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Theory of intrinsic propagation losses in topological edge states of planar photonic crystals
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Using a semianalytic guided-mode expansion technique, we present theory and analysis of intrinsic prop-
agation losses for topological photonic crystal slab waveguide structures with modified honeycomb lattices
of circular or triangular holes. Although conventional photonic crystal waveguide structures, such as the W1
waveguide, have been designed to have lossless propagation modes, they are prone to disorder-induced losses
and backscattering. Topological structures have been proposed to help mitigate this effect as their photonic edge
states may allow for topological protection. However, the intrinsic propagation losses of these structures are
not well understood and the concept of the light line can become blurred. For four example topological edge
state structures, photonic band diagrams, loss parameters, and electromagnetic fields of the guided modes are
computed. Two of these structures, based on armchair edge states, are found to have significant intrinsic losses
for modes inside the photonic bandgap, more than 100 dB/cm, which is comparable to or larger than typical
disorder-induced losses using slow-light modes in conventional photonic crystal waveguides, while the other
two structures, using the valley Hall effect and inversion symmetry, are found to have a good bandwidth for
exploiting lossless propagation modes below the light line (at least in the absence of disorder).
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I. INTRODUCTION

Semiconductor photonic crystals (PCs) are dielectric struc-
tures that allow the manipulation of light on the nanoscale,
achieved by tailoring the periodicity of the dielectric constant
[1–4]. In particular, planar photonic crystal slabs (PCSs) have
a two-dimensional in-plane periodicity in their lattice struc-
ture, which can be used to realize slow-light modes on semi-
conductor chips [5]. The PCSs are often introduced with de-
fects within their lattice structures, e.g., to create waveguides
[3,4,6–11], which allow the propagation of light in a particular
direction, or trap light in cavities [12–23]. The fabrication of
these PCSs is made possible through semiconductor growth
techniques [2], such as etching [24] and lithography [25].

In terms of understanding extrinsic (i.e., disorder-induced)
propagation losses, conventional PCS waveguide structures,
such as the W1 waveguide (i.e., a single row of missing holes),
have been studied extensively [2,26]. Kuramochi et al. [27]
have achieved PCS waveguide losses as low as 5 dB/cm, and
O’Faolain et al. [28] as low as 15 dB/cm. Variations of the W1
design can help improve these numbers somewhat in terms
of reducing the loss per group index [29,30]. However, in all
of these conventional designs, operation near the mode edge
(slow light regime) becomes impractical because of signifi-
cant disorder-induced backscattering [2,26,31–39].
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In recent years, it has been proposed that “topological”
photonic structures can help mitigate the problem of disorder-
induced losses in PCS waveguides, thanks to the special
properties of their photonic edge states. These edge states
of topological waveguides may allow scatter-free propaga-
tion for nanoscale PCs and have applications in quantum
technologies due to their strong interactions with quantum
emitters [40–47]. Experimentally, electromagnetic modes for
these topological edge states have been measured by Barik
et al. [48] in 2018, indicating that these topological edge
states can function as waveguides, with localized spin con-
trol. However, for these PCS geometries, the role of intrinsic
out-of-plane losses on the propagating modes is not well
understood. Quantifying such radiative losses is essential to
properly characterize the topological edge states in PCSs and,
ultimately, to improve their performance and understanding.

To accurately model the behavior of light within PCSs,
numerical solutions to Maxwell’s equations in the full
three-dimensional geometry are required [3,49–51]. For this
purpose, well-known numerical approaches, such as the
finite-difference time-domain (FDTD) method [52] and the
plane-wave expansion (PWE) method [53,54], have been
commonly employed during the last two decades. FDTD
techniques directly solve Maxwell’s equations by iterating
through time, on a finite spatial grid. The FDTD method
is numerically exact (i.e., without approximations), however,
it is a brute-force method which can be computationally
inefficient [3,55]. This computational inefficiency is espe-
cially problematic when computing modes above the light
line in three dimensions, and lossy waveguide modes can
be hard or impossible to resolve with a time-dependent
solution. The PWE method, on the other hand, works in
the frequency domain rather than in the time domain; PWE
solves Maxwell’s equations as an eigenvalue problem and is
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significantly more efficient than FDTD. However, a major
limitation with PWE is that it assumes periodicity in all spatial
directions and can only be accurately used for lossless sys-
tems, such as standard PCS waveguides operating below the
light line [2,56].

An alternative approach to the brute-force solvers like
FDTD is the semianalytical method, originally proposed by
Andreani and Gerace, known as the guided-mode expansion
(GME) [57] method. In GME, the magnetic field of the PCS
is expanded in the basis of the guided mode of the slab’s
effective waveguide, and the resulting eigenvalue equation
is solved numerically. The benefits of the GME method are
twofold: (i) it is significantly more computationally efficient
than other numerical methods such as FDTD, because the
matrix elements of the Maxwell operator become analytical
in the guided-mode basis; and (ii) the imaginary part of the
eigenvalue, which accounts for the out-of-plane losses, can be
obtained by using time-dependent perturbation theory in the
low-loss regime. This makes the GME an ideal theoretical tool
for numerically solving PCSs when the imaginary part of the
mode frequency is much smaller than its real part. Thus, the
GME method is an excellent and efficient method of choice to
analyze the photonic band structure and intrinsic propagation
losses of topological PCS waveguides.

