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Coarse-grained second-order response theory
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While linear response theory, manifested by the fluctuation dissipation theorem, can be applied at any level
of coarse-graining, nonlinear response theory is fundamentally of a microscopic nature. For perturbations of
equilibrium systems, we develop an exact theoretical framework for analyzing the nonlinear (second-order)
response of coarse-grained observables to time-dependent perturbations, using a path-integral formalism. The re-
sulting expressions involve correlations of the observable with coarse-grained path weights. The time-symmetric
part of these weights depends on the paths and perturbation protocol in a complex manner; in addition, the
absence of Markovianity prevents slicing of the coarse-grained path integral. We show that these difficulties
can be overcome and the response function can be expressed in terms of path weights corresponding to a
single-step perturbation. This formalism thus leads to an extrapolation scheme where measuring linear responses
of coarse-grained variables suffices to determine their second-order response. We illustrate the validity of the
formalism with an exactly solvable four-state model and the near-critical Ising model.
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I. INTRODUCTION

Many systems of practical and scientific relevance are
of an intrinsic stochastic nature with properties dominated
by fluctuations, e.g., colloidal particles, protein folding net-
works, molecular motors, or stochastic heat engines [1].
Such systems lend themselves to descriptions by statistical
physics. A variety of approaches exists for this, including
the famous Jarzynski equation [2] and Crook’s theorem [3],
which concern the work done while driving a system far
from equilibrium. In contrast, (nonlinear) response theory
treats arbitrary observables, starting near equilibrium with
the fluctuation-dissipation theorem, which relates the linear
response to equilibrium fluctuations [4,5]. Higher orders in
perturbation have also been derived, e.g., for Markov jump
processes [6], using path integrals [7], or in terms of corre-
lation functions [8—15]. Nonlinear response theory has also
been applied experimentally, enabling measurement of the
second-order response from an equilibrium average [16].

The above nonlinear response approaches typically rest on
the assumption that all relevant degrees of freedom (d.o.f.)
are known and measurable. This is not the case in many
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experimental settings, and one is thus faced with the additional
challenge of coarse-graining.

Taking the example of a colloidal particle in a simple
solvent, the bath d.o.f. can easily be integrated out because
they relax quickly on typical colloidal timescales, and they
can (thus) be assumed to be in an equilibrium state [17,18].
Approaches such as Mori-Zwanzig projection operators for-
malize this idea by identifying a subset of slow d.o.f. to be
relevant and integrating out the fast d.o.f. [19-21]. Indeed,
fluctuation relations and response theory have been shown
to hold approximately under the assumption that subsystems
reach local equilibrium [22-24]. Other types of coarse-
graining preserve fluctuations [25] or use other physical or
computational restrictions, as, e.g., in polymer physics [26,27]
or biophysics [28,29].

Adding a second colloidal particle to our example illus-
trates the next level of complexity: if the position of one
colloidal particle is unknown, experimental estimation of po-
tentials, entropy production, and probability distributions may
be incorrect, as shown experimentally in Ref. [30]. This is the
case, for example, if a driving protocol acts on the unknown
degree of freedom. Such questions in relation to entropy pro-
duction, work, and other thermodynamic notions in stochastic
processes have been analyzed under coarse-graining, both the-
oretically [23,24,31,32] and experimentally [30,33]. But what
about the nonlinear (second-order) response in coarse-grained
systems? As detailed below, nonlinear orders remain challeng-
ing in coarse-grained systems, even if entropy productions
are found correctly. Reference [34] developed second-order
response theory in a system coarse-grained to a finite number
of states, proposing and verifying an extrapolation scheme for
the second-order response from linear contributions. Notably,
this approach does not rely on a separation of timescales
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as demonstrated explicitly for a model system [34]. While
Ref. [34] is restricted to perturbations that remain constant
after an initial, instantaneous jump, in this paper we generalize
this approach to include arbitrary time dependence.

Starting from microscopic response theory from path in-
tegrals, we derive a response theory for a finite number
of coarse-grained states. Coarse-graining the path integrals
yields coarse-grained path weights, including entropy produc-
tion, but also the more difficult time-symmetric part of the
corresponding weights, from which the second-order response
can be found.

These formal expressions can be used in practice, e.g.,
via an extrapolation scheme. In this scheme, performing a
linear-response experiment (or simulation) is sufficient to ob-
tain the second-order response. We show how to measure
the second-order response for any protocol from linear per-
turbations with one step only, thereby greatly facilitating the
measurement. This concept is illustrated and verified below
in an analytically solvable jump process and in simulations of
the two-dimensional (2D) Ising model.

II. SYSTEM AND NONLINEAR RESPONSE THEORY

In this section, we present nonlinear (second-order) re-
sponse theory, starting from the microscopic description,
which is then coarse-grained to macroscopic observables.

A. Microscopic description

Consider a classical system of interacting degrees of free-
dom, e.g., a fluid, with phase state at time s denoted by x, € T,
which is in general of high dimensionality. Assuming that
the state x;, is of sufficient microscopic resolution, (x;)se[o.]
is a Markov process. In the absence of perturbations, the
system is in equilibrium at temperature 7 = 1/(kgB), with
the Boltzmann constant kg. When perturbed, the system is
out of equilibrium, a situation that we aim to analyze here.
We therefore start by reviewing an expansion of the system
around equilibrium in terms of path integrals [7,35].

We introduce a volume form on the space of paths
p(w)Dw, so that p(w) is the probability (density) to find the
path @ = {x;}s¢j0.r). The average of a state observable O(x;),
which depends on the state of the system at time #, is given by

(0)(1) = / 0(x)p(@)Do, (1

On the right-hand side we have an integral over paths ending
at time ¢, weighted by p.

