurcation in this type
of system and illustrate this condition with an intuitive LC
circuit analog. Thereafter, we validate the predictions with
simulations of a model system, derived from a more com-
plex model for CO electro-oxidation. We demonstrate the
emergence of oscillations from a Hopf bifurcation in a small
system. Moreover, we illustrate that in arbitrary large systems
an unstable limit cycle can be stabilized.

II. EMERGENCE OF OSCILLATIONS IN SYSTEMS
OF BISTABLE ELEMENTS

A. Model equations

First, consider the mathematical formulation of an individ-
ual component subject to control through a parameter u ∈ R.

We represent the kth bistable component of our ensemble
in the following state space form, in which xk ∈ R is the
inner state of the system, u ∈ R is the control parameter,
and a variable yk ∈ R adjusts accordingly [cf. Fig. 1(a)]. Our
analysis was inspired by an electrochemical setup, so we call
u voltage and yk current, but the upcoming results and circuit
representations are valid for other physical realms as well.
In the electrochemical context, xk can be thought of as the
surface fraction of the kth electrode that is covered with a
certain chemical species.

d

dt
xk (t ) = f (xk (t ), u), (1)

yk (t ) = g(xk (t ), u). (2)

The function f is a bistable flow field of xk . The current yk

is an observable depending on the inner state xk and u. The
equilibrium curve is S shaped in the yk-u plot.

Next, assume we have an ensemble of n such components,
indexed by k, all identical. We are ultimately interested in
what happens if the total current ytot is fixed [see Fig. 1(c)],
where

ytot =
n∑

k=1

yk (t ). (3)

So we end up with

d

dt
xk (t ) = f (xk (t ), u(t )), (4)

ytot =
n∑

k=1

g(xk (t ), u(t )), (5)

where now u(t ) adjusts instantaneously such that Eq. (5) is
always fulfilled.
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B. Linear stability analysis

Before we come to the case in which the coupling between
the components is obtained by fixing ytot, let us first quickly
consider the simpler case in which u is controlled, rather
than ytot . If u is controlled, the components are uncoupled
and just follow Eqs. (1) and (2), each. Correspondingly, the
ensemble equilibria at each value of u are determined by all
combinations of how the n components can distribute between
the three available component equilibria, which we assumed
to exist for Eqs. (1) and (2). We denote the component equi-
libria by xeq,1, xeq,2, xeq,3. Furthermore, let yeq

tot denote the
equilibrium value of ytot (t ), and let ueq denote the prescribed
value of u.

Linearizing around the n-dimensional ensemble equilib-
rium and denoting small deviations by a circumflex (also
known as a “hat”), we arrive at Eqs. (6) and (7), using the
definitions in Eqs. (8)–(13), in which {e1, . . . , en} is a standard
basis, k ∈ {1, . . . , n} indexes components, and �k ∈ {1, 2, 3}
indexes the cluster of the kth component.

d

dt
x̂(t ) = Fxx̂(t ) + Fuû, (6)

ŷtot (t ) = Gxx̂(t ) + Guû, (7)

x̂(t ) =
n∑

k=1

[xk (t ) − xeq,�k ]ek ∈ Rn, (8)

û = u − ueq, ŷtot (t ) = ytot (t ) − yeq
tot, (9)

Fx = diag( fx(xeq,�1 ), . . . , fx(xeq,�n )) ∈ Rn×n, (10)

Fu =
n∑

k=1

fu(xeq,�k )ek ∈ Rn×1, (11)

Gx =
n∑

k=1

gx(xeq,�k )eT
k ∈ R1×n, (12)

Gu =
n∑

k=1

gu(xeq,�k ) ∈ R1×1. (13)

Here, we used the abbreviations

fx(xeq,�) = ∂ f /∂xk|xeq,�,ueq , (14)

fu(xeq,�) = ∂ f /∂u|xeq,�,ueq , (15)

gx(xeq,�) = ∂g/∂xk|xeq,�,ueq , (16)

gu(xeq,�) = ∂g/∂u|xeq,�,ueq . (17)

Hence, under u control, the stability of the ensemble state
follows directly from the stability of the individual component
equilibria, the ensemble equilibrium being only stable if all
individual components are on one of the two outer stable
branches of the S-shaped equilibrium curve.