In this work, we study four topological PCS waveguide
designs that have been recently presented in the literature.
The PCS waveguides are analyzed using the GME approach,
where we compute the complex photonic band structure and
quantify the intrinsic radiation losses above the light line.
We also identify the regions where these out-of-plane losses
are minimized and characterize the corresponding intensity
profiles of the waveguide modes. The first two structures are
based on the designs from Anderson and Subramania [40] and
Barik et al. [41], which we show to be intrinsically lossy and
form modes inside the photonic bandgap but above the light
line, while the latter two structures, from Shalaev et al. [58]
and He et al. [59], do have have edge states modes below the
light line and are thus more promising in terms of mitigating
problems of intrinsic diffraction losses. Importantly, all these
structures could be efficiently redesigned using the GME to
improve their loss characteristics, though we will not study
optimization techniques in this paper.

The layout of the rest of our paper is as follows: Section II
introduces the main designs of interest, Sec. III presents the
GME theory and methods for computing complex band struc-
ture and losses, and Sec. IV presents our main results for
the four waveguide designs. Our conclusions are presented
in Sec. V. We also include three Appendixes: in Appendix A
we provide further details of the intrinsic loss calculations and
features; in Appendix B we provide more examples of the var-
ious waveguide modes found by the GME; and in Appendix
C we provide further waveguide mode graphs to display the
chiral properties of the edge state waveguide modes, which
have applications for coupling to quantum emitters with uni-
directional control.

II. DESIGNS FOR TOPOLOGICAL EDGE STATES
IN PHOTONIC CRYSTAL WAVEGUIDES

Figure 1 shows two schematic examples of PCS structures
that support topological edge states, using circles or trian-

FIG. 1. Schematic three-dimensional models of two example
topological PCS structures: one with circular holes and one with
triangular holes. An interface, which acts as a waveguide, separates
two lattice structures (in this example, with expanded or shrunken
honeycomb lattices).

gles on a semiconductor slab (or membrane). The interfaces
in these two examples separate a topologically trivial lattice
structure with shrunken honeycomb clusters and a topolog-
ically nontrivial lattice structure with expanded honeycomb
clusters. These two designs, from Refs. [40,41], use standard
honeycomb lattices, with an armchair interface separating
expanded and shrunken honeycomb clusters. We refer to
these structures as armchair edge state designs. Anderson and
Subramania [40] have presented theoretical photonic band
structure calculations for their design of circular holes, as
well as power flow diagrams along the interface. However,
propagation losses were not considered. For the design by
Barik et al. [41], impressive experimental measurements were
also demonstrated by coupling quantum dot emitters to the
waveguide modes [48]. Some partial loss calculations for
this structure are available in the Supplemental Material to
Ref. [48], which are presented in the form of a minimum
propagation length using the FDTD technique. Experimen-
tally, a loss length of 22 μm was shown for this structure,
and they predicted that a loss length of up to 40 μm could be
achieved with appropriate parameter adjustments. With such
a brute-force FDTD approach, the origin of such losses is not
so clear; alternative techniques are thus needed not only to
highlight the underlying physics, but also to efficiently explore
the parameter space for lower loss designs.

Very recent designs from Refs. [58,59] use honeycomb
clusters with two alternating hole sizes and instead use inver-
sion symmetry to achieve a waveguide interface. The design
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proposed by Shalaev et al. [58] is introduced as a topological
insulator that exhibits the valley Hall effect at telecommu-
nications wavelengths. A similar design by He et al. [59]
also exhibits valley Hall effects and has been experimentally
investigated on top of a SiO2 substrate. The design that we
investigate below does not consider the substrate for GME
calculations, so that it is consistent with the three other de-
signs, since air bridge structures have less overlap with the
light line. Impressive experiments have been done with both
these structures and low losses have been reported. We refer
to these two structures as valley Hall edge state designs.

III. GUIDED-MODE EXPANSION TECHNIQUE
AND PROPAGATION LOSSES

For linear and nonmagnetic media, one can rewrite
Maxwell’s equations in the frequency domain, such that a
second-order eigenvalue equation in terms of the magnetic
field H (r) is obtained,

∇ ×
[ 1

ε(r)
∇ × H (r)

]
=

(ω

c

)2
H (r), (1)

where ε(r) is the dielectric constant of the slab. To solve
this eigenvalue problem using the GME method, the magnetic
field is expanded in an orthonormal set of basis states,

H (r) =
∑

μ

cμHμ(r), (2)

with the orthonormality condition,∫
unit cell

H∗
μ(r) · Hν (r)dr = δμ,ν . (3)

Then Eq. (1) is rewritten as a linear eigenvalue problem,

∑
ν

Hμνcν = ω2

c2
cμ, (4)

where the matrix elements Hμν are defined as

Hμν =
∫

1

ε(r)

(∇ × H∗
μ(r)

