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From magnetoelectric response to optical activity
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We apply a microscopic theory of polarization and magnetization to crystalline insulators at zero temperature
and consider the orbital electronic contribution of the linear response to spatially varying, time-dependent
electromagnetic fields. The charge and current density expectation values generally depend on both the mi-
croscopic polarization and magnetization fields, and on the microscopic free charge and current densities. But
contributions from the latter vanish in linear response for the class of insulators we consider. Thus we need only
consider the former, which can be decomposed into “site” polarization and magnetization fields, from which
“site multipole moments” can be constructed. Macroscopic polarization and magnetization fields follow, and we
identify the relevant contributions to them; for electromagnetic fields varying little over a lattice constant these
are the electric and magnetic dipole moments per unit volume, and the electric quadrupole moment per unit
volume. A description of optical activity and related magneto-optical phenomena follows from the response of
these macroscopic quantities to the electromagnetic field and, while in this paper we work within the independent
particle and frozen-ion approximations, both optical rotary dispersion and circular dichroism can be described
with this strategy. Earlier expressions describing the magnetoelectric effect are recovered as the zero frequency
limit of our more general equations. Since our site quantities are introduced with the use of Wannier functions,
the site multipole moments and their macroscopic analogs are generally gauge dependent. However, the resulting
macroscopic charge and current densities, together with the optical effects to which they lead, are gauge invariant,
as would be physically expected.

DOI: 10.1103/PhysRevResearch.2.043110

I. INTRODUCTION

In a material that is optically active the plane of polar-
ization of light rotates as the light propagates through the
medium; the rotation is associated with a difference in the
phase velocities of right- and left-handed circularly polarized
light. The frequency dependence of the rotation is called
optical rotary dispersion, and the associated difference in
absorption of light of the different circular polarizations is
called circular dichroism.

The study of optical activity has a long history. Pasteur
was the first to associate it with structural dissymmetry [1],
and as early as 1928 its first quantum mechanical description
was given by Rosenfeld [2]. This phenomenon is most often
observed in liquid solutions. The usual solvent, water, is not
itself optically active, but the solution is optically active if
the symmetry group characterizing the structure of the solute
molecules contains no improper rotations. Early theoretical
treatments involved models of solute molecules based on at
least two coupled oscillators at different sites in each molecule
[3], and it was natural to associate optical activity with the
variation of the electromagnetic field across the molecule.
However, an alternate approach [4] is to consider the elec-
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tric and magnetic multipole moments of each molecule as a
whole, and to describe their response to the electromagnetic
field and its derivatives at a nominal center of the molecule.
Optical activity is then typically associated with the response
of the electric dipole moment to both the magnetic field and
the symmetrized derivative of the electric field, of the mag-
netic dipole moment to the electric field, and of the electric
quadrupole moment to the electric field. For studies of so-
lutions the last contribution is not relevant in practice, since
it vanishes when averaged over all orientations of the solute
molecules [5].

Optical activity can also occur in crystalline materials [6]
with α-quartz perhaps the most familiar example. It can be
described with the aid of an effective conductivity tensor
[7], σ il (q, ω), that depends on both the frequency ω and
the wave vector q of the electromagnetic field. This tensor
relates the linear response of the macroscopic current den-
sity J (1)(q, ω) to the macroscopic electric field E(q, ω) that
induces it,

Ji(1)(q, ω) = σ il (q, ω)El (q, ω), (1)

with superscript indices denoting Cartesian components,
which are summed over when repeated. An expansion
for small q, σ il (q, ω) = σ il (ω) + σ il j (ω)q j + . . ., where
σ il (ω) ≡ σ il (0, ω) and σ il j (ω) ≡ (∂σ il (q, ω)/∂q j )q=0,
gives

Ji(1)(q, ω) = σ il (ω)El (q, ω) + σ il j (ω)El (q, ω)q j + . . . .

(2)

The first term on the right-hand side, when Fourier trans-
formed to position space, gives the usual long-wavelength
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response, Ji(E )(x, ω) = σ il (ω)El (x, ω). Using Faraday’s law,
the second term on the right can be rewritten in terms of the
magnetic field and the symmetrized spatial derivative of the
electric field, and if σ il j (ω) is nonvanishing, then the medium
is optically active. From this perspective, optical activity can
arise as one of the consequences of “spatial dispersion” [8],
when a response tensor such as σ il (q, ω) depends on q as well
as ω. If time-reversal symmetry holds before the medium is
subjected to the electromagnetic field, then the optical activ-
ity has been called natural [7]. If time-reversal symmetry is
broken, then there are generally additional contributions to
σ il j (ω), and as well a rotation of the plane of polarization of
light can result from an asymmetric component of σ il (ω), as
σ il (ω) �= σ li(ω) in general. This latter phenomenon can be
thought of as an “internal” Faraday effect.

Yet such a general treatment of linear optical properties of
media based on σ il (q, ω) has its drawbacks. First, when using
the minimal coupling Hamiltonian and directly calculating the
expectation value of the electronic current density operator,
“artificial divergences” can arise when the number of bands
involved in the calculation is necessarily truncated; sum rules
must be employed before such a truncation is performed to
avoid these [9,10]. Second, although one can attribute dif-
ferent constituents of σ il j (ω) to the purported response of
different multipole moments [7], those multipole moments,
and the physical insight they carry, do not directly arise in the
calculation. And third, the bulk relation (1) and its expansion
(2) give little direction on how to even approximately treat the
subtleties that would arise if one considered a finite system
and had to be concerned with effects at interfaces.

A strategy that is more physical is certainly available for
crystalline systems in the “molecular crystal limit.” In this
limit we imagine molecules, here with no improper rotations
in their symmetry group, positioned at lattice sites with a
lattice constant sufficiently large that electrons can be con-
sidered essentially “bound” to one molecule or another, but
still much less than the wavelength of light. Adopting the ap-
proach of molecular physics [11], multipole moments can be
associated with each molecule and from these one can intro-
duce macroscopic fields Pi

mol(x, t ), Mi
mol(x, t ), and Q

i j
mol(x, t ),

describing respectively the electric dipole, the magnetic
dipole, and the electric quadrupole moment per unit volume of
the “molecular crystal.” The macroscopic charge and current
densities are then given by

�mol(x, t ) = −∇ · Pmol(x, t ),

Jmol(x, t ) = ∂Pmol(x, t )

∂t
+ c∇ × Mmol(x, t ), (3)

where the polarization and magnetization fields are given by

Pi
mol(x, t ) = Pi

mol(x, t ) − ∂Q
i j
mol(x, t )

∂x j
+ . . . ,

Mi
mol(x, t ) = Mi

mol(x, t ) + . . . , (4)

with “. . .” indicating contributions from higher-order multi-
pole moments. Neglecting local field corrections, from the
response tensors associated with the multipole moments of
the molecules themselves one can then identify bulk linear
response tensors χ̊ il

E (ω), γ̊ i jl (ω), β̊ il
P(ω), β̊ il

M(ω), and χ̊
i jl
Q

(ω)

that relate the multipole moments to the macroscopic electric
and magnetic fields,

Pi
mol(x, t ) = P

i(0)
mol +

∑
ω

e−iωt
(
χ̊ il

E (ω)El (x, ω)

+ γ̊ i jl (ω)F jl (x, ω) + β̊ il
P(ω)Bl (x, ω) + . . .

)
,

Q
i j
mol(x, t ) = Q

i j(0)
mol +

∑
ω

e−iωt
(
χ̊

i jl
Q

(ω)El (x, ω) + . . .
)
,

Mi
mol(x, t ) = M

i(0)
mol +

∑
ω

e−iωt
(
β̊ il
M(ω)El (x, ω) + . . .

)
, (5)

where the superscript (0) identifies the contribution to a net
quantity from the unperturbed system, “. . .” here indicate
contributions that are higher order in the macroscopic electric
and magnetic fields and their derivatives, including the linear
response of Mmol to B,

F jl (x, ω) ≡ 1

2

[
∂E j (x, ω)

∂xl
+ ∂El (x, ω)

∂x j

]
is the symmetrized (spatial) derivative of the macroscopic
electric field evaluated at x, and the circle accents identify that
these linear response tensors are valid in the molecular crystal
limit.

Using (5) and (4) in (3), transforming to wave-vector space,
and comparing with (2), we can construct σ

il j
mol(ω) in terms

of γ̊ i jl (ω), β̊ il
P(ω), β̊ il

M(ω), and χ̊
i jl
Q

(ω). Such a calculation
based on molecular response, done in terms of the multi-
pole Hamiltonian familiar in molecular physics [12], does
not suffer from the artificial divergences mentioned above;
thus the resulting expression for σ

il j
mol(ω) is well behaved.

In addition, if time-reversal symmetry is broken before the
molecules are subjected to the electromagnetic field, then
χ̊ il

E (ω) �= χ̊ li
E (ω), which gives σ il

mol(ω) �= σ li
mol(ω), leading to

another source of the rotation of the plane of polarization of
light as it propagates through the molecular crystal. Here the
multipole moments of the molecules explicitly appear, and
with the underlying macroscopic fields Pi

mol(x, t ), Mi
mol(x, t ),

and Q
i j
mol(x, t ) in hand one could begin to consider electrody-

namics in the presence of interfaces.
But now what of more realistic models of crystalline ma-

terials, wherein the molecular crystal limit is not satisfied?
Although there are no centers with which particular electrons
are associated, in the “modern theory of polarization and mag-
netization” one can still define electric and magnetic dipole
moments [13–15], albeit indirectly, through the response of
the electronic charge and current densities to external elec-
tromagnetic fields. This approach is generally focused on the
limit of static applied fields to insulators, the inclusion of
higher-order moments in this framework is work in progress
[16,17], and its generalization to optical fields is not obvious.

We recently introduced [18,19] a general approach to cal-
culating both the static and the optical perturbative response
of a medium based on the introduction of microscopic po-
larization and magnetization fields, p(x, t ) and m(x, t ). The
usual macroscopic fields P(x, t ) and M(x, t ) are defined as
the spatial averages of the corresponding microscopic fields.
In general there are also microscopic free charge and cur-
rent densities, the spatial averages of which are identified as
the macroscopic free charge and current densities. However,
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at zero temperature, for the class of insulating crystals to
which we restrict ourselves in this paper—which includes
ordinary insulators [20] and Z2 topological insulators—those
free charge and current densities vanish in linear response, and
the full microscopic response, to first order in the electromag-
netic field, is captured by p(x, t ) and m(x, t ).

With the introduction of Wannier functions, the micro-
scopic fields p(x, t ) and m(x, t ) can be decomposed into
constituents associated with each lattice site, and these “site”
contributions can be expanded in terms of a series of “site
multipole moments.” The spatial average of these microscopic
fields then leads to an expansion of the macroscopic polar-
ization and magnetization fields in the form (4), even if the
molecular crystal limit does not hold. Further, the response
of the multipole moments associated with each lattice site
can be calculated in terms of the electromagnetic field and
its derivatives evaluated at that site and leads naturally to a
description of the linear response that follows the form (5),
again even though the molecular crystal limit does not hold.
As well, the artificial divergences that can plague standard
minimal coupling calculations are absent.

In this approach the site contributions to the electronic
component of the microscopic polarization and magnetiza-
tion fields, and thus to their multipole moments, depend on
a modified form of the Wannier functions resulting from a
generalized Peierls substitution [18]. There is also a well-
known “gauge freedom” in choosing the original Wannier
functions from which the modified functions are constructed,
for they can be altered by adjusting the k-dependent unitary
transformation relating them to the Bloch energy eigenstates.
In general this leads to a “gauge dependence” of the site
multipole moments, both initially and in their response to
the electromagnetic field. And while exponentially localized
Wannier functions (ELWFs) would of course be a natural
choice for the original Wannier functions, we show that what-
ever choice is made the resulting electronic charge and current
densities predicted are gauge invariant [21], as would be phys-
ically expected; the expressions we extract for σ il (ω) and
σ il j (ω) are thus gauge invariant. Even within the independent
particle and frozen-ion approximations, which we adopt in
this work, we believe this is the first derivation of σ il j (ω) for
an insulator that is valid not only at frequencies below the
band gap, but also at frequencies above the band gap where
absorption can occur. Thus, the σ il j (ω) we present provides a
description for both the optical rotary dispersion and the cir-
cular dichroism of crystalline insulators. At frequencies below
the band gap we find agreement with an earlier calculation of
σ il j (ω) [7] that focused on that limit.

