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Symmetric informationally complete measurements (SICs) are elegant, celebrated, and broadly useful discrete
structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A
SIC compound is defined to be a collection of d3 vectors in d-dimensional Hilbert space that can be partitioned
in two different ways: into d SICs and into d2 orthonormal bases. While a priori their existence may appear
unlikely when d > 2, we surprisingly find an explicit construction for d = 4. Remarkably this SIC compound
admits a close relation to mutually unbiased bases, as is revealed through quantum state discrimination. Going
beyond fundamental considerations, we leverage these exotic properties to construct a protocol for quantum key
distribution and analyze its security under general eavesdropping attacks. We show that SIC compounds enable
secure key generation in the presence of errors that are large enough to prevent the success of the generalization
of the six-state protocol.

DOI: 10.1103/PhysRevResearch.2.043122

I. INTRODUCTION

Quantum information theory has established a permanent
link between the foundations of quantum theory and quantum
information technologies. This has reinvigorated interest in
understanding the ultimate limitations of quantum states and
measurements as discrete structures in Hilbert space. Quan-
tum states and measurements have a rich geometry that has no
counterpart in classical models. Therefore, it is unsurprising
that the most elegant and sophisticated discrete structures
that can be found in Hilbert space are frequently the most
celebrated and useful resources for the processing of quantum
information.

An outstanding example is known as a symmetric informa-
tionally complete set of pure quantum states (SIC). A SIC is a
maximal set (size d2) of d-dimensional states, {|φk〉}d2

k=1, with
the property that the overlap between any pair of states has the
same magnitude:

|〈φk|φl〉|2 = dδk,l + 1

d + 1
, (1)

where the constant on the right-hand side is fixed by normal-
ization. Interestingly, a SIC can be interpreted both as a set of
states (as above) and as a generalized quantum measurement
(positive operator-valued measure, POVM) with d2 possible
outcomes. The measurement operators in such a SIC POVM
are merely the subnormalized projectors of a SIC, namely
{ 1

d |φk〉〈φk|}d2

k=1.
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SICs have been investigated for a long time in many dif-
ferent contexts [1–5]. Their relevance in pure mathematics is
remarkably diverse [6–8] and they even have technological
applications in high-resolution radar [9] and speech recog-
nition [10]. However, their interest in physics stems from
their prominent role in quantum information theory [5]. SIC
POVMs are key tools for quantum state tomography [11–13],
which has motivated their experimental realization in high-
dimensional Hilbert spaces [14–16]. Generally, SICs and SIC
POVMs are used in a range of protocols: quantum key dis-
tribution (QKD) [17–19], entanglement detection [20–22],
device-independent random number generation [23,24], di-
mension witnessing [25], and characterization of quantum
devices [26–30]. Moreover, SICs have been studied in the
context of quantum nonlocality [24,31–33] and they have
an interesting foundational role in QBism [34]. All this has
triggered much interest in addressing the existence of SICs
in general Hilbert space dimensions. Presently, existence has
been proven numerically at least up to d = 151 [5,35–37] and
is conjectured for any d (see [37] for a review).

In this work, we introduce a natural discrete Hilbert space
structure that is compounded of many separate SICs. The
resulting SIC compound is a set of d3 pure d-dimensional
quantum states, denoted {|ψ jk〉} jk for j ∈ [d2] and k ∈ [d]
(where [s] = {1, . . . , s}) with the following two properties:

(I) For every k, the states {|ψ jk〉} j form a SIC.
(II) For every j, the states {|ψ jk〉}k form an orthonormal

(ON) basis of Hilbert space.
In a handy terminology, we say that a SIC compound is

composed of d “orthogonal SICs,” in the sense that elements
numbered j in the d SICs are orthogonal to each other. In-
deed, given that the existence of SICs is a long-standing open
problem [38], deciding the existence of a SIC compound for
a given d is expected to be even more challenging. A priori,

2643-1564/2020/2(4)/043122(8) 043122-1 Published by the American Physical Society

https://orcid.org/0000-0001-9136-7411
https://orcid.org/0000-0003-0788-3494
https://orcid.org/0000-0003-2302-8025
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043122&domain=pdf&date_stamp=2020-10-23
https://doi.org/10.1103/PhysRevResearch.2.043122
https://creativecommons.org/licenses/by/4.0/


