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Exact ground states of quantum many-body systems under confinement
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Knowledge of the ground state of a homogeneous quantum many-body system can be used to find the exact
ground state of a dual inhomogeneous system with a confining potential. We first identify the complete family of
one-dimensional parent Hamiltonians with a ground state of Bijl-Jastrow form in free space. For each instance in
this family, the dual trapped system is shown to include a one-body harmonic potential and two-body long-range
interactions. The extension to anharmonic potentials and quantum solids with Nosanov-Jastrow ground-state
wave functions is also presented. We apply this exact mapping to construct eigenstates of trapped systems from
free-space solutions for different choices of the pair correlation functions entering the Bijl-Jastrow form. This
construction is user friendly and allows one to readily rederive known instances of quasisolvable and integrable
models, as well as to introduce unexplored examples. Among the latter, we describe a Lieb-Liniger-Coulomb
model whose exact ground state is a McGuire soliton solution embedded in a harmonic trap.
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I. INTRODUCTION

Exact solutions play an important role in physics. Solv-
able models often bring novel insights, they can serve as a
test bed for physical theories and a starting point for new
approximations, and help benchmarking numerical methods.
Certain solvable models are known to be integrable. In the
classical domain, this requires the existence of a number of
conserved quantities equal to (or even greater than) that of
degrees of freedom. In the quantum domain, integrability is
often associated with scattering without diffraction, encoded
in the Yang-Baxter equations [1]. Quantum integrable sys-
tems are generally homogeneous. For quantum many-body
systems of continuous variables (e.g., those describing quan-
tum gases and liquids), known exact solutions are typically
associated with the absence of an external potential. In the
one-dimensional case, an exact treatment is possible via the
Bethe ansatz approach, which expresses the wave function as
a superposition of plane waves [2–4]. This reduces the pos-
sible settings to free space (no external one-body potential),
translationally invariant ring geometries with periodic bound-
ary conditions, or settings with hard walls such as mirrors and
boxlike traps [5,6].

Known solutions for systems in the presence of an external
confining potential that varies gradually in space are rare.
Among them, the most prominent case is perhaps that of the
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rational Calogero-Sutherland gas, describing one-dimensional
bosons with inverse-square interactions in a harmonic trap
[1,7,8]. The latter includes as well hard-core bosons, the so-
called Tonks-Girardeau gas, which was first studied in the
continuum [9] and then in a harmonic trap [10] (in addition
to ring and boxlike traps). While some tools, such as the
Bose-Fermi duality and anyon-fermion mapping [11,12] or
the generalizations to mixtures [13,14], increase the variety
of models, these can be considered all part of the same family.

In the study of nonlinear physics, variants of integrable
solutions in free space have been found in inhomogeneous
systems. However, as pointed out by Kundu, these are related
to homogeneous systems via gauge, scaling, and coordinate
transformations [15]. An analog approach has proved suc-
cessful in the study of ultracold fermions in the unitary limit
[16]. In this context, it has been possible to relate universal
zero-energy states in free space, exhibiting scale invariance,
with eigenstates of the same system embedded in a harmonic
trap [17–19].

Knowledge of the ground state of a many-body quantum
system is of great importance, as its structure determines
the nature of low-lying excitations built upon it. In addition,
as the ground state includes important correlations among
particles, it may be the case that excitations are free (see,
e.g., Refs. [1,20–22]). In some cases, the ground state de-
termines the structure of the complete spectrum, as in the
Calogero-Sutherland gas [22–26]. In quasisolvable models,
knowledge of the ground state allows one to construct towers
of excited states that span part of the spectrum. An example
of this type is the Jain-Khare model involving bosons with
two-body and three-body inverse-square interactions among
nearest and next-nearest neighbors, respectively [27–31].
The same holds true for the truncated Calogero-Sutherland
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gas with interactions restricted to a number of neighbors
[32,33].

In this paper, we introduce a general construction to find
quasisolvable models describing particles confined in a har-
monic trap and subject to long-range pairwise interactions.
We find the complete family of models describing indistin-
guishable bosons in a harmonic trapped with a ground state
of Bijl-Jastrow form. This construction is then generalized to
anharmonic external potentials and the description of quantum
solids with ground-state wave functions of Nosanov-Jastrow
form.

