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Applicability evaluation of the stress-optic law in Newtonian fluids toward stress field measurements
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A novel rheoscopic fluid displaying coloration due to flow-induced birefringence is investigated through
laboratory experiments to ascertain if it satisfies the stress-optic law in fluids in direct stress field measurements
of Newtonian fluids. To validate this experimentally, two types of spin-up experiments ensuring two-dimensional
flows were performed: color visualization using the rheoscopic fluid and velocity field measurement by particle
image velocimetry. Using a wave-number analysis, the orientation angle of the birefringence was determined
from a single color snapshot in axisymmetric and unidirectional flows. Direct comparisons between color and
shear stress values made it possible to establish a unique relation between the two, verifying that the stress-optic
law can be applied in the fluid. The results of the present study suggest a promising avenue toward enabling
temporally and spatially resolved stress field measurements in Newtonian fluids.
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I. INTRODUCTION

Direct measurements of stress fields in fluid flows are use-
ful to understand details of fluid physics and mechanics. For
Newtonian fluids, such as water and air, the stress tensor τ

is linearly proportional to the strain rate ∇u with a constant
viscosity μ as τ = μ∇u. However, measurements of the fields
of the spatially resolved velocity gradient tensor ∇u in fluid
flows is not straightforward, because in practical flows, the
accessible value is the velocity field, not the gradient of the
field.

Particle image velocimetry (PIV) makes it possible to mea-
sure flow fields in cross sections of flows with simple planar
PIV [1,2]. Then by determining derivatives of the velocity
vector fields, physical quantities, including the vorticity, shear
rate, and other parameters, can be calculated in postprocess-
ing. The qualities of the derivative values are directly affected
by both the dynamic range and the spatial resolution of the
velocity vector fields. The velocity vectors are determined
by identifying dominant displacements of particles in minute
regions of two images recorded at short time intervals, and
the resulting velocity vectors are smoothed within the in-
terrogation region, limiting the dynamic range of the PIV.
Additionally, the spatial resolution of PIV is typically orders
of magnitude poorer than that of the original image and will be
too small for the acquisition of the fine details of derivatives of
velocity fields. Efforts to measure the derivatives of velocity
fields have been made [3], but currently, PIV does not satisfy
the desired needs for direct fluid deformation measurements,
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as far as the derivatives cannot be measured as the first obser-
vation values.

An alternative to direct measurements of fluid deformation,
molecular tagging velocimetry (MTV), is summarized by Tro-
pea and Yarin [4]. In MTV, numerous “tags” are created in
fluorescent fluids using a laser beam lattice. Velocity vectors
are quantified by tracking the centroids of the tags without
needing the seeding with tracer particles. Shear rates can
be obtained from the deformation of the shape of the tags
without knowing the derivatives of the velocity vectors, even
in multiphase turbulent flows [5,6]. The established work has
focused on turbulent flows and was applied to obtain statistics
of the turbulent flows, and the spatial resolution of the shear
rate measurements obtained in this manner is not applicable to
field measurements as the spatial resolution of MTV depends
on the distances between the beams forming the beam lattice
and is equivalent to or poorer than PIV.

In different research fields, such as geology and materi-
als science, stress or strain field measurements utilizing the
stress-optic law have been conducted for several decades, as
reviewed by Patterson [7]. The stress-optic law is written as

ni j = Cτ i j, (1)

where ni j , τ i j , and C are the refractive index tensor, the
stress tensor, and the photoelastic (stress-optical) coefficient,
respectively. The internal stress of a solid material induces
birefringence, and a light ray passing through the material is
affected by showing changes in coloration. Backlight projec-
tion with optical filters enables observations of the internal
stress distributions of solid materials like in plastic resins,
even with irregular geometries. This technique is termed pho-
toelasticity (photoelastic analysis), and various methods to
quantify the birefringence observed here have been developed
as summarized by Ramesh et al. [8].

Photoelastic analysis in fluid flows has also been reported
[9–11]. These reports investigated the stress-optic law as it is
manifested in flows of polymer solutions (i.e., non-Newtonian
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FIG. 1. An example of flow visualization using the rheoscopic
fluid with the crossed-Nicol method (left half) and without polarizers
(right half). The fluid was disturbed by a moving glass stick.

fluids). The birefringence is induced by fluid deformations
in such non-Newtonian fluids by analogy with solid materi-
als and termed a flow-induced birefringence. The anisotropy
originating in the polymer structures provides the rheological
properties of the fluids, and the stress-optic law in fluids is
applied in the field of rheology and known as rheo-optics. For
Newtonian fluids, however, it is not directly possible to show
the flow-induced birefringence because the fluid is isotropic.
Classically, rheoscopic fluids containing small flake particles,
such as aluminum flakes and mica, have been used for qualita-
tive visualization of Newtonian fluid flows with coherent flow
patterns [12]. The flake particles are considered to preferen-
tially align in the principal shear direction in the flow, even
though actual particle motions are much more complicated
[13–15]. A recent report seeking an alternative to classical
rheoscopic fluids by Borrero-Echeverry et al. [16] introduced
the use of shaving cream containing stearic acid to provide
anisotropy. Such anisotropic additives are, however, too large
to affect light rays.