Let us now consider the more interesting case in which the
total current ytot, instead of u, is prescribed as control param-
eter [see Fig. 1(c) and Eq. (3)]. In this case, u adjusts such
that the constraint on ytot is fulfilled. The equilibria remain

unchanged, but their stability may alter and the dynamics
change to

d

dt
x̂(t ) =

=:F̃x︷ ︸︸ ︷
(Fx − FuG−1

u Gx ) x̂(t ) +
=:F̃y︷ ︸︸ ︷

FuG−1
u ŷtot, (18)

û(t ) = −G−1
u Gx︸ ︷︷ ︸

=:G̃x

x̂(t ) + G−1
u︸︷︷︸

=:G̃y

ŷtot. (19)

This is derived by solving Eq. (7) for û and eliminating û in
Eq. (6). Thus we have obtained the Jacobian F̃x of the ytot-
controlled ensemble. The approach we took in finding it was
inspired by well-established control theory: defining a state
space equation, linearizing it at a fixed point, and rearranging
it to a conjugate version in which u and ytot are interchanged
[16].

What can we infer about the stability of an ensemble
equilibrium under ytot control, when only the properties of
the individual components are given? This is asking how
the eigenvalues of the Jacobian F̃x depend on the derivatives
fx, fu, gx, gu. Whereas under u control [Eqs. (6) and (7)],
the stability was determined by a diagonal Jacobian Fx, now
we have F̃x, which has two types of eigenvectors, as in the
case of mean-field-coupled identical Stuart-Landau oscilla-
tors [17]: the intracluster eigenvectors and the intercluster
eigenvectors (see Appendix A for a detailed derivation). The
intracluster eigenvectors affect only components at one of
the three equilibria xeq,1, xeq,2, xeq,3 at a time. Perturbations
in their directions only affect elements in a single cluster.
By contrast, perturbations in the direction of the intercluster
eigenvectors affect at least two clusters but move each clus-
ter as a whole, i.e., they conserve the clusters. We indicate
intracluster eigenvectors and eigenvalues by a “⊥,” as they
are perpendicular to the cluster-conserving manifold. Analo-
gously, intercluster eigenvectors and eigenvalues get a “‖.”

Intracluster eigenvectors v⊥
� of F̃x each have nonzero en-

tries at only one of the three equilibria xeq,�, and the entries
sum up to zero, i.e., they do not change a cluster’s “center of
mass.” The respective intracluster eigenvalues λ⊥

� of F̃x have
a multiplicity of max(n� − 1, 0), in which n� is the number of
components in the respective cluster �. Furthermore, the λ⊥

�

turn out to match the eigenvalues of the u-controlled system,
which are identical to those of the u-controlled, single com-
ponent (see Appendix A):

(F̃x − λ⊥
� 1)v⊥

� = 0, (20)

λ⊥
� = fx(xeq,�). (21)

This result has a very important implication: Any ensemble
equilibrium under ytot control is unstable if it has more than
one component at a component equilibrium xeq,� that is un-
stable for a u-controlled, single component, i.e., if n� > 1
and fx(xeq,�) > 0. This statement generalizes the “mosaic in-
stability” [18] to far-from-equilibrium systems, and it is the
reason that components switch individually when the param-
eter ytot is ramped. Note that a perturbation by an intracluster
eigenvector v⊥

� leaves u constant, unlike a perturbation by an
intercluster eigenvector v‖

� .
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To find the intercluster eigenvalues λ‖ that have an impact
on u, imagine a perturbation affecting the voltage u while the
current ytot is kept constant. This requires that the system has
an infinite impedance Ztot. More specifically, the poles of the
impedance Ztot (λ) are the intercluster eigenvalues λ‖. This
follows from the definition of the impedance, which involves
the Laplace transformation L:

Ztot (λ) = L{û}(λ)

L{ŷtot}(λ)
(22)

= −G̃x(F̃x − λ1)−1F̃u + G̃u. (23)