) · (∇ × Hν (r)) dr. (5)

To solve for Hμν , the GME method obtains the magnetic
field for each Bloch wave vector k as a sum of the guided
modes over the reciprocal lattice vectors and the mode index
i. Therefore, the GME for the magnetic field can be rewritten
as

Hk(r) =
∑
G,i

c(k + G, i)Hguided
k+G,i (r), (6)

where G is a reciprocal lattice vector for the PCS’s lat-
tice structure. The analytical solution for the guided mode
Hguided

k+G,i (r) varies depending on the slab’s layer and whether the
mode is transverse electric (TE) or transverse magnetic (TM)
[57]. Note that the matrix elements Hμν in Eq. (4) depend on
the Fourier transform of the inverse dielectric function in each
slab layer j = {1, 2, 3}, through

η j (G, G′) = 1

A

∫
cell

ε j (ρ)−1ei(G′−G)·ρdρ, (7)

where A is the unit cell area, ρ = (x, y), and j represents one
of the slab’s three layers: the lower cladding, the core, and the
upper cladding. However, from a numerical perspective, it is
much more convenient to calculate the matrix elements of the
dielectric function directly as [57]

ε j (G, G′) = 1

A

∫
cell

ε j (ρ)ei(G′−G)·ρdρ (8)

and use numerical matrix inversion to find η j (G, G′) =
ε−1

j (G, G′). This is the approach that we take.
The guided-mode basis is computed in an effective homo-

geneous slab whose dielectric constant is usually taken as the
spatial average of ε j (ρ):

ε j = 1

A

∫
cell

ε j (ρ)dρ. (9)

Once the magnetic field is obtained from Eq. (6), the electric
field is obtained by

Ek(r) = ic

ωε(r)
× Hk(r), (10)

where ∫
unit cell

ε(r)E∗
k(r) · Ek′ (r)dr = δk,k′ . (11)

Although performing the GME in this way is accurate
for photonic modes below the light line, it does not directly
obtain out-of-plane (intrinsic) losses. However, since such
losses are small, one can can estimate these losses using
perturbation theory. Specifically, when a photonic mode es-
capes the slab’s core into the claddings, it couples to lossy
radiation modes and falls above the light line. The mode
becomes quasiguided and is now subject to intrinsic losses,
which can be accurately computed from the imaginary part of
the eigenfrequency, Im(ω). Similarly to Fermi’s golden rule
from quantum mechanics, these losses can be computed by
second-order time-dependent perturbation theory [57], from
the photonic golden rule:

− Im

(
ω2

k

c2

)
= π

∑
G′

∑
λ

∑
j=1,3

|Hk,rad|2ρ j

(
k + G′;

ω2
k

c2

)
,

(12)
where λ represents either a TE or a TM mode, and the matrix
element between a guided and lossy radiation mode is given
by

Hk,rad =
∫

1

ε(r)

(∇ × H∗
k(r)

) · (∇ × H rad
k+G′,λ, j (r)

)
dr, (13)

and ρ j is the one-dimensional photonic density of states for a
given wave vector g = k + G in layer j,

ρ j

(
g;

ω2

c2

)
= ε

−1/2
j c

4π

θ

(
ω2 − c2g2

ε j

)−1/2

(
ω2 − c2g2

ε j

)−1/2 , (14)

with θ representing the Heaviside step function. Similarly to
those for the guided modes, the analytical definitions for the
radiation modes H rad

k+G′,λ, j (r) depend on the slab’s layer and
polarization [57].
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The imaginary part of the frequency is then easily obtained
from

Im(ωk ) = Im(ω2
k )

2 Re(ωk )
. (15)

Subsequently, the power loss coefficient, α, is obtained from

α = 2
Im(ωk )

|vg| , (16)

where vg = dω/dk is the mode group velocity. Another useful
parameter for connecting to experiments is power loss in
decibels (dB), obtained from LossdB = 4.34α.

It is worth commenting on the expected accuracy of the
GME loss calculations. As expected from any perturbative
approach, the GME method is an approximate one and its
predictions are accurate as long as the underlying assump-
tions are fulfilled. For the photonic dispersion, structures with
high-contrast refractive indices are required in order to make
a reliable description of PCS eigenmodes with the vertically
confined guided-mode basis, while for the out-of-plane losses,
the imaginary part of the frequency, computed with Eqs. (12)
and (15), must be much smaller than its real part. These
two conditions are perfectly satisfied in our cases of interest,
where air-bridge high-index slabs are considered and the ratio
Im(ω)/Re(ω) is of the order of 10−4 for the largest losses
computed below. Nevertheless, structures with weakly con-
fined modes in the vertical direction and with strong radiative
losses components are likely not suitable for the GME and
could require first-principles simulations, such as FDTD; such
modes are not considered in this work, and the GME is a
far more efficient method to obtain the propagation losses of
interest. We also stress that the GME method presents a full
vector and three-dimensional solution of Maxwell’s equations
for a wide range of PCS structures.