This user-friendly approach works as a factory of qua-
sisolvable models. Given a choice of the pair correlation
function entering the ground-state wave function, one needs
only to compute its first and second derivatives. With this
information at hand, one readily finds the following: (i) the
parent Hamiltonian in free space, which generally includes
two-body and three-body interactions and has a vanishing
ground-state energy eigenvalue; (ii) the parent Hamiltonian
of the trapped system, (iii) its wave function, and (iv) energy
eigenvalue; and (v) the parent Hamiltonian of the correspond-
ing quantum solid, (vi) its ground-state wave function, and
(vii) its energy eigenvalue.

The power of our approach to identify unexplored
(quasi)solvable and (quasi)integrable models is unveiled by
different choices of the pair correlation functions entering the
ground-state wave function. Among them, we describe the
Lieb-Liniger-Coulomb model with a trapped McGuire soliton
as an exact ground state and a trapped system with Toda-Like
pairwise interactions.

II. AN EXACT MAPPING

Consider a many-body problem in the absence of a trap-
ping potential and satisfying a time-independent Schrödinger
equation,

Ĥ0|�n〉 = En|�n〉, (1)

with a generic many-body Hamiltonian in one spatial dimen-
sion,

Ĥ0 =− h̄2

2m

N∑
i=1

∂2

∂x2
i

+
∑
i< j

v(xi, x j )+
∑

i< j<k

w(xi, x j, xk ) + · · · ,

in which v(x, y) accounts for the two-body interactions,
w(x, y, z) for three-body interactions, and so on. In particular,
we denote the wave function of the ground state of Ĥ0 by �0

and its eigenenergy by E0.
We are interested in the embedding of this system in a

harmonic trap so that the total Hamiltonian reads

Ĥ = Ĥ0 +
N∑

i=1

1

2
mω2x2

i + V (x1, . . . , xN ), (2)

where V (x1, . . . , xN ) is an additional interaction potential that
will be required for consistency. As an ansatz for the ground
state in the presence of the harmonic trap we try the wave
function

�0(x1, . . . , xN ) = exp

(
−mω

2h̄

N∑
i=1

x2
i

)
�0(x1, . . . , xN ). (3)

To derive the parent Hamiltonian (2), we compute the action
of the kinetic energy operator on �0(x1, . . . , xN ). It is not
difficult to show that[

Ĥ0 +
N∑

i=1

1

2
mω2x2

i

]
�0 − h̄ωe− mω

2h̄

∑N
i=1 x2

i

N∑
i=1

xi∂xi�0

=
(

E0 + Nh̄ω

2

)
�0. (4)

We are interested in rewriting this equation as a standard
many-body Schrödinger equation, without velocity-dependent
interactions. As we shall see, this is possible in a number
of cases. For instance, it is known that universal zero-energy
states �0 exhibiting scale invariance are eigenstates of the di-
latation operator D̂ = ∑N

i=1 xi∂xi , satisfying D̂�0 = ν�0 with
eigenvalue ν. In such a case, Eq. (4) does indeed reduce to a
many-body Schrödinger equation. This is the strategy used to
find eigenstates of a unitary Fermi gas in a three-dimensional
harmonic trap [17–19].

In what follows, we shall consider the ground state of Ĥ0

to be of Bijl-Jastrow form,

�0(x1, . . . , xN ) = 〈x1, . . . , xN |�0〉 =
∏
i< j

f (xi j ), (5)

a product of a single pair correlation function f (xi j ) over each
pair of particles [1]. Here, we denote the interparticle distance
by xi j = xi − x j and note that f (xi j ) = ε f (−xi j ) with ε = 1
for bosons and ε = −1 for fermions. (It is actually possibly
to consider a more general case of one-dimensional anyons
[11,34,35]).

In this case, the parent Hamiltonian Ĥ0 involves exclu-
sively two-body and three-body interactions

Ĥ0 = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ V2 + V3, (6)

where the two-body and three-body potentials are given by

V2 = h̄2

m

∑
i< j

f ′′(xi j )

f (xi j )
, (7)

V3 = h̄2

m

∑
i< j<k

[
f ′(xi j ) f ′(xik )

f (xi j ) f (xik )
− f ′(xi j ) f ′(x jk )

f (xi j ) f (x jk )

+ f ′(xik ) f ′(x jk )

f (xik ) f (x jk )

]
. (8)

Here, f ′ and f ′′ denote the first and second spatial derivatives
of f , respectively. This result provides the complete family
of one-dimensional parent Hamiltonians with a ground state
of Bijl-Jastrow form in free space. It is similar in spirit to
that found by Calogero and Marchioro in three-dimensional
systems [36]. However, by focusing on one spatial dimension,
both V2 and V3 take a simpler form.