The flow-induced birefringence was utilized to a New-
tonian fluid by Hu et al. [17,18], where wakes around a
swimming fish were visualized by the tobacco mosaic virus
(rod-shaped particles). Laminar Sciences Corporation [19]
has produced a novel rheoscopic fluid named KaleidoFlow as
a birefringent Newtonian fluid composed of tiny flake parti-
cles and deionized water (as detailed in Sec. II A). This fluid
shows local fluid deformations by displaying multiple colors
as shown in Fig. 1; the fluid was poured into a 10-mm-thick
rectangular vessel and disturbed by a moving glass stick. In
Fig. 1, the left half of the vessel is sandwiched by two orthogo-
nally arranged polarization filters, the so-called crossed-Nicol
method, for simultaneous visualizations of backlight with-
out polarizer (the right half) and the crossed-Nicol images.
Complicated color patterns generated by the flow-induced
birefringence can be seen surrounding the glass stick in the
left half, while no flow structures are observed in the right
half.

As detailed in Hu et al. [18], the birefringence in these
Newtonian fluids is elicited by the preferential alignments of
the anisotropic particles in the shear direction, similar to the
classical rheoscopic fluids. The cumulative effect of particle
orientation along the optical axis deviates the polarization
plane of the light emerging from the polarizer, thus generating

FIG. 2. Microscope photos of two different rheoscopic fluids:
(a) the rheoscopic fluid used in this study, KaleidoFlow (Laminar
Science Corp. [19]), recorded with a crossed-Nicol method, and
(b) the classical rheoscopic fluid, AQ-1000 (Kalliroscope), taken
with a opened-Nicol method.

a bright coloration. By increasing the shear rate, the particles
become more and more oriented in the shear direction until
a saturation corresponding to a plateau of birefringence, a
particle orientation perfectly in the shear direction. Hence it
is expected that the stress-optic law in the fluids may be valid
until certain high values of shear rate, if the stress-optic law is
applicable for the photoelasticity of the Newtonian rheoscopic
fluid.

The present study aims to investigate if the stress-optic
law holds in the Newtonian rheoscopic fluid and to explore
a doable way of conducting photoelastic analysis or stress
field measurement in experimental investigations. First, the
coloration mechanism of the rheoscopic fluid and the appli-
cable flow conditions for photoelastic analysis in fluid flows
will be discussed in Sec. II. Second, a detailed investigation of
laboratory experiments is conducted under conditions fulfill-
ing the limitations and will be discussed in Sec. III. In Sec. IV,
the stress-optic law in the fluid will be evaluated using the ex-
perimental results. Finally, a summary of the present study and
plausible ways to conduct future stress field measurements in
Newtonian fluids will be provided in Sec. V.

II. PHOTOELASTICITY IN A NEWTONIAN FLUID

A. Flow visualizer

Specifications of the novel rheoscopic fluid, KaleidoFlow,
are available in patents by Laminar Sciences Corporation
[20,21]. According to the documents, a small amount of
flake- or plate-structured vermiculite particles is dispersed
into deionized water. The typical particle dimensions are
O(10 μm) in longitudinal directions and O(10 Å) in thick-
ness, and the specific gravity is ∼2.65. The particles are
homogeneously dispersed in the deionized solvent, and sed-
imentation of the particles occurs finally after standing the
fluid for a week. For a wide color spectrum coloration, the
electrical conductivity of the solvent needs to be very small.
In our preliminary test for diluting the rheoscopic fluid, the
use of tap water for diluting induced the flocculation of
the vermiculite particles. A microscope photo of the rheo-
scopic fluid taken with a crossed-Nicol method is shown in
Fig. 2(a). For comparison, a microscope photo of the classical
rheoscopic fluid, Kalliroscope [12], taken with a single lin-
ear polarizer (opened-Nicol method), is shown in Fig. 2(b).
Flake-structured particles of the Kalliroscope, length scale
O(10−6 − 10−5 m), can be observed in Fig. 2(b). Different
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FIG. 3. Schematic illustration of the coloration mechanism
caused by a birefringent material.

from this, no clear shapes of the KaleidoFlow are visible at
the same magnification in Fig. 2(a). These photos suggest
that the size of the particles in the KaleidoFlow are much
smaller than those of the Kalliroscope, and it is concluded that
the novel rheoscopic fluid affects visible light rays directly
by optical anisotropy like liquid crystals and displays col-
oration due to flow-induced birefringence, as shown in Fig. 1,
despite the medium being a Newtonian fluid. As it was not
possible to recognize flake particles in the diluted rheoscopic
fluid with naked eyes, the expected spatial resolution of the
visualization can be deduced to be similar to or better than
O(10 μm). This fine spatial resolution is much better than
the general PIV technique requiring seeding tracer particles
of O(10−100 μm) in diameter.

B. Mechanism of coloration

As the mechanism of the flow-induced birefringence utiliz-
ing anisotropic particles is detailed in Hu et al. [18], a general
coloration mechanism is provided in this section. Coloration
like in Fig. 1 emerges when an optically anisotropic (birefrin-
gent) material is placed between two orthogonally arranged
linear polarizers and lit up from behind by a white light. A
schematic illustration of this coloration mechanism simplified
into a two-dimensional system is shown in Fig. 3. A white
light placed in front of (left in the figure) the first polarization
filter in front of the birefringent component with thickness d ,
termed the polarizer, vibrates in all directions perpendicular to
the traveling direction of the light. After the polarizer, only the
light ray component vibrating in the direction of the polarizer
passes through the polarizer, and this polarized light enters the
birefringent material. The polarized light is doubly refracted
and separated into two components vibrating along the optical
axes of the material perpendicular to each other, noted as n1

and n2 in Fig. 3. Then the polarized light rays pass through the
material and enter the second polarization filter, termed the
analyzer. Due to the velocity difference between the two light
rays passing through the material, the light rays are elliptically
polarized, and the analyzer lets only the light ray component
parallel to itself pass.