IV. NUMERICAL RESULTS FOR THE COMPLEX BAND
STRUCTURES AND PROPAGATION LOSSES

In this section, we apply the GME to the four topological
PCS structures described in Sec. II, which we refer to as
designs A [40], B [41], C [58], and D [59], respectively. For
each of the four designs, photonic band diagrams in the kx

direction are computed, along with the nominal light line,
and the topological edge states are indicated. A top-down
view of each lattice structure’s supercell is shown, with the
propagation being in the x direction in each case. Since these
band diagrams are symmetric about kx = 0, only the results
for kx � 0 are shown. Zoom-ins of these guided bands of
interest are shown, along with their intrinsic losses presented
in terms of the group index, ng = |c/vg|, where vg is the group
velocity, and the loss coefficient, α. Finally, mode profiles
of the (normalized) electric displacement field, D ≡ εE, are
presented, which provide a visual representation of how well
the modes remain confined along the waveguides for their
respective topological structure.

Our computational implementation of the GME for the
structures below was done in MATLAB. To obtain all nec-
essary results, the number of k points and the number of basis
states were chosen for the dispersion calculations. These num-
bers are dependent on the PCS structure. For design A, a total

x
y

FIG. 2. Dispersion of the lossy armchair interface structure of
circular holes, design A [40]. Propagation is along x.

of 81 basis states and 1002 k points were used. For design B,
144 basis states were computed, with a total of 3002 k points.
Both design C and design D used 60 basis states, with C using
1502 k points and D using 1002 k points. For designs A, B,
and D, the normalized cutoff in reciprocal lattice vectors, Ga,
was set to 30, whereas it was set to 40 for design C. These
were all checked carefully to ensure numerical convergence.

A. Armchair interfaces of circular holes by Anderson
and Subramania [40] and of triangular holes by Barik et al. [41]

We first show results for the PCS structure of the armchair
interface of circular holes, introduced by Anderson and Sub-
ramania [40]. The GME computations use a slab dielectric
constant of εs = 11.5, a slab thickness of d = 0.25a, a hole
radius of r = 0.13a, and a lattice constant of a = 870 nm.
Assuming that the radius of each honeycomb cluster is R
and the lattice constant is a, the topologically nontrivial side
has expanded honeycomb clusters with Rexp = a/2.9 and the
topologically trivial side has shrunken honeycomb clusters
with Rshr = a/3.1.

The lattice structure and photonic band diagram for this
topological structure is shown in Fig. 2. One might expect the
topological edge states in this case to be below the light line,
however the GME identifies them to be above the light line,
which results in nonzero losses.

It is also important to note that the propagation losses here
do not arise from backscattering but, rather, from radiation
leaking out vertically while the mode is propagating along the
waveguide. However, we are not considering any structural
disorder.

Figure 3(a) shows a zoomed-in region of interest of the
band structure, highlighting two edge state modes, labeled
state 1 and state 2. The corresponding group index and prop-
agation losses are shown in Fig. 3(b). We identify a point of
minimum loss for state 2, at kxa = 0.091. The minimum loss
coefficient is αmin = 1/97 a, which yields a maximum loss
length of Lα = 97a.

With the lattice constant of a = 870 nm, the mini-
mum losses in this structure were found to be equal to
510 dB/cm. This quantity is significantly larger than typical
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FIG. 3. (a) Zoom-in to design A’s guided bands of interest, la-
beled state 1 and state 2. Points of interest, which are found above the
light line (but within the photonic bandgap), provide the minimum
loss coefficient for state 2 (and therefore the maximum loss length)
and are indicated by circles. (b) The group index (top), ng = |c/vg|,
and loss coefficient (bottom), α, of state 1 and state 2, shown on
a logarithmic scale. The two points of interest are represented by
circles. (c) Electric displacement field mode profiles of the x and y
components of state 1 at the point of interest. (d) Electric displace-
ment field mode profiles of state 2.

disorder-induced losses of conventional PCS waveguide
modes, which are around 5–30 dB/cm for the fast-light
regime and around 100–1000 dB/cm for the slow-light
regime (ng ≈ 100) [2,26–28,30,33]. For thin samples, extrin-
sic (disorder-induced) losses scale inversely with the group
index squared (as a general approximation) [2,32]. Intrinsic
losses of W1 waveguides (i.e., above the light line) have also
been measured to be around 400 dB/cm [27], which is close
to the values of the topological edge states here.

The x and y components of the Bloch-mode displacement
fields D at z = 0 (i.e., in the vertical center of the slab) are
shown in Figs. 3(c) and 3(d). These modes, shown for state
1 and state 2 from Fig. 3(a), are taken at the points of min-
imum loss. As expected, the modes remain mostly confined
along the interface, however, they are still relatively lossy and
confinement seems to be somewhat poor for these edge states.

We also studied the results for a similar PCS structure
using the zigzag interface of circular holes [40], and found
similar results (not shown). The loss length was found to be
equal to Lα = 166a, which is equivalent to propagation losses
of 173.5 dB/cm, given a waveguide lattice constant of a

√
3.