We derived (23) from (18) and (19), using L{ d
dt x̂}(λ‖) =

λ‖L{x̂}(λ‖). The poles of the impedance Ztot (λ) can be found
by looking for the roots of its reciprocal, i.e., the admittance
Ytot (λ):

0 = Ytot (λ
‖) = L{ŷtot}(λ‖)

L{û}(λ‖)
(24)

= −Gx(Fx − λ‖1)−1Fu + Gu (25)

=
∑

�∈{1,2,3}
n�

[
−gx(xeq,�) fu(xeq,�)

fx(xeq,�) − λ‖ + gu(xeq,�)

]
︸ ︷︷ ︸

=Y�(λ‖ )

. (26)

If the intercluster eigenvalues λ‖ are known, the corre-
sponding eigenvectors v‖ are obtained as

(F̃x − λ‖1) (Fx − λ‖1)−1Fu︸ ︷︷ ︸
=v‖, eigenvec of F̃x

= 0, (27)

The number of intercluster eigenvectors matches the number
of nonempty clusters; hence there are three at most. All other
eigenvectors are intracluster eigenvectors.

C. Existence of oscillations

Equation (26) thus can be utilized to find instabilities of
the ensemble equilibrium with respect to intercluster perturba-
tions. In particular, it helps to find a transition from a damped
to a self-amplifying oscillation, i.e., the occurrence of a Hopf
bifurcation, marked by a purely imaginary pair of complex-
conjugate eigenvalues λ

‖
H, λ

‖∗
H of the Jacobian F̃x [19]. The

frequency of the resulting oscillation is ω/(2π ) and obeys
iω = λ

‖
H = −λ

‖∗
H , in which i is the imaginary unit.

If we insert iω for λ‖, each of the three clusters has an
admittance Y�(iω) = Y�(−iω)∗. A cluster’s admittance Y�(iω)
is just the sum of the admittances of its components, 1

n�
Y�(iω).

The impedance of each of the clusters can be represented
as one of the two circuits in Figs. 3(a) and 3(b), in which
the choice between the inductive version [Fig. 3(a), orange]
and the capacitive version [Fig. 3(b), blue] depends on the
sign of the product gx fu, as further explained in Appendix B.
Intuitively, one would expect that for an oscillation to occur,
one would need an LC circuit, which requires both an induc-
tance and a capacitance. In fact, this intuitive requirement for
a Hopf bifurcation is also actually found when looking at the
imaginary part of Eq. (26):

0 =
∑

�∈{1,2,3}
−n�gx(xeq,�) fu(xeq,�)

iω

| fx(xeq,�) − iω|2︸ ︷︷ ︸
Im[Y�(iω)]

. (28)

FIG. 2. (a) and (b) Sketch of the two cases in which sustained
oscillations can occur with a fixed ytot . A red dot represents a cluster
of components.

This equation needs to hold at a Hopf bifurcation.
It can only be fulfilled if we have both a cluster
�1 with gx(xeq,�1 ) fu(xeq,�1 ) < 0 and a cluster �2 with
gx(xeq,�2 ) fu(xeq,�2 ) > 0 such that the total sum is zero. (All
summands may also be zero, but this is a degenerate case.)

Thus, the necessary condition for a Hopf bifurcation in the
considered class of systems, our core result, is given by

∃u : ∃x1, x2 : f (x1, u) = f (x2, u) = 0

∧ ∂g/∂xk|x1,u ∂ f /∂u|x1,u < 0

∧ ∂g/∂xk|x2,u ∂ f /∂u|x2,u > 0. (29)

Condition (29) tells us that in order to find a Hopf bifurcation
in a ytot-controlled ensemble of bistable components we need
the product gx fu to change its sign along the equilibrium curve
of the individual components.

Interestingly, condition (29) depends only on the equations
that describe the individual components. It is thus straightfor-
ward to test for the possibility of oscillations once a model for
the individual component is known. Figure 2 illustrates the
two qualitatively different cases which might lead to oscilla-
tions. In the first case, ∂ f /∂u has the same sign everywhere
along the steady-state curve. Correspondingly, in order to
fulfill condition (29), g(x, u = const) has to possess at least
one extremum at a given value of u in the bistable regime. In
the second case [Fig. 2(b)], ∂ f /∂u is negative on one branch
and positive on another. Correspondingly, oscillations might
occur also for a strictly monotonic g(x, u = const).