TAVAKOLI, BENGTSSON, GISIN, AND RENES PHYSICAL REVIEW RESEARCH 2, 043122 (2020)

it may seem unlikely that SIC compounds exist at all when
d > 2 (it turns out that d = 2 is exceptional). We address the
existence of SIC compounds for d = 3, . . . , 8. For d = 3 we
prove that no SIC compound exists and for d = 5, 6, 7, 8 we
give evidence in support of the same conclusion. Remarkably,
however, for d = 4 we are able to analytically construct a
SIC compound, thus proving that they, in fact, can exist in
higher-dimensional Hilbert spaces. The many symmetries of
the SIC compound, which go beyond its defining properties,
allow it to be represented as a Latin square. Moreover, we
find that the SIC compound admits a strong connection to
mutually unbiased bases (MUBs) which is revealed through
quantum state discrimination. Equipped with the fundamental
understanding of the SIC compound, we consider its practical
application for quantum information processing. Specifically,
we place the SIC compound at the heart of protocols for QKD,
analyze their security under coherent attacks, and show their
improved robustness as compared to the four-dimensional
counterpart of the six-state protocol [39] (which extends the
celebrated BB84 protocol [40]).

II. QUBIT SIC COMPOUND

It is instructive to first consider the simple example of a
qubit SIC compound. In terms of the Bloch sphere represen-
tation, a SIC corresponds to four unit Bloch vectors such that
any pair has equal magnitude overlap. Hence, the four vectors
point to the vertices of a regular tetrahedron. For each vector,
the unique orthogonal state is represented by the antipodal
Bloch vector, and therefore the four antipodal Bloch vectors
also form a regular tetrahedron. By construction, the two SICs
together form a SIC compound. Their convex hull is a cube
inscribed in the Bloch sphere.

III. GENERATING SICs

When d > 2, the existence of a SIC compound is far less
clear. In order to address the matter, one benefits much from
the established knowledge of SICs which heavily exploits the
Weyl-Heisenberg (WH) group. This group has two generators,
X and Z , which are required to satisfy the relations X d =
Zd = 1 and ZX = ωXZ , where ω = e

2π i
d . Every known SIC

(with a single exception in dimension 8 [3]) has been obtained
by applying the WH group in the following ansatz,

|φ j〉 = X j1 Z j2 |ϕ〉, (2)

for j ≡ ( j1, j2) ∈ [d]2 and for a suitably chosen so-called
fiducial state |ϕ〉. The group generators can conveniently be
chosen as the so-called shift and clock operators

X =
d−1∑
k=0

|k + 1〉〈k|, Z =
d−1∑
k=0

ωk|k〉〈k|. (3)

For d = 2, 3 all SICs are obtained via this ansatz [41,42] and
the same is true for any prime d provided that the SIC ad-
mits some group structure [43]. Moreover, there is numerical
evidence supporting that all SICs for d = 4, 5, 6, 7 can be
obtained via the WH group [44].

IV. NO QUTRIT SIC COMPOUND

Consider the case of qutrits (d = 3). In view of the above,
by showing that no SIC compound can be obtained via the
WH group, we disprove their existence in full generality. Note
that the problem is substantially simplified due to the fact that
Eq. (2) generates SICs by unitarily acting on a fiducial state.
Therefore, in order to construct orthogonal SICs, we must
only find orthogonal fiducial states. However, for qutrit sys-
tems there are uncountably many relevant fiducial states [4,5]
(for a fixed representation of the WH group). Fortunately,
using the representation in Eq. (3), they all admit a simple
parametrization which allows us to efficiently investigate their
orthogonalities. In Appendix A, we detail the analysis for
d = 3 and show that no more than two orthogonal SICs can be
constructed. An example of two orthogonal SICs is straight-
forwardly obtained from choosing the two fiducial vectors
|ϕ1〉 = 1√

2
(1, 1, 0)T and |ϕ2〉 = 1√

2
(1,−1, 0)T.