The smaller losses in this structure compared to its armchair
counterpart partly stem also from its larger effective mode
volume, Veff = 1/max[ε(r)|E(r)|2] [60], which influences the
photonic golden rule calculations. Note that this is an effective
mode volume per unit cell [60]. As is clear from Eqs. (12)
and (13), losses are also influenced by complex interference

FIG. 4. Dispersion of the lossy armchair interface structure of
triangular holes, design B [41]. Propagation is along x.

effects between the confined Bloch mode and the radiation
modes. Although the zigzag structure has somewhat lower
losses, by approximately a factor of 2, the modes are still
above the light line and have significant losses throughout all
of k space.

We next consider the PCS structure proposed by Barik et al.
[41], which was also demonstrated experimentally by cou-
pling spin-charged quantum dots [48]. The GME computation
uses the following parameters: a slab dielectric constant of
εs = 12.11, a slab thickness of d = 160a/445, a length of one
side of the equilateral triangular hole of L = 140a/445, and
a lattice constant of a = 445 nm. In this case, the topolog-
ically nontrivial side has expanded honeycomb clusters with
Rexp = 1.05a/3 and the topologically trivial side has shrunken
honeycomb clusters with Rshr = 0.94a/3.

Figure 4 displays the photonic band diagram for this topo-
logical structure and its lattice design. Figure 5(a) shows a
zoom-in of the region of interest, with two identified edge
state modes. Once again, we find that these modes are well
above the light line when inside the photonic bandgap, though
some of the modes fall below the light line when below
the photonic bandgap. Specifically, state 1 resides above the
light line for |kxa| < 3.049, whereas state 2 resides above
the light line for |kxa| < 2.628. Within the photonic bandgap
region, minimum losses occur at kxa = 0.018 (for state 2), and
the corresponding group index and loss values are shown in
Fig. 5(b). Here, the loss coefficient achieved at the point of
minimum loss is equal to αmin = 1/79 a, which corresponds
to a maximum loss length of Lα = 79a, and the minimum
propagation losses were found to be equal to 1242 dB/cm.
Figures 5(c) and 5(d) show the components of the guided
modes’ displacement field for this structure at z = 0. Similarly
to design A, the modes remain mostly along the interface,
however, the edge state confinement is significantly worse in
this case.

We note that Barik et al. have obtained experimental loss
measurements on this structure and extracted some values
for the optimum loss length [48]. Using their lattice constant
of a = 445 nm, our normalized loss length of Lα = 79a is
equivalent to Lα = 35 μm. Comparing this loss length with
their experimental value of 22 μm, it is clear that these two
values are in reasonable agreement, especially as we have not
accounted for any other source of loss, and we have extracted
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FIG. 5. (a) Zoom-in to design B’s guided bands of interest, la-
beled state 1 and state 2. Points of interest, which are found above
the light line, provide the minimum loss coefficient for state 2 and
are indicated by circles. (b) The group index (top), ng, and loss
coefficient (bottom), α, of state 1 and state 2. The two points of
interest are represented by circles. (c) Electric displacement field
mode profiles of the x and y components of state 1 at the point of
interest. (d) Electric displacement field mode profiles of state 2.

the theoretical lowest loss as a limit. We also expect fabrica-
tion imperfections to impact these numbers further.

While both design A and design B produce edge state
modes that appear to be intrinsically lossy, we stress that the
physics of these topological structures is much richer than
that of regular PC modes [40,41], and these loss lengths are
certainly large enough to probe many finite-size waveguide
effects, and for exploiting topology-dependent spin [48].

B. Valley Hall edge state structures of Shalaev et al. [58]
and He et al. [59]

Next, we examine the recent PCS edge state structure of
Shalaev et al. [58], described earlier. The GME computations
for this structure use a slab dielectric constant of εs = 12.11,
a slab thickness of d = 0.639a, equilateral triangular hole
lengths of L1 = 0.4a and L2 = 0.6a, and a lattice constant of
a = 423 nm.

The full photonic band diagram, as well as the lattice de-
sign, for this topological structure are shown in Fig. 6. Unlike
designs A and B, its interface does not separate two honey-
comb lattice structures of expanded and shrunken clusters.
Instead, a standard honeycomb lattice of triangular holes with
two alternating hole sizes has inversion symmetry applied, and
an interface is formed from the larger triangular holes. As a
consequence of the periodic nature of the GME in both the
x and the y directions, an intermediate interface of smaller
triangular holes forms beyond what is shown in Fig. 6. The
mode confined within the real interface of larger holes is

FIG. 6. Dispersion of the edge state structure of triangular holes,
design C [58]. Propagation is along x.

labeled state 1, whereas the artificial mode confined to the
intermediate interface of smaller holes is labeled state 2′; see
Appendix B for more information on how these artificial
modes (with respect to the original lattice) are defined and
obtained.

Another difference between this structure and designs A
and B is that the guided modes lie below the light line,
as shown in the zoom-in of the band diagram in Fig. 7(a).