The special case of static and uniform electric and mag-
netic fields is particularly interesting. In that limit the tensor
describing the modification of the polarization due to the
electric field becomes symmetric, even in the absence of
time-reversal symmetry in the unperturbed crystal. But in the
absence of both time-reversal and spatial inversion symmetry,
a magnetic field can still induce a polarization and an elec-
tric field can still induce a magnetization. This phenomenon
is called the magnetoelectric effect [22]; in an earlier work
[19] we used our approach to derive the so-called orbital
magnetoelectric polarizability (OMP) tensor that describes the
magnetoelectric effect in the limit of fixed ion cores and with
the neglect of spin contributions, and found agreement with

earlier studies based on the “modern theory of polarization
and magnetization” [23,24]. Optical activity can be under-
stood as arising from the generalization of the magnetoelectric
effect to finite frequencies, where the electromagnetic field
is necessarily not uniform; time-reversal symmetry then need
not be broken for the phenomenon to occur. And as our calcu-
lation is based on a microscopic identification of polarization
and magnetization fields, we can identify a finite frequency
generalization of the Chern-Simons contribution to the OMP
tensor; this contribution is isotropic and thus does not lead
to an induced electronic charge-current density in the bulk,
which makes it inaccessible to approaches based on the bulk
charge-current density response alone.

Finally, since our calculation is based on the identification
of site quantities, we can easily compare the general response
of a crystal to that of a crystal in the molecular crystal limit
mentioned above. In this paper we identify expressions for the
response tensors χ il

E (ω), γ i jl (ω), β il
P(ω), β il

M(ω), and χ
i jl
Q

(ω)
in both cases, indicating the response tensors that are valid
in the molecular crystal limit by a circle accent as we have
above. In particular, while the OMP tensor is identified with
β il
P(0) = β li

M(0), the relation β̊ il
P(ω) = β̊ li

M(−ω) continues to
hold for finite frequencies in the molecular crystal limit, but
it fails for a crystal more generally. Thus our approach is well
positioned to explore the boundary between molecular physics
and condensed matter physics in their descriptions of optical
activity, and indeed of other optical phenomena.

The structure of this paper is as follows. In Sec. II we
present the basic expressions for the microscopic polarization
and magnetization fields, identify the site multipole moments,
and present their relation to the macroscopic response func-
tions; some of the details are relegated to Appendices A and
B. The linear response of a crystalline insulator, within the
independent particle approximation, is presented in Sec. III.
Here for simplicity we neglect the spin degree of freedom and
treat the ion cores as fixed. The response of the site multipole
moments is detailed in Sec. IV, where we also consider some
of the symmetries of the response tensors. In Sec. V we
construct the linear response of the macroscopic charge and
current densities, and identify σ il (ω) and σ il j (ω); their con-
stituent tensors are listed in Appendix C, and in Appendices
D and E we confirm that the response is gauge invariant and
thus that σ il (ω) and σ il j (ω) are as well. We also consider the
special case of frequencies below the band gap of the insulator
and confirm, using a result presented in Appendix F, that we
have agreement with earlier work for σ il j (ω) [7]. In Sec. VI
we consider the molecular crystal limit and show that in this
limit our general crystalline expressions reduce to what would
be expected. We discuss and conclude in Sec. VII.

II. MULTIPOLE MOMENTS

In earlier work [18,19] we showed how the (total) micro-
scopic charge and current densities can be written as

ρ(x, t ) = −∇ · p(x, t ) + ρF (x, t ),

j(x, t ) = ∂ p(x, t )

∂t
+ c∇ × m(x, t ) + jF (x, t ), (6)

where, in this work,

ρ(x, t ) ≡ 〈ρ̂(x, t )〉 + ρ ion(x),

j(x, t ) ≡ 〈 ĵ(x, t )〉,

043110-3



PERRY T. MAHON AND J. E. SIPE PHYSICAL REVIEW RESEARCH 2, 043110 (2020)

with ρ ion(x) the charge density associated with fixed ion
cores, and 〈ρ̂(x, t )〉 and 〈 ĵ(x, t )〉 the expectation values of the
microscopic electronic charge and current density operators,
respectively [25]. These operators are obtained from the min-
imal coupling Hamiltonian via Noether’s theorem and involve
the electron field operators and their adjoint, which we take to
be the dynamical degrees of freedom of the crystalline system;
they evolve under the minimal coupling Hamiltonian, which
results in the (assumed classical) electromagnetic field enter-
ing (6), and thus in both p(x, t ) and m(x, t ) generally having
a nontrivial dependence on time [18,19]. These microscopic
fields can generally be decomposed as a sum of constituent
fields [18], one associated with each Bravais lattice vector
R characterizing the structure of the unperturbed crystalline
system,

p(x, t ) =
∑

R

pR(x, t ),

m(x, t ) =
∑

R

mR(x, t ). (7)

Each “site” polarization pR(x, t ) is related to a portion ρR(x, t )
of the (total) charge density that is associated with the lattice
site R, and each “site” magnetization mR(x, t ) is related to
a portion jR(x, t ) + j̃R(x, t ) of the electronic current density
that is associated with the lattice site R,

pi
R(x, t ) ≡

∫
si(x; y, R)ρR(y, t )dy,

mi
R(x, t ) ≡ 1

c

∫
αib(x; y, R)

[
jb
R(y, t ) + j̃b

R(y, t )
]
dy, (8)

where the “relators” si(x; y, R) and αib(x; y, R) have been
introduced and discussed previously [18]; they are presented
in Appendix A. In general the microscopic “free” charge
and current densities, ρF (x, t ) and jF (x, t ), are also relevant.
However, in this paper we assume the crystal to be in its zero
temperature ground state before the electromagnetic field is
applied and so, for the class of insulators considered here and
specified below, both the unperturbed free charge and current
densities, and their linear response to the electric and magnetic
fields vanish [18]. This is as would be expected physically, and
we can henceforth neglect those fields.

The macroscopic polarization and magnetization fields,
P(x, t ) and M(x, t ), can be identified as spatial averages of the
microscopic fields (7), as discussed in Appendix B. Anticipat-
ing the integration over each site contribution (8) associated
with such spatial averaging, we perform a formal expansion
of each site contribution in terms of Dirac δ functions and
their derivatives about that site, as we detail in Appendix A.
The expansions are characterized by their dependence on a
parameter u, and explicitly retaining the terms that are at most
linear in that parameter we find

pi
R(x, t ) = μi

R(t )δ(x − R) − qi j
R (t )

∂δ(x − R)

∂x j
+ . . . ,

mi
R(x, t ) = ν i

R(t )δ(x − R) + . . . , (9)

where

μi
R(t ) ≡

∫
(yi − Ri )ρR(y, t )dy (10)

is the electric dipole moment,

qi j
R (t ) ≡ 1

2

∫
(yi − Ri )(y j − R j )ρR(y, t )dy (11)

is the electric quadrupole moment, and

ν i
R(t ) ≡ εiab

2c

∫
(ya − Ra)

[
jb
R(y, t ) + j̃b

R(y, t )
]
dy (12)

is the magnetic dipole moment, each associated with lattice
site R; here εiab is the Levi-Civita symbol. Terms that are
higher order in u, indicated by “. . .” in the expansions (9), in-
volve the electric octupole moment, the magnetic quadrupole
moment, and higher-order moments.

For the sort of systems considered here, within the
independent particle approximation one can physically expect
the response of the moments μi

R(t ), qi j
R (t ), and ν i

R(t ) to
the microscopic electric and magnetic fields to depend on
those fields in the neighborhood of R. The approximation
of neglecting “local field corrections,” which we adopt here,
involves taking those fields to simply be the macroscopic
fields E(x, t ) and B(x, t ) that are the spatial averages of
the microscopic electric and magnetic fields; we call these
macroscopic fields the “Maxwell fields” (see Appendix
B). With this approximation, we show in Sec. IV that the
linear response of each site moment [(10), (11), and (12)]
can be related to the Maxwell fields evaluated at that site,
E(R, t ) and B(R, t ), and their spatial derivatives there. Then,
implementing the usual Fourier series analysis,

g(t ) ≡
∑

ω

e−iωt g(ω), (13)

we find that the relevant terms are

μi
R(t ) = μ

i(0)
R +

∑
ω

e−iωt
(
�ucχ

il
E (ω)El (R, ω)

+ �ucγ
i jl (ω)F jl (R, ω)

+�ucβ
il
P(ω)Bl (R, ω) + . . .

)
,

qi j
R (t ) = qi j(0)

R +
∑

ω

e−iωt
(
�ucχ

i jl
Q

(ω)El (R, ω) + . . .
)
,

ν i
R(t ) = ν

i(0)
R +

∑
ω

e−iωt
(
�ucβ

il
M(ω)El (R, ω) + . . .

)
. (14)

We have chosen to introduce a unit cell volume �uc here
because, with the neglect of local field corrections, the
response tensors χ il

E (ω), γ i jl (ω), β il
P(ω), β il

M(ω), and χ
i jl
Q

(ω)
appearing here reduce to those of (5), in the molecular
crystal limit. We show in Appendix B that macroscopic
multipole moments, analogous to those appearing in (5),
can be constructed from the corresponding site multipole
moments (14) [see (B5) and (B8)], such that

Pi(x, t ) = 1

�uc
μ

i(0)
R +

∑
ω

e−iωt
(
χ il

E (ω)El (x, ω)

+ γ i jl (ω)F jl (x, ω) + β il
P(ω)Bl (x, ω) + . . .

)
,

Qi j (x, t ) = 1

�uc
qi j(0)

R +
∑

ω

e−iωt
(
χ

i jl
Q

(ω)El (x, ω) + . . .
)
,

Mi(x, t ) = 1

�uc
ν

i(0)
R +

∑
ω

e−iωt
(
β il
M(ω)El (x, ω) + . . .

)
,

(15)
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where the unperturbed contributions simply acquire a factor
as they are in fact independent of R. Further, the macroscopic
charge and current densities are given by

�(x, t ) = −∇ · P(x, t ),

J(x, t ) = ∂P(x, t )

∂t
+ c∇ × M(x, t ), (16)

with macroscopic polarization and magnetization fields

Pi(x, t ) = Pi(x, t ) − ∂Qi j (x, t )

∂x j
+ . . . ,

Mi(x, t ) = Mi(x, t ) + . . . , (17)

even far from the molecular crystal limit. Notably in the
systems we consider here, the unperturbed contributions
to (15) vanish when implemented in (16). Hence, the
lowest-order charge and current densities arise due to the
linear response tensors χ il

E (ω), γ i jl (ω), β il
P(ω), β il

M(ω), and
χ

i jl
Q

(ω). In the next two sections we turn to the calculation of
these response tensors.

III. LINEAR RESPONSE

The charge and current densities associated with each lat-
tice site that were mentioned above can be written as

ρR(x, t ) =
∑

αβR′R′′
ρβR′;αR′′ (x, R; t )ηαR′′;βR′ (t ) + ρ ion

R (x),

jR(x, t ) =
∑

αβR′R′′
jβR′;αR′′ (x, R; t )ηαR′′;βR′ (t ),

j̃R(x, t ) =
∑

αβR′R′′
j̃βR′;αR′′ (x, R; t )ηαR′′;βR′ (t ), (18)

where ρ ion
R (x) is the static contribution to the charge den-

sity associated with lattice site R due to the appropriate ion
core(s) and where the ρβR′;αR′′ (x, R; t ), jβR′;αR′′ (x, R; t ), and
j̃βR′;αR′′ (x, R; t ) are generalized (electronic) “site quantity ma-
trix elements” that have been presented earlier [18]. These
quantities can be reasonably expected to vanish unless x is
“close” to R, guaranteeing that ρR(x, t ), jR(x, t ), and j̃R(x, t )
have that property as well. To avoid possible confusion we
note that the total microscopic charge and current densities are
given by ρ(x, t ) = ∑

R ρR(x, t ) and j(x, t ) = ∑
R jR(x, t ),

while
∑

R j̃R(x, t ) �= 0 in general; that is, pR(x, t ) depends on
the net charge density that is associated with R, while mR(x, t )
is sensitive to only a portion of the current density that is
associated with R.

It is clear from (18) that the single-particle density matrix,
ηαR′′;βR′ (t ), is central in the identification of electronic “site”
quantities and in describing their dynamics [18]. This object
captures the electronic transition amplitude from a particular
Wannier orbital of type α associated with lattice site R′′ to a
Wannier orbital of type β associated with R′, at time t (see
Eqs. (33) and (36) of Ref. [18]).