V. QUQUART SIC COMPOUND

For the case of ququarts (d = 4), in contrast to qutrits,
there are only 256 fiducial states [45] that yield SICs under
the ansatz (2) (for a fixed representation). Within these, one
can find a SIC compound with a simple analytical form. To
present it, we change the representation of the WH group so
that the generators are written as [46]

X = e
iπ
4

⎛
⎜⎝

0 i 0 0
−1 0 0 0
0 0 0 1
0 0 i 0

⎞
⎟⎠, Z = e

iπ
4

⎛
⎜⎝

0 0 −1 0
0 0 0 1
i 0 0 0
0 i 0 0

⎞
⎟⎠.

(4)

Note that the global phase factors only serve to ensure the
correct sign of X d and Zd . Consider also the unitary operators

U =

⎛
⎜⎝

0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0

⎞
⎟⎠, V =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠, (5)

which generate a projective representation of the Klein four-
group Z2 × Z2. Application of 1, U , V , and UV on the
vector |ϕ1〉 = (t, i, i, i)T/n produces an orthonormal basis,

where t =
√

2 + √
5 and n =

√
5 + √

5. Call these states
{|ϕk〉}k∈[4]. Then it can be easily verified that the states |ψ jk〉 =
X j1 Z j2 |ϕk〉 form a SIC for each value of k, where j = ( j1, j2).
By construction, the states {|ψ jk〉}k∈[4] form an ON basis for
each of the 16 values of j. We remark that if the computational
basis is chosen as separable, all 64 states are isoentangled
[47]; the entanglement negativity is 1

n2

√
1 + t2. This consti-

tutes an interesting parallel to the concept of isoentangled
MUBs [48] (which upholds the same degree of entanglement
per state as the SIC compound [49]).

By definition, the ququart SIC compound contains four
SICs and 16 ON bases of C4. Interestingly, it turns out that it
upholds two additional symmetries (that have no counterpart
in the qubit SIC compound). First, a careful examination of
{|ψ jk〉} j,k shows that every state is not a member of precisely
one ON basis, but in fact of two different ON bases. Therefore,
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FIG. 1. Schematic of the 64 states in the ququart SIC compound.
First, let us index the columns by k ∈ [4] and the rows by j2 ∈ [4] and
let each block contain the four states {|ψ jk〉}4

j1=1 [recall j = ( j1, j2)].
Then, each column corresponds to one of the defining SICs of the
compound. The collection of elements in the identically labeled
(“1”,“2”,“3”, and “4”) blocks constitute the four additional SICs
present in the compound. Second, let us view the Latin square as an
illustration of the 16 individual states in each row of the previous
interpretation. The block with coordinates ( j2, k) corresponds to
the state |ψ jk〉 (for any chosen row index j1). Each row (of four
states) then corresponds to a defining ON basis. For j1 = 1, 2, 3, 4,
the collection of elements with identical labels (“1”, “2”, “3”, and
“4”) constitute the total of 16 additional ON bases present in the
compound.

the SIC compound houses an additional 16 ON bases. Second,
one finds that every state |ψ jk〉 upholds the defining (SIC-like)
overlap property (1) with 27 other states in the SIC compound,
instead of the expected 15. The additional 12 SIC-like over-
laps originate from an additional SIC which shares four states
with the defining SIC in the compound. Thus, every state is a
member of two distinct SICs (see Ref. [47] and Appendix C)
that have four elements in common.

Since we are now faced with a total of 8 SICs and 32
ON bases present in the compound, one benefits from nicely
organizing the elements. A useful observation is that for each
of the four defining SICs, one can find four sets of four
states such that each is an orbit under the WH subgroup
{1, X 2, Z2, X 2Z2} (again a projective Klein four-group). By
suitably permuting the label j ∈ [16] in {|ψ jk〉} jk , so that j1
indexes the subgroup and j2 indexes the application of 1, X ,
Z , and XZ , we can group these orbits together and represent
the SIC compound as a Latin square (see Fig. 1).