FIG. 7. (a) Zoom-in to design C’s guided bands of interest, la-
beled state 1 and state 2′. Note that state 2′ is in fact an edge state
mode at the border of the supercell but constitutes an alternative
design. Points of interest, indicated by circles, were chosen to be
below the light line. (b) The group index (top), ng, and loss coefficient
(bottom), α, of state 1 and state 2′. The two points of interest are
represented by circles, and the light line crossings are indicated by
dotted vertical lines. (c) Electric displacement field mode profiles of
the x and y components for state 1 at the point of interest. (d) Electric
displacement field mode profiles of state 2′; for simplicity, we show
the edge state at the center and rearrange the lattice accordingly (see
Appendix B).
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x
y

FIG. 8. Dispersion of the edge state structure of circular holes,
design D [59]. Propagation is along x.

Figure 7(b) shows the corresponding group index, ng, and loss
coefficient, α, for these two modes. The point at which a mode
crosses the light line is indicated by a dotted vertical line.
The mode point of interest in this case is arbitrarily chosen
to be below the light line. As expected from Fig. 7(b), the loss
coefficient, α, becomes 0 when the mode falls below the light
line. The various jumps in α versus wave vector arise from
crossings between the Bloch mode and the effective slab
waveguide modes (see Appendix A). Also, the significant
dip in α for state 2′ is a consequence of the decreasing ng

and the larger effective mode volume. As an example, when
the α values of state 1 and state 2′ are similar, we obtain
effective mode volumes of 0.032 μm3 [or 0.264(λ/ns)3] for
state 1 and 0.038 μm3 [or 0.489(λ/ns)3] for state 2′; however,
when α differs by orders of magnitude, the effective mode
volumes increase to 0.039 μm3 [or 0.391(λ/ns)3] for state
1 and 0.051 μm3 [or 0.650(λ/ns)3] for state 2′, which are
comparable to W1-like effective mode volumes [60].

Figures 7(c) and 7(d) show the components of the displace-
ment field for both the real and the artificial modes of this
structure at z = 0. Unlike designs A and B, this lattice struc-
ture shows a significant improvement in terms of waveguide
confinement; the edge state modes remain tightly confined to
the interface in this case due to having zero losses. For the
local chiral properties of these modes, see Appendix C.

Finally, we study another valley Hall edge state structure
of He et al. [59]. For this design, the GME computations use
a slab dielectric constant of εs = 12.04, a slab thickness of
d = 0.571a, hole radii of r1 = 0.105a and r2 = 0.235a, and a
lattice constant of a = 385 nm. This topological PC design is
quite similar to design C; a standard honeycomb lattice of two
alternating circular hole sizes has inversion symmetry applied
to it, resulting in an interface formed by the larger circular
holes. Figure 8 displays this lattice structure, as well as the
full photonic band diagram. This structure has four significant
edge state modes: two real modes, labeled state 1 and state 2,
and two artificial modes, labeled states 3′ and 4′. Similarly to
the artificial mode from design C, states 3′ and 4′ arise from
an intermediate interface formed beyond the supercell length
(see Appendix B).

Another similarity to design C is the fact that these edge
state modes fall below the light line, as shown in the zoom-in
in Fig. 9(a). For states 1 and 2, the group index, ng, and loss

FIG. 9. (a) Zoom-in to design D’s guided bands of interest, la-
beled state 1 and state 2. States 3′ and 4′, formed at the border
of the supercell, are indicated as dashed bands. Points of interest,
indicated by circles, were chosen to be below the light line. (b) The
group index (top), ng, and loss coefficient (bottom), α, of state 1 and
state 2. The two points of interest are represented by circles, and the
light line crossings are indicated by dotted vertical lines. (c) Electric
displacement field mode profiles of the x and y components of state 1
at the point of interest. (d) Electric displacement field mode profiles
of state 2.

coefficient, α, are shown in Fig. 9(b); the losses for states 3′
and 4′ are omitted in this case, as the results for states 1 and
2 are more meaningful when compared to the original waveg-
uide design. Once again, the regions below the light line for
this structure provide zero losses, and the jumps in α are due to
crossings with the effective slab waveguide (see Appendix A).
For example effective mode volumes of these modes, we ob-
tain 0.009 μm3 [or 0.119(λ/ns)3] for state 1 and 0.008 μm3

[or 0.099(λ/ns)3] for state 2, which are significantly smaller
than those for design C. We also show the components of the
displacement field for the two main modes of this structure
at z = 0 in Figs. 9(c) and 9(d). Regions of slow light, small
losses, and small effective mode volumes have applications
for on-chip quantum light sources including single-photon
emitters [60]. Similarly to design C, this structure’s edge state
modes are very tightly confined to the interface.

V. CONCLUSIONS

In this work, we have applied the GME method to
study four topological PCS structures, all of which are
modifications of the standard honeycomb lattice structure.
Two of these structures, designs A and B, proposed by
Anderson and Subramania [40] and Barik et al. [41], consist
of armchair edge states, with an interface separating shrunken
and expanded honeycomb clusters. The edge states of these
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two PCS structures have been shown to fall above the light
line, and neither structure seemed to perform particularly
well in terms of minimizing propagation loss. Taking previ-
ously reported minimum losses of 15 and 5 dB/cm for the
W1 waveguide for comparison [27,28], these two topologi-
cal structures show minimum losses of the order of 102 and
103 dB/cm inside the photonic bandgap. The electromagnetic
fields of the guided modes remain mostly along the structures’
interfaces, however, these edge states could be more tightly
confined.