A. Dynamical and compositional contributions to the multipole
moments

The site quantities of primary interest are the Cartesian
components of the lowest-order multipole moments [(10),

(11), and (12)] that are associated with lattice site R. Indicat-
ing such a site quantity generally by �R(t ), it is clear that upon
inserting the relevant term(s) (18) in the desired site multipole
moment expression [(10), (11), and (12)], �R(t ) is generally
of the form

�R(t ) =
∑

αβR′R′′
�βR′;αR′′ (R; t )ηαR′′;βR′ (t ) + �ion

R , (19)

where �βR′;αR′′ (R; t ) is a general (electronic) site quantity
matrix element and �ion

R involves ρ ion
R (x). In addition to the

dependence of the single-particle density matrix on time,
which would be expected in the presence of a time-dependent
electromagnetic field, the site quantity matrix elements ap-
pearing in (18) also have a time dependence—and thus so do
the �βR′;αR′′ (R; t ) associated with the various site multipole
moments—because they themselves depend on the electro-
magnetic field. This sort of dependence is not unexpected in
the response of systems to the full electromagnetic field. The
diamagnetic response of an atom, for example, is not due to a
change in its wave function when a magnetic field is applied,
which would be captured by the single-particle density matrix,
but rather arises because the expression of the charge velocity
in terms of the canonical momentum is modified.

We begin by expanding all objects in powers of the elec-
tromagnetic field, such that

ηαR′′;βR′ (t ) = η
(0)
αR′′;βR′ + η

(1)
αR′′;βR′ (t ) + . . . ,

�βR′;αR′′ (R; t ) = �
(0)
βR′;αR′′ (R) + �

(1)
βR′;αR′′ (R; t ) + . . . ,

etc. Again, the superscript (0) denotes the contribution to the
quantity that is independent of the Maxwell fields; this is the
value the object would take in the unperturbed system. The
superscript (1) denotes the linear response of the quantity
to the Maxwell fields [26]. Here “. . .” represent terms that
are higher than first order in the Maxwell fields and will
later be neglected. Also, for n �= 0, ρ

ion(n)
R (x) = 0 and conse-

quently �
ion(n)
R = 0 as the ion cores are assumed fixed; thus,

in describing the electronic response, the net response of the
system is captured. From (19) it is clear that there are two
(electronic) contributions to the linear response of a general
site quantity to the Maxwell fields,

�
(1)
R (t ) = �

(1;I)
R (t ) + �

(1;II)
R (t ). (20)

We have called [19] the first term on the right-hand side,

�
(1;I)
R (t ) ≡

∑
αβR′R′′

�
(0)
βR′;αR′′ (R)η(1)

αR′′;βR′ (t ), (21)

a “dynamical” contribution to the linear response, because it
arises from modifications to the unperturbed single-particle
density matrix due to the Maxwell fields, and the other term,

�
(1;II)
R (t ) ≡

∑
αβR′R′′

�
(1)
βR′;αR′′ (R; t )η(0)

αR′′;βR′ , (22)

a “compositional” contribution, because it arises due to the
way in which the site quantity matrix elements themselves
depend on the Maxwell fields. As we will show, (22) only
describes first-order modifications of single-site properties as
a result of the electromagnetic field.
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Moreover, we will generally decompose the linear response
of a site quantity (20) as a sum of the contributions from
the Maxwell electric field, its symmeterized derivative, the
Maxwell magnetic field, and higher-order derivatives of these
fields, such that

�
(1)
R (t ) = �

(E )
R (t ) + �

(F )
R (t ) + �

(B)
R (t ) + . . . . (23)

In general each of the constituents on the right-hand side of
(23) is composed of a dynamical contribution and a composi-
tional contribution; for instance,

�
(E )
R (t ) = �

(E ;I)
R (t ) + �

(E ;II)
R (t ).

However, for each site multipole moment that is considered
only a limited number of the constituents in (23) are retained;
this is detailed in Sec. IV.

In the remainder of this section we determine the evolution
of η

(1)
αR′′;βR′ (t ) from the initial η

(0)
αR′′;βR′ , and in the following

section we combine those results with the �
(0)
βR′;αR′′ (R, t ) and

�
(1)
βR′;αR′′ (R, t ) appropriately, to find the linear response of the

site multipole moments.

B. Evolution of the single-particle density matrix

In the independent particle approximation, the equations
of motion governing the evolution of the (electronic) single-
particle density matrix elements take the form [18]

ih̄
∂ηαR′′;βR′ (t )

∂t
=

∑
μνR1R2

F
μR1;νR2

αR′′;βR′ (t )ημR1;νR2 (t ), (24)

where

F
μR1;νR2

αR′′;βR′ (t ) = δνβδR2R′ei�(R′′,Ra,R1,R′;t )H̄αR′′;μR1
(Ra, t )

− δμαδR1R′′ei�(R′′,R2,Ra,R′;t )H̄νR2;βR′ (Ra, t )

− h̄
∂�(R′′, Ra, R′; t )

∂t
δνβδμαδR2R′δR1R′′ .

The quantities H̄μR1;νR2 (Ra, t ) can be understood as general-
ized “hopping” matrix elements and are as previously defined
[19]. With the neglect of local field corrections they in-
volve the Maxwell fields in the neighborhood of the lattice
sites appearing, including lattice site Ra. This lattice site
can be arbitrarily chosen [19], and we discuss its choice
below. The Maxwell field B(x, t ) also enters in the quanti-
ties �(R′′, . . . , R′; t ), which are proportional to the magnetic
flux through the surface generated by connecting the points
(R′′, . . . , R′) with straight lines, when the usual choice of
straight-line paths for the relators is adopted (see Appendix
A). In this work, this choice is always made.

An expansion of the hopping matrix elements in powers of
the electromagnetic field [19] gives

H̄μR1;νR2 (Ra, t ) = H (0)
μR1;νR2

+ H̄ (1)
μR1;νR2

(Ra, t ) + . . . ,

with

H (0)
μR1;νR2

=
∫

W ∗
μR1

(x)H0
(
x,p(x)

)
WνR2 (x)dx, (25)

where WαR(x) ≡ 〈x|αR〉 is the ELWF identified by its type
α and the lattice site R with which it is associated, and
H0(x,p(x)) is the differential operator that governs the dy-
namics of the electron field operators in the unperturbed
infinite crystal; we take

p(x) = h̄

i
∇ − e

c
Astatic(x),

where we allow for a static and periodic magnetic field de-
scribed by a vector potential satisfying Astatic(x) = Astatic(x +
R) for any lattice vector R [27]. The eigenfunctions of
H0(x,p(x)) are of the usual Bloch form ψnk(x) ≡ 〈x|ψnk〉 =
eik·xunk(x)/(2π )3/2 with unk(x) ≡ 〈x|nk〉 being a cell-periodic
function, and are identified by a band index n and an index k
identifying the associated crystal momentum h̄k; we denote
the corresponding eigenvalues by Enk. These energy eigen-
functions can be used to construct ELWFs [28–32] via

〈x|αR〉 =
√

�uc

∫
BZ

dk
(2π )3

eik·(x−R)〈x|αk〉, (26)

where the vectors |αk〉 are related to the vectors |nk〉 by a
(unitary) “multiband gauge transformation,”

|αk〉 =
∑

n

Unα (k)|nk〉. (27)

Generally for an insulating crystal in its zero temperature
ground state there is a filling factor fn associated with each
|nk〉 that is either 0 or 1. And in this paper we restrict ourselves
to the class of insulators characterized by the property that
the sets of occupied and unoccupied cell-periodic functions
〈x|nk〉 can be used separately to construct sets of ELWFs;
this class contains both ordinary insulators and Z2 topological
insulators [29,32]. Thus we can associate an analogous filling
factor fα with each |αk〉 that is also either 0 or 1 depending
on the occupancy of the |nk〉 used in the construction of
that particular |αk〉, and so Unα (k) �= 0 only if fn = fα . That
is, (27) is a unitary transformation between elements of the
(un)occupied subspace of the electronic Hilbert space alone.
Associated with the set of vectors {|nk〉} is a non-Abelian
Berry connection,

ξ a
mn(k) = i(mk|∂ank) ≡ i

�uc

∫
�uc

u∗
mk(x)

∂unk(x)

∂ka
dx,

and with the set of vectors {|αk〉} is another,

ξ̃ a
βα (k) = i(βk|∂aαk).

These objects are related via∑
αβ

Umβ (k)ξ̃ a
βα (k)U †

αn(k) = ξ a
mn(k) + Wa

mn(k), (28)

where we have defined the Hermitian matrix Wa(k), popu-
lated by elements

Wa
mn(k) ≡ i

∑
α

(∂aUmα (k))U †
αn(k), (29)
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and in general we adopt the shorthand ∂a ≡ ∂/∂ka. For the
class of insulators we consider, Wa

mn(k) is nonzero only if
fm = fn. In what follows, the k dependence of the above
introduced objects is usually kept implicit.

At zeroth order in the Maxwell fields, the unperturbed
expression (25) can be implemented into (24); with this,
the elements of the unperturbed single-particle density ma-
trix for the zero temperature ground state are identified to

be
η

(0)
αR′′;βR′ = fαδαβδR′′R′ . (30)

Following the same procedure, but now retaining only the
terms that are first order in the Maxwell fields, the linear
response of the single-particle density matrix is identified as
[19]

η
(1)
αR′′;βR′ (ω) = −

∑
μνR1R2

∑
mn

fnm

∫
BZ

dkdk′ 〈αR′′|ψmk〉〈ψmk|μR1〉H (1)
μR1;νR2

(Ra, ω)〈νR2|ψnk′ 〉〈ψnk′ |βR′〉
Emk − Enk′ − h̄(ω + i0+)

+ i

2
fβα

∫
W ∗

αR′′ (x)
[
�(R′′, x, Ra; ω) + �(R′, x, Ra; ω)

]
WβR′ (x)dx, (31)

[recall (13)], where fnm ≡ fn − fm, fβα ≡ fβ − fα , and

H (1)
μR1;νR2

(Ra, ω) ≡
∫

W ∗
μR1

(x)H(1)
Ra

(x, ω)WνR2 (x)dx. (32)

Here H(1)
Ra

(x, ω) involves the electromagnetic field via the
scalar quantity �0

Ra
(x, ω) and the vector quantity �Ra (x, ω).

Very generally, �0
y (x, ω) involves a line integral involving

E(z, ω) from y to x, while �y(x, ω) involves a more compli-
cated line integral involving B(z, ω) from y to x [18], which
also appears in (31). For |x − y| on the order of a lattice
constant, an expansion [19] gives

�a
y (x, ω) = 1

2εalbBl (y, ω)(xb − yb) + . . . , (33)

�0
y (x, ω) = (xl − yl )El (y, ω)

+ 1
2 (x j − y j )(xl − yl )F jl (y, ω) + . . . , (34)

and similarly for |x − y| and |x − z| on the order of a lattice
constant we have

�(z, x, y; ω) = − e

2h̄c
εlabBl (y, ω)(za − ya)(xb − yb) + . . .

(35)

(see Appendix A). With the approximations (33) and (34) we
find we can write [19]

H(1)
Ra

(x, ω) = − e
(
xl − Rl

a

)
El (Ra, ω)

− e

2

(
x j − R j

a

)(
xl − Rl

a

)
F jl (Ra, ω)

+ e

2mc
εlabBl (Ra, ω)

(
xb − Rb

a

)
pa(x) + . . . .

(36)

Thus Ra acts as a natural point about which to expand the
electromagnetic field, and a natural choice of Ra for use in (31)
would be a site “close” to R′ or R′′. Still leaving that choice
open, we implement (36) in (31) to identify the contributions
to η

(1)
αR′′;βR′ (ω) from the electric field, the symmetrized deriva-

tive of the electric field, and the magnetic field. We write this
decomposition as

η
(1)
αR′′;βR′ (ω) = η

(E )
αR′′;βR′ (ω) + η

(F )
αR′′;βR′ (ω)

+ η
(B)
αR′′;βR′ (ω) + . . . , (37)

which will allow for the identification of the dynamical con-
tributions to the constituents of (23). Notably we will neglect
contributions related to the spatial variation of the magnetic
field, since we identify any such terms as higher-order modi-
fications (see Appendix A).