VI. ON EXISTENCE IN d = 5, 6, 7, 8

For dimensions d = 5, 6, 7, 8, using the representation
(3), there are only finitely many relevant fiducial states to be
considered [45,50]. The number of states that yield SICs when
the WH group, in the representation (3), is applied to them
can be regarded as known if we combine the high-quality nu-
merical results of Ref. [35] with the group-theoretical analysis
of Ref. [45]. We have enumerated all of them and exhaus-
tively checked the number of orthogonal SICs that can be

constructed using these states. We find that the number of
orthogonal SICs varies (2, 4, 2, and 5, respectively) and that
no SIC compound can be constructed. Reminding ourselves
of the strong numerical evidence in support of the nonexis-
tence of any other SICs than those that we have explicitly
constructed for d = 5, 6, 7, our results render the existence
of a SIC compound for d = 5, 6, 7 very unlikely. However,
as previously mentioned, dimension 8 also houses SICs that
are not based on the WH group [3,51,52]. Whether a SIC
compound can be formed from these exceptional SICs is left
as an open question.

Furthermore, in Appendix B we present a method for cer-
tifying [53] a SIC compound (if they exist) or falsifying their
existence (if they do not exist) under the sole assumption of
dimension d .

VII. DISCRIMINATING THE SIC COMPOUND WITH MUBs

The ququart SIC compound admits a simple operational
relation to a set of four MUBs. Consider that for fixed j2
and k, we try to discriminate between the four (equiprobable)
states {|ψ j,k〉} j1 . Since these states are linearly independent,
we can use the “pretty good measurement” [54] which is the
ON basis obtained from |ξ j,k〉 = T −1/2

j2,k
|ψ j,k〉 by varying j1,

where Tj2,k = ∑
j1

|ψ j,k〉〈ψ j,k|. Measuring in this basis is in
fact optimal for minimizing the error probability of the dis-
crimination, which follows from [55]. Moreover, the resulting
bases for a given j2 but different k are identical, while the
bases for different j2 are mutually unbiased. Thus, the four
rows of the Latin square correspond to four MUBs which,
interestingly, are isoentangled with the largest possible entan-
glement negativity (each basis element has an entanglement
negativity of 1√

8
). In Appendix C, we show that the relation

between the SIC compound and the four MUBs is not a
coincidence but traces back to the fact that the Clifford group
contains a copy of the bipartite WH group. Finally, we note
that also the fifth MUB (the computational basis) emerges
from state discrimination in the SIC compound: a state is
randomly sampled from a given column of the Latin square
and we are asked to determine which row it belongs to. The
optimal measurement is the computational basis.

VIII. APPLICATION IN QKD

Let us now consider the usefulness of the d = 4 SIC
compound in QKD. Consider a prepare-and-measure QKD
scheme in which Alice transmits a random state |ψ jk〉 and
Bob randomly measures in one of the 16 defining ON bases
of the SIC compound. A variety of specific QKD protocols
can be constructed from this starting point, depending on how
Alice and Bob transform or “sift” their resulting data into
the “raw key.” Here we focus on just two sifting protocols.
As in the original BB84 protocol, Alice and Bob can use the
bases in the compound, taking their k values as the sifted key
when their j1 and j2 values both match. Call this sifting B.
Another possibility, which we denote sifting A, is that j1 is
taken as the sifted key value when their j2 values agree, but
their k values disagree. (This turns out to be slightly more
favorable than when the k values match.) Both protocols finish
with the standard steps of parameter estimation, information

043122-3



TAVAKOLI, BENGTSSON, GISIN, AND RENES PHYSICAL REVIEW RESEARCH 2, 043122 (2020)

reconciliation, and privacy amplification to output a secure
key. Since both protocols use the same prepare-and-measure
setup but differ only in the classical postprocessing, we will
see that Alice and Bob can first perform parameter estimation
on their data and then decide which sifting strategy to employ.

We establish the security of both protocols against arbitrary
attacks by adapting the methods of [56–58] to ensure security
against collective attacks and then invoking [59] to ensure
security against arbitrary attacks. The analysis proceeds in
the entanglement-based scenario of the protocol. Here Eve
supplies Alice and Bob with many copies of an arbitrary
bipartite state ρAB, to which she retains the purification in sys-
tem E , and Alice and Bob each randomly measure the bases
associated with the compound on their respective subsystems.
The resulting statistics of their classical measurement choices
j and results k, as well as the possible collective attacks, are
precisely the same as the prepare-and-measure scenario.