The light intensity I transmitted from the white light source
irradiated from the back through these optical settings is the-
oretically expressed as

I = I0 sin2 2χ sin2 π�

λ
, (2)

FIG. 4. Michel-Lévy interference color charts obtained in the
present system at a fixed d = 20 mm: (a) a full color chart with
both �n′ and χ as variables and (b) extracted brightest coloration
at χ = π/4.

where I0, χ (0 � χ � π/4), �, and λ represent the original
light intensity, the angular difference between the optical axis
of the material and the polarizer axes, the so-called orienta-
tion angle, the retardation (optical path difference), and the
wavelength of the light, respectively. π�/λ has been termed
the phase difference of the two light rays in some reports. The
retardation � has a length scale of O(10−6 m) and is defined
as

� = |�n′|d = |n1 − n2|d, (3)

where |�n′| is the difference between the two refractive in-
dices, the larger one n1 and the smaller one n2, termed the
birefringence of the material, and d denotes the length of the
optical path (equivalent to the material thickness) as shown in
Fig. 3. Substituting Eq. (3) into Eq. (2), we obtain

I = I0 sin2 2χ sin2 π�n′d
λ

. (4)

Here |�n′| is defined as �n′ (� 0) to enhance readability. In
practice, I0 is the intensity of the original light source and
is a specific function of λ with a fixed light source. Further,
d is a constant at a set material thickness, and thus � is a
scaled value of �n′. Finally, only two variables, χ and �n′,
determine the behavior of I , displaying a specific color fringe
pattern, termed the Michel-Lévy interference color chart.

A detailed development process for the color chart was
reported by Sørensen [22]. The color chart was obtained nu-
merically by using the spectrum of the light used in the present
study with a fixed material thickness (d = 20 mm) and shown
in Fig. 4. As a result of the I transmitted by the birefringent
material, the coloration is recorded as RGB brightness values
in digital images. Please note that the color chart is a function
of both �n′ (or � with a set d) in the horizontal axis and χ in
the vertical axis of Fig. 4(a). With increases in �n′, the color
chart displays an increasingly vivid coloration. Contrary to
this, four of the same color cycles appear with variations of χ ;
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dark at χ = mπ/2 and bright at (2m − 1)π/4, with arbitrary
integer m ∈ [1, 4]. This color cycle is consistent with Eq. (4)
as I ∝ sin2 2χ . For a detailed view of the brightest coloration,
this color at χ = π/4 is extracted in Fig. 4(b), where there are
two dark-colored sectors at �n′ = 0.0 and �n′ ∼ 2.8 × 10−5.
The color chart continues at further larger �n′ regions, which
is not shown in the figure. From the color chart it is clear that
both χ and �n′ are necessary to determine a unique color in
the chart.

C. Applicable flow conditions

The most significant outstanding issue is whether the
stress-optic law holds in the flow-induced birefringence of
the rheoscopic fluid considered here. To determine this, flow-
induced birefringence �n′ and orientation angle χ must be
associated uniquely with the stress in a specific flow by labo-
ratory experiments.

The photoelastic analysis requires backlight illumination,
and light rays transmitted through a birefringent material are
recorded as the color information. This makes the coloration
the result of an integration of the material state over the depth
(in the light ray direction). For solid materials, this need not
be a significant problem because thin structures are required
for the backlight illumination, ensuring that one-dimensional
(1D) or two-dimensional (2D) structures are acceptable and
that the material state can be regarded as identical over
the full depth of the sample. Fluid flows easily form three-
dimensional (3D) structures, and to evaluate a proper �n′
using a single optical setting, the flows are required to be
confined in thin fluid vessels like in Hele-Shaw cells to ensure
the minimum length scale of the flow to be equivalent to or
larger than the thickness of the fluid vessel. Otherwise, 1D or
2D fluid flows must be able to be assumed by the presence of
external forces such as rotation.

D. Requirements for fluid flow measurement

To surpass the limitations of conventional methods such as
PIV and MTV, the photoelastic analysis in the fluid flows is
required to possess high temporal and spatial resolutions. In
the photoelastic analysis, determination of χ , the vertical axis
of Fig. 4(a), could present a bottleneck. For solid materials, χ

is easily obtained by rotating one polarizer or the materials,
because the transmitted color repeats bright and dark cycles
as shown in Fig. 4(a). To ensure a correct determination
of χ , at least four images taken with two linear polarizers
aligned at different angles are required [23]. This would be
efficient because the solid materials do not change the states
during the rotation of the polarizer, i.e., solid materials may
be regarded as offering a steady state under fixed externally
imposed conditions, and no time lag will be required in the
determination of χ . A fluid in the rotating vessel, however,
will present changes in the flow state during rotation. This
makes it necessary for χ to be quantified instantaneously or
within a very short period of time. Without near instantaneous
temporal resolution measurement, targets for the photoelastic
analysis in fluid flows become limited to steady flows.

As introduced in Sec. I, methods of analysis other than
photoelastic stress field measurements are possible with other

conventional methods, such as PIV and MTV. The spatial
resolutions of these conventional methods, however, are not
fully detailed full-field measurements, and in practice they
offer ten-times-poorer spatial resolution than that of the im-
age resolution, and details of small-scale structures and the
large velocity gradients generated in turbulent flows are not
resolved. To get around this limitation in spatial resolution,
the use of pixel-wise information could be useful, and photoe-
lastic analysis offers advantages for achieving this and would
make it possible to quantify internal stress distributions also
in irregularly shaped solid materials.

The present investigation attempts to verify the validity
of the stress-optic law in rheoscopic fluid flows by using
laboratory experiments to achieve results similar to those for
solid materials immediately above.