C. Linear response of the single-particle density matrix

By implementing the first and second terms of (36) in (31) via (32), and noting (35) is independent of El (x, ω) and F jl (x, ω),
the linear response of the single-particle density matrix to the Maxwell electric field and its symmetrized derivative are found to
be

η
(E )
αR′′;βR′ (ω) = e�ucE l (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmξ l

mnUnβ

Emk − Enk − h̄(ω + i0+)
, (38)

and
η

(F )
αR′′;βR′ (ω) = e�uc

2
F jl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmF

jl
mn(k, ω)Unβ

+ ie�uc

2
F jl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )ξ l
mn

Emk − Enk − h̄(ω + i0+)

{
U †

αm(∂ jUnβ ) − (∂ jU
†
αm)Unβ

}

+ e�uc

2
F jl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmξ l

mnUnβ

Emk − Enk − h̄(ω + i0+)

{
(R′′ j − R j

a ) + (R′ j − R j
a )

}
, (39)
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where we have introduced

F jl
mn(k, ω) ≡

∑
s

ξ
j

msξ
l
sn

Emk − Enk − h̄(ω + i0+)
+ i

∂ j (Emk + Enk)[
Emk − Enk − h̄(ω + i0+)

]2 ξ l
mn. (40)

The linear response to the Maxwell magnetic field involves the third term of (36), and using (35) it is found to be

η
(B)
αR′′;βR′ (ω) = e�uc

4h̄c
εlabBl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmB

ab
mn(k, ω)Unβ

+ e�uc

4h̄c
εlabBl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )
(
Emk − Enk

)
ξ b

mn

Emk − Enk − h̄(ω + i0+)

{
(∂aU

†
αm)Unβ − U †

αm(∂aUnβ )
}

− iωe�uc

4c
εlabBl (Ra, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R′′−R′ )U †
αmξ a

mnUnβ

Emk − Enk − h̄(ω + i0+)

{(
R′′b − Rb

a

) + (
R′b − Rb

a

)}
, (41)

where we have introduced

Bab
mn(k, ω) ≡ i

∑
s

{
Esk − Enk

Emk − Enk − h̄(ω + i0+)
ξ a

msξ
b
sn + Esk − Emk

Emk − Enk − h̄(ω + i0+)
ξ a

msξ
b
sn

}

−
[

2 + h̄ω

Emk − Enk − h̄(ω + i0+)

]
∂a(Emk + Enk)

Emk − Enk − h̄(ω + i0+)
ξ b

mn. (42)

In the limit of uniform dc Maxwell fields, both (39) and the
final term of (41) vanish trivially, and Bab

mn(k, ω = 0) reduces
to the previously defined Bab

mn(k); the above expressions are
thus consistent with past results [19]. Also, (38), (39), and (41)
are written as single Brillouin zone integrals. In past work [19]
we showed explicitly how this reduction to a single k-integral
arises when implementing (31) to find the ω = 0 component
of (38). However, this reduction emerges more generally as
a consequence of expressing the variation of the electromag-
netic field over the unit cell through the expansion, following
from (33), (34), and (35), in powers of the length of the unit
cell divided by the wavelength of light. Upon implementing
the resulting expressions in (31), via (32) and (36), and using
previously introduced identities [19], the reduction to a single
k-integral occurs.

IV. THE RESPONSE TENSORS

The linear response of the single-particle density matrix
(37) allows for the identification of the dynamical contribu-
tions (21) to the linear response of the site multipole moments
(10), (11), and (12) to the Maxwell fields and their derivatives.
For the compositional contributions (22), we implement (30)
and (13) to write

�
(1;II)
R (ω) =

∑
αR′

fα�
(1)
αR′;αR′ (R; ω),

which can also be decomposed into contributions due to the
Maxwell fields and their derivatives. The decomposition of
the net linear response is given by (23). However, for a
given site multipole moment of interest, μi

R(ω), qi j
R (ω), or

ν i
R(ω), we consider only those constituents of the associated

�
(1)
αR′;αR′ (R; ω) and of η

(1)
αR′′;βR′ (ω) that lead to the explicitly

included first-order terms in (14); these are μ
i(E )
R (ω), μi(F )

R (ω),
μ

i(B)
R (ω), qi j(E )

R (ω), and ν
i(E )
R (ω). We have justified the reten-

tion of only these terms in Appendix A. From (10), (11),

and (12) follow the relevant site quantity matrix elements
associated with the site multipole moments of interest in terms
of the site quantity matrix elements appearing in (18). These
have been presented earlier [18], and we now use them to
determine the desired response tensors.

We are finally in a position to set Ra. When considering
the dynamical contribution to the linear response of a par-
ticular multipole moment associated with lattice site R to a
particular Maxwell field or its derivative, we always choose
Ra = R in the constituent of η

(1)
αR′′;βR′ (ω) being implemented.

For instance, when considering μ
(E ;I)
R (ω), we set Ra = R in

η
(E )
αR′′;βR′ (ω). In the expressions that follow, one of the matrix

element indices R′ or R′′ always equals R, making the use of
the expansions (33), (34), and (35) in deriving (38), (39), and
(41) sensible. As well, we are always able to manipulate the
expressions for the �

(1)
αR′;αR′ (R; ω) that appear in such a way

that the Maxwell fields are evaluated at R. Collectively, this
results in the net linear response of the moments associated
with R being related to the electric field, the magnetic field,
and the symmetrized derivative of the electric field evaluated
at R, and facilitates the passage to a relation between the
macroscopic polarization and magnetization and the Maxwell
fields [see (14) and (15) and Appendix B].

A. Linear response of the electric moments

1. Dipole response to the electric field

We begin with the linear response of a site electric
dipole moment to the Maxwell electric field, μ

(E )
R (ω). While

ρ
(1)
αR′;αR′ (x, R; t ) depends on the magnetic field, it does not

depend on the electric field; the compositional contribution
μ

i(E ;II)
R (ω) vanishes. The linear response of this quantity to the

electric field is thus entirely dynamical—it is solely due to
η

(E )
αR′′;βR′ (ω)—and is given by
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μ
i(E )
R (ω) =

∑
αβR′R′′

[ ∫ (
yi − Ri

)
ρ

(0)
βR′;αR′′ (y, R)dy

]
η

(E )
αR′′;βR′ (ω)

= e2�ucE l (R, ω)
∑
mn

fnm

∫
BZ

dk
(2π )3

ξ l
mnξ

i
nm

Emk − Enk − h̄(ω + i0+)
. (43)

From (14) we identify

χ il
E (ω) = e2

∑
mn

fnm

∫
BZ

dk
(2π )3

ξ l
mnξ

i
nm

Emk − Enk − h̄(ω + i0+)
,

(44)

which is gauge invariant in that it is independent of Unα (k). In
general (44) is not symmetric under exchange of Cartesian
components i and l . However, if the unperturbed crystal is

time-reversal symmetric, then one can show χ il
E (ω) is equal

to χ li
E (ω); in the ω → 0 limit the exchange of these indices is

always symmetric, and if absorption is neglected, then χ il
E (ω)

is equal to χ li
E (−ω) [33]. To obtain (43) we have implemented

previously introduced [19] identities, and in the remainder of
this section we often do so; Eqs. (8), (14), and (15) of that
work are particularly relevant.

We now take into account the spatial variation of the Maxwell electric field. The compositional contribution vanishes, as in
the response calculated above; the linear response is entirely dynamical, and it is given by

μ
i(F )
R (ω) =

∑
αβR′R′′

[ ∫ (
yi − Ri

)
ρ

(0)
βR′;αR′′ (y, R)dy

]
η

(F )
αR′′;βR′ (ω)

= e2�uc

2
F jl (R, ω)

∑
mn

fnm

∫
BZ

dk
(2π )3

{
F jl

mn(k, ω)ξ i
nm +

∑
s

ξ l
mnW

j
nsξ

i
sm + ξ i

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)

}
. (45)

The two distinct contributions appearing in the braces of (45) originate individually from the first and second lines of (39),
while the contribution from final line of (39) vanishes. Via (14) we again identify the relevant response tensor. We explicitly
symmeterize the indices labeling Cartesian components that are contracted with the symmeterized derivative of the Maxwell
electric field, and we find

γ i jl (ω) = e2

4

∑
mn

fnm

∫
BZ

dk
(2π )3

{(
F jl

mn(k, ω) + Fl j
mn(k, ω)

)
ξ i

nm +
∑

s

(ξ l
mnW

j
ns + ξ

j
mnW l

ns)ξ i
sm + ξ i

ns(W
j

smξ l
mn + W l

smξ
j

mn)

Emk − Enk − h̄(ω + i0+)

}
.

(46)

Notably γ i jl (ω) = γ il j (ω); the underlying presence of this symmetry—even if the indices j and l were not contracted with an
object symmetric in those indices, F jl (x, ω), in (45)—can be recognized by identifying that the objects carrying these indices
in (46) originate from the second term of (36), which was used in (31) to obtain (39). There j and l are clearly symmetric as the
components of x and Ra commute. Unlike χ il

E (ω), γ i jl (ω) is gauge dependent.

2. Dipole response to the magnetic field

As ρ
(1)
αR′;αR′ (x, R; t ) does depend on the magnetic field, there are nonvanishing compositional and dynamical contributions to

μ
(B)
R (ω). Letting ρ

(B)
βR′;αR′′ (x, R; ω) be the part of ρ

(1)
βR′;αR′′ (x, R; ω) that is proportional to the magnetic field, the compositional

contribution is given by

μ
i(B;II)
R (ω) =

∑
αR′

fα

[ ∫ (
yi − Ri

)
ρ

(B)
αR′;αR′ (y, R; ω)dy

]

= e2�uc

2h̄c
εlabBl (R, ω)

∑
αγ

fα

∫
BZ

dk
(2π )3

Re
[
ξ̃ i
αγ ∂bξ̃

a
γα

]
. (47)

Note that, in going from the first to the final equality, we ensure (using Eq. (29) of Ref. [18]) the �(R1, y, R; ω) that enters via
ρ

(B)
αR′;αR′ (y, R; ω) (see Eqs. (28) and (45) of Ref. [18]) is in a form that, upon implementing (35), the magnetic field is evaluated
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at R. Writing β
il (II)
P

as the compositional contribution to β il
P(ω) [see (15)], we have

β
il (II)
P

= e2

2h̄c
εlab

∑
αγ

fα

∫
BZ

dk
(2π )3

Re
[
ξ̃ i
αγ ∂bξ̃

a
γα

]
, (48)

which is again gauge dependent. Interestingly, β
il (II)
P

is independent of frequency and is identical to the compositional contribu-
tion to the tensor describing the linear response of the electric dipole moment to a uniform dc magnetic field (see Ref. [19]).

The form of the dynamical contribution is similar to (43) but with η
(E )
αR′′;βR′ (ω) replaced by η

(B)
αR′′;βR′ (ω); denoting its

contribution to β il
P(ω) by β

il (I)
P

(ω), we find

β
il (I)
P

(ω) = e2

4h̄c
εlab

∑
mn

fnm

∫
BZ

dk
(2π )3

{
Bab

mn(k, ω)ξ i
nm + i

(
Emk − Enk

)
ξ b

mn

Emk − Enk − h̄(ω + i0+)

∑
s

(
ξ i

nsWa
sm + Wa

nsξ
i
sm

)}
, (49)

which is also gauge dependent. The two distinct terms appearing in the braces of (49) originate individually from the first
two lines of (41), and the contribution from final line of (41) vanishes. We separate out the frequency-independent terms that
appear in (49) and combine them with (48). Together these terms give rise to the previously found [19,23,24] OMP tensor,
αil = αil

G + δilαCS, where αCS is termed the Chern-Simons contribution and αil
G the cross-gap contribution; the expressions for

these are given in Appendix C. The remaining terms are used in the construction of an explicitly frequency-dependent response
tensor, αil

P(ω), which vanishes in the ω → 0 limit. In all, then, we find

β il
P(ω) ≡ β

il (I)
P

(ω) + β
il (II)
P

= αil + αil
P(ω), (50)

where we have defined

αil
P(ω) ≡ e2

4c
εlab

∑
mn

fnm

∫
BZ

dk
(2π )3

ω

Emk − Enk − h̄(ω + i0+)

{
B́

ab
mn(k, ω)ξ i

nm + iξ b
mn

∑
s

(
ξ i

nsWa
sm + Wa

nsξ
i
sm

)}
, (51)

B́
ab
mn(k, ω) ≡ i

∑
s

{
Esk − Enk

Emk − Enk
ξ a

msξ
b
sn + Esk − Emk

Emk − Enk
ξ a

msξ
b
sn

}
−

[
3 + h̄ω

Emk − Enk − h̄(ω + i0+)

]
∂a(Emk + Enk)

Emk − Enk
ξ b

mn. (52)

Notably αil
P(ω) arises due to the linear response of the single-particle density matrix η

(B)
αR′′;βR′ (ω) alone, making it entirely the

result of a dynamical contribution. Here αCS and αil
P(ω) are gauge dependent, but αil

G is not.