Under periodic boundary conditions, the family of Hamil-
tonians Ĥ0 that involve exclusively two-body interactions has
been studied in detail [1]. We shall focus instead on systems in
the real line, of relevance to the description of ultracold gases
in tight waveguides. As we shall see, V3 effectively vanishes
in a number of relevant examples.
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Using (5)–(8) we note that the energy eigenvalue of �0 is
E0 = 0, e.g.,

Ĥ0�0 = 0. (9)

In what follows, we consider the ground state in the presence
of a harmonic trap to be of the form

�0 = exp

(
−mω

2h̄

N∑
i=1

x2
i

)∏
i< j

f (xi j ). (10)

By explicit computation, one then finds

e− mω
2h̄

∑N
i=1 x2

i

N∑
i=1

xi∂xi

∏
i< j

f (xi j ) =
N∑

i< j

xi j
f ′(xi j )

f (xi j )
�0, (11)

which yields the following many-body Schrödinger equation,

Ĥ�0 =
[

Ĥ0 +
N∑

i=1

1

2
mω2x2

i + V2L

]
�0 = Nh̄ω

2
�0, (12)

where we have identified the long-range two-body potential

V2L = −h̄ω

N∑
i< j

xi j
f ′(xi j )

f (xi j )
. (13)

Equations (12) and (13), with Ĥ0 given by Eqs. (6)–(8),
provide the complete family of parent Hamiltonians whose
exact ground state is of Bijl-Jastrow form and given by (3),
describing harmonically trapped quantum particles subject to
two-body and possibly three-body interactions. This is our
main result, that we next apply to derive a number of exact
many-body solutions, with a focus on cases in which V3 is
constant, and thus simply contribute to the energy eigenvalue
E0 of �0.

III. CALOGERO-SUTHERLAND GAS

Let us first consider the rational Calogero-Sutherland
model [7,8] describing trapped bosonic particles with inverse-
square interactions. This model describes free bosons in one
dimension for λ = 0 and hard-core bosons in the Tonks-
Girardeau regime for λ = 1 [9], a regime experimentally
explored in Refs. [37,38]. For arbitrary λ, the Calogero-
Sutherland model can be considered as an ideal gas of
particles obeying generalized exclusion statistics [39,40], as
shown by Murthy and Shankar [41]. In the absence of the
trapping potential, Ĥ0 describes the Calogero-Moser model,
with a ground-state wave function �0 = ∏

i< j |xi j |λ and en-
ergy eigenvalue E0 = 0. Indeed, for

f (xi j ) = |xi j |λ, (14)

Eq. (7) reduces to

V2 = h̄2

m
λ(λ − 1)/|xi j |2, (15)

while the three-body term (8) identically vanishes,

V3 = 0. (16)

In the presence of the trap, we consider

�0 = exp

(
−mω

2h̄

N∑
i=1

x2
i

) ∏
i< j

|xi j |λ. (17)

In this case, the long-range two-body potential reads

V2L = −h̄ωλ
N (N − 1)

2
, (18)

and is thus a constant, resembling a mean-field energy con-
tribution to the ground-state energy. As a result, �0 has
energy E0 = h̄ω

2 N[1 + λ(N − 1)] which reproduces precisely
the known expression for the ground-state energy for the (ra-
tional) Calogero-Sutherland gas in a harmonic trap [8]. As a
particular case, for λ = 1, �0 and E0 match the correspond-
ing results for the harmonically trapped Tonks-Girardeau gas
[10].