III. FLOW VISUALIZATION IN SPIN-UP FLUID FLOW

A. Spin-up experiment

As a first step in evaluating the validity of the stress-optic
law in 1D or 2D fluid flows, spin-up flow was chosen as
the measurement target. Spin-up flows have a long history of
investigations (e.g., [24–27]), and here the experiments ensure
axisymmetry, and unidirectionality in the azimuthal direction,
also during the transient state. Thus the limitations of steady
flow measurements can be overcome.

In the present study, two series of spin-up experiments
were conducted by confining two different fluids in a small
cylindrical vessel with depth d = 20 mm and inner diam-
eter D = 80 mm. One is a color visualization experiment
using the rheoscopic fluid diluted with the same volume of
distilled water; the physical properties of the diluted rheo-
scopic fluid are not different from water, because the fluid
is composed of deionized water with a tiny amount of ad-
ditives. The second series is a velocity field measurement
using distilled water containing small amounts of porous
resin particles (mean diameter dp = 90 μm, mean density
ρp = 1.02 × 103 kg/m3, HP20SS, Mitsubishi Chemical Co.)
as tracers for PIV. Schematic diagrams of the experimen-
tal setups are shown in Fig. 5. The image acquisition for
both was made with a digital camera (D3400, Nikon) with
a lens (Nikkor 35 mm, Nikon) fixed above the fluid vessel
and recording color images at 25 f.p.s. with shutter speed
of 1/500 s, aperture of f/2.8, and a spatial resolution of 0.1
mm/pixel. As discussed in Sec. II A, the expected spatial
resolution of the flow-induced birefringence is O(10 μm),
each pixel represents cumulative values within the area, and
pixel-wise information can be used in this camera configura-
tion. For the color visualization, the fluid container with the
rheoscopic fluid was sandwiched between two orthogonally
arranged linear polarizers placed on an LED white back-
light source (maximum brightness 21 000 cd/m2, HDSBPA,
Hayashi-Repic). Please note that the selection of the white
light source does not affect the outline of the analysis pro-
cedure and discussions to be presented in this study. Here, the
polarization axes of the polarizer and the analyzer are parallel
to the y and x axes of the image, respectively. For the velocity
measurements, the image acquisition was conducted at the
same camera settings by placing the container on a stage,
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FIG. 5. Schematic diagrams of the experimental setup for
(a) color visualization using the rheoscopic fluid and (b) velocity field
measurement (PIV) using water: (1) a digital camera, (2) a cylin-
drical fluid container, (3) turntable with two stages (1 m diameter),
and (4) a motor for rotation are used in common for this facility;
(5) two orthogonally arranged linear polarization filters and (6) a
white backlight source used only for (a) in the color visualization,
and (7) a 2-W green laser sheet used only for (b) with the velocity
field measurements.

and a horizontal cross section at z = 0.5d was illuminated
by a 2-W green laser sheet (2 mm in thickness, MGL-F-532,
Changchun New Industries Optoelectronics Technology Co.,

Ltd.). As suggested in Fig. 5, all of the equipment was placed
on the turntable with two stainless steel stages (1 m diameter)
and rotated together. The observed recorded images are taken
in the rotating system, and the center of the cylindrical vessel
and the camera axis coincided with the rotational axis of the
turntable.

The turntable can rotate with a set angular velocities ω

in the range of 0.0–5.0 rad/s, and the experiments used six
angular velocities: ω = 0.126, 0.179, 0.314, 1.26, 1.79, and
3.14 rad/s. As a controlling parameter, the Ekman number Ek
is defined as

Ek = ν

2ωd2
, (5)

where ν is the kinematic viscosity of the fluid. With the ω

values set in the present study, Ek ranged from 4.0 × 10−4

to 1.0 × 10−2. Further, the typical spin-up time, the Ekman
timescale tE [28], can be estimated as

tE = d√
νω

(6)

and distributes in the range of 11.3 s � tE � 56.3 s here. Ro-
tation in the counterclockwise direction was imposed on a
quiescent fluid, and the camera recorded images during 60 s of
the spin-up toward rigid-body rotation, where the fluid rotates

FIG. 6. Snapshots recorded as color images of the rheoscopic fluid during spin-up: (a) Ek = 1.0 × 10−2 (ω = 0.126 rad/s), (b) 7.0 × 10−3

(0.179 rad/s), (c) 4.0 × 10−3 (0.314 rad/s), (d) 1.0 × 10−3 (1.26 rad/s), (e) 7.0 × 10−4 (1.79 rad/s), and (f) 4.0 × 10−4 (3.14 rad/s). Time
elapses from left to right.
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FIG. 7. Velocity fields at z = 0.5d measured by PIV during the spin-up of water: (a) Ek = 1.0 × 10−2 (ω = 0.126 rad/s), (b) 7.0 × 10−3

(0.179 rad/s), (c) 4.0 × 10−3 (0.314 rad/s), (d) 1.0 × 10−3 (1.26 rad/s), (e) 7.0 × 10−4 (1.79 rad/s), and (f) 4.0 × 10−4 (3.14 rad/s). Time
elapses from left to right. The grayscale indicates the magnitude of the in-plane velocity |u| = √

u2 + v2 obtained in the rotating frame.
Velocity vectors are plotted as a radial profile with arbitrary scaling for visibility because of azimuthally symmetric flow.

together with the rotating vessel and the angular velocity
becomes vθ = r�.