The above-discussed results on the stability of steady
states have important implications for the stability of os-
cillations born in a Hopf bifurcation, which we assume to
be supercritical: Stable oscillations can only emerge if the
bifurcating steady state has at most one component on the
middle, unstable branch of the y-u curve. However, because
for a macroscopic number of components the influence of
an individual component on the total current is negligible, in
systems with a large number of components, a stable limit
cycle can only emerge in a Hopf bifurcation if all components
of the steady states are in one of the two outer, stable states
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1
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1
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FIG. 3. (a) and (b) Equivalent circuits of a state space model
with x ∈ R, close to equilibrium. (c) Exemplary illustration of the
three equilibria of Eqs. (30) and (31) for n = 3, a = 0.05, b = 0.01
at ytot = 0.833n, marked by the horizontal dashed line. Red circles
indicate clusters of up to three components. (d) Equivalent circuits of
the entire ensemble at the equilibria in (c). (e) Function g for u = u3

and function f with x fixed to the respective equilibrium values at
u = u3.

of the y-u characteristic. However, below we will demonstrate
that initially unstable limit cycles might be stabilized in an
equivariant transcritical bifurcation, and therefore stable os-
cillations also exist for two- and three-cluster states with an
arbitrarily large number of components in the middle, unstable
state.

FIG. 4. yk time series obtained from numerically integrating
Eqs. (30) and (31) for (a) n = 3 and (b) n = 20. Other parameters [in
(a) and (b)]: a = 0.05, b = 0.01, ytot = 0.833n. Note that an offset of
k/20 was added to yk for better visualization of the individual time
series in (a) and (b).

III. EXAMPLE: CO ELECTRO-OXIDATION ON Pt

As an example, we apply this result to a particular model,
defined in Eqs. (30) and (31), that was derived from a more
detailed model for CO electro-oxidation on Pt [11] (see Ap-
pendix C).

d

dt
xk (t ) = f (xk (t ), u(t ))

= 1 − (1 + ab)xk (t )

1 + a − xk (t )
− u(t )[1 − xk (t )]xk (t ), (30)

ytot =
n∑

k=1

g(xk (t ), u(t )) =
n∑

k=1

yk (t )

=
n∑

k=1

u(t )[1 − xk (t )]xk (t ). (31)

In short, xk is the CO coverage of electrode k and
f (xk (t ), u(t )) comprises the rates of CO adsorption and
desorption and the u-dependent reaction. Equation (31) de-
termines the instantaneous change of the potential u(t ) such
that the total current ytot is maintained constant despite chang-
ing xk . Figures 3(c) and 3(d) exemplarily illustrate the three
equilibria of Eqs. (30) and (31) for n = 3, a = 0.05, b = 0.01
at ytot = 0.833n. The two equilibria at u = u1 and u = u2

both have more than one component on the negative-slope
branch, namely, three and two, respectively. As we have
shown above, this means that these two equilibria are unsta-
ble because the clusters on the negative-slope branch have
positive intracluster eigenvalues. Moreover, we can instantly
rule out the possibility of oscillations at u = u1, because all
three components act inductively [Fig. 3(d), left]. In other
words, the ensemble impedance lacks a capacitive component
to form an LC circuit. In contrast, the equilibrium at u = u3

is intracluster stable for it has only one component in the
negative-slope branch [Fig. 3(c)]. Moreover, at this equilib-
rium our necessary condition (29) for a Hopf bifurcation to
occur is fulfilled [Fig. 3(e)]: While the change of CO coverage
with u always has a negative slope at the xeq values of the
two clusters, the current depends nonmonotonically on the
coverage and increases at the low xeq values of the cluster on
the active branch while it decreases at the higher xeq values
of the electrode on the middle branch [Fig. 3(e)]. In fact, for
the corresponding parameter values, sustained oscillations are
observed [Fig. 4(a)].
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u

ytot

n
|| stable, stable equilibrium

|| stable, unstable equilibrium

|| unstable, unstable equilib.

|| stable, stable limit cycle

|| stable,  unstable limit cycle

FIG. 5. Two-cluster limit sets of Eqs. (30) and (31) for a =
0.05, b = 0.01, for a cluster size ratio of 4 :1, valid for any n.