Consider now a perturbation by a potential v(x), acting on
the system for times s > 0, carrying as prefactors a dimen-
sionless perturbation strength ¢ and a dimensionless protocol
h(s) of order unity, so that the full perturbation to the energy of
state x is given by —eh(s)v(x). The aim of response theory, as,
for instance, developed in Refs. [7,35], is to express the path
probability in the perturbed nonequilibrium system, p. ;(w),
in terms of the equilibrium path probability p.q(w) and orders
of the perturbation strength . This is done in terms of a
Radon-Nikodym derivative, which relates different probabil-
ity measures in the Radon-Nikodym theorem [35]. Here, it

connects the probability densities [35]
Pen(@) = €1 peg(w), 2

where we have introduced an action a quantifying the de-
viation from equilibrium. It will be useful to consider the
time-reversed process, described by backward paths. These
are given by 6w = m{x,_;}, where m refers to the kinematic
sign reversal, such as flipping the sign of velocities, and they
evolve under the reversed protocol h(s) = h(t — s) [36]. Inte-
gration over the backwards path weight, p, ;(fw), yields

[ 0(i)p, ;(6w)Dw

= / O(x0)p, (@)D = (0)(0) = (0)*(0) = (0)*(),
3

where (0)°? denotes the equilibrium average. Equation (3)
uses that the system is in equilibrium at time s = 0: in the
first term in the second line of Eq. (3) we can split the path
integral into one over all paths starting at x,, followed by an
integral over xp. The first integration gives the initial distri-
bution of xy, and the second one then gives the average of O
at s = 0, which is the equilibrium average. See Appendix Al
for details. Equation (3) inspires a decomposition of the ac-
tion a = d — s/2 into its time-symmetric and -antisymmetric
parts d and s, respectively. The time-antisymmetric part s, , =
In (pe p(w)/ p&ﬁ(ew)) is called the entropy production. For
the potential perturbation given above and assuming the time-
reversed process also starts in equilibrium, it has the form

sa,h(w)=8ﬁ<h(t)v(xz)—h(0)v(xO)—f /tSV(xs)dS>, 4)
0

as shown for specific examples in Ref. [7] and quite
generally in Ref. [35]. The time-symmetric part d,;, =
—% In (ps n(@)p, ;(0w)/ pgq (w)), sometimes denoted dynam-
ical activity, depends on further details. No explicit form can
be given without specifying the dynamics of the system [7].

Expanding in terms of the perturbation strength ¢ and sub-
tracting the path integral over backwards paths, as considered
in Eq. (3), yields

(0) = (0) + £(s,0) — &*(5,d, 0)* + O(*).  (5)

We introduced the notation f' = %Lg:o so that s’ is im-

mediately found from Eq. (4). The derivative d’ of the
time-symmetric component is given in terms of the derivative
of p [35],

dj(®) = — [P} (@) + PO w)]. (©)

1
2peq (w)
Examples for different dynamics may be found in Refs. [7,35].

We finally introduce a notation for the nth-order response
of the nonequilibrium average (O) [37],

1 d"
n! den
which we analyze up to n = 2 in this paper.

It is important to note that Eq. (5) relies on the unper-

turbed system being in equilibrium, via detailed balance. For
nonequilibrium cases, already the linear response involves

(0)" =

(0)|e=0, (N
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FIG. 1. Illustration of coarse-graining: A continuous micro-
scopic phase space I' (here spanned by x; and x,) is coarse-grained
into states X = 0, 1, 2, 3 that make up the coarse-grained space I''.

d;, [38], and the second order involves d;’. This would lead
to differences in the coarse-grained relations derived below.

B. Coarse-grained description

We now turn to a coarse-grained version of the stochas-
tic process introduced above. This is motivated by the fact
that experimental resolution is always limited, so that in
general only coarse-grained observables can be monitored.
Furthermore, developing nonequilibrium thermodynamics for
macroscopic variables is an important goal of statistical
physics. The coarse-graining as performed here allows for a
practical extrapolation scheme, as detailed below.

We thus consider a countable number of coarse-grained,
discrete (stochastic) states X; € I'’, with a function ¢ uniquely
mapping I" to I/, i.e., Xy = @(xy).

Figure 1 illustrates this mapping of a microscopic con-
tinuous state space I' to IV = {0, 1, 2, 3} consisting of four
coarse-grained states. Note that this approach does not rely
on a separation of timescales of slow and fast variables and
thus remains valid even when the coarse-grained process is not
Markovian. The spirit of this coarse-graining is hence distinct
from the idea that underlies typical approximations based on
local equilibrium.

A crucial physical assumption or requirement is that the
perturbation potential v acts on the coarse level as well, in
other words, v is a function of coarse-grained states. In the
introductory example of colloids in a solvent, it means that the
perturbation acts only on those colloids whose positions are
being monitored. To emphasize this, we introduce a potential
V(X)) acting on coarse-grained states, so that v(x) = V(X)) for
all x satisfying ¢ (x) = X. Importantly, under this assumption,
the entropy production is a functional of coarse-grained paths
Q = {Xi}ser0.r) (see Ref. [23] for a statement in a similar
spirit). We define the coarse-grained entropy production;

1

SiQ) = - o)
eq

/ $h(@)Peq(@)D
Q

= ﬂ(h(t)V(Xz) —h(O)V(Xo)—/ h(s)V(Xst).
0
®)

The index fQ indicates that the integral runs over all mi-
cropaths belonging to the coarse-grained path €2, and P.q(£2)
is the equilibrium weight for path Q2. Equation (8) follows
directly from Eq. (4), by noting that v(x) = V(X) for x with
@(x) = X. The linear response of a state observable O(X;) is
thus

(0)D = (S,0). O

Comparing with Eq. (5), we see that the formalism of lin-
ear response is the same when applied to a microscopic or
any coarse-grained description, so that the process of coarse-
graining is easily performed for the linear response.