B. Color visualization utilizing the rheoscopic fluid

Color snapshots recorded with the rotational system during
spin-up of the rheoscopic fluid are shown in Fig. 6. The time
t = 0 s corresponds to the rest states and are shown at the left
end of each of the (a)–(f) cases in Fig. 6. At the stationary
state (t = 0 s), no color emerges in the images in any of the
experiments. This is because the white light emitted from
the backlight cannot penetrate the orthogonally arranged two
polarization filters. This condition shows that without shear
in the flow, the flake particles align randomly and there is no
flow-induced birefringence. Coloration appears from the side-
wall (at t = 1 s) and propagates gradually toward the center of
the cylinder, and multiple colors distribute with the increase
in ω. With time, the coloration darkens, from t = 12 s, and
at t = 60 s the visualized images are restored to the original
dark images. In the present experimental system, the camera
was rotating with the fluid container, and no fluid deformation
(shear) can be observed with the camera when the flow has
reached the rigid-body rotation. This is the reason why the col-
oration completely disappears at t = 60 s. Considering these
observed behaviors suggests the conclusion that the coloration

observed in Fig. 6 originates in the flow-induced birefringence
as a result of the rheoscopic fluid flows.

C. Velocity field measurements by PIV

Horizontal velocity fields measured by PIV are shown in
Fig. 7 to compare with the color visualizations (Fig. 6). The
spin-up flows are fully reproducible, and the color images in
Figs. 6 and 7 can be directly compared at the same exact
times. The grayscale in Fig. 7 shows the magnitude of the
horizontal velocity |u| = √

u2 + v2 normalized by the max-
imum azimuthal velocity at the sidewall Uwall = Dω/2, and
it darkens with increases in the magnitude of the relative
velocity. Stationary, at t = 0 s the left of the (a)–(f) panels
in Fig. 7, where the figure is uniformly white, shows a zero
velocity throughout the vessel. During the time when the col-
oration emerges in Fig. 6 (t = 1 − 30 s), there is a momentum
transfer from the sidewalls together with the development of
the velocity fields. During this period, larger velocity mag-
nitudes are shown by the greater variety in the coloration.
After the flow states reach rigid-body rotation, the velocity
distributions in Fig. 7 are uniformly white again, because the
camera rotates together with the fluid container. Considering
the direction of the velocity vectors, the flow is regarded as
axisymmetric and unidirectional in the azimuthal direction
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during spin-up. Comparing Figs. 6 and 7, the coloration of the
flow-induced birefringence and the flow field may be assumed
to be closely related to each other. Hence we can simplify the
spin-up flow as a shear-induced, axisymmetric unidirectional
flow for considering the flow-induced birefringence hereafter.

IV. EVALUATION OF THE STRESS-OPTIC
LAW IN NEWTONIAN FLUIDS

For a flow during spin-up that is axisymmetric and unidi-
rectional in the azimuthal direction, the only velocity gradient
is that in the radial direction r in polar coordinates (r-θ
domain). This allows the principal stresses τ1 and τ2 to be
disregarded, and the stress-optic law [Eq. (1)] is rewritten as

τθ (r, t ) = 1

2C
�n′(r, t ) sin 2χ (r, t ), (7)

according to the findings in [29,30]. In Eq. (7), τθ is the
azimuthal shear stress and �n′ and χ become functions of
only r and t . Further, the photoelastic coefficient C is a phys-
ical property of the rheoscopic fluid and can be regarded as
constant if the flake particles distribute uniformly in the fluid.
Assuming that the stress-optic law [Eq. (7)] is established
in the rheoscopic fluid, the combination of �n′ and χ must
be uniquely related to τθ , and the following will attempt to
explain details of the relation that ensure the establishment of
the stress-optic law.

A. Wave-number analysis for quantification of the orientation
angle χ

The color chart (Fig. 4) involves two variables χ and �n′,
and at least one of these two variables needs to be determined
in advance to quantify the other. Considering the axisymmetry
of the spin-up flow, χ would be elucidated. The dark crosses,
representing isogyres [11,31], are always observed during the
spin-up (see Fig. 6), and four dark regions appear along the
azimuthal direction at any radial position r where the fluid is
deformed. The azimuthal positions of the dark regions corre-
spond to the position where χ coincides with the optical axis
of the polarizer or the analyzer (the second polarizer), i.e., the
extinction angles with χ = mπ/2. The presence of the dark
crosses is consistent with Eq. (4), and thus χ can be evaluated
by the inclined angle of the crosses to the x and y coordinates.

There is also a dark area at the center of the fluid container
in Fig. 6, as there is no deformation of the fluid here; the
spin-up flow does not reach this area and it remains stagnant,
�n′ = 0. Expressed differently, the appearance of the isogyres
at the radial position is evidence that the fluid deformation
due to the spin-up propagates from the wall to the radial po-
sition. To distinguish the extinction angles (�n′ > 0 and χ =
mπ/2, m ∈ [1, 4]) from the nondeformed regions (�n′ = 0),
the azimuthal profiles of the brightness value Y would enable
identification of the inclination of the dark crosses from in the
system coordinate and can be simply calculated as

Y = R + G + B

3
, (8)

where R, G, and B are three brightness values of RGB (red,
green, and blue) recorded for each pixel in a 24-bit format
(8 bits for each color). An example, extracting the azimuthal

FIG. 8. Plot of azimuthal profiles of brightness Y : (a) original
image at t = 5 s in the case of Ek = 4.0 × 10−4, and (b) brightness
profiles Y in θ at different radial positions (0.1, 0.3, 0.5, 0.7, and
0.9D). Each profile corresponds to the dashed circles drawn on
(a) with the same color.

profiles of Y from an instantaneous image of t = 5 s with
Ek = 4.0 × 10−4, is shown in Fig. 8(a). As indicated by the
dashed lines in Fig. 8(a), Y values are extracted along the θ

direction at each r position, and the corresponding Y profiles
are plotted in Fig. 8(b). The Y profiles at r � 0.25D appear in
four periodic cycles (π/2) along the θ direction, while there
is no periodicity in Y at r � 0.15D.