The two other structures that we have analyzed, designs C
and D, proposed by Shalaev et al. [58] and He et al. [59], are
valley Hall edge state designs that use inversion symmetry to
form an interface. The edge states of both PCS structures fall
below the light line, thus providing regions of zero intrinsic
losses (neglecting imperfections). The electromagnetic field
mode profiles confirm that these edge states are indeed tightly
confined to their respective structure’s interface. Compared to
designs A and B, these valley Hall edge state designs seem
far superior as a result of their good bandwidth and lossless
propagation modes. However, it remains to be quantified how
these structures are affected by structural disorder, a topic we
will explore in future work.

All of the presented edge state modes show interesting
chiral features for the Bloch mode polarization, which is
useful for coupling to spin-charged quantum dots and real-
izing unidirectional propagation [61,62]. Further information
on the chiral features of the Bloch modes is presented in
Appendix C.
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APPENDIX A: FURTHER DETAILS
ON THE PROPAGATION LOSS FEATURES

In Figs. 7(b) and 9(b), we see several peaks and nontrivial
features in the loss coefficient α as a function of the wave
vector. Apart from the influence of the group index ng, these
effects can be explained by considering the effective slab
waveguide, formed by the effective dielectric constant ε of
the PCS structure’s core layer. The guided modes of this
effective slab are folded when considering the Bloch boundary
condition, and the PCS modes will inevitably cross with these
guided modes. When these bands cross, the effective slab’s
guided modes act as a loss channel, thus briefly increasing
the losses of the PCS’s modes, represented by the frequency’s
imaginary component Im(ω). These peaks are more likely to
appear for relatively thicker slabs or those with low contrast
in the refractive index.

Figures 10(a) and 10(b) demonstrate the origin of this
phenomenon for designs C and D of Shalaev et al. [58] and He
et al. [59], respectively. The two states of interest of these two
topological PCS structures are overlaid onto the guided modes
of the effective slab to show the locations where the bands
intersect, which correspond to the locations of the jumps in
α. Note that the bands shown in this case are only TE-like

FIG. 10. Dispersion of the effective slabs of the edge state struc-
tures of (a) Shalaev et al. [58] and (b) He et al. [59], designs C and
D in the text, respectively. The two waveguide modes of interest
for both structures are overlaid onto this photonic band diagram to
show the various instances of band crossings. These crossings result
in peaks in Im(ω) due to the effective guided slab modes acting as
loss channels.

modes. The other factors that influence the loss calculations
include the group index, ng, and the strength of the normalized
Bloch modes (or the effective mode volume [60]); larger ng

and smaller effective mode volumes both increase the loss in
the golden rule.

APPENDIX B: ADDITIONAL MODE PLOTS AND EDGE
STATE MODES IDENTIFIED AT THE EDGE OF THE

GUIDED-MODE EXPANSION SUPERCELL

The GME, being periodic in nature, presents a specified
boundary condition when building two-dimensional lattice
structures. Unlike methods that can apply open boundary con-
ditions, such as the FDTD using perfectly matched layers,
the GME builds a lattice structure from an initial unit cell
that is repeated periodically in two dimensions. For regular
nonwaveguide structures, a lattice can be easily built from
its clearly defined unit cell. However, waveguidelike struc-
tures require a much larger supercell, which is in general a
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FIG. 11. Electric displacement field mode profiles for state 2′ of
the edge state structure of Shalaev et al. [58] (design C in the text).
(a) The full supercell of the real design is shown, demonstrating that
state 2′ lies at the border of the supercell at an intermediate interface.
(b) The lattice structure is altered such that the intermediate interface
is at the center of the supercell. State 2′ remains confined at this
interface nonetheless.

rectangular section of the lattice with an interface located at
the center. Unlike traditional unit cells, these supercells are
only repeated periodically in one dimension, which we define
as x. The y dimension represents the supercell’s length, which
is assumed to be infinitely long.

Despite these supercells only being periodic in x, the GME
still views them as being periodic in both x and y. Therefore, a
supercell length defined as ly will form interfaces at y = ±nly,
where n = {0, 1, 2, . . .}. In principle, we must ensure that ly is
large enough such that the neighboring interfaces at y = ±ly
do not interfere with the GME computations. For designs A
and B, these periodic interfaces are formed easily, as they are
constructed from typical armchair interfaces. Designs C and
D, however, utilize inversion symmetry to form an interface,
and thus to achieve a perfectly periodic supercell in the y
direction, inversion symmetry must be applied twice. Doing
so results in intermediate interfaces located at ±(n + 1/2)ly.
The calculations are still physical in the sense that the results
have converged, and if we increased the size of the supercell,
we could get the same answer. Thus, the GME can find other
designs from the boundary of the supercell.