To obtain the second-order response, we coarse-grain the
second-order response Eq. (5), making use of the coarse-
grained entropy production given in Eq. (8),

(0P[R = — f ()} (0)O(X, )peg (@)D
= —/S,@(Q)U d,;(a))peq(w)Dw}O(X,)DQ
Q

- / SH(QD),(Q)O(X,)Pog()DR.  (10)

Here we have identified the coarse-grained D’ as the average
of d’ over micropaths belonging to €2,

Dy (2)Peq(2) :Z/th/(w)Peq(w)Dw, an

similarly to the coarse-grained entropy production of Eq. (8).
In Eq. (10) we split the integration over microscopic paths by
first integrating over paths belonging to a given coarse-grained
path @ and subsequently integrating over the latter. We then
used that the entropy production takes the same value for all
microscopic paths @ belonging to the same €2, so that s, can
be taken out of the integral over Dw in the second line of
Eq. (10), thereby turning into S;. This is why the macroscopic
parts S, (€2) and D} (R2) of the action factorize, with the con-
sequence that Eq. (10) takes a form similar to Eq. (5). The
coarse-grained path integral appearing here can be written as

/DQ=Z~--Z, (12)

X, e’ X, el

by discretizing time into N lattice points and making use of
the discrete nature of X. Other ways of representing f DS can
be found in Appendix A 2. D (£2) in Eq. (11) can be written,
using (6), as

1
DUDP(R) = [ =315 @)+ Fy0w) Do
Q

1
= —E[P;;(Q)JrPhi(@Q)], 13)

where we have introduced (derivatives of the) nonequilibrium
weight P;(£2). One important difference between Egs. (13)
and (6) lies in the Markov property of x, which is absent for X :
while p, ,(w) can be cut into (temporal) pieces according to
the Chapman-Kolmogorov-Equation, this is not possible for
Pe.n(£2).
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The main challenge that remains is the determination of
D'(2). How D'(Q2) appears in practice will be analyzed in
Sec. III by decomposing the time dependence of the proto-
col into a number of discrete steps. Section IV verifies and
illustrates these findings via analytical solutions of a four-state
model, and Sec. V will apply the extrapolation scheme to the
Ising model.

III. FROM STEPWISE PERTURBATION TO THE
SECOND-ORDER SUSCEPTIBILITY

Equation (10) describes the second-order response (0)®
in terms of a path integral with linear contributions at most.
However, evaluating the path integral holds the challenge
of finding D'(2) in Egs. (11) or (13). In this section, we
demonstrate that, starting with protocols of a finite number
of discrete steps, D'(2) turns into a tensor of finite order.
We discuss the simplifications arising if the coarse-grained
process is itself Markovian in Appendix A 4.

A. A single-step perturbation
The case of a perturbation with a single step in time, i.e.,
h(s) = ©(s), (14)

was considered in Ref. [34], and for the sake of completeness
we summarize the derivation here. The entropy production
reads in this case

§'(Q) = BIV(j) — V(D] =S;;. as)

We have introduced the abbreviations i = X and j = X, for
the states at times O and ¢. The above form of S’ reduces the
path integral in Eq. (10) into a sum of terms [34]:

(0)P (1) = _/s/(sz)D’(Q)O(Xt)Peq(Q)]D)Q

“Ys, / D()0(X, )Peg(DE

ijer’ L

— > 8,,D;POG)). (16)
i

Here, fij is a path integral with fixed start and end states i and
J, which yields the joint probability

P, = /}P(Q)DSZ. (17)

J

According to Eq. (13), the time-symmetric component is
given by

Dj;P = / D' (Q)Pg(Q)DQ (18)
1
1 / /
= — (B +P). (15

For the step perturbation of Eq. (14) the protocol equals its
reverse, and the protocol reversal appearing in Eq. (13) is
obsolete. We note that, for a single step, D'(2) turns into
a matrix Dj;, which is related to the linear response of the
coarse-grained probability P;;. The latter can be measured

easily, giving rise to the extrapolation scheme introduced in
Ref. [34], which we discuss further in Sec. V below.

B. A two-step perturbation

We add one more step to the protocol at time 0 < 7 < ¢,
introducing the corresponding state k = X;. Denoting the step
sizes by Ahy and Ahy, the protocol is then

h(s) = Ahg®(s) + Ah O(s — 7). (20)

Recalling the definition of S; ; and S'(2) in Eq. (15), Eq. (8)
yields the entropy production for two steps,

S'(Q) =AhiS}; + AhgS]; =: S 1)

Similarly to Eq. (16), the path integral turns into sums over
states at times 0, 7, and 7,

0YP(1) = —/S’(Q)D/(Q)O(Xr)Peq(Q)DQ

=— D S /k D'()0(X,)Peg(2)DQ
ikj

ik, jer

==Y S D PRroG). (22)
ikj

Consistent with the notation above, the path integral fikj DQ
is restricted to paths passing through the states i, k, j and
yields the probability of being in state i at time s = 0, in k
at time 7, and in state j at the time of the measurement 7:

Pikj:f P(Q2)DL. (23)
ikj

Applying this notation, we can identify the time-symmetric
contribution by integrating in Eq. (13)

DiyPiy = =5 (Pl + Pi), (24

where we introduced the probability Py; under time and pro-
tocol reversal. More specifically, Tkj is the probability to
measure j attime s = 0, k attime s =t — t, and { at time s =
¢t under the backwards protocol E(s) = (Ahy + Ah)O(s) —
Ah©(s — (t — 7). To arrive at P we have swapped the
two operations of time reversal and integration over coarse-
grained paths.