3. Quadrupole response to the electric field

The compositional contribution to qi j(E )
R (ω) vanishes as ρ

(1)
αR′;αR′ (x, R; t ) does not depend on the electric field. The dynamical

contribution involves η
(E )
αR′′;βR′ (ω) and again takes the form of (43), except that it will be the second moment [see (11)] of

ρ
(0)
βR′;αR′′ (y, R) that will appear rather than the first. Using the expression for qi j(E )

R (ω) that results, from the second of (14) we
identify

χ
i jl
Q

(ω) = e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ l
mn

(
ξ i

nsξ
j

sm + ξ i
nsW

j
sm + W i

nsξ
j

sm
) + ξ l

mn

(
ξ

j
nsξ

i
sm + ξ

j
nsW i

sm + W j
nsξ

i
sm

)
Emk − Enk − h̄(ω + i0+)

, (53)

another gauge-dependent response tensor, with χ
i jl
Q

(ω) = χ
jil
Q

(ω). This symmetry of the response tensor is a consequence of the

symmetry in the definition (11) of qi j
R (t ). Notably, both χ

i jl
Q

(ω) and γ i jl (ω) arise from dynamical contributions alone, and are of
similar form apart from an energy derivative term that appears in γ i jl (ω).

B. Linear response of the magnetic dipole moment to the
electric field

The expression (12) for a site magnetic dipole moment
shows that there are two contributions; an “atomic-like”
contribution arising due to jR(y, t ), and an “itinerant” contri-
bution arising due to j̃R(y, t ) [18]. We denote the contribution
of the first of these to the linear response of the site magnetic

dipole moment to the Maxwell electric field ν
(E )
R (t ) by ν̄

(E )
R (t ),

and the second by ν̃
(E )
R (t ); we denote the corresponding contri-

butions to the response tensor β il
M(ω) [recall (14)] by β̄ il

M(ω)
and β̃ il

M(ω),

β il
M(ω) ≡ β̄ il

M(ω) + β̃ il
M(ω). (54)

We now identify these contributions.
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1. Response of the atomic-like contribution

As jαR′;αR′ (y, R; t ) does not depend on the electric field, ν̄
i(E ;II)
R (t ) = 0; this contribution is entirely dynamical and follows

from η
(E )
αR′′;βR′ (ω). From the resulting expression for ν̄

i(E )
R (ω), we compare to (14) and extract

β̄ il
M(ω) = e2

4h̄c
εiab

∑
mn

fnm

∫
BZ

dk
(2π )3

[
1 + h̄ω

Emk − Enk − h̄(ω + i0+)

]

×
{

∂b(Emk + Enk)

Emk − Enk
ξ a

nmξ l
mn + i

∑
s

Esk − Emk

Emk − Enk
ξ l

mnξ
a
nsξ

b
sm + i

∑
s

Enk − Esk

Emk − Enk
ξ b

nsξ
a
smξ l

mn

+ i
∑

s

(
Esk − Enk

Emk − Enk
− 1

)
ξ l

mnWa
nsξ

b
sm + i

∑
s

(
Emk − Esk

Emk − Enk
− 1

)
ξ b

nsWa
smξ l

mn

}
. (55)

2. Response of the itinerant contribution

In contrast, since j̃αR′;αR′ (y, R; t ) does depend on the electric field, there will be a nonvanishing compositional contribution
to ν̃

i(E )
R (t ), as well as a dynamical contribution arising from η

(E )
αR′′;βR′ (ω). We denote the corresponding dynamical contribution to

β̃ il
M(ω) by β̃

il (I)
M

(ω) and the compositional contribution by β̃
il (II)
M

,

β̃ il
M(ω) ≡ β̃

il (I)
M

(ω) + β̃
il (II)
M

.

We find the compositional contribution to be

β̃
il (II)
M

= e2

2h̄c
εiab

∑
αγ

fα

∫
BZ

dk
(2π )3

Re
[
ξ̃ l
αγ ∂bξ̃

a
γα

]
, (56)

which, like (48), does not depend on frequency. To ensure that the electric field is evaluated at R, in reaching (56) we have
used the form of FμR1;νR2

αR′′;βR′ (t ) presented above in the expression for j̃αR′;αR′ (y, R; t ) (Eq. (60), (61), and (62) of Ref. [18]), and set
Ra = R. The dynamical contribution is

β̃
il (I)
M

(ω) = e2

4h̄c
εiab

∑
mn

fnm

∫
BZ

dk
(2π )3

[
1 + h̄ω

Emk − Enk − h̄(ω + i0+)

]

×
{

∂b(Emk + Enk)

Emk − Enk
ξ a

nmξ l
mn − i

∑
s

Esk − Enk

Emk − Enk
ξ l

mnWa
nsξ

b
sm − i

∑
s

Emk − Esk

Emk − Enk
ξ b

nsWa
smξ l

mn

}
. (57)

While (55) and (56) are generally gauge dependent, (57) is only gauge dependent if there are degeneracies present in the
unperturbed system. Very generally, there is a simplification that occurs when (55), (56), and (57) are summed to form the
total response tensor (54); the gauge-dependent terms appearing in (57) cancel with terms appearing in (55), and as a result the
gauge-dependent terms appearing in the total β il

M(ω) do not explicitly depend on the energies Enk. In all we have

β il
M(ω) = αli + αli

M(ω), (58)

where we have separated out the dc-like terms, αli = αli
G + δilαCS, as in (50), and defined

αli
M(ω) ≡ e2

4c
εiab

∑
mn

fnm

∫
BZ

dk
(2π )3

ω

Emk − Enk − h̄(ω + i0+)

{
2
∂b(Emk + Enk)

Emk − Enk
ξ a

nmξ l
mn + i

∑
s

Esk − Emk

Emk − Enk
ξ a

nsξ
b
smξ l

mn

+ i
∑

s

Enk − Esk

Emk − Enk
ξ b

nsξ
a
smξ l

mn − iξ l
mn

∑
s

(
Wa

nsξ
b
sm + ξ b

nsWa
sm

)}
. (59)

Like αil
P(ω), αli

M(ω) is entirely a consequence of a dynamical contribution. The form of (59) is similar to that (51) found for
αil
P(ω), apart from a term related to an energy derivative. Also, like αil

G, αil
P(ω), and αli

M(ω) are “cross-gap” contributions; that is,
they depend on both initially occupied and unoccupied Bloch energy eigenstates, and their corresponding energies. Unlike αil

G,
however, both αil

P(ω) and αli
M(ω) are gauge dependent.

A qualitative feature shared by the response tensors γ i jl (ω), αil
P(ω), αli

M(ω), and χ
i jl
Q

(ω) is that they are all gauge dependent.
Moreover, the explicitly gauge-dependent terms within these tensors are of a similar form; the terms that involve the objects
Wa

nm are all linear in Wa
nm, and also involve the energies Enk and the non-Abelian Berry connection ξ b

nm. This is in contrast to
what is found at the level of uniform and static Maxwell fields, where the only gauge dependence of such a tensor enters via the
Chern-Simons contribution (C3) to the OMP tensor [19,23,24]. There the explicitly gauge-dependent term of αCS involves the
Wa alone and gives rise to a discrete ambiguity associated with the OMP tensor.
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V. MACROSCOPIC CHARGE AND CURRENT DENSITIES

We now construct expressions for the linear response of
the macroscopic charge and current densities to the Maxwell
fields, and as well identify the effective conductivity tensor
σ il (q, ω) to first order in q.

A. The macroscopic current density

Retaining only the contributions to the multipole moments
that are linearly induced by the Maxwell fields and that are
explicitly included in (15), implementing them into the ex-
pressions (16) and (17) to obtain the linear response of the
current density and, following (13), writing this as

J (1)(x, t ) =
∑

ω

e−iωt J (1)(x, ω),

we arrive at

Ji(1)(x, ω)

= −iωχ il
E (ω)El (x, ω) − iωγ i jl (ω)F jl (x, ω)

− iω
[
αil + αil

P(ω)
]
Bl (x, ω) + iωχ

i jl
Q

(ω)
∂El (x, ω)

∂x j

+ cεiab
[
αlb + αlb

M(ω)
]∂El (x, ω)

∂xa
, (60)

where αil = αil
G + δilαCS. Of the response tensors appearing

here, only χ il
E (ω) and αil

G are gauge invariant. The rest, which
are αCS, αil

P(ω), αil
M(ω), γ i jl (ω), and χ

i jl
Q

(ω), are all gauge
dependent. Yet the linear response of the current density
J (1)(x, ω) is in fact gauge invariant. To see this, first note that
αCS appears in (60) in the form

αCS

[
−iωBi(x, ω) + cεiab ∂Eb(x, ω)

∂xa

]
= 0,

vanishing via Faraday’s law. So in considering the bulk re-
sponse (60) we can discard αCS, replacing αil by αil

G. For
the other gauge-dependent terms, we reexpress each response
tensor as a sum of a gauge-invariant contribution, denoted by
a breve accent, and a gauge-dependent contribution. We then
find

Ji(1)(x, ω)

= −iωχ il
E (ω)El (x, ω) − iωγ̆ i jl (ω)F jl (x, ω)

− iω
[
αil

G + ᾰil
P(ω)

]
Bl (x, ω) + iωχ̆

i jl
Q

(ω)
∂El (x, ω)

∂x j

+ cεiab
[
αlb

G + ᾰlb
M(ω)

]∂El (x, ω)

∂xa
(61)

(see Appendix D); that is, the sum of the gauge-dependent
contributions vanishes. Thus the linear response of the current
density is gauge invariant, as expected.

B. The macroscopic charge density

A similar analysis holds for the linear response of the
charge density to the Maxwell fields, where from (16) we have

�(1)(x, t ) = −∇ · P(1)(x, t ).

Again, retaining only the contributions to P(x, t ) that are
explicitly included in (17), those involving the electric dipole
and quadrupole moments, and retaining only the contributions
to the electric dipole and quadrupole moments that are linearly
induced by the Maxwell fields and that are explicitly included
in (15), for the frequency components we have

�(1)(x, ω)

= −χal
E (ω)

∂El (x, ω)

∂xa
− γ a jl (ω)

∂F jl (x, ω)

∂xa

− [
αal + αal

P (ω)
]∂Bl (x, ω)

∂xa
+ χ

a jl
Q

(ω)
∂2El (x, ω)

∂xa∂x j
.

(62)

Again the Chern-Simons coefficient αCS makes no contribu-
tion, since it appears in the form

αCS

(
∂Ba(x, ω)

∂xa

)
= 0,

vanishing since the Maxwell magnetic field necessarily sat-
isfies ∇ · B(x, t ) = 0. This is analogous to the scenario for
J (1)(x, ω). As was the situation there, we expect (62) to
be gauge invariant as a whole. Separating out the explicitly
gauge-dependent terms as before, we find

�(1)(x, ω)

= −χal
E (ω)

∂El (x, ω)

∂xa
− γ̆ a jl (ω)

∂F jl (x, ω)

∂xa

− [
αal

G + ᾰal
P (ω)

]∂Bl (x, ω)

∂xa
+ χ̆

a jl
Q

(ω)
∂2El (x, ω)

∂xa∂x j

(63)

(see Appendix E), which is gauge invariant, as expected.
We note that the expressions (61) and (63) satisfy continu-

ity

−iω�(1)(x, ω) + ∂Ji(1)(x, ω)

∂xi
= 0, (64)

as also expected.

C. The effective conductivity tensor

Finally, we can identify the linear dependence on q of the
effective conductivity tensor σ il (q, ω). Fourier transforming
(2) to position space, we have

Ji(1)(x, ω) = σ il (ω)El (x, ω) − iσ il j (ω)
∂El (x, ω)

∂x j
+ . . . .

Comparing with (61) we can identify

σ il (ω) = −iωχ il
E (ω), (65)

which agrees with the usual optical conductivity tensor found
via the Kubo formula in the long wavelength limit [18]. Then,
defining the dc limit of σ il j (ω) as

σ
il j
DC ≡ −icαia

G εa jl + icεi jbαlb
G (66)

and implementing Faraday’s law, we can identify

σ il j (ω) = σ
il j
DC + ωγ̆ i jl (ω) − ωχ̆

i jl
Q

(ω)

− icᾰia
P (ω)εa jl + icεi jbᾰlb

M(ω); (67)
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note γ̆ i jl (ω) = γ̆ il j (ω) and χ̆
i jl
Q

(ω) = χ̆
jil
Q

(ω). All of (65),
(66), and (67) are gauge invariant, as expected.