Due to the formation of these intermediate interfaces, new
modes are formed. These modes, although fictitious from the
input design, can be viewed as a real solution to a new design
where the intermediate interface is located at y = 0. One such
artificial mode is shown in design C in the text, labeled state 2′.
Figure 11 shows the full supercell of the electric displacement
field modes of state 2′ using two different approaches. In
Fig. 11(a), the real lattice design is utilized to demonstrate
that the confinement occurs at the edge of the supercell at
y = ±ly/2, where the intermediate interface is located. An
alternative view of this mode is shown in Fig. 11(b), where the
intermediate interface is placed at y = 0. These two modes are

FIG. 12. Electric displacement field mode profiles for states 3′

and 4′ of the edge state structure of He et al. [59] (design D in the
text). (a) The full supercell of the real design is shown, demonstrating
that state 3′ lies at the border of the supercell at an intermediate
interface. (b) The lattice structure is altered such that the intermediate
interface is at the center of the supercell. State 3′ remains confined at
this interface nonetheless. (c) The full supercell of the real design is
shown, demonstrating that state 4′ lies at the border of the supercell
at an intermediate interface. (d) The lattice structure is altered such
that the intermediate interface is at the center of the supercell. State
4′ remains confined at this interface nonetheless.

effectively identical, save a translation of ly/2 applied in the y
direction.

The same phenomenon is found in design D in the text,
albeit with two artificial modes rather than one. Figures 12(a)
and 12(b) show the electric displacement field mode profiles
of state 3′ and Figs. 12(c) and 12(d) show those of state 4′.
Once again, the full supercells are shown in these figures to
emphasize the artifical states being located at the edges of
the supercells. We show once more alternative views of these
modes by wrapping the edges to the center, which can be seen
as entirely new topological PCS designs.
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FIG. 13. Polarization for design A’s (a) state 1 and (b) state 2,
represented by the S3 Stokes’ parameter.

APPENDIX C: CHIRAL FEATURES OF THE BLOCH
MODES

Here, we display the chiral features of the Bloch modes
shown in the text to better highlight the regions of circular po-

FIG. 14. Polarization for design B’s (a) state 1 and (b) state 2,
represented by the S3 Stokes’ parameter.

FIG. 15. Polarization for design C’s (a) state 1 and (b) state 2′,
represented by the S3 Stokes’ parameter.

larization, which can be used to couple to spin-charged dipole
emitters [48,63] and form one-way edge states. Although not
necessary for comprehension of the text, understanding the
chiral properties of these structures has significant value in
terms of quantum applications [62,64]. The method used to
show the chiral features of the text’s four structures is through
the Stokes’ parameters S0,1,2,3 as a function of position r,
which describe the polarization of the electric field E(r):

S0(r) = |Ex(r)|2 + |Ey(r)|2,
S1(r) = (|Ex(r)|2 − |Ey(r)|2)/S0(r),

S2(r) = 2 Re[E∗
x (r)Ey(r)]/S0(r),

S3(r) = 2 Im[E∗
x (r)Ey(r)]/S0(r). (C1)

The z component of the Bloch mode fields is negligible, and
we show mode profiles below at the slab center only, namely,
at z = 0.

The main benefit of the Stokes’ parameters is that they can
easily pinpoint the locations of polarization singularities, such
as circular polarization (“C points”) and linear polarization
(“L lines”) [62]. The first parameter, S0, represents the total
electric field strength, which is found from its x and y compo-
nents. The other three Stokes’ parameters, −1 � S1,2,3 � 1,
are the three Cartesian positions of the Poincaré sphere [64].
The parameter of interest here is S3, due to its feature of being
able to easily identify C points and L lines. Points where
S3 = ±1 represent C points with left and right circular polar-
ization, respectively; similarly, points where S3 = 0 depict L
lines.
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FIG. 16. Polarization for design D’s (a) state 1 and (b) state 2,
represented by the S3 Stokes’ parameter.

To highlight the main chiral features, we show the text’s
four structures in terms of S3. Doing so is quite trivial, as
the x and y components of the electric displacement field D
are available to us. Using the relation D ≡ εE, the Stokes’
parameters are easily found for each structure’s supercell. The
values of S3(r) for the eight states of interest in the text are
shown in Figs. 13–16, featuring designs A–D, respectively.

The polarizations of the lossy armchair PCS structures
(designs A and B) are very much alike due to their similar
armchair configurations. We can see that these structures tend
to preserve both left and right circularly polarized C points
within the honeycomb clusters. There do not seem to be any
other discernible features for these two structures other than
the scarcity of L lines.

For design C, there is a much more even distribution of C
points than for the previous two structures. However, due to
having more locations with L lines, this structure seems to be
more versatile. State 1 and state 2′ are quite similar, yet state
1’s C points are slightly more defined than those of state 2′.

Design D’s chiral features are similar to those of designs A
and B in the sense that the C points tend to cluster, however,
they do so around the holes. Additionally, like design C, there
are significantly more L lines in this case. It is also easier to
identify the interface of this structure, as the C points tend
to gather around it. This is consistent with results found by
He et al., which demonstrate that left and right circularly
polarized C points are found at the center of the interface’s
holes [59].
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