IV. LIEB-LINIGER AND LIEB-LINIGER-COULOMB
GASES

The Lieb-Liniger model with contact interactions de-
scribed by a Dirac delta function [42,43] occupies a unique
status among integrable systems, being both Bethe ansatz
solvable and directly relevant to the description of ultracold
gases in tight waveguides [44]. In homogeneous space, the
model supports both bright [45] and dark [46–48] quan-
tum many-body solitons. Let us consider the wave function
�0 = exp(g

∑
i< j |xi j |) where g is a coupling constant. This

choice is motivated by the fact that for g < 0, �0 describes
a McGuire bright quantum many-body soliton which is an
energy eigenstate [45]. We note that the logarithmic spatial
derivative of the pair function

f (xi j ) = exp(g|xi j |) (19)

is given in terms of the sign function f ′(xi j )/ f (xi j ) =
g sgn(xi j ). Writing the latter in terms of the Heaviside
step function 	(x) as sgn(x) = 2	(x) − 1, and noting that
d
dx 	(x) = δ(x) [49], it follows that d

dx sgn(x) = 2δ(x). As a
result, the two-body contribution V2 is consistent with Lieb-
Liniger contact interactions. Specifically,

V2 = h̄2

m
2g

∑
i< j

δ(xi j ) + g2h̄2

m

N (N − 1)

2
, (20)

which is precisely the contact pseudopotential that describes
s-wave scattering, plus an additional constant. We further note
that the three-body potential reduces to

V3 = h̄2

m
g2 N (N − 1)(N − 2)

6
. (21)

The constant contribution of V2 and V3 adds up precisely to
(minus) the energy of the McGuire solution in free space, i.e.,

E0 = −g2 h̄2

m

N (N2 − 1)

6
. (22)

We look for the Hamiltonian with a ground state,

�0 = exp

(
−mω

2h̄

N∑
i=1

x2
i + g

∑
i< j

|xi j |
)

, (23)
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which represents a McGuire soliton embedded in a harmonic
trap. In this case, the long-range contribution becomes

V2L = −h̄ωg
∑
i< j

|xi j |, (24)

and the Schrödinger equation in the presence of the trap reads[
N∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

)

+ g
∑
i< j

(
h̄2

m
2δ(xi j ) − mω

h̄
|xi j |

)]
�0

=
(

E0 + Nh̄ω

2

)
�0. (25)

This Hamiltonian is precisely the Lieb-Liniger-Coulomb
model that can be alternatively derived using the Polychron-
akos formalism [50] as shown in Ref. [51]. The model
describes one-dimensional bosons subject to contact inter-
actions as well as a long-range pairwise contribution. The
latter can be thought of accounting for a one-dimensional
repulsive Coulomb interaction for g > 0 or an attractive grav-
itational potential for g < 0 [52]. The ground state of (25)
exhibits a rich variety of regimes that have been character-
ized in Ref. [51]. In addition to the bright soliton behavior
in the attractive regime, the system behaves as an incom-
pressible Laughlin-like fluid with a flat density profile for
weak repulsion. The appearance of Friedel oscillations and
the formation of a Wigner crystal take place when the strength
of the repulsive interactions is further increased. Interestingly,
the coupling strengths of the contact and long-range interac-
tion terms are not independent, and in the limit of vanishing
trapping frequency the long-range contribution is absent and
one recovers the Lieb-Liniger model in free space. This is a
general feature of the family of models (12).

V. GAUSSIAN PAIR FUNCTION

As a generalization of the McGuire bright soliton solution
we consider

f (xi j ) = exp(g|xi j |2), (26)

allowing for an arbitrary sign of g. The case with g < 0 de-
scribes a Gaussian pair function that is commonly used in
Monte Carlo calculations for quantum fluids. The correspond-
ing Bijl-Jastrow many-body wave function is the ground state
of the Hamiltonian Ĥ0 in Eq. (6) in which the two-body term
is

V2 = h̄2

m
gN (N − 1) + h̄2

m
4g2

∑
i< j

|xi j |2. (27)

For the Gaussian pair function, the three-body contribution
admits an expression compatible with a two-body potential as

V3 = h̄2

m
g2(2N − 4)

∑
i< j

|xi j |2, (28)

and thus V2 + V3 = −E0 + h̄2

m 2Ng2 ∑
i< j |xi j |2. Here,

the ground-state energy in free space equals E0 =

−gN (N − 1) h̄2

m , where we note the linear and quadratic
scaling with g and N , respectively. The full interaction
potential is described by pairwise attractive quadratic terms
of the interparticle distance. Upon embedding in a harmonic
trap, the long-range contribution reads

V2L = −2h̄ωg
N∑

i< j

|xi j |2, (29)

and the ground-state wave function

�0 = exp

(
−mω

2h̄

N∑
i=1

x2
i + g

∑
i< j

|xi j |2
)

(30)

has energy E0 = Nh̄ω
2 − gN (N − 1) h̄2

m . By contrast, when the
pair function f (xi j ) is chosen as a hyper-Gaussian, f (xi j ) =
exp(g|xi j |n), the parent Hamiltonian H0 in the homogeneous
case involves nontrivial three-body interactions of the general
form in Eq. (8).