The azimuthal locations of the four peaks of the Y pro-
files shown in Fig. 8(b) are slightly different at the different
radial positions; the profile at r = 0.25D is shifted towards
higher angles (the +θ direction) from those at r = 0.35D and
0.45D. This suggests that χ is a function of only r, i.e., it
can be represented by χ (r), because the flow is regarded as
axisymmetric. To determine χ (r), a discrete Fourier transform
(DFT) was applied to the azimuthal profiles of Y (r, θ ). An
azimuthally extended brightness image of Y (r, θ ) compiled
from the image shown in Fig. 8(a) is shown in Fig. 9(a), and
the corresponding power spectra Ŷ (r, kθ ) are also shown in

FIG. 9. (a) Pseudo-grayscale (brightness Y ) image extended on θ

and (b) power of brightness |Ŷ | in wave-number space kθ . Please note
that the wave-number kθ is shown only in a range of 0 � kθ � 16
for visibility. The color contour of (a) is in 0 � Y � 255, and (b) is
|Ŷ | in logarithmic scale and normalized with the maximum and
the minimum values. The displayed example corresponds to Fig. 8
(Ek = 4.0 × 10−4 at t = 5 s). Purple dashed line is the effective
radius at this moment reff = 0.245D (19.6 mm).
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Fig. 9. The vertical axes of the graphs are the radial posi-
tion r and the horizontal axis of Fig. 9(a) is θ , and that of
Fig. 9(b) is the azimuthal wave number kθ . There are four
brightness peaks at active regions, where the radial positions
r � D/4 present fluid deformations, in Fig. 9(a). The distinct
peaks in the spectra appear at the wave number of kθ = 4,
excluding the direct current component kθ = 0 in Fig. 9(b).
This makes it possible to determine the effective radius reff

separating the nondeformed region and the active region using
the maximum peak wave number. The figure shows that if the
maximum peak wave number is at kθ = 4, the corresponding
radial position is active by the shear-induced fluid flow. The
minimum radial position r showing a distinct wave number
peak at kθ = 4 is defined as the effective radius reff dividing
the nondeformed (r < reff ) and active regions (r � reff ), and
is shown by the purple dashed line in Fig. 9.

Here Y , corresponding to the intensity I , are at the maxima
and minima at which χ = (2m − 1)π/4 and χ = mπ/2 with
arbitrary integers of m ∈ [1, 4]. The brightest angle θ = φm(r)
on the image can be established by the arguments of the
complex number Ŷ , �[Ŷ (r, kθ )] and 	[Ŷ (r, kθ )], with a fixed
wave number kθ = 4, and expressed as

φm(r) = mπ

2
− 1

4
tan−1

{ 	[Ŷ (r, kθ = 4)]

�[Ŷ (r, kθ = 4)]

}
. (9)

The minimum φm is placed as φ1 and is in the first quadrant
(0 � θ < π/2). The darkest angle φ′

m(r), corresponding to the
isogyres, can be calculated as φ′

m(r) = φm(r) + π/4.
The χ is the angle relative to the polarization axes of the

linear polarizers (x and y axes corresponding to θ = mπ/2),
and it is defined in a range of 0 � χ � π/4. Its general form
is written as

χm(r, θ ) = f [r,�m(r, θ )], (10)

where f is a function expressing the spatial distribution of
χ . The �m is the angle from the darkest position φ′

m and is
defined as

�m(r, θ ) = θ − φ′
m(r). (11)

Here �m is a cyclic value and is defined in the range of 0 �
�m < π/2. In an axisymmetric flow, the linear change of χm

may be postulated along the θ directions at any r position.
Thus χm can be expressed as

χm(r, θ ) = π

4
− 1

2
�m(r, θ ), (12)

and the spatial distribution of the orientation angle χ (r, θ ) is
obtained.

An example determining the spatial distribution of χ is
shown in Fig. 10. Figure 10(a) is the original image taken at
t = 5 s, and the processed result is presented in Fig. 10(b).
In Fig. 10(b) the border of the central nondeformed and the
active regions at r = reff are indicated as the purple circle.
The brightest positions φm(r) and the darkest positions φ′

m(r)
are drawn as red and blue solid lines, and the color contour
shows the orientation angle χ (r, θ ) ∈ [0, π/4]. The spatial
distribution of χ shown in Fig. 10(b) matches well with the
brightness pattern of the original image shown in Fig. 10(a).

Incorporating all the results in this section, in the case of an
axisymmetric flow, a determination of the spatial distribution

FIG. 10. An example quantifying χ with Ek = 4.0 × 10−4 at
t = 5 s (same conditions as those of Figs. 8 and 9): (a) original
color image and (b) processed result showing the effective radius reff

(purple circle), the brightest positions φm(r) (red lines), the darkest
positions φ′

m(r) (blue lines), and the orientation angle distribution
χ (r, θ ) (color contours), respectively.

of χ becomes possible from a single image with satisfying
both the limitation of 2D flow and requirements of temporal
and spatial resolutions stated in Sec. II. That is, χ (r, t ) is now
accessible in Eq. (7).