Our considerations so far revealed that Hopf bifurcations
occur only in the intercluster subspace.

Hence a stable limit cycle can bifurcate only from an
intracluster-stable equilibrium, just like the one in Fig. 4(a)
bifurcated from the rightmost equilibrium in Fig. 3(c). As we
saw, such an intracluster-stable equilibrium can have either no
component on the middle, unstable branch of the y-u curve or
one single component. For the former case, we were not able
to come up with an example that has an oscillatory intercluster
instability. For the latter case, the resulting limit cycle will
not scale to larger ensemble sizes, because at some point
the contribution of the one single component on the middle
branch to the total current ytot becomes negligible, such that
we are essentially back at the former case again. Thus, such a
stable limit cycle will not persist for arbitrarily large n.

Yet, the model does support stable collective oscillations
that do persist for arbitrarily large ensemble sizes. An ex-
ample of this is given in Fig. 4(b), where we simulated 20
components and observed that they grouped in two clusters
of size 16 and 4, oscillating in antiphase. The emergence
of this collective oscillation is illustrated in the two-cluster
bifurcation diagram shown in Fig. 5. For this, we numeri-
cally continued a four-component version of the system, in
which each of the four components represented one of four
clusters with sizes n1, n2, n3, n4 with n1 + n2 + n3 + n4 = n.
We considered four clusters because this allowed us to divide
each of the two clusters into two subclusters. In this way,
we obtained the respective intracluster stability. To account
for the cluster sizes, we modified Eq. (2) to y� = n�g(x�, u).
We fixed (n1 + n2)/n = 0.8, (n3 + n4)/n = 0.2 to match the
cluster size ratio we observed in the simulation, and n2/n =

0.16, n4/n = 0.04. Note that the model depends only on the
relative sizes of the clusters and not on the total ensemble
size n. Besides the collective oscillation, Fig. 5 shows all the
equilibria in which the ensemble is divided into two clusters
in the same ratio as in Fig. 4(b), i.e., 4:1. Stable equilibria
are shown as a solid line, unstable equilibria as a dashed line.
Equilibria that are unstable within the cluster manifold and
perpendicular to it are depicted in green, while those that are
intercluster stable but intracluster unstable are shown as blue
dashed lines.

As can be seen in the inset of Fig. 5, one of the transversally
unstable branches undergoes a supercritical Hopf bifurcation,
generating a limit cycle that is stable within the two-cluster
manifold but unstable transversally to it (orange area). At
somewhat larger values of ytot, the limit cycle is stabilized in
a type of transcritical bifurcation, generating stable collective
oscillations (pink area).

IV. CONCLUSION

In conclusion, we have presented a general mechanism of
how an oscillation can emerge from an ensemble of globally
coupled bistable, nonresonant components. Our considera-
tions were motivated by two electrochemical systems, but our
result applies to various physical situations.

Typically, for large ensembles the states of the individ-
ual components are not measurable. Rather, the state of the
macroscopic system is characterized by some order parameter.
Without the awareness that collective oscillations of the order
parameter can be provoked by the mechanism discussed here,
the natural interpretation would be that the oscillations emerge
due to synchronization of individual oscillators. In view of our
results, it might turn out that some observations of collective
oscillations have to be reinterpreted.
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APPENDIX A: EIGENVALUES AND EIGENVECTORS