VI. HYPERBOLIC PAIR FUNCTION

Another relevant system is the one associated with the
following choice of the pair correlation function,

f (xi j ) = sinh(xi j/�)λ, (31)

which describes bosons for even λ. We note that f (xi j ) ∼
exp(λ|xi j |/�) for large xi j , so one can expect a similarity
with the Lieb-Liniger models discussed. However, the hyper-
bolic f (xi j ) includes a hard-core constraint as f (xi j = 0) = 0
and grows faster with the interparticle distance than the pair
function in the Calogero-Sutherland model, f (xi j ) = |xi j |λ. In
addition, the wave-function first derivative at contact xi j = 0
is continuous in this model. In this case,

V2 = λh̄2N (N − 1)

2m�2
+ h̄2

m�2

∑
i< j

λ(λ − 1)

sinh2(xi j/�)
, (32)

V3 = λ2h̄2N (N − 1)(N − 2)

6m�2
. (33)

The pairwise hyperbolic potential diverges at the origin, im-
posing the hard-core constraint between particles. At low
density it decays exponentially with the interparticle distance,
as the one in the Toda lattice [1,53]. For the ground state
in free space �0 = ∏

i< j sinh(xi j/�)λ, the energy is E0 =
−λ2 h̄2

6m�2 N (N2 − 1), which resembles that of a McGuire so-
lution in free space; see (22). In the presence of a harmonic
trap, the long-range contribution reads

V2L = h̄λω

N∑
i< j

xi j

�
coth

(
xi j

�

)
. (34)

We note that x coth x ∼ |x| for large x, as in the Lieb-Liniger-
Coulomb model (25), but being attractive, it behaves as a
one-dimensional gravitational potential [52]. In addition, it
is also continuous and effectively harmonic near the origin,
i.e., x coth x = 1 + x2/3 + O(x4). The energy of the trapped
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ground state

�0 = exp

(
−mω

2h̄

N∑
i=1

x2
i

) ∏
i< j

sinh(xi j/�)λ (35)

is E0 = Nh̄ω
2 − λ2 h̄2

6m�2 N (N2 − 1).

VII. ANHARMONIC EXTERNAL POTENTIALS

The previous examples illustrate the validity of the frame-
work put forward, in which a Hamiltonian of the form (6) with
ground state (5) can be used to construct a Hamiltonian (12)
involving a harmonic trap and generally long-range pairwise
interactions, with ground state (10). This setting can be gener-
alized to include anharmonic external potentials. To this end,
we next consider the ground state of the Hamiltonian with
confinement to be described by a state

�0 = exp

(
N∑

i=1

v(xi )

)
�0, (36)

where v(x) is an arbitrary function of the coordinates. In this
case, �0 is a solution of[

Ĥ0 +
N∑

i=1

V (xi )

]
�0 + h̄2

m
e
∑N

i=1 v(xi )
N∑

i=1

v′(xi )∂xi�0 = 0,

(37)

where the one-body potential reads

V (x) = h̄2

2m
[v′′(x) + v′(x)2]. (38)

Assuming �0 to have a Jastrow form as in Eq. (5), it follows
that the parent Hamiltonian of the generalized ground state
(36) is [

Ĥ0 +
N∑

i=1

V (xi )

]
�0

+ h̄2

m

N∑
i< j

[v′(xi ) − v′(x j )]
f ′(xi j )

f (xi j )
�0 = 0, (39)

with an energy eigenvalue E0 = 0. We note that for a specific
form of V (x), Eq. (38) can be integrated to find the function
v(x).