In the absence of time-reversal symmetry, the σ il (ω) of
(65) is nonsymmetric and can lead to the rotation of the plane
of polarization of light as it propagates through the medium;
this can be thought of as an “internal” Faraday effect, as
illustrated by the discussion of the molecular crystal limit in
the next section. The σ il j (ω) of (67) is generally nonvanishing
and nonsymmetric with respect to the exchange of any of its
indices, even in the presence of time-reversal symmetry. But
if that symmetry is present, then σ

il j
DC will vanish and the re-

sulting σ il j (ω) describes what has been called natural optical
activity [7]. In general the tensor σ il j (ω) can be evaluated
at frequencies above the band gap, and thus can be used to
describe both optical rotary dispersion and circular dichroism.
Earlier work [7] considered σ il j (ω) at frequencies below the
band gap, where Eck − Evk �= h̄ω for all c, v, and k; here (c)
v are the band indices labeling Bloch energy eigenstates of
the unperturbed Hamiltonian that are initially (un)occupied.
To compare our results with theirs, in our expression (67) for
σ il j (ω) we can take the 0+ limit immediately without intro-
ducing any divergences, and we follow them [7] in adopting
the notation “

.=” to identify equalities that only formally hold
in this limit. Introducing the shorthand Ecvk ≡ Eck − Evk, and
putting σ il j (ω) = Re[σ il j (ω)] + iIm[σ il j (ω)], we find

Re[σ il j (ω)]

.= e2
∑

cv

∫
BZ

dk
(2π )3

{
2

h̄ω

E2
cvk − (h̄ω)2

Re
[
Bi j

vcξ
l
cv − ξ i

cvBl j
vc

]

− ω[3E2
cvk − (h̄ω)2][

E2
cvk − (h̄ω)2

]2 ∂ j (Eck + Evk)Im
[
ξ i
vcξ

l
cv

]}

(68)

and

Im[σ il j (ω)]

.= 2e2
∑

cv

∫
BZ

dk
(2π )3

{
Ecvk

E2
cvk − (h̄ω)2

Im
[
Bi j

vcξ
l
cv + ξ i

cvBl j
vc

]

+ E3
cvk[

E2
cvk − (h̄ω)2

]2 ∂ j (Eck + Evk)Re
[
ξ i
vcξ

l
cv

]}
,

(69)

where we have adopted the previously introduced [7]

Bab
nm ≡ − i

2h̄
∂a(Enk + Emk)ξ b

nm

+ 1

2h̄

∑
s

(
Enskξ

a
nsξ

b
sm + Esmkξ

b
nsξ

a
sm

)
(70)

(see Appendix F). This is in agreement with the orbital
electronic contribution to σ il j (ω) found by Malashevich and
Souza [7], as expected. Notably the only nonvanishing con-
tribution to σ il j (ω) in the ω → 0 limit is due to σ

il j
DC, which

is purely imaginary, as αil
G is real. Thus, in this limit, (68) is

expected to vanish, which it does.

VI. THE MOLECULAR CRYSTAL LIMIT

We now consider our response tensors χ il
E (ω), γ i jl (ω),

χ
i jl
Q

(ω), αil = αil
G + δilαCS, αil

P(ω), and αli
M(ω) in the molec-

ular crystal limit. That is, we consider a periodic array of
molecules where the orbitals associated with a molecule at
a given lattice site share no common support with those
of molecules associated with other lattice sites; again, we
take the external electric and magnetic fields to which the
molecules respond to be the macroscopic Maxwell fields,
neglecting any local field corrections. We denote the response
tensors in this limit by a circle accent.

We discussed the approach to this limit from the full
crystalline expressions earlier [19]; in essence, this limit can
be reached by taking the ELWFs (26) to be eigenfunctions
of H0(x,p(x)), in addition to the condition on the common
support of these functions mentioned above [34]. The former
condition can be achieved by taking Enk → En and Unα (k) →
δnα , and, consequently,

ξ a
cv (k) = i(ck|∂avk) → xa

cv,

where

xa
cv ≡

∫
W ∗

c0(x)xaWv0(x)dx. (71)

Again restricting ourselves to frequencies below the band gap,
as in the second part of Sec. V C, and implementing these
substitutions, (44) becomes

χ̊ il
E (ω)

.= e2

�uc

∑
vc

(
xi
vcxl

cv

Ecv − h̄ω
+ xl

vcxi
cv

Ecv + h̄ω

)
. (72)

where En′n ≡ En′ − En. In the presence of time-reversal
symmetry this tensor is symmetric under the exchange of
Cartesian components i and l , but in general it is not, and we
have only χ̊ il

E (ω)
.= χ̊ li

E (−ω). These results follow the pattern
of the corresponding tensor for the more general crystalline
system [see text surrounding Eq. (44)]. Note that even were it
the only response tensor present, an asymmetric χ il

E (ω) would
be sufficient to lead to the rotation of the polarization of light
as it propagates through a medium, as can be easily confirmed.
In this molecular crystal limit it is easy to give an example of
how this might arise. Suppose, for example, that the breaking
of time-reversal necessary for the asymmetric χ̊ il

E (ω) occurs
because each molecule—or, simpler, atom—is subject to a dc
magnetic field that is incorporated in the unperturbed atomic
Hamiltonian. Then, if light is propagating in the direction
of the dc magnetic field, then the rotation of its plane of
polarization that results is just the Faraday effect, which is
well known in atomic systems and indeed has a variety of
applications [35]. Next, (46) simplifies to

γ̊ i jl (ω)
.= e2

2�uc

∑
vcn

(
xi
vcx j

cnxl
nv

Ecv − h̄ω
+ x j

vnxl
ncxi

cv

Ecv + h̄ω

)
, (73)

and (53) to

χ̊
i jl
Q

(ω)
.= e2

2�uc

∑
vcn

(
xi
vnx j

ncxl
cv

Ecv − h̄ω
+ xl

vcxi
cnx j

nv

Ecv + h̄ω

)
. (74)
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Recall from previous work [19]

α̊il = e2

2mc�uc
εlab

∑
vcn

(
xi
vcxa

cnp
b
nv

Ecv
+ xa

vnp
b
ncxi

cv

Ecv

)
,

where, in this limit,

pn′n ≡ im

h̄
En′nxn′n. (75)

Further, (51) becomes

α̊il
P(ω)

.= e2h̄ω

2mc�uc
εlab

∑
vcn

(
xi
vcxa

cnp
b
nv

Ecv (Ecv − h̄ω)
− xa

vnp
b
ncxi

cv

Ecv (Ecv + h̄ω)

)
.

Then, combining this with the dc-like contribution, the full
response of the polarization to the magnetic field is given by

β̊ il
P(ω) = α̊il + α̊il

P(ω)

.= e2

2mc�uc
εlab

∑
vcn

(
xi
vcxa

cnp
b
nv

Ecv − h̄ω
+ xa

vnp
b
ncxi

cv

Ecv + h̄ω

)
. (76)

Finally, (59) simplifies to

α̊li
M(ω)

.= e2h̄ω

2mc�uc
εiab

∑
vcn

(
xa
vnp

b
ncxl

cv

Ecv (Ecv − h̄ω)
− xa

cnp
b
nvxl

vc

Ecv (Ecv + h̄ω)

)
.

Combining this with the dc-like contribution, the full response
of the magnetization to the electric field is given by

β̊ il
M(ω) = α̊li + α̊li

M(ω)

.= e2

2mc�uc
εiab

∑
vcn

(
xa
vnp

b
ncxl

cv

Ecv − h̄ω
+ xl

vcxa
cnp

b
nv

Ecv + h̄ω

)
. (77)

Physically one expects that an equivalent way to derive
these expressions would be to solve for the linearly induced
moments of the individual molecules; since local field correc-
tions are being neglected, the fields to which they respond are
the Maxwell fields, and the limiting response tensors above
should be equal to the appropriate molecular response tensors
multiplied by the number of molecules per unit volume, here
equal to �−1

uc . The molecular calculations can be made with
the usual multipole moment Hamiltonian [11,12], which in-
cluding the moments relevant here can be written as

Ĥmol(t ) = Ĥ0
mol − μ̂iE i(t ) − q̂i jF i j (t )

− ν̂ i
PBi(t ) − 1

2
ν̂ i

DBi(t ),

where Ĥ0
mol is the Hamiltonian in the absence of any Maxwell

fields; Ei(t ), F i j (t ), and Bi(t ) are the Cartesian components
of the electric field, its symmeterized derivative, and the mag-
netic field evaluated at the position of the molecule; and μ̂i,
q̂i j , ν̂ i

P, and ν̂ i
D are the indicated components of the operators

for the electric dipole and quadrupole moments, and the para-
magnetic and diamagnetic dipole moments of the molecule.
The diagmagnetic dipole moment is neglected here since it
is not involved in optical activity, but the matrix elements of
the other moments can be written in terms of the “position”

and “momentum” matrix elements (71) and (75) involving the
{Wv0(x)} and the {Wc0(x)}, now identified with the filled and
empty orbitals of a molecule fixed at the origin.

The result is that (72), (73), (74), (76), and (77) are in-
deed the appropriate molecular response tensors divided by
�uc. The molecular calculation also clarifies certain symme-
tries in the expressions in the molecular crystal limit. For
example, in this case one can immediately identify

χ̊
i jl
Q

(ω)
.= γ̊ li j (−ω),

and the equivalent expressions

β̊ il
P(ω)

.= β̊ li
M(−ω),

α̊il
P(ω)

.= α̊il
M(−ω).

The first of these holds because the response calculations lead-
ing to both quantities involve the different-time commutator
of the electric dipole and the electric quadrupole moment
operators, while the second holds because the response calcu-
lations leading to both involve the different-time commutator
of the electric dipole and the paramagnetic dipole moment
operators. These symmetries no longer hold in the full crystal
calculation, where the site multipole moments are not the
result of the expectation values of site operators, but rather
are evaluated in terms of the single-particle Green function.

VII. CONCLUSION

We have presented a theory for the effective conductivity
tensor σ il (q, ω) of a class of insulating crystalline solids at
zero temperature. In retaining terms that are at most linear
in q, we extract tensors σ il (ω) and σ il j (ω) that describe
phenomena involving the rotation of the plane of polariza-
tion of light as it propagates through a medium; the former
contributes through its antisymmetric part only when time-
reversal symmetry is broken in the unperturbed system, and
can be considered as describing an “internal” Faraday effect,
while the latter contributes more generally and describes op-
tical activity. Although we have restricted ourselves to the
independent particle approximation, and have neglected spin
effects and the motion of ion cores, within these approxima-
tions our expression for σ il j (ω) describes both optical rotary
dispersion and circular dichroism.

Our approach is based on introducing microscopic po-
larization and magnetization fields, from which the charge
and current density expectation values can be found. The
corresponding macroscopic fields of elementary electrody-
namics can then be defined as the spatial averages of those
microscopic fields; the “free” macroscopic charge and current
densities that can generally arise vanish in the linear response
of the class of insulators we consider. With the use of a set of
Wannier functions, we associate portions of these microscopic
fields with each lattice site, thereby introducing site polar-
ization and magnetization fields from which site multipole
moments are extracted.

We then construct macroscopic multipole moments from
these site multipole moments, and from their linear response
to the electromagnetic field we identify the tensors describing
the response of the electric dipole moment per unit vol-
ume Pi(x, t ) to the electric field El (x, t ), to the symmetrized
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derivative of the electric field F jl (x, t ), and to the magnetic
field Bl (x, t ); the response of the electric quadrupole moment
per unit volume Qi j (x, t ) to El (x, t ); and the response of the
magnetic dipole moment per unit volume Mi(x, t ) to El (x, t ).
From these tensors we construct σ il (ω) and σ il j (ω). Due to
its focus on identifying site quantities, our strategy allows
for an easy comparison with results in the “molecular crystal
limit,” where the electrons associated with a molecule at one
lattice site cannot move to another site. But it certainly does
not require that idealization.

In the limit of uniform and static electric and magnetic
fields we recover the magnetoelectric effect described earlier
by others [23,24] and us [19], the latter calculation using the
approach implemented here. There the first-order modifica-
tions of both Pi due to Bl and of Ml due to Ei are described
by the orbital magnetoelectric polarizability (OMP) tensor αil ,
which is nonvanishing only if both time-reversal and spatial
inversion symmetry are broken in the unperturbed system.
At finite frequencies the previously identified contributions
to the OMP tensor, αil

G and δilαCS, remain as contributions
to the response of Pi(x, ω) to Bl (x, ω) and of Ml (x, ω) to
Ei(x, ω). However, additional explicitly frequency-dependent
contributions, αil

P(ω) and αil
M(ω), to the total response ten-

sors emerge, generally resulting in the tensors describing the
linear response of Pi(x, ω) to Bl (x, ω) and of Ml (x, ω) to
Ei(x, ω) to differ. These additional contributions are classified
as “cross-gap” contributions, like αil

G, but are gauge depen-
dent. Thus, the net cross-gap contributions would be given
by αil

G + αil
P(ω) and αil

G + αil
M(ω), respectively. The terms

αil
P(ω) and αil

M(ω) that arise and differentiate the responses
result from contributions that we identify as “dynamical.”
Furthermore, as the finite frequency generalization of the
“compositional” contributions to the response tensors is triv-
ial, and because αil

P(ω) and αil
M(ω) are manifestly “cross-gap”

contributions, the Chern-Simons contribution to the finite fre-
quency response tensors remains unchanged; that is, the finite
frequency generalization of the Chern-Simons contribution
to these response tensors is identical to that in the limit of
uniform and static Maxwell fields.