By construction, D" must be linear in the protocol 4, so that
it can be decomposed into
Djy; = AhoDjy ;[©0] + Ah1 Dy ;[O:]. (25)
The quantities D, j[®s] appearing on the right give the value
of D), ; for a single perturbation step at time s, e.g., Dj; ;[®o] is
extracted for a perturbation consisting of a step at time s = 0.
We have thus obtained a tensor D’ with three indices, which
as before is connected to coarse-grained probabilities P [39].

C. Second-order susceptibility for any protocol

In this section, we consider the response to a general
protocol /& by deriving a formula for the second-order sus-
ceptibility in terms of “one-step probabilities.” Given that
the unperturbed equilibrium systems is invariant under time
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translations, we can express the second-order response for a
protocol % in terms of the second-order susceptibility x [40],

0)P(t) = f f h(t)h(t) ) (t — t1,t — t)dhdt.  (26)
0 0

The x(¢,t — 7) defined in this way can be determined from
the second-order response to a protocol with one and two
steps, since the time derivatives of such a protocol are §
distributions at the times where the field jumps. We may thus
find x from the relations given in the previous subsections.
Comparing the definition of the second-order susceptibility,
Eq. (26), to the response formula given in terms of indices
(22), and using the linearity of D" in Eq. (25) yields

1 r oy / .
Xt t—1)= _E Z(Sijikj[®0] + S,{.,'D,‘kj[@r])});io(]),
ikj

@n

which is valid for 0 < 7 < ¢. The case of arbitrary times
x(t1,1) is obtained by inserting the respective arguments
T=t —tandt =1.

Equation (27) is an intermediate result: it gives the second-
order response function x for any arguments in terms of
sums over indices of the tensors S;; and Dj;; obtained in
Egs. (A4), (AS), and (15). Note that as (27) relates to different
times, it comes from the cross-terms in the product of (21)
and (25). This is why, e.g., the first term contains a factor S,/C ;
relating to the state k at time T, combined with D, j[®0] fora
perturbation at time zero.

As a final simplification, we note that the entropy produc-
tion in Eq. (27) carries only two indices so that we can sum
over the remaining index. This sum eliminates one index from
the expressions D/, jPiE]:(q" which always occur jointly [compare
Egs. (A4) and (AS)]. One term is given by summing over the
center index k in the probabilities ), P}, ()= Pi/j(t). We
add notation to include time and protocol, as these are varied
below. For example, Py ;[®;, ](t, t) denotes the probability of
measuring state i at time s = 0, state k at time 7, and state j at
time ¢ under a perturbation switched on at time s;. With this
notation in mind, the summation over k yields

3 Dy [0:1(x. P (e 1)
k

1
= —3IPLIO:1() + P[©0 (1) — P4[O,:1(1)
= D§,~[®f](l)P,~(_J',~q(t), (28)
where we used the linearity of iji[®0 —0,_.]@t) =

P,.’j[®,](t) in the backwards protocol, as given in Eq. (AS).
The second term involves summation over the first index,

2 Dy lO0l(r. DL (x. 1)

1
= —S(BO.1 = 7) + PO0](t — 1)

= D},;[0-.1(t = D)t — 7). (29)

Notably, the perturbation in Eq. (29) starts at negative times
—1 < 0 and probabilities cover a time interval of + — t be-
tween measurements due to integrating out the first state.

A r B "o o p
.4—»._—>_.<—>.

1

X =0 X =1

FIG. 2. Tllustration of coarse-graining the Markov four-state
model into a non-Markovian two-state model. Arrows denote the
transitions with the given rates.

After renaming indices, we finally obtain for the second-order
susceptibility

1
Xt = 1) === 3 S;0()(Dl0-1 = D — 1)
ij

+ D[0P (1)). (30)

This expression is symmetrical under exchange of its argu-
mentst; =t and#, =t — 1, as expected from the definition of
the susceptibility, Eq. (26). For the single-step perturbation the
second order is given by the response function for equal-time
arguments (0)?[@y] = x(t,1), i.e., by setting T = 0. The
two terms in Eq. (22) then become the same and we recover
Eq. (16) as it should be.

IV. ILLUSTRATION AND VERIFICATION:
THE FOUR-STATE MODEL

In this section, we use a simple example system, namely
a (driven) four-state model that can be solved analytically, to
verify and illustrate the concepts introduced in Sec. III.

A. Model and coarse-graining

The second-order response can be expressed in terms of
the entropy production and a time-symmetric component, as
in Egs. (10) and (30). As a proof of concept, we consider a
Markov jump process with four states I' = {A, B, C, D}; see
Fig. 2, which is then coarse-grained to a two-state one. Such
Markov jump processes may be used to describe a variety of
systems; see, e.g., Ref. [35].

The conditional probabilities py;(s, t) for occupying state §
attime ¢ if occupying « at an earlier time s are described by the
Master equation (an equivalent equation holds for occupation
densities)

ad
—Pas(5,1) =D Pay (s, )gys(t) 31

ot ver

with the rate g,s(¢) for the transition from the state « to § and
setting oo = — Y g 4q Qas to ensure probability conservation;
cf. Ref. [35].

More explicitly, we use time-independent rates gsp =
gea = gcp = qpc = r for the side links, and the center links
have rates gpc(t) = "™ and gcp = 1 (with all other rates
being 0). Only the rate of the center link gpc(¢) is time-
dependent, and this will be used to drive the system. The rate
matrix g(s) is given explicitly in Appendix B, Eq. (B1). We
use B = 1 in this section.
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—— D0 [©s52] Py
Dy [©—5/2] il
0.011 —— Diyy [©0] Py’

0.02 1

0.00 1

—0.01 1

—0.02 1

—0.03 1

0 1 2 3 A 5 6
t

FIG. 3. The time-symmetric components Dj, contributing to the
second-order susceptibility x (¢, — ) and (¢, t) in the four-state
model, Eq. (32), with rate »r = 0.1 and v = 5/2. Time arguments
are chosen as they appear in Eq. (32). Due to causality, the
time-symmetric component vanishes for negative time arguments,
Dy, [©:1(t) = Dy, [©_.1(t —t)=0fort <.