In the following we consider a more general scenario, in which the inner state x(t ) is a column vector of any arbitrary dimen-
sion d , so x(t ) ∈ Rd×1, fx ∈ Rd×d , fu ∈ Rd×1, gx ∈ R1×d , gu ∈ R1×1. Let Ik ∈ Rk×k be the identity matrix, let 0 j×k, 1 j×k ∈ R j×k

be matrices of only zeros and only ones, respectively, and let ⊗ : (Ra×b,Rc×d ) → Rac×bd denote the Kronecker product. Then,
in the vicinity of a given ensemble equilibrium, we can rearrange the order of the entries in the ensemble state x(t ) such that the
individual bistable components are grouped by their respective component equilibria xeq,�. The linearization of the ensemble in
the potentiostatic case takes the form

d

dt
x̂(t ) = Fxx̂(t ) + Fuû, (6)

ŷtot (t ) = Gxx̂(t ) + Guû, (7)
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and in the galvanostatic case

d

dt
x̂(t ) =

=:F̃x︷ ︸︸ ︷
(Fx − FuG−1

u Gx ) x̂(t ) + FuG−1
u ŷtot, (18)

û(t ) = −G−1
u Gxx̂(t ) + G−1

u ŷtot. (19)

Here,

x̂(t ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(t ) − xeq,1

x2(t ) − xeq,1

...

xn1 (t ) − xeq,1

xn1+1(t ) − xeq,2

xn1+2(t ) − xeq,2

...

xn1+n2 (t ) − xeq,2

xn1+n2+1(t ) − xeq,3

xn1+n2+2(t ) − xeq,3

...

xn1+n2+n3 (t ) − xeq,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(n1+n2+n3 )d×1 = Rnd×1, (A1)

Fx :=
⎛
⎝In1 ⊗ fx(xeq,1)

In2 ⊗ fx(xeq,2)
In3 ⊗ fx(xeq,3)

⎞
⎠ ∈ Rnd×nd , (A2)

Fu :=
⎛
⎝1n1×1 ⊗ fu(xeq,1)

1n2×1 ⊗ fu(xeq,2)
1n3×1 ⊗ fu(xeq,3)

⎞
⎠ ∈ Rnd×1, (A3)

Gx := 11×n︸︷︷︸
ytot=

∑N
k=1 yk

⎛
⎝In1 ⊗ gx(xeq,1)

In2 ⊗ gx(xeq,2)
In3 ⊗ gx(xeq,3)

⎞
⎠

︸ ︷︷ ︸
∈Rn×nd

= (11×n1 ⊗ gx(xeq,1), 11×n2 ⊗ gx(xeq,2), 11×n3 ⊗ gx(xeq,3)) ∈ R1×nd , (A4)

Gu := 11×n︸︷︷︸
ytot=

∑n
k=1 yk

⎛
⎝1n1×1 ⊗ gu(xeq,1)

1n2×1 ⊗ gu(xeq,2)
1n3×1 ⊗ gu(xeq,3)

⎞
⎠

= n1gu(xeq,1) + n2gu(xeq,2) + n3gu(xeq,3) ∈ R1×1. (A5)

1. Intracluster eigenvalues and eigenvectors

If x(t ) is a d-dimensional vector, we obtain the following intra cluster eigenvalues λ⊥
� and intracluster eigenvectors v⊥

� of the
ensemble Jacobian F̃x under current control:

(F̃x − λ⊥
� Ind )v⊥

� = 0, (A6)

v⊥
1 =

⎛
⎝w⊥

1 ⊗ v⊥
1

0n2d×1

0n3d×1

⎞
⎠, (A7)

v⊥
2 =

⎛
⎝ 0n1d×1

w⊥
2 ⊗ v⊥

2
0n3d×1

⎞
⎠, (A8)

043125-7



SALMAN, BICK, AND KRISCHER PHYSICAL REVIEW RESEARCH 2, 043125 (2020)

v⊥
3 =

⎛
⎝ 0n1d×1

0n2d×1

w⊥
3 ⊗ v⊥

3

⎞
⎠. (A9)

in which

w⊥
� ∈ Rn�×1 : entries sum up to zero, i.e., 11×n�w⊥

� = 0,

v� ∈ Rd×1 : an eigenvector of fx(xeq,�),
λ⊥

� ∈ R : the eigenvalue of fx(xeq,�) to the eigenvector v⊥
� .