Crucially, the symmetries of the SIC compound translate
into symmetries of both sifting protocols, and this simplifies
the form of ρAB. As we show in Appendix D, for both sifting
A and sifting B we can assume without loss of generality
that ρAB = (1−p−q)
AB + qπAB + pκAB for some positive
parameters q, p with q + p � 1, where 
AB is the maximally
entangled state, πAB is the maximally mixed state, and κAB

is the diagonal state of perfect uniform correlation. In other
words, the joint state is a partially depolarized and dephased
maximally entangled state.

Alice and Bob can determine both p and q in the parameter
estimation phase as follows. It turns out that the probability of
sifting success for sifting A increases with increasing q, while
the probability of error in the raw key depends on both p and
q. Therefore, before they commit to either sifting procedure,
Alice and Bob can use their data to determine both parameters
and only then decide which sifting procedure is more appro-
priate. Knowing the state ρAB, it is then a simple matter to
apply known bounds on the rate of key extraction [60] using
information reconciliation and privacy amplification.

Figure 2 depicts the values of q and p which lead to positive
key rates. It also displays the region of positive key for the
generalization of the six-state protocol to d = 4 (using a full
set of five MUBs). To enable a fair comparison, the latter
protocol also discards sifting information [61]. Its symmetries
ensure that it treats all states delivered by Eve as depolarized
maximally entangled states, so that when the actual joint state
is of the form ρAB above, it sees a depolarization rate of
1 − p − q. Therefore, the region of positive rate for the five
MUBs protocol is symmetric under interchange of p and q.
Using the rate expression derived in [62], we find the threshold
for p = 0 to be q ≈ 0.309. This is also the threshold of the
sifting B protocol.

IX. CONCLUSIONS

We have introduced SIC compounds as an elegant and so-
phisticated discrete structure in Hilbert space. Against initial
intuition, we found that SIC compounds can exist beyond
qubit systems and explicitly constructed a four-dimensional
SIC compound. We found that it upholds many unexpected
symmetries as well as an operational connection to mu-
tually unbiased bases. Then, through our example of SIC
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0.2

0.4

0.6

0.8

1

q

p

Sifting A
Sifting B
Five MUB protocol
Coherent information

FIG. 2. Regions of positive key rate for various protocols. For
each q, the curves show the value of p such that the key rate is zero.
Sifting B outperforms the analog of the qubit six-state protocol using
a full set of five MUBs. Sifting A can tolerate p → 1 as q → 0.
Together, siftings A and B nearly replicate the region of positive
coherent information −H (A|B)ρ from the state ρAB.

compounds, we illustrated that foundational understanding of
discrete structures of quantum systems are not only interest-
ing in themselves but that they also serve as new, powerful
tools for quantum information processing. We applied SIC
compounds toward quantum key distribution and showed that
they can produce secure key in relevant situations in which the
generalization of the six-state protocol is no longer useful.

Lastly, we ask whether four-dimensional SIC compounds
can be used to construct interesting entangled measurements
of two (or more) four-dimensional systems, generalizing the
measurements of [33,63].
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APPENDIX A: NO SIC COMPOUND FOR d = 3

We fix the representation of the WH group to X =∑d−1
k=0 |k + 1〉〈k| and Z = ∑d−1

k=0 ωk|k〉〈k|. For this fixed rep-
resentation, we prove that no SIC compound exists for d = 3.
It is known that there are infinitely many fiducial states in
d = 3 [4,5]. They can be parametrized using a complete set
of mutually unbiased bases, which can be written (without
normalization) as follows:⎡

⎣1 0 0
0 1 0
0 0 1

⎤
⎦,

⎡
⎣1 1 1

1 ω ω2

1 ω2 ω

⎤
⎦,

⎡
⎣1 ω ω

ω 1 ω

ω ω 1

⎤
⎦,

⎡
⎣ 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

⎤
⎦. (A1)

All [41,42] fiducial states can be obtained via the follow-
ing [1] procedure. Choose any one of the four bases. Then,
choose any pair of elements within the basis. Denote the first
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element by |e1〉 and the second element by |e2〉. The vec-
tor |φ〉 = (|e1〉 − eiθ |e2〉)/

√
2, for any θ ∈ [0, 2π ], is a valid

fiducial state. Repeating this procedure for all twelve relevant
pairs appearing in Eq. (A1), one obtains the complete set of
fiducial states.