In the molecular crystal limit the Chern-Simons contribu-
tion, which does not contribute to the bulk macroscopic charge
and current densities that are linearly induced by the Maxwell
fields, becomes gauge invariant [36]. As well, in that limit
the response tensor characterizing the finite frequency linear
response of Pi(x, ω) to Bl (x, ω), and the response tensor
characterizing that of Ml (x, ω) to Ei(x, ω), are related; this
relation does not hold in general beyond the molecular crystal
limit. Similarly, the relations between the tensors describing
the linear response of Pi(x, ω) to F jl (x, ω) and of Qi j (x, ω)
to El (x, ω) that hold in the molecular crystal limit do not hold
generally. This is because in the molecular crystal limit the site
multipole moments can be associated with expectation val-
ues of associated operators familiar from molecular physics,
whereas for a crystal in which charges can move more freely
a Green function approach was used to define them.

Generally, these macroscopic multipole moments were in-
troduced with the use of Wannier functions associated with
each lattice site, and thus Pi(x, t ), Qi j (x, t ), and Mi(x, t ) are
“gauge dependent” in the sense that they depend on the choice

of these Wannier functions. A natural choice, of course, would
be a set of ELWFs. However, we showed that whatever choice
is made the expressions for the linear response of the macro-
scopic charge and current densities to the Maxwell fields are
gauge invariant. Thus our expression for σ il j (ω), as well as
that for σ il (ω), can be evaluated without any calculation—or
any thought—of the Wannier functions than underpin our
approach. At frequencies below the band gap we found agree-
ment with earlier work restricted to that frequency range [7].

Yet, while they do not appear explicitly in the final expres-
sion for σ il (ω) or σ il j (ω), it is the site multipole moments
that can be introduced with the aid of these Wannier functions,
and the microscopic polarization and magnetization fields on
which the approach is based, that make possible the natural
connection and comparison with the molecular crystal limit.
This should lead to an understanding of which features of the
optical activity of any material of interest can be associated
with physics beyond that limit. As well, the use of such site
quantities in our approach offers the possibility of considering
the optical response of a finite system, where simply iden-
tifying the bulk tensors σ il (ω) and σ il j (ω) is not sufficient,
and will lead to the description of other linear and nonlinear
optical response features that depend on the variation of the
electromagnetic field throughout a finite crystal. We plan to
turn to these generalizations in future publications.
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APPENDIX A: FORMAL RELATOR EXPANSIONS

The “relators” allow us to obtain the microscopic polar-
ization and magnetization fields from the charge and current
density expectation values. They also arise in the way the
Maxwell fields enter the dynamical equations governing such
quantities. Thus, an expansion of the relators is relevant for
the identification of the electric and magnetic moments and
in expanding the equations of motion of quantities associated
with the electron field in terms of powers of the Maxwell
fields and their derivatives. As a consequence, the expansion
parameter u appearing in the relator expansions can be used
to identify which perturbative modifications to the various
site multipole moments due to a particular Maxwell field, or
derivative of that field, appear at the same “order.” We now
show this.

The expansions of �
j
y (x, t ) and �0

y (x, t ) [(33) and (34)],
derived previously can be more easily derived using a formal
expansion of the “relators,” si(w; x, y) and αi j (w; x, y), about
u = 0. We begin with the definition, under the choice of a
straight-line path; see Ref. [18], where we find

si(w; x, y) =
∫ 1

0
(xi − yi )δ[w − y − u(x − y)]du,

αi j (w; x, y) = εia j
∫ 1

0
(xa − ya)δ[w − y − u(x − y)]udu.

(A1)
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Recall we have previously defined

� j
y (x, t ) ≡

∫
αl j (w; x, y)Bl (w, t )dw, (A2)

�0
y (x, t ) ≡

∫
si(w; x, y)Ei(w, t )dw, (A3)

and found for nearly uniform Maxwell fields

�a
y (x, ω) 	 εabd

2
Bb(y, ω)

(
xd − yd

) + . . . , (A4)

�0
y (x, ω) 	 (xa − ya)Ea(y, ω)

+ 1

2
(xa − ya)(xb − yb)F ab(y, ω) + . . . , (A5)

which we have implemented in this work. We now find these
approximate expressions in a different way. We write the first
of (A1) as

si(w; x, y) 	
∫ 1

0
(xi − yi )δ(w − y)du

+
∫ 1

0
(xi − yi )u

{
∂δ[w − y − u(x − y)]

∂u

}
u=0

du

+ . . .

= (xi − yi )δ(w − y)

− 1

2
(xi − yi )(x j − y j )

∂δ(w − y)

∂w j
+ . . . (A6)

Used in (A3), following a partial integration with respect to
w, immediately gives (A5). Notice that the first term of (A5)
originates from the O(u0) term of the si-relator expansion
(A6), and the second term from the O(u) term.

Similarly, we expand the second of (A1) to the same order,
O(u), and find

αi j (w; x, y) 	 εia j
∫ 1

0
(xa − ya)δ(w − y)udu + . . .

= 1

2
εia j (xa − ya)δ(w − y) + . . . , (A7)

Using this in (A2) we immediately arrive at (A4). Then the
explicitly retained term of (A4) originates from an O(u) term
of the αi j-relator expansion. Thus, (A4) and the second term
of (A5) appear at the same order of the expansion param-
eter u. This is consistent with Faraday’s law as the spatial
derivatives of E(x, ω) are related to frequency factors times
B(x, ω). Thus such terms appear at the same “order” with
respect to the Maxwell fields and their derivatives kept in an
expansion. It appears that the expansion parameter u captures
this information.

Now the site electric and magnetic multipole moments
can be found from the “site” polarization and magnetization
fields, respectively, using these same relator expansions. The
site electric dipole moment (10) originates from the O(u0)
term of the si-relator expansion (A6), while the site electric
quadrupole moment (11) originates from the O(u) term of the
si-relator expansion. The site magnetic dipole moment (12)
originates from the O(u) term of the αi j-relator expansion
(A7). However, it is not only via the expansion of those re-
lators that relate the microscopic charge and current densities

to the microscopic polarization and magnetization fields that
the expansion parameter u enters. When finding the linear
response of the single-particle density matrix [(38), (39), and
(41)], the quantities (A4) and (A5) are used. Thus, modifica-
tions to the site electric dipole moment appear at least at order
O(u0), but not all modifications to this quantity appear at this
order; for instance, (43) appears at O(u0), while (47) and (49)
appear at O(u). Furthermore, modifications to the site electric
quadrupole and the site magnetic dipole moments appear at
least at order O(u); for example, (53) and (55)–(57) appear at
O(u). In this work, we only consider the contributions to the
linear response of a site quantity appearing at most at O(u);
we neglect higher-order modifications, such as those leading
to the magnetic susceptibility, which would appear at O(u2),
those related to spatial derivatives of the magnetic field, or
those related to the linear response of higher-order multipole
moments.

APPENDIX B: MICROSCOPIC AND MACROSCOPIC
FIELDS

In this Appendix we describe approaches to constructing
macroscopic fields from the microscopic fields appearing in
(6).

One approach (I) often adopted to treat infinite crystals is
to start from the Fourier transform to wave-vector space of all
the quantities of interest. For the current density, for example,
we would have

j(q, t ) ≡
∫

e−iq·x j(x, t )dx,

etc. If j(q, t ) is nonzero only for a single, small q, then the
variation in the current density is sinusoidal. If one wants
to consider less trivial variations, then one needs to treat a
range of qs. To do this one can introduce a macroscopic
field associated with each microscopic field—e.g., J(q, t )
with j(q, t )—by setting J(q, t ) = j(q, t ) for some restricted
region of reciprocal space near the origin—say, |q| � �−1,
where � is a length satisfying � 
 a, with a on the order of
a lattice constant—and J(q, t ) = 0 for other q in reciprocal
space. Also choosing � � λ, where λ characterizes a typical
range of variation of the fields that one is trying to capture,
the macroscopic fields can describe excitations in the crystal
characterized by typical length scales much larger than the
lattice constant.

Another approach (II) with the same goal starts in position
space rather than reciprocal space and introduces a smooth
weighting function w(x) to extract a macroscopic field L(x)
from the associated microscopic field l (x) [37],

L(x) ≡
∫

w(x − x′)l (x′)dx′, (B1)

identifying the macroscopic field at a point x with the average
of the associated microscopic field in the neighborhood of x.
We take w(x) to be a smooth positive function, peaking at
x = 0 and spherically symmetric about that point, dropping
off continuously as |x| → ∞ with a characteristic length scale
� satisfying the conditions given above,

a � � � λ, (B2)
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and with an integral over all space equal to unity. A typical
example would be a Gaussian function, w(x) = wII (x), where

wII (x) = e−|x|2/�2

�3π3/2
.

The two approaches can be formally related, of course,
because from (B1) we have

L(q) = w(q)l (q),

and by formally setting wI (q) = θ (�−1 − |q|), where θ (q) is
the Heavyside step function, we recover the first approach. It
has the advantage that constructing a macroscopic field from
its associated microscopic field is a projection in wave-vector
space; thus, choosing w(x) = wI (x), if the operation (B1) is
repeated there is no additional change. On the other hand, the
wI (x) that results

wI (x) = 1

2π2

[
1

|x|3 sin
( |x|

�

)
− �

|x|2 cos
( |x|

�

)]
,

extends far beyond |x| = �, and as well takes on negative
values. Indeed, any w(q) which, like wI (q), has a vanishing
second derivative in some direction q̂ about q = 0 will lead to
a w(x) which must take on negative values, since it has a van-
ishing second moment. Thus the second approach, where one
begins with a smooth and well-behaved averaging function
in position space [and note wII (q) = exp( − |q|2/(4�2))],
seems a better choice if one wants to understand the averaging
physically, and with it one can envision a treatment of finite
media and interfaces. In this paper we only concern ourselves
with nominally infinite crystals, so the two approaches lead to
essentially the same results; we indicate the small differences
below, but most of what we say would apply to either.

We adopt the semiclassical approximation, where the elec-
tromagnetic field is treated classically, and in the Maxwell
equations for the microscopic electric and magnetic fields,
e(x, t ) and b(x, t ), we take ρ(x, t ) and j(x, t ) (6) as the
microscopic charge-current density of the crystal. Using the
averaging procedure (B1) to identify the macroscopic fields
from their microscopic counterparts, we immediately find that
those macroscopic fields satisfy the macroscopic Maxwell
equations in the form

∇ · D(x, t ) = 4π�F (x, t ),

c∇ × H (x, t ) = 4πJF (x, t ) + ∂

∂t
D(x, t ),

∇ · B(x, t ) = 0,

c∇ × E(x, t ) + ∂

∂t
B(x, t ) = 0, (B3)

where D(x, t ) = E(x, t ) + 4πP(x, t ), H (x, t ) = B(x, t ) −
4πM(x, t ), and

�F (x, t ) ≡
∫

w(x − x′)ρF (x′, t )dx′,

E(x, t ) ≡
∫

w(x − x′)e(x′, t )dx′,

P(x, t ) ≡
∫

w(x − x′)p(x′, t )dx′, (B4)

etc. As mentioned in the text, we refer to the macroscopic
fields E(x, t ) and B(x, t ) as the “Maxwell fields.”

Using the expansions (9) in the expression (7) for the total
p(x, t ) and m(x, t ), and then spatial averaging using (B4), we
find (4), where the macroscopic electric dipole moment per
unit volume, electric quadrupole moment per unit volume, and
magnetic dipole moment per unit volume are given by

Pi(x, t ) =
∑

R

w(x − R)μi
R(t ),

Qi j (x, t ) =
∑

R

w(x − R)qi j
R (t ),

Mi(x, t ) =
∑

R

w(x − R)ν i
R(t ), (B5)

respectively. Since �F (x, t ) and JF (x, t ) vanish in the problem
at hand, on implementing (4) in the macroscopic Maxwell
equations, (B3), Pi(x, t ), Qi j (x, t ), and Mi(x, t ) serve as the
only source terms at this level of analysis. The remaining task
is to establish the constitutive relations (5).

We can do this by inserting (14) in (B5). The terms that
will appear involve ∑

R

w(x − R)L(R, ω), (B6)

where here L(R, ω) is one of the macroscopic fields El (R, ω),
Bl (R, ω), or F jl (R, ω). To investigate this kind of sum we note
that∑

R

w(x − R)eiq·R

=
∫

dx′w(x − x′)

[∑
R

δ(x′ − R)

]
eiq·x′

= 1

�uc
eiq·xw(q) + 1

�uc

∑
G �=0

w(q + G)ei(q+G)·x, (B7)

where the G are reciprocal lattice vectors, and we have used∑
R

δ(x − R) = 1

�uc

∑
G

eiG·x.