This system is coarse-grained into two states X = 0 and
1 by assigning ¢(A) = ¢(B) = 0 and ¢(C) = ¢(D) = 1. The
two coarse-grained states are connected by the center link BC
and the associated rates gpc and g¢p of the underlying Markov
process, which yields a non-Markovian two-state process.
Notably, in the limit  >> 1 the resulting two-state process is
Markovian, while it is strongly non-Markovian in the opposite

0.100 4 o,
[ N
A\
AV
0.075 1 P \
| A N\
S l X\ A
,:/ A N w
= 0.050 \
—~ $ 2
S I \ ¢
~ "
24 —
0.0257 ol ~Z
/ \§ 0 = T T
, - 0 2 4
0.000 A t
0 1 2 3 4 5 6
t

FIG. 4. The second-order response (0)® of the coarse-grained
four-state model, for a driving protocol containing one, two, and
three instantaneous steps (protocols shown in the inset), as a function
of time ¢. Lines show the analytical solution (see Appendix B 1),
and data points are found from Eq. (27) as well as analytically. The
“internal” rate is set to r = 0.1, which corresponds to a strongly
non-Markovian case, as also reflected in the curves: The response
shows two distinct timescales of relaxation. States, rates, and time are
naturally dimensionless. As¢ — oo, the curves approach zero, as, for
symmetry reasons, the system has no static second-order response.

o
—
[N
w
.
ot

FIG. 5. The second-order response (0)® of the coarse-grained
four-state model as a function of time ¢, for a sinusoidal proto-
col of different temporal resolution, as shown in the upper part:
The sine (black) is approximated by step functions with n steps
of height Al = [sin ((k + 1)6¢) — sin ((k — 1)8¢)]/2 and time in-
crements 8t = ty,,/n, here for t,,x =5 and for n =5 (blue) and
n = 15 steps (orange). The lower panel shows the corresponding
second-order response in the same colors as the corresponding pro-
tocols. Rates and time are given in dimensionless units.

limit, » < 1. Choosing r = 0.1 as in Figs. 4 and 5 results in
the system being in the latter regime.

The associated potential is v(A) = v(B) =0 and v(C) =
v(D) =1, hence V(0) = 0 and V(1) = 1. The rates thus ful-
fill ‘”{;‘(—? = FhOWO—VBI which is called the microscopic
reversibility condition [3] or local detailed balance [35]. This
is a sufficient condition to have an entropy production of the
form given by Eq. (4) [35]. For single-step perturbations, the
Master equation can be solved analytically. For more complex
protocols, the solution is formally given by a time-ordered
exponential, which may be expanded in orders of ¢ using a
Dyson-expansion. This allows us to illustrate our approach of
computing the second-order susceptibility from linear quanti-
ties analytically.

B. One, two, and three steps

We compute the second-order susceptibility x(¢,f — 7)
from linear contributions S;; and Dj;P;; for perturbations
switched on at different times 47, according to Eq. (30).
Equation (30) for the average in the coarse-grained two-state

system with O(j) = j reduces to
Xt 1 =) = —3(Dy [0 1 — TPt — T)
+ D [©:1(FG (1)) - 32)

The entropy production that contributes is Sy, = 1 and the
relevant time-symmetric components Dy, for different per-
turbations are shown in Fig. 3. The explicit form of the
second-order susceptibility in the four-state model is given in
Appendix B, Eq. (B2). Employing this function together with
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Eq. (26) enables prediction of the second-order response for
arbitrary protocols (0)?.

Here, we demonstrate this by means of a protocol h =
®p + O12 + Osyp with three steps. As shown in Fig. 4, the
response formula for the second order (0)® coincides with
the explicit solution. This is an example of employing the
second-order susceptibility from linear contributions to cor-
rectly predict the second-order response under a protocol with
several steps.

C. Continuous protocol: Exact and discretized

As noted above, Eq. (26) readily describes any protocol,
which we further illustrate by using a protocol of a sinusoidal
oscillation of the form

h(s) = sin(s)®(s). (33)

The resulting response is shown in Fig. 5. In addition to the
response corresponding to the protocol of Eq. (33), we show
the response to the discretized versions of the protocol in
the upper part of Fig. 5. This illustrates the possibility of an
additional coarse-graining along the time axis of a protocol,
which is one natural way of implementing Eq. (30) in practice
(see also Sec. V below). How fine a discretization is needed?
As seen in the graph, discretizing with an increment of unity
(resulting in n = 5 steps in the given time range) yields pro-
nounced deviations from the exact result. On the other hand,
discretizing with an increment of 1/3, resulting in n = 15
steps, produces a more precise approximation. This can be
understood from the curves in Fig. 4, where the (shortest)
relaxation time, or the response time, is of the order of unity.
This analysis suggests that the time increment should be small
compared to that response time to accurately resolve the per-
turbation protocol.