The task of showing that no three fiducial states can form
an ON basis is significantly simplified by the fact that the
problem is invariant in such a way that we can without loss of
generality choose the first fiducial vector corresponding to the
two first elements of the first basis in Eq. (A1), namely |φ1〉 =
(|0〉 − eiθ1 |1〉)/

√
2. Moreover, since every basis in Eq. (A1)

can be transformed into every other basis in Eq. (A1), it
is sufficient to search for an ON basis with respect to all
fiducial states associated with, for instance, the second basis.
We name the three elements of the second basis [represented
in Eq. (A1) by the Fourier matrix] {| f1〉, | f2〉, | f3〉}. Writing
|φ2〉 = (| f1〉 − eiθ2 | f2〉)/

√
2, we straightforwardly obtain that

0
!= 〈φ1|φ2〉 ⇔

{
cos θ1 − cos(θ1 + θ2) − cos(θ2 + π

3 ) = 1,

sin θ1 − sin(θ1 + θ2) − sin(θ2 + π
3 ) = 0.

(A2)

The solutions are found at (θ1, θ2) = (2π/3, π/3) and
(θ1, θ2) = (5π/3, 4π/3). To show that no third orthogonal
fiducial state exists, we also consider the cases of |φ′

2〉 =
(| f1〉 − eiθ3 | f3〉)/

√
2 and |φ2

′′〉 = (| f2〉 − eiθ2 | f3〉)/
√

2. These
give equations analogous to Eq. (A2), each with two solutions.
Inspecting these few cases, one easily finds that no orthogo-
nalities exist among these solutions. Thus, we conclude that
no qutrit SIC compound exists. However, as is clear from
above, it is possible to construct two orthogonal qutrit SICs.
Perhaps the easiest example corresponds to the two orthogo-
nal fiducial states

|φ1〉 = (1, 1, 0)T

√
2

, |φ2〉 = (1,−1, 0)T

√
2

. (A3)

APPENDIX B: CERTIFICATION AND FALSIFICATION OF
SIC COMPOUNDS

We show that SIC compounds can be certified in a semi-
device-independent manner [53] (provided that they exist) and
that existence can be disproved using hierarchies of increas-
ingly precise necessary conditions. Each necessary condition
can be evaluated as a semidefinite program.

Consider a prepare-and-measure scenario in which Alice
has a random input x ∈ [d2] and Bob has an input (y, y′)
which labels all pairs of elements in [d2]. For convention, we
take y < y′. Each measurement of Bob has binary outcomes
b ∈ [2]. Alice’s states are of dimension no greater than d . In
Refs. [25,26], it was shown that the quantum maximum of the
following functional,

S′ =
∑
(y,y′ )

p(b = 1|y, (y, y′)) + p(b = 2|y′, (y, y′)), (B1)

is uniquely achieved in Alice’s states forming a SIC. Thus, it
semi-device-independently certifies SIC preparations. More-
over, one can add another (single) setting to Bob, z ∈ [1],
which has o ∈ [d2] possible outcomes, such that the modified

functional

S = S′ +
d2∑

x=1

p(o = x|x, z = 1) (B2)

achieves its quantum maximum when both S′ and the above
sum individually are maximal. The optimal quantum value
obeys [26]

max
Q

S � 1

2

√
d5(d − 1)2(d + 1) +

(
d2

2

)
+ d, (B3)

which can be saturated if and only if Alice prepares a SIC
(provided it exists) and the setting z corresponds to the
aligned SIC POVM (obtained from Alice’s subnormalized
preparations).

We will use this already known communication game for
SICs as a building block to construct a communication game
for SIC compounds. Let Alice have inputs x ∈ [d2] and i ∈
[d]. Bob takes inputs (y, y′) and j ∈ [d] and returns a binary
outcome. Moreover, Bob additionally has d settings labeled
z ∈ [d] which have d2 possible outcomes. We are only inter-
ested in cases in which r ≡ i = j. Let Alice and Bob play the
above game (for SICs) d times in parallel: each implemen-
tation (indexed by r) uses the preparations {(x, i = r)}x and
the measurements {(y, y′, j = r) ∪ (z = r)}y,y′ . We label the
score in the rth game by Sr . Naturally, these scores are so far
independent since they each correspond to independent sets of
preparations and measurements. If all Sr are maximal, it thus
certifies that Alice and Bob have implemented d independent
pairs of SIC preparations and SIC POVMs. In order to certify
a SIC compound, we need to enforce the orthogonality of
the d SICs.