There are
∑3

�=1 d max(n� − 1, 0) such intracluster eigenvectors v⊥
� in total, since we have max(n� − 1, 0) dimensions to choose

w⊥
� from and d dimensions for v⊥

� . The eigenvalues λ⊥
� are max(n� − 1, 0)-fold degenerate for each �, respectively.

Checking Eq. (A6) for � = 1, exemplarily,

(F̃x − λ⊥
1 Ind )v⊥

1
(16)= (Fx − FuG−1

u Gx − λ⊥
1 Ind )v⊥

1 (A10)

= Fxv⊥
1 − FuG−1

u Gxv⊥
1 − λ⊥

1 Ind v⊥
1 (A11)

=
(

[In1 ⊗ fx(xeq,1)][w1 ⊗ v⊥
1 ]

0(n2+n3 )d×1

)
− FuG−1

u

(
[11×n1 ⊗ gx(xeq,1)][w1 ⊗ v⊥

1 ]
0(n2+n3 )d×1

)
− λ⊥

1 v⊥
1 (A12)

=
(

[In1 w⊥
1 ] ⊗ [ fx(xeq,1) v⊥

1 ]
0(n2+n3 )d×1

)
− FuG−1

u

(
[11×n1 w⊥

1 ] ⊗ [gx(xeq,1) v⊥
1 ]

0(n2+n3 )d×1

)
︸ ︷︷ ︸

def of w⊥
1= 0(n1+n2+n3 )d×1

−λ⊥
1 v⊥

1 (A13)

=
(

w⊥
1 ⊗ λ⊥

1 v⊥
1

0(n2+n3 )d×1

)
− λ⊥

1 v⊥
1 (A14)

= λ⊥
1 v⊥

1 − λ⊥
1 v⊥

1 (A15)

= 0. (A16)

The cases � = 2 and � = 3 can be shown analogously.

2. Intercluster eigenvalues and eigenvectors

Previously, we described intracluster eigenvectors v⊥
� corresponding to perturbations within single clusters. In contrast,

the following intercluster eigenvectors v‖ each perturb more than one cluster but leave the components within each cluster
synchronous to each other. We claim that the following equation (A17) describes the remaining 3d (or less if a cluster is empty)
eigenvectors v‖ of the current-control Jacobian F̃x corresponding to the eigenvalues λ‖:

(F̃x − λ‖ Ind ) (Fx − λ‖ Ind )−1Fu︸ ︷︷ ︸
=:v‖

= 0. (A17)

However, such an eigenvector v‖ only exists if (Fx − λ‖ Ind ) is invertible. (Fx − λ‖ Ind ) is invertible if and only if we assume
λ‖ 
= λ⊥

� for all λ⊥
� . This is because if λ‖ 
= λ⊥

� , then and only then λ‖ is not an eigenvalue of Fx, which are n� × λ⊥
� , for � = 1, 2, 3

[see the definition of Fx in Eq. (A2)]. However, if λ‖ is not an eigenvalue of Fx, then and only then det(Fx − λ‖ Ind ) 
= 0, i.e.,
(Fx − λ‖ Ind ) is invertible.

We further claim that the corresponding eigenvalues λ‖ are obtained by solving Eq. (A18), which might be difficult in general:

−Gx (Fx − λ‖ Ind )−1Fu︸ ︷︷ ︸
≡v‖

+Gu

︸ ︷︷ ︸
(3),(4)= L{ŷtot }(λ‖ )

L{û}(λ‖ )
=:Ytot (λ‖ )

= 0. (A18)

L denotes the Laplace transformation, and in Eq. (A18) we used L{ d
dt x̂}[λ‖] = λ‖L{x̂}[λ‖]. Equations (A17) and (A18) say that,

at the eigenvalues λ‖ of F̃x, the total admittance Ytot (λ‖) vanishes. Notice that Ytot (λ‖) is only defined if λ‖ is not an eigenvalue
of Fx. Analogously, the total impedance Ztot (λ‖) := Y −1

tot (λ‖) is only defined if λ‖ is not an eigenvalue of F̃x. Let us confirm
Eq. (A17):

(F̃x − λ‖Ind )v‖ (16)= (Fx − FuG−1
u Gx − λ‖Ind )v‖ (A19)