VIII. QUANTUM SOLIDS

An approach to characterize many-body states of quantum
solids relies on pinning particles on a lattice, without relying
on a tight-binding description, e.g., as done in the description
of solid 4He [54,55]. Motivated by this approach, we next
consider the family of Nosanov-Jastrow wave functions of the
form

�0 =
N∏

i=1

exp

(
− mω

2h̄

(
xi − x0

i

)2
)

�0, (40)

where the Gaussian term localizes the ith particle at a position
x0

i and ω controls the tightness of the confinement. For in-
stance, one can choose x0

i = ia where a is the lattice spacing.

Two-particle correlations are encoded in �0 given by Eq. (5).
The many-body Schrödinger equation (39) reduces to[

Ĥ0 +
N∑

i=1

mω2

2
δx2

i − h̄ω

N∑
i< j

δxi j
f ′(xi j )

f (xi j )

]
�0 = Nh̄ω

2
�0,

(41)

where the term in square brackets is the parent Hamilto-
nian of (40), with δxi = xi − x0

i and δxi j = δxi − δx j = xi j −
(x0

i − x0
j ). Particles are thus confined by a lattice of har-

monic oscillator wells and anharmonic effects can be included
by considering a more general confining potential. We note
that Ĥ0 is not altered and it is thus straightforward to in-
troduce the quantum-solid Hamiltonians associated with the
models discussed above. As an example, the quantum-solid
version of the Calogero-Sutherland model is described by the
Hamiltonian

Ĥ =
N∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ mω2

2
δx2

i

)

+
N∑

i< j

(
λ(λ − 1)

|xi j |2 + h̄ωλ
δx0

i j

xi j

)
, (42)

which includes an additional Coulomb-like term, in which
δx0

i j = x0
i − x0

j is constant for fixed site indices i and j. Its
ground state reads

�0 =
N∏

i=1

exp

(
− mω

2h̄

(
xi − x0

i

)2
) ∏

i< j

|xi j |λ, (43)

with energy eigenvalue E0 = Nh̄ω
2 [1 + λ(N − 1)]. For λ = 1

one recovers the hard-core bosonic pair correlation function.
Due to the lattice structure, permutation symmetry is explic-
itly broken as the ith particle is localized in the ith harmonic
well, but it can be restored by explicit symmetrization, after
which the the ground-state wave function becomes

�0 =
[∑

P∈Sn

N∏
i=1

exp

(
− mω

2h̄

(
xi − x0

P(i)

)2
)]∏

i< j

|xi j |λ, (44)

where the sum runs over the N! permutations of the N lattice
sites and SN denotes the symmetric group. In this case, �0

with λ = 1 describes a Tonks-Girardeau gas in a lattice of
harmonic wells.

IX. SUMMARY

We have introduced an exact mapping between the ground
state of a Hamiltonian in free space and the ground state of
a dual Hamiltonian in the presence of a one-body trapping
potential and additional many-body interactions. Whenever
the homogeneous ground state takes the Bijl-Jastrow form,
the dual Hamiltonian can be expressed in terms of the
homogeneous one, supplemented with the one-body potential
and two-body long-range interactions. This mapping can
be used by fixing the pair correlation function entering the
Bijl-Jastrow form, as we have done to find trapped states
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in systems with inverse-square, contact, quadratic, and
Toda-like interactions. As an alternative, the functional form
of the interparticle interactions can be first established, from
which the pair function can be determined by integration. In
addition, we have also shown how this family of Hamiltonians
can be generalized to anharmonic external potentials and
the description of quantum solids with ground states of
Nosanov-Jastrow form.

Owing to this user-friendly construction we have identified
unexplored examples of quasisolvable models. Among them,
we have introduced a Lieb-Liniger-Coulomb model of one-
dimensional bosons subject to contact and gravitational or
Coulomb interactions, the ground state of which is a McGuire
soliton in a harmonic trap. Another instance resulting from
the choice of a hyperbolic pair correlation function leads to
trapped bosons with hard-core Toda-like interactions.

Our results should be broadly applicable in the quest
for different beautiful models, describing (quasi)solvable and

integrable quantum many-body systems. Possible extensions
include systems in higher spatial dimensions [36,56], mix-
tures of multiple species [13,14], particles with an internal
structure (e.g., spinors) [57], and their variants with a trun-
cated interaction range [27–29,32,33]. Excited states in these
systems can be explored by established techniques [1]. Our
results should also find applications in the study of bright
and dark trapped quantum many-body solitons, and quantum
solids.
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