B. Association of color with shear stress τθ

The flow-induced birefringence �n′ remains as an un-
known variable in Eq. (7). To ensure the applicability if the
stress-optic law, however, �n′ need not be obtained because
χ is predetermined in Sec. IV A. At the brightest positions
(θ = φm), the reduced stress-optic law in Eq. (7) can be sim-
plified further as

τθ (r, t ) = 1

2C
�n′(r, t ), (13)

as for θ = φm, “sin 2χ” in Eq. (7) is unity with χ = mπ/4. In
addition to the reduced stress-optic law, the transmitted light
intensity in Eq. (4) can also be simplified at θ = φm as

I = I0 sin2 π�n′d
λ

. (14)

Substituting Eq. (13) into Eq. (14), we obtain

I = I0 sin2 2πCdτθ

λ
. (15)

Here �n′ disappears from the equations. As it is clear in
Eq. (15), as long as χ is predetermined, I and τθ relate
uniquely to each other, and it is possible to establish a unique
relation between I (or RGB values on digital images) and τθ ,
which is evidence ensuring that the stress-optic law holds in
the rheoscopic fluid.

The coloration for χ = mπ/4 is the most vivid, and the
corresponding RGB values change a lot compared to other
χ conditions as shown in Fig. 4. Figure 11 shows time-line
images compiled by extracting RGB values of the bright-
est position θ = φ1(r) of the rheoscopic fluid visualizations
(Fig. 6). The horizontal axis depicts r and the vertical axis
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FIG. 11. Time-line images at the brightest angle [θ = φ1(r)]
compiled from the snapshots (Fig. 6): (a) Ek = 1.0 × 10−2

(ω = 0.126 rad/s), (b) 7.0 × 10−3 (0.179 rad/s), (c) 4.0 × 10−3

(0.314 rad/s), (d) 1.0 × 10−3 (1.26 rad/s), (e) 7.0 × 10−4

(1.79 rad/s), and (f) 4.0 × 10−4 (3.14 rad/s). Time elapses
from bottom to top in 0 � t � 30 s. The no-deformation region
(r < reff ) appears as black. The coloration qualitatively corresponds
to the birefringence of �n′ expressed by the color chart at χ = mπ/4
displayed at the bottom of the panels.

shows t . In Fig. 11, the nondeformed regions r < reff are dis-
played as black, and the active regions (r � reff ) show colors
extracted from the original images. Simply, the wall-to-center
progression of reff may be described by the development of the
sidewall viscous layer δν ∝ √

νt , and D/2 − reff corresponds
to δν . The resultant time-line images qualitatively support this,
as shown by the parabolic shapes that can be seen in each
panel of Fig. 11.

Using the velocity fields measured by PIV, τθ can be esti-
mated. The velocity vector in Cartesian coordinates u(x, y) =
[u, v] can be converted to that in the polar coordinates,
u(r, θ ) = [vr, vθ ], as{

vr = u cos θ + v sin θ

vθ = −u sin θ + v cos θ
, (16)

by placing the origin at the axis of rotation (center of the
cylindrical vessel). In an axisymmetric flow, vr is negligible
compared to vθ , as apparent from Fig. 7, and thus τθ is written
as

τθ (r, t ) = μ
[∂〈vθ (r, t )〉θ

∂r
− 〈vθ (r, t )〉θ

r

]
. (17)

Here the azimuthal velocity 〈vθ (r, t )〉θ is the averaged value
of vθ along the θ direction at a specific radius derived as

〈vθ (r, t )〉θ = 1

2π

∫ 2π

0
vθ (r, θ, t )dθ. (18)

FIG. 12. Time-line images (from bottom to top, 0 � t � 30 s)
of the azimuthal shear stress τθ : (a) Ek = 1.0 × 10−2

(ω = 0.126 rad/s), (b) 7.0 × 10−3 (0.179 rad/s), (c) 4.0 × 10−3

(0.314 rad/s), (d) 1.0 × 10−3 (1.26 rad/s), (e) 7.0 × 10−4

(1.79 rad/s), and (f) 4.0 × 10−4 (3.14 rad/s). Color contours
of shear stress τθ are scaled by μω.

This manipulation using the azimuthal average is possible in
an axisymmetric flow and minimizes measurement noise in
the calculation of the derivative in Eq. (17). The estimated
shear stress fields extended on the time axes are shown in
Fig. 12. Here, τθ of each case are scaled by μω to enhance
visibility. Commonly, intense shear stress regions indicated
as dark colors gradually propagate to the center of the fluid
container. The faster rotation (smaller Ek) cases show faster
propagation of the shear stress. This is apparent in the Ekman
timescale tE , which is proportional to ω−1/2, and is easily un-
derstood from the development of the sidewall viscous layer
as δν ∼ √

νt . The active regions shown in Fig. 11 correspond
well to the high-τθ regions in Fig. 12.

To compare the recorded color information with the theo-
retical color chart shown in Fig. 4, the colors in Fig. 11(f) are
projected into the α-β domain (the polar chromaticity coor-
dinate), as shown in Fig. 13. Here the α-β domain is a color
expression method obtained from RGB values by projecting
the RGB Cartesian cube to a 2D domain of α-β, and α and β

are respectively derived as

α = 1
2 (2R − G − B) (19)

and

β =
√

3

2
(G − B). (20)

In Fig. 13, the scatter plot is colored with the actually recorded
colors shown in Fig. 11(f). Distribution of the plotted data
forms a stretched elliptical shape rising to the right, regard-
less of brightness or vividness. The solid line, swirling from
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FIG. 13. Plot of the recorded and the theoretical color values
compared in the α-β domain. Solid line shows the theoretical val-
ues accessible from the color chart in a range from �n′ = 0 to
5.0 × 10−5. Hexagonal symbols are plotted every 5.0 × 10−6 from
�n′ = 0 on the line and colored in the same color to the color chart.