= (Fx − λ‖Ind )v‖ − FuG−1
u Gxv‖︸︷︷︸

(A18)= Gu

(A20)
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(A17)= (Fx − λ‖Ind )(Fx − λ‖ Ind )−1Fu − FuG−1
u Gu (A21)

= Fu − Fu (A22)

= 0. (A23)

APPENDIX B: CIRCUIT REPRESENTATION

The component equation

d

dt
xk (t ) = f (xk (t ), u(t )), (B1)

yk (t ) = g(xk (t ), u(t )) (B2)

can be linearized

d

dt
x̂(t ) = fxx̂(t ) + fuû(t ), (B3)

ŷk (t ) = gxx̂(t ) + guû(t ) (B4)

and Laplace transformed

iωL{x̂}(iω) = fxL{x̂}(iω) + fuL{û(t )}(iω), (B5)

L{ŷk}(iω) = gxL{x̂}(iω) + guL{û(t )}(iω). (B6)

Eliminating L{x̂}(iω), we get the admittance Yk (iω):

L{ŷk}(iω) = [gx(iω − fx )−1 fu + gu]︸ ︷︷ ︸
Yk (iω)

L{û(t )}(iω). (B7)

In comparison, the circuit in Fig. 3(a) yields the same, identifying R1, R2, L with the respective values of the three electrical
components.

Yk (iω) = (iωL + R2)−1 + R−1
1 (B8)

= [iω(gx fu)−1 − fx(gx fu)−1]−1 + gu (B9)

= gx[iω − fx]−1 fu + gu. (B10)

Analogously, the same is true for the circuit in Fig. 3(b), with R1, R2,C.

Yk (iω) = [(iωC)−1 + R2]−1 + R−1
1 (B11)

= [−(iω)−1 f 2
x (gx fu)−1 + fx(gx fu)−1]−1 + (gu − f −1

x gx fu) (B12)

= gx

[
1

−(iω)−1 f 2
x + fx

− 1

fx

]
fu + gu (B13)

= gx

[ −iω

f 2
x − iω fx

− fx − iω

f 2
x − iω fx

]
fu + gu (B14)

= gx

[ − fx

f 2
x − iω fx

]
fu + gu (B15)

= gx[iω − fx]−1 fu + gu. (B16)

APPENDIX C: DERIVATION OF THE MODEL FOR CO ELECTRO-OXIDATION ON Pt

We derived our model from the following, more detailed model for the CO adsorption on a platinum microelectrode, which
is described in detail in Ref. [11].

d

dt
Ci = 2D

δ2
(Cb − Ci ) − Stot

δ
[kadsCi(1 − θi ) − kdesθi], (C1)

d

dt
θi = kadsCi(1 − θi ) − kdesθi − kreacθi(1 − θi )exp(α f φi ), (C2)

Ji = 2FStotkreacθi(1 − θi )exp(α f φi), (C3)
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Our simplified model captures the steady states of Eqs. (C1) and (C2). Its impedance is not exactly the same as in the original
model, but it still provides oscillations as an ensemble.

To obtain our simplified version, we set dCi/dt to zero to eliminate Ci, so Eq. (C2) becomes Eq. (C4).

d

dt
θi = DCbkads − (DCbkads + Dkdes)θi

D + kadsδStot − kadsδStotθi
− kreacθi(1 − θi )exp(α f φi ), (C4)

Ji = 2FStotkreacθi(1 − θi )exp(α f φi). (C5)

Then, defining

τ := DCb

δStot
t, (C6)

ui := δStot

DCb
kreacexp(α f φi ), (C7)

yi := Ji
δ

2FDCb
, (C8)

a := D

kadsδStot
, (C9)

b := kdesδStot

DCb
, (C10)

we are left with

d

dτ
θi = 1 − (1 + ab)θi

1 + a − θi
− θi(1 − θi )ui, (C11)

yi = θi(1 − θi )ui, (C12)

in which a and b are small, positive constants. We rename τ to t and θi to xi and change the values of a and b to make the system
less stiff, but we keep them much smaller than 1.
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