V. EXTRAPOLATION: ISING MODEL

In this section, we illustrate the validity of the time-
dependent coarse-grained response theory for an interacting
system with many degrees of freedom, using the example of a
near-critical Ising model. Let us consider a 2D lattice of size
L x L with periodic boundaries; each lattice site i contains a
spin n; = =1, which interacts with its nearest-neighbor spins.
Let the coarse-grained variable X correspond to a single site,
say site k, so that we have X = %(1 + nx). In other words, all
spins except for spin k will be coarse-grained away, and play
the role of a complex (non-Markovian) bath. This scenario
may mimic the experimental situation in which a system is
perturbed and monitored at a local position in space. We thus
introduce a magnetic field, which acts on the spin %, i.e., a
potential V(X) = i = 2X — 1. The Hamiltonian describing
the system at any time s is (setting the spin coupling to unity)

H==> nm;— g+ eh(s)In. (34)
(i)
The explicit time dependence assigned to the magnetic field
via the protocol h(s) gives rise to a perturbation of the system
from its equilibrium state.
In the absence of the magnetic field, i.e., with g=
h(s) = 0, the system shows a paramagnetic to ferromagnetic

transition at temperature 7, = 2.269 in the limit of thermo-
dynamically large size L (having set the Boltzmann constant
to unity). Here we consider a system of size L = 16 at a
slightly supercritical temperature 7 = 2.45. This finite-sized
system shows a nonzero magnetization at this temperature,
which randomly flips its sign on a slow timescale. We thus
expect the resulting bath for the tagged spin 7, to be highly
non-Markovian.

For the sake of simplicity, we take the two-step protocol
introduced in Sec. III B [see Eq. (20)] with Ahy = Ah; =1
and consider the response of the observable O(X) = X. We
also use a time-independent offset magnetic field of strength
g = 2.0, which renders the equilibrium system nonsymmetric,
yielding a finite second-order response.

Unlike the four-state model, the susceptibility and response
function cannot be calculated analytically here, and we take
recourse to Monte Carlo simulations. To be specific, we use
Glauber dynamics, where a randomly selected spin flips with
rate min{1, e #2#} AH being the change in energy due to
the proposed flip and B = T~ is the inverse temperature of
the system. One Monte Carlo step consists of L? attempted
flips, which defines the unit of time.

To demonstrate the validity of the response formalism, we
compare the response (0)?)(¢) predicted by Eq. (26) with
(0)1()2630), obtained from directly applying a larger perturba-
tion. The latter is extracted accurately from

) = %[(X)S(t) +(X)75 (1) — 2(X)%],  (35)
where (-)® denotes the expectation value in the presence of the
perturbation protocol of Eq. (20) with strength ¢, and (X ) is
the expected value in equilibrium. We use measurements with
strengths ¢ to avoid errors of O(¢?) [34].

On the other hand, the response theory predicts the second-
order susceptibility via Eq. (26). For the protocol of Eq. (20)
with Ahg = Ah; = 1 it reduces to

<0>(2>(¢) =x, ) +2x¢t,t—t)+ xt—1,t —1), (36)

where x(t1,1) is given by Eq. (30). As mentioned before,
for O(X) = X, the sum reduces to only one term, namely
i =0, j = 1. Moreover, in this case, S;; = B[V (1) —V(0)] =
2B, and we only need to measure the linear parts of D;; under
single-step perturbations at times 0 and +7.

Using the Monte Carlo simulations and applying a (small)
perturbation of strength & = +0.05, we measure the linear
responses of the relevant path probabilities P;;[2](¢). The cor-
responding matrices D’ are then computed using Eq. (B4) in
Appendix B 2. Figure 6 shows plots of the resulting D;,, eval-
uated for the three different protocols as needed, in analogy to
Fig. 3. Qualitative differences to Fig. 3 result from the fact that
here, a finite second-order response remains in the long-time
limit. The presence of a slow timescale is visible in the slow
relaxation of the curves in Fig. 6.

For the particular quantity Pj;[6,_.], the numerical fluctu-
ations are substantial and we therefore obtain the derivative
by fitting the Pjif [6,—:] to a compressed exponential form
and taking the difference of these fitted functions; see Ap-
pendix B2 for more details. The dark blue curve shows the
Dy, [6] obtained using this fit; the light gray curve shows the
original data.

(0)
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FIG. 6. The relevant time-symmetric components Dj, contribut-
ing to the second-order response for the Ising model measured from
numerical simulations. Here we have considered a fixed T = 20, and
the linear response is calculated using ¢ = 0.05. The blue curve is
obtained using the best fit for P{)[6,_.], while the gray curve shows
the original data (see the main text and Appendix B 2 for details).

The second-order response is obtained using Eq. (36)
along with Eq. (30). Figure 7 compares the susceptibility
(0)2(¢) that we measure directly (symbols) with the pre-
dicted response (0Y (1) (solid lines) for two different values
of 7. At late times t — 00, the susceptibility reaches a sta-
tionary value that is independent of t and is simply the
equilibrium second-order response for a perturbation e(Ahg +
Ah;)V(X) =2e(2X — 1). This can be calculated by a se-
ries expansion of the Boltzmann weight and turns out to be
882(X)%(1 — 2(X)%)(1 — (X)%) as shown in detail in Ap-
pendix B 3. This value is indicated by a black dashed line in
the figure.

-0.05

FIG. 7. The second-order response of a single spin in the Ising
model. The solid red lines show the response (0)? predicted from
Eq. (36) while the symbols show the susceptibility (0)%) measured
directly from simulations. The dashed line indicates the static re-
sponse, found by expanding the Boltzmann weight; see the main text.

It is worth reemphasizing here that the procedure used in
this section generalizes the extrapolation scheme introduced
in Ref. [34] to arbitrary time-dependent perturbations: the
second-order response, which is relevant for a comparatively
stronger perturbation, can be predicted exactly by measuring
path probabilities close to equilibrium, i.e., within the linear
response regime.

VI. CONCLUSIONS

We have developed a second-order response theory for
coarse-grained observables, which is valid for arbitrary
time-dependent perturbation protocols and thus provides a
significant extension of Ref. [34]. One application of this the-
ory is an extrapolation scheme that uses measurements within
the linear regime to predict the second-order response. The
relevant linear measurements only need to be performed for
simple perturbation protocols consisting of a single switch-on
event, and from these the second-order response for arbitrary
protocols follows.