To that end, we add a penalty term. If Alice’s preparation is
(x, i) and Bob implements one of his additional settings with
z �= i, then the outcome o = x must never occur. If this holds
true for every (x, i, z �= i), it is equivalent to a SIC compound
given that we already know that Alice must prepare SICs.
Therefore, we choose our final correlation functional as

H = 1

d

d∑
r=1

Sr −
∑

x
i �=z

p(o = x|(x, i), z). (B4)

Using (B3) it follows that

max
Q

H � max
Q

S, and that (B5)

H = max
Q

S ⇔ Alice prepares a SIC compound. (B6)

Thus, we have constructed a quantum communication game
in which the optimal correlations are uniquely attained by SIC
compounds.

This has two notable consequences. First, we may numer-
ically search for SIC compounds by attempting to maximize
H (which can be efficiently done through alternating convex
searches). Second, if one can prove that H cannot attain the
value (B3) in a quantum model, one falsifies the existence of
any SIC compound in the given dimension. To enable such a
proof, one can use the hierarchy of semidefinite relaxations
of the set of dimensionally restricted quantum correlations
[64]. However, the computational requirements are significant
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due to the large number of preparations and measurements.
Nevertheless, semidefinite relaxations can be evaluated by
employing the symmetrization techniques of Ref. [26]. For in-
stance, we consider the (trivial) case of deciding the existence
of three orthogonal SICs for d = 2. The existence of a SIC
compound would enable H ≈ 12.899 while our semidefinite
relaxation proves that no larger value is possible in quantum
theory than H ≈ 12.728. We could also evaluate the case of
three orthogonal SICs in dimension three, but were unable
to obtain a bound on H smaller than that achieved by a SIC
compound (our SDP matrix is of size 3915). The falsification
(which we have already shown analytically) could require a
higher-level relaxation.

APPENDIX C: SIC COMPOUNDS AND MUBs IN
DIMENSION FOUR

Standard lore has it that SICs and MUBs are unrelated
in four dimensions. SICs appear as orbits of the Weyl-
Heisenberg group, and the SIC compound is an orbit under
a subgroup of the normalizer of the Weyl-Heisenberg group.
MUBs on the other hand are obtained from the bipartite
Heisenberg group. Since the two groups are different, one
does not expect a connection between SICs and MUBs. Nev-
ertheless we found a connection, and it is interesting to see
how this arises.

To see this we first recapitulate the analysis by Zhu et al.
[47,65], which shows that in this dimension the Clifford group
contains two normal copies of the Weyl-Heisenberg group.
The Clifford group contains the symplectic group SL(2) with
matrix elements chosen to be integers modulo 8. Its represen-
tation is fixed once the representation of the Weyl-Heisenberg
group is fixed [45]. The subgroup of SL(2) that transforms a
given compound to itself is generated by the order-4 symplec-
tic matrices

G1 =
(

3 0
6 3

)
, G2 =

(
5 2
2 1

)
, (C1)

together with an order-3 Zauner matrix [45] which plays no
role in this Appendix. The corresponding unitaries are denoted
UG1 and UG2 . The generators of the twin Weyl-Heisenberg
group are then represented by [47,65]

X̃ = e
iπ
4 UG2 XZ = e

iπ
4

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 i 0 0
−i 0 0 0

⎞
⎟⎠, (C2)

Z̃ = UG1 Z = e
iπ
4

⎛
⎜⎝

0 0 −1 0
0 0 0 i
i 0 0 0
0 1 0 0

⎞
⎟⎠. (C3)

The presence of this “extra” Weyl-Heisenberg group explains
why the 4 · 16 vectors in the compound can be regrouped in
such a way that 4 + 4 SICs appear [65].