(α, β ) = (0, 0) outward with increases in �n′, shows the the-
oretical values accessible from the color chart in Fig. 4(b).
The hexagonal symbols are plotted at every 5.0 × 10−6 from
�n′ = 0 and colored in the same color to the color chart.
The elliptical distributions are similar to each other, while
there is a considerable discrepancy which may originate in
the nonideal optical environment. However, it is possible to
qualitatively consider the coloration of the rheoscopic fluid as
the interference color from the plot in Fig. 13.

The spin-up is fully reproducible, and the spatial and tem-
poral distributions of the RGB values in Fig. 11 and τθ in
Fig. 12 can be compared. The correspondence between the τθ

and color values with the case of Ek = 4.0 × 10−4 is shown
in Fig. 14 as the RGB domain of (a), the RB domain of (b), the
BG domain of (c), and the RG domain of (d). Here the time-
line images of the four brightest angles (θ = φ1, φ2, φ3, and
φ4) are averaged to reduce spiky noises originating from the
ISO sensitivity of the camera. The spatiotemporal distribution
of τθ is interpolated in the r direction using the third-order
spline interpolation to fit the number of data points of τθ

with that of the pixel RGB values. Conventionally, the color
information is expressed as projected values such as α-β or
hue (the angular component in the α-β domain) to simplify the
manipulations of the color information, reducing the original
information. In Figs. 13 and 14(b)–14(d), however, the unique
relation between τθ and the color values cannot be simply
discriminated in any of the 2D color domains. In the three-
dimensional domain of RGB shown in Fig. 14(a), τθ can be
identified uniquely, even though the deviations in the color
increase with the increase in the τθ . The deviations might be
unique in the present spin-up experiment, which induced high-
shear-stress regions at the sidewall corresponding to the edge
of the visualized images. Overall, τθ is successfully associated
with the RGB values without reducing the color information,
even with such deviations. In conclusion, it is verified that
the stress-optic law can be considered to be established in the
rheoscopic fluid, as Eq. (15) is shown to hold here.

FIG. 14. The τθ and RGB values plotted in different domains:
(a) RGB domain, (b) RB domain, (c) BG domain, and (d) RG
domain. Plots are colored with τθ normalized by μω. Black arrows
in (a) guide the increase in τθ .

As the validity of the stress-optic law in the rheoscopic
fluid is established, the magnitude of the photoelastic coef-
ficient |C| of the rheoscopic fluid can be estimated by using
representative values of �n′ and τθ . In Fig. 11(f), the max-
imum value of �n′ is approximated as �n′

max ∼ 4 × 10−5

from the coloration. Similarly, the maximum value of τθ takes
τθ max ∼ 5 × 10−3 Pa in Fig. 12(f). Using Eq. (13), |C| is esti-
mated as 4 × 10−3 = O(10−3 Pa−1). In comparison, the order
of |C| was measured as O(10−7 Pa−1) in wormlike micellar
solutions [29,30]. For the solid materials, the |C| values are
frequently expressed in the unit of Brewster (= 10−12 Pa−1).
Considering these, the flow-induced birefringence in the rheo-
scopic fluid is very sensitive to stress and may display colors
even with a weak stress field imposed.

V. SUMMARY AND OUTLOOK

To establish the stress-optic law as being held in Newtonian
fluids, we investigated a rheoscopic fluid showing the flow-
induced birefringence in a direct stress field measurement
of fluid flows. Two types of spin-up experiments ensuring
2D flows were conducted to fulfill the requirements of high
temporal and spatial resolutions for the photoelastic analysis
in fluid flows. One experiment was a color visualization using
the rheoscopic fluid, and another was velocity field measure-
ments by PIV using water. The wave-number analysis allowed
a successful quantification of the spatial distribution of the
orientation angle χ from an instantaneous color image by
the results of the axisymmetric flow measurements. Subse-
quent direct comparisons of the RGB values from the color
visualization and the τθ estimated from the velocity fields
measured by PIV elucidated a unique relation between these
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two parameters, verifying the validity of the stress-optic law
in the fluid.

Detailed discussion of the quantification method of the
stress field is not attempted here, because the aim of the
present study set out to ensure the validity of the stress-optic
law with the rheoscopic fluid. To utilize the stress-optic law
in a straightforward way, �n′ is required to be determined in
addition to χ . There have been reports of a determination of
�n′ elsewhere (e.g., [7,8,32]). To fulfill the requirements men-
tioned in Sec. II D, the so-called RGB photoelasticity (e.g.,
[32–34]) and the colorimetry-based retardation measurement
method (e.g., [35]) would seem to offer plausible solutions
because they use a single color camera and relatively simple
optical settings. These methods measure �n′ or � from the
color information, and the stress-optic law can be utilized if
the photoelastic coefficient C is predetermined. As an alterna-
tive, direct association between stress values and colors would
offer a plausible way to quantify the stress fields by perform-
ing a reference (calibration) experiment, because �n′ (or C)
is not necessarily required in practice as shown by Eq. (15).

The present case successfully identified τθ by using all the
RGB values in the 3D domain. To solve this kind of multiple
input regression problems, an artificial neural network (ANN)
would be a practical solution. The application of ANN to a
similar color fluid measurement as the one reported here can
be seen in liquid crystal thermometry (e.g., [36]). Although
the applicable range of the stress field measurements needs
more consideration in terms of the flow intensity, incorporat-
ing these various methods, temporally and spatially resolved
stress field measurements in Newtonian fluids utilizing the
stress-optic law, would become possible in future research.
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