The necessary spatial resolution, i.e., the degree of coarse-
graining possible in this approach, is set by the perturbation.
Returning to the introductory example of two colloidal parti-
cles, if the perturbation acts only on one of the two colloids,
the other one can be coarse-grained, i.e., its position does not
have to be monitored. An important difference to approaches
that use fast and slow variables is thus that, in the present
scheme, the coarse-grained variables are allowed to be of
non-Markovian type.

The scheme can be applied to any time dependence of pro-
tocol. As is the case for spatial resolution, it is the protocol that
sets the (experimental) time resolution required to apply our
method. However, as found in explicit examples, a temporal
resolution that is fine compared to the reaction time of the
coarse-grained variables is also sufficient.

Technically, our approach relies on being able to re-
solve fully the entropy production. This is ensured by the
assumption that the perturbing potential depends only on
macrovariables, and it implies that the entropy production
and the time-symmetric part of the action decouple when
coarse-graining. This work is thus naturally in agreement
with (macroscopic and stochastic) thermodynamics and with
the known fluctuation relations. Its new contribution lies in
the description of the nonthermodynamic, symmetric part
of the action.

Future work will consider higher orders of perturbation, as
well as simultaneous perturbations by multiple potentials with
different time dependences, and will investigate possibilities
of combining this scheme with approaches that rely on sepa-
ration of fast and slow timescales. It may also be insightful to
combine our approach with estimates of the entropy produc-
tion for cases in which the potential acts on partly inaccessible
d.o.f. [41]. Another important extension to be addressed is
perturbations of nonequilibrium systems, where already the
linear order is difficult as regards coarse-graining.

Finally, one could explore the question of a Gallavotti-
Cohen symmetry for coarse-grained descriptions [3,42]: from
the definition of s, ;(w) and Eq. (8) we see that (e™%+(®)) =
(e7¢5i @) = 1. Because the entropy production &S, () de-
pends only on the coarse-grained paths, this implies that in
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our setting the coarse-grained dynamics does itself obey the
Gallavotti-Cohen symmetry. It will then be interesting to see
whether statements about nonlinear response can be deduced
from this, by extending existing results for the linear response
regime [3,42].

ACKNOWLEDGMENTS

U.B. acknowledges support from Science and Engineering
Research Board (SERB), India under Ramanujan Fellowship
(Grant No. SB/S2/RIN-077/2018). M.K. acknowledges sup-
port from DFG Grant No. KR 3844 /3-1.

APPENDIX A: RELATIONS AND DEFINITIONS
1. Microscopic response formalism

The results presented here are based on the known mi-
croscopic response formalism presented in Sec. II. In this
Appendix, we aim to describe in detail how time-dependent
perturbations can be treated, as these details may not be pro-
vided in other literature. The key is the reversal of paths and
protocol in the integration. Mathematically, the path weight
considered here is a joint one. This is in contrast to some
common literature on the subject of path integrals, which
considers the probability p(w|x;) to find a path @ given that
the system starts in a fixed state x;. This probability is related
to the full path probability by the probability py(x;) of the
initial state at time s = 0, namely p(w) = p(®|x;)po(x;). In
fact, one may think of this path integral as three integrals:
one Lebesgue integral over the starting point xy, one over the
end point x;, and a third real path integral over possible paths
connecting these two points. It is then immediately clear what
happens when integrating over reversed paths in the average
of a state observable as given by Eq. (1): We can integrate out
paths starting in a fixed state xy = x; at which the observable
O(xp) is then evaluated. Since every path starting in x; has to
go somewhere, the integral over all these paths reduces to the
probability density pg(x;) of x;,

f Pe.g(@)Dw = po(x;). (AD)

Note that the same integral, taken over the conditional path
weight, would yield one. These arguments hold for arbitrary
protocols, and in particular for the reversed protocol h(s) =
h(t —s).

2. Coarse-grained path integral

Let us now consider the coarse-grained path integral as
used in Eq. (10) in more detail. Instead of expressing the
coarse-grained path integral by summing over possible states,
see Eq. (12), it can also be written by integration over possible
paths as follows.

For processes with discrete state space, paths are
given by a sequence of states and jump times Q =
Xo, to; X1, 11, ..., Xy, ty), 1.e., Xy = X, for all s € [1, ter1)-
We always have 7y = 0 and we set t,,; =t for notational
simplicity. A path integral is then given by summing over

possible states and integrating over jump times #;,

[repe-Yy > - ¥

n=0 XoeI" X;eI"\{Xo} X, €T\ {X,—1}

topt ' n—1
X/o.// £@) [t (A2
h I i=0

Analogously one may write down the exact same equation for
Markov jump processes, as done in more detail in Ref. [35].

3. Derivation of Eq. (30)

For clarity, we provide a few more steps for the derivation
of the second-order susceptibility in terms of sums, Egs. (27)
and (30). We insert the linear decomposition Eq. (25) of the
dynamical activity D’, ; into the second-order response (0)®
expressed as a sum over states, Eq. (22). For a protocol with
two steps, as defined in Sec. III B, separating the different
combinations of Ahgy and Ah; yields

(0)? = =" (AR3S|; D)y [©0] + AR, D)y ;[0,]
ikj
+ Ahg Ay S} Dy O]
+ Ahg A S} Dy [O:1) P O(). (A3)

Adding the explicit time arguments, the two versions of D’
appearing in Egs. (25) and (A3) read

D;k] [®0](T1 t)Plf]::‘l](ta l)

= —1(P;[O01(r.1) + Pi[Ool(r — 7.1)) and  (Ad)
Diy;[0:1(T, )P (z, 1)
- _%(Pi,kj[e)f](f’ 1)+ Pi[®ol(t — 7,1)
- P_//'ki[®l—r](t —1,1)). (A5)

In Eq. (A5) we have expanded the probability under the back-

ward protocol ®,; = g — ©,_, by thinking of it as a two-step

perturbation and using the general linearity property
P[] = AhoPl [©0](x, 1) + Al Py [©:](x, ). (A6)

L

The above equations are the basis for integrating out one
index, specifically the initial state i in Eq. (A4) and the state k
at time 7 in Eq. (A5). Summing over possible states in a joint
probability yields > ; PX, =i.X, =j,X, =k)=PX, =
i, X;; = k), thus yielding probabilities P;; for different proto-
cols; see Eqgs. (28) and (29), respectively.