But the bipartite Heisenberg group is lurking here as well.
A straightforward calculation verifies that

X 2 = σz ⊗ 1, Z2 = 1 ⊗ σz,

−iX Z̃ = σy ⊗ σy, ZX̃ = 1 ⊗ σx, (C4)

where σx, σy, σz are the usual Pauli matrices. These local
operators generate the bipartite Heisenberg group, they leave a
given SIC compound invariant, and they can be used to create
the MUBs mentioned in the main text.

The usual construction of five MUBs proceeds by dividing
the bipartite Heisenberg group into maximal Abelian sub-
groups. In the main text we obtained 4 MUBs, all of them
unbiased relative to the computational basis, as an orbit under
the bipartite Heisenberg group. This is the Alltop construction
of MUBs. The fact that this construction works in dimension 4
is already known [66], but the relation to the Weyl-Heisenberg
Clifford group is new.

APPENDIX D: QKD SECURITY PROOF DETAILS

Following [56–58], we can treat the sifting operation as
a quantum operation as follows. Since the SIC compound
forms a single POVM, measurement can be described by the
isometry |φ〉 �→ 1

4

∑
jk | j〉|k〉〈ψ jk|φ〉, followed by the usual

projective measurement of the | j〉 and |k〉 registers. Sifting can
then be regarded as projective measurement of the appropriate
registers, either ( j2, k) or ( j1, j2), followed by postselection
based on comparing the results using public communication.
Thus, each ( j2, k) combination in sifting A, for instance, gives
rise to a Kraus operator S j2,k which maps the AB system
to the raw keys KAKB according to S j2,k : |φ〉A ⊗ |ψ〉B �→
N

∑
i,i′ |i〉KA |i′〉KB〈ψi, j2,k|A〈ψ∗

i′, j2,k
|B, where N is a normaliza-

tion factor. (Recall that the conversion requires Bob to use
the complex conjugate states |ψ∗

jk〉.) The case of sifting B is
entirely similar.

In this formalism it is now easy to confirm that the sift-
ing procedure is covariant under the automorphism G of the
SIC compound, which is generated by X , Z , U , V , and one
further unitary operator, W , which cyclically permutes the
last three vector components and leaves the first fixed. Then,
in the case of sifting A, for any element Y ∈ G and combi-
nation ( j2, k), the operator S j2,kY ⊗ Y ∗ = S j′2,k′ for some j′2
and k′ (up to a phase), because the automorphism generators
each preserve the individual rows and columns of the Latin
square. Importantly, in both sifting procedures under con-
sideration, the protocol discards the information besides the
sifted key, e.g., the ( j2, k) values in sifting A and the ( j1, j2)
values in sifting B. Therefore we may average the input state
ρAB over G, since the protocol will effectively only see the
state ρ̄AB = ∑

Y ∈G Y ⊗ Y ∗ρABY † ⊗ Y T . Straightforward cal-
culation shows that ρ̄AB = (1−p−q)
AB + qπAB + pκAB for
some positive parameters q, p with q + p � 1, where 
AB is
the maximally entangled state, πAB is the maximally mixed
state, and κAB is the diagonal state of perfect uniform correla-
tion.

The protocol proceeds to distill secret key from the raw
key using information reconciliation and privacy amplifica-
tion. Given a postsifted state σKAKBE , we can appeal to the
rate formula of [60], r � H (KA|E )σ − H (KA|KB)σ , where
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H (KA|E )σ is the conditional entropy. The postsifted state
will be of the form σKAKBE = M(S1,1ρ̄ABE S†

1,1), where M
denotes the measurement of the KA and KB systems, each
in the standard basis. This is a slight departure from and

improvement on [56–58], which for simplicity uses only the
Bell-diagonal part of S1,1ρ̄ABE S†

1,1. This lowers the key rate
and is unnecessary here as the state ρ̄ABE itself is of a very
simple form.
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lems in quantum information, arXiv:2002.03233.

[39] D. Bruß, Optimal Eavesdropping in Quantum Cryptography
with Six States, Phys. Rev. Lett. 81, 3018 (1998).

[40] C. H. Bennett and G. Brassard, Quantum cryptography: Pub-
lic key distribution and coin tossing, in Proceedings of IEEE
International Conference on Computers, Systems and Signal
Processing, Vol. 175 (IEEE, New York, 1984), p. 8 [reprinted
in Theor. Comput. Sci. 560, 7 (2014)].
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