If we choose w(q) = wI (q), then the q that will contribute to
L(R, ω) are such that the second term in the final equality of
(B7) rigorously vanishes; from the first term in that expression
we see that, since wI (q) acts as a projector, we will have∑

R

w(x − R)L(R, ω) = 1

�uc
L(x, ω), (B8)

exactly. If we choose w(q) = wII (q), then there will be correc-
tions to this, since wII (q) does not act as a projector. However,
the corrections will be small given that the inequalities (B2)
are assumed to be satisfied, and we can redefine our local field
corrections to include them. We then find that (B5), (14), and
(B8) lead to (5), the form of our constitutive relations.

APPENDIX C: LIST OF RESPONSE TENSORS

We here list all the response tensors that were found in this
work. The derivation of these response tensors, including the
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acknowledgment of the assumptions that have been made, and
the identification of the quantities they relate, is presented in
Secs. II–IV. The response tensor χ il

E (ω) is gauge invariant. For

all the other tensors, the portion indicated with a breve accent
is gauge invariant.

χ il
E (ω) = e2

∑
mn

fnm

∫
BZ

dk
(2π )3

ξ l
mnξ

i
nm

Emk − Enk − h̄(ω + i0+)
.

γ i jl (ω) = γ̆ i jl (ω) + e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

(
ξ l

mnW
j

ns + ξ
j

mnW l
ns

)
ξ i

sm + ξ i
ns

(
W j

smξ l
mn + W l

smξ
j

mn
)

Emk − Enk − h̄(ω + i0+)
,

where

γ̆ i jl (ω) ≡ e2

4

∑
mn

fnm

∫
BZ

dk
(2π )3

[
F jl

mn(k, ω) + Fl j
mn(k, ω)

]
ξ i

nm,

and F jl
mn(k, ω) is given by (40).

χ
i jl
Q

(ω) = χ̆
i jl
Q

(ω) + e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

[
ξ l

mn

(
ξ i

nsW
j

sm + W j
nsξ

i
sm

)
Emk − Enk − h̄(ω + i0+)

+ ξ l
mn

(
ξ

j
nsW i

sm + W i
nsξ

j
sm

)
Emk − Enk − h̄(ω + i0+)

]
,

where

χ̆
i jl
Q

(ω) ≡ e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ l
mn

(
ξ i

nsξ
j

sm + ξ
j

nsξ
i
sm

)
Emk − Enk − h̄(ω + i0+)

.

αil
P(ω) = ᾰil

P(ω) + iωe2

4c
εlab

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ i
nsWa

smξ b
mn + ξ b

mnWa
nsξ

i
sm

Emk − Enk − h̄(ω + i0+)
,

where

ᾰil
P(ω) ≡ ωe2

4c
εlab

∑
mn

fnm

∫
BZ

dk
(2π )3

B́
ab
mn(k, ω)ξ i

nm

Emk − Enk − h̄(ω + i0+)
,

and B́
ab
mn(k, ω) is defined in (52).

αli
M(ω) = ᾰli

M(ω) − iωe2

4c
εiab

∑
mns

fnm

∫
BZ

dk
(2π )3

ξ l
mnWa

nsξ
b
sm + ξ b

nsWa
smξ l

mn

Emk − Enk − h̄(ω + i0+)
,

where

ᾰli
M(ω) ≡ ωe2

4c
εiab

∑
mn

fnm

∫
BZ

dk
(2π )3

1

Emk − Enk − h̄(ω + i0+)

×
{

2
∂b(Emk + Enk)

Emk − Enk
ξ a

nmξ l
mn + i

∑
s

Esk − Emk

Emk − Enk
ξ a

nsξ
b
smξ l

mn + i
∑

s

Enk − Esk

Emk − Enk
ξ b

nsξ
a
smξ l

mn

}
.

We have previously [19] found the OMP tensor to be of the form

αil = αil
G + δilαCS, (C1)

where

αil
G = e2

h̄c
εlab

∫
BZ

dk
(2π )3

{
−

∑
cv

∂b(Eck + Evk)

Evk − Eck
Re[(∂av|c)(c|∂iv)] −

∑
cvv′

Evk − Ev′k

Evk − Eck
Re[(∂bv|v′)(∂av

′|c)(c|∂iv)]

+
∑
cc′v

Eck − Ec′k

Evk − Eck
Re[(∂bv|c′)(c′|∂ac)(c|∂iv)]

}
, (C2)

and

αCS = − e2

2h̄c
εabd

∫
BZ

dk
(2π )3

[(∑
vv′

ξ a
vv′∂bξ

d
v′v − 2i

3

∑
vv′v1

ξ a
vv′ξ

b
v′v1

ξ d
v1v

)
+

∑
vv′

(∂bWa
vv′ )Wd

v′v − 2i

3

∑
vv′v1

Wa
vv′Wb

v′v1
Wd

v1v

]
, (C3)

where αil
G is gauge invariant and αCS is not.
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APPENDIX D: GAUGE INVARIANCE OF INDUCED FIRST-ORDER MACROSCOPIC CURRENT DENSITY

We begin by separating (60) into a sum of gauge-invariant and gauge-dependent terms. We then collect the gauge-invariant
terms, i.e., χ̆ contributions, into [. . .]. We find

Ji(1)(x, ω) = −iωχ il
E (ω)El (x, ω) − iωγ i jl (ω)F jl (x, ω) − iω

[
αil

G + αil
P (ω)

]
Bl (x, ω)

+ iωχ
i jl
Q

(ω)
∂El (x, ω)

∂x j
+ cεiab

[
αlb

G + αlb
M (ω)

]∂El (x, ω)

∂xa

= [. . .] − i
e2

2

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ω

ξ l
mnW

j
nsξ

i
sm + ξ i

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)
F jl (x, ω)

+ iω
εlab

2h̄c

h̄ω

Emk − Enk − h̄(ω + i0+)

(
ξ i

nsWa
smξ b

mn + ξ b
mnWa

nsξ
i
sm

)
Bl (x, ω)

− ω

2

[
ξ i

nsW
j

smξ l
mn + ξ l

mnW
j

nsξ
i
sm

Emk − Enk − h̄(ω + i0+)
+ ξ

j
nsW i

smξ l
mn + ξ l

mnW i
nsξ

j
sm

Emk − Enk − h̄(ω + i0+)

]
∂El (x, ω)

∂x j

+ cεiab εbcd

2h̄c

h̄ω

Emk − Enk − h̄(ω + i0+)

(
ξ l

mnWc
nsξ

d
sm + ξ d

nsWc
smξ l

mn

)∂El (x, ω)

∂xa

}

= [. . .] − i
e2

2

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ω

2

ξ l
mnW

j
nsξ

i
sm + ξ i

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)

[
∂El (x, ω)

∂x j
+ ∂E j (x, ω)

∂xl

]

+ εlab ω

2

ξ i
nsWa

smξ b
mn + ξ b

mnWa
nsξ

i
sm

Emk − Enk − h̄(ω + i0+)
εlcd ∂Ed (x, ω)

∂xc

− ω

2

[
ξ i

nsW
j

smξ l
mn + ξ l

mnW
j

nsξ
i
sm

Emk − Enk − h̄(ω + i0+)
+ ξ

j
nsW i

smξ l
mn + ξ l

mnW i
nsξ

j
sm

Emk − Enk − h̄(ω + i0+)

]
∂El (x, ω)

∂x j

+ εiabεbcd ω

2

ξ l
mnWc

nsξ
d
sm + ξ d

nsWc
smξ l

mn

Emk − Enk − h̄(ω + i0+)

∂El (x, ω)

∂xa

}

= [. . .] − i
e2

2

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ω

2

ξ l
mnW

j
nsξ

i
sm + ξ i

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)

∂E j (x, ω)

∂xl

+ ω

2

ξ i
nsWa

smξ b
mn + ξ b

mnWa
nsξ

i
sm

Emk − Enk − h̄(ω + i0+)

[
∂Eb(x, ω)

∂xa
− ∂Ea(x, ω)

∂xb

]
− ω

2

ξ
j

nsW i
smξ l

mn + ξ l
mnW i

nsξ
j

sm

Emk − Enk − h̄(ω + i0+)

∂El (x, ω)

∂x j

+ ω

2

[
ξ l

mnW i
nsξ

a
sm + ξ a

nsW i
smξ l

mn

Emk − Enk − h̄(ω + i0+)
− ξ l

mnWa
nsξ

i
sm + ξ i

nsWa
smξ l

mn

Emk − Enk − h̄(ω + i0+)

]
∂El (x, ω)

∂xa

}

= [. . .] − i
e2

2

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ω

2

ξ l
mnW

j
nsξ

i
sm + ξ i

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)

∂E j (x, ω)

∂xl

+ ω

2

ξ i
nsWa

smξ b
mn + ξ b

mnWa
nsξ

i
sm

Emk − Enk − h̄(ω + i0+)

[
∂Eb(x, ω)

∂xa
− ∂Ea(x, ω)

∂xb

]
+ ω

2

[
−ξ l

mnWa
nsξ

i
sm + ξ i

nsWa
smξ l

mn

Emk − Enk − h̄(ω + i0+)

]
∂El (x, ω)

∂xa

}

= [. . .],

where in the above we have used the identity εlabεlcd = δacδbd − δadδbc. As the [. . .] term contains only the gauge-invariant
contributions of the response tensors in (60), we arrive at (61).

APPENDIX E: GAUGE INVARIANCE OF INDUCED FIRST-ORDER MACROSCOPIC CHARGE DENSITY

We begin by separating (62) into a sum of gauge-invariant and gauge-dependent terms. We then collect the gauge-invariant
terms, i.e., χ̆ contributions, into [. . .]. We find

�(1)(x, ω) = −
{

χal
E (ω)

∂El (x, ω)

∂xa
+ γ a jl (ω)

∂F jl (x, ω)

∂xa
+ [

αal
G + αal

P (ω)
]∂Bl (x, ω)

∂xa
− χ

a jl
Q

(ω)
∂2El (x, ω)

∂xa∂x j

}

= −[. . .] − e2

2

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ξ l

mnW
j

nsξ
a
sm + ξ a

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)

∂F jl (x, ω)

∂xa
+ εldb

2c

iω

Emk − Enk − h̄(ω + i0+)
ξ a

nsWd
smξ b

mn
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+ ξ b
mnWd

nsξ
a
sm

∂Bl (x, ω)

∂xa
− ξ a

nsW
j

smξ l
mn + ξ l

mnW
j

nsξ
a
sm

Emk − Enk − h̄(ω + i0+)

∂2El (x, ω)

∂xa∂x j

}

= −[. . .] − e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ξ l

mnW
j

nsξ
a
sm + ξ a

nsW
j

smξ l
mn

Emk − Enk − h̄(ω + i0+)

[
−∂2El (x, ω)

∂xa∂x j
+ ∂2E j (x, ω)

∂xa∂xl

]

+ εldbεlce ξ a
nsWd

smξ b
mn + ξ b

mnWd
nsξ

a
sm

Emk − Enk − h̄(ω + i0+)

∂2Ee(x, ω)

∂xc∂xa

}

= −[
. . .

] − e2

4

∑
mns

fnm

∫
BZ

dk
(2π )3

{
ξ b

mnWd
nsξ

a
sm + ξ a

nsWd
smξ b

mn

Emk − Enk − h̄(ω + i0+)

[
−∂2Eb(x, ω)

∂xa∂xd
+ ∂2Ed (x, ω)

∂xa∂xb

]

+ ξ a
nsWd

smξ b
mn + ξ b

mnWd
nsξ

a
sm

Emk − Enk − h̄(ω + i0+)

[
∂2Eb(x, ω)

∂xd∂xa
− ∂2Ed (x, ω)

∂xb∂xa

]}

= −[. . .].

As the [. . .] term contains only the gauge-invariant contributions of the response tensors in (62), we arrive at (63).

APPENDIX F: LINEAR-IN-q CONTRIBUTION TO
OPTICAL CONDUCTIVITY

In past work, Malashevich and Souza [7] introduce
Bab(orb)

nm (k), which we call Bab
nm(k). We arrive at (70) from Eq.

(36) presented there in the following way. We begin by imple-
menting the definition of the non-Abelian Berry connection

i|∂ank〉 =
∑

n′
ξ a

n′n(k)|n′k〉,

and use the identity

∂aHk|nk〉 = ∂aEnk|nk〉 + (Enk − Hk)|∂ank〉.

Implementing this, and Hk|nk〉 = Enk|nk〉, we arrive at (70).
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