4. Markov case

The results derived in Secs. II B and III do not rely on
a Markovian property of the coarse-grained variables. There
might be practical cases, however, where the degrees of free-
dom under consideration are in fact Markovian, for example if
alocal equilibrium approximation is justified for the d.o.f. that
are integrated out. In that case, (X;)se(0,¢) s @ Markov process,
and hence follows the formulas of the microscopic response
formalism in Sec. IT A (see Refs. [7,13] for specifics). Notably,
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the linear contribution of the time-symmetric part is given as
a superposition of instantaneous values, denoted d (x;),

dy(w) = / h(s)d (xs)ds (A7)
0

as explained in Ref. [13]. We can thus decompose

D)y [Ahy®g + Ahy©,] = AhyDly(v) + A D (t — 1)
(AB)

and for the probability

Pij = Pu(T)prj(T. 1) (A9)

with the conditional probability p;; introduced before
Eq. (31). Equation (A9) is in contrast to the case of non-
Markovian processes where states at different times couple
due to memory effects. With only the quantity D}, [®,] appear-
ing in Eq. (A4) (evaluated at different times), the second-order
response in the Markov case thus takes the complexity of the
single-step protocol described in Sec. III A. This simplifies the
extrapolation scheme introduced in Sec. V, as only Pl-’j[G)o]
and ng need to be measured in order to find the second-order
response for any protocol.

APPENDIX B: MODELS AND MEASUREMENT

1. The four-state model

The rate matrix for the four-state model analyzed in Sec. IV
is given by

—r r 0 0

_ r _esh(s) —r esh(s) 0
9=1 9 1 “i—r r o] ®D

0 0 r —r

so that the row sums are 0 and as explained r is a dimension-
less parameter. For r < 1 this system exhibits much slower
rates within the macrostates than in the transition connecting
the two coarse-grained states, which is of order 1. Still our
extrapolation technique succeeds (Fig. 4). This illustrates that
our method does not rely on separation of timescales as also
demonstrated in Ref. [34]. For the average of the coarse-
grained observable O(X) = X the second-order susceptibility
is computed from Eq. (32).

Using the abbreviations y = +/1 +r2andyLr =1 +r+y
the exact second-order susceptibility reads

x(t, 1) = (r(€212}/ _ 1)(67“” + e+ + e*ZIzV*mA)

64y3
+20y[(1+y)(y — r)(e™7 +e77)
+(@y -y + r)(e - 4 e )e). (B2)

2. Measurement in the Ising model

To compute the first derivatives of the path weight P;;[h](¢)
accurately, we use two measurements, namely with pertur-
bation strengths +e. Expanding Eﬁ;g [A](¢) in a Taylor series
around equilibrium, i.e., around ¢ = 0, we get

2
PETHIO) = PEY(0) £ P U0(0) + S PRI + O

TABLE I. Numerical values of the fitting parameters used for
+e
Py [0 1().

e a b c
T =20 0.05 0.0238 0.0296 0.7752
—0.05 0.0253 0.0327 0.7575
T =100 0.05 0.0096 0.0068 1.0227
—0.05 0.0095 0.0045 1.0968

The first derivative of the path probabilities can then be ex-
tracted from

1
P[h](t) = Z[P,-'}[h](t) — P°[h()] + 0(%),  (B3)

and similarly for P; j[}_z](t). Note that the error here is one
order smaller than if the derivative was computed only from

Pf[h](r) and P'(t). Using the above equation and its counter-

part for P;; [h](¢) we can also extract D o

‘ I o -
Djj P! = = (P51 + Pi{R] = P [h] — P*(R))

+0(&?). (B4)

As mentioned in the main text, for the particular case
of P;;[6,_]1(¢), instead of calculating the derivative directly
from the numerically measured path probabilities, we use a
functional fit. We first fit P{,[6;_- 1(t) — Pyj,[6,—-1(7) to a func-
tional form a(1 — exp [—b(t — 7)°]) (remember that the path
probability difference is zero for ¢ < 7 in this case) with a, b, ¢
as fitting parameters. The derivative is then calculated using
Eq. (B3) along with these fitted functions. For the sake of
completeness, we provide the values of the fitting parameters
in Table I.

3. Static response in the Ising model

The long-time limiting value of the second-order response
in the Ising model can be computed from the equilibrium
Boltzmann distribution. Under the perturbation protocol (20),
in the long-time limit, the system reaches an equilibrium state
characterized by configuration weights

P({n}) = ie—ﬁ[Ho—é?(Aho-‘rAhl)V(X)], (B53)
Z
where Z, is the equilibrium partition function and H, is the
Hamiltonian in the absence of the perturbation. The second-
order response of any observable O can be calculated by
expanding the above weight around ¢ = 0, multiplying by O,
and summing over all possible configurations. This straight-
forward exercise leads to a formal expression,

@ _ /3_2
2
+2(0)(V)? = 2(0V)(V)].

For the case O(X) =X and V(X) =2X — 1 with Ahy =
Ah; = 1 the above expression simplifies to

(0>(2) _ S,BZ(X)eq(l — 2(X)%9)(1 — (X)), (B6)

where we have used the fact that X2 = X.

(0) (Ahg + AR’ [(OV?) — (0)